KIT | KIT-Bibliothek | Impressum | Datenschutz

Edge-electron induced ferrimagnetic effect to accelerate interfacial desolvation kinetics toward dendrite-free Zn metal batteries

Yang, Haifeng; Liu, Fangqi; Chen, Bixian; Cheng, Xiaomin; Guan, Qinghua; Dong, Jing; Li, Teng; Jia, Lujie; Wang, Wenbin; Zhang, Jing; Jia, Jiqiang; Zhang, Yongzheng; Li, Canhuang; Liu, Yunjian ; Lin, Hongzhen ; Wang, Jian 1
1 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)

Abstract:

Rechargeable aqueous zinc metal batteries (AZMBs) have garnered significant attention for large-scale energy
storage. However, they are hindered by the sluggish Zn(H$_2$O)$_6$$^{2+}$ desolvation kinetics, leading to uneven Zn
deposition as well as side reactions of active water molecules for the formation of hydrogen evolution reaction
(HER). Herein, high spin-state ferrimagnetic interphase of spinel zinc ferrite (ZFO) has been pioneered to serve as
artificial interphase on metallic Zn anode (ZFO@Zn). Specifically, high-spin Fe$^{3+}$ center enhances electron
delocalization and the spinel crystal structure of ZFO layer facilitates the interfacial ion transfers, catalytically
reducing the barriers of Zn$^{2+}$ desolvation and atom diffusion. Meanwhile, the micro-magnetic field self-motivates
interfacial ion flux and separates the active molecules, enabling uniform Zn deposition without HER. The as-
fabricated cell employed with ZFO@Zn achieved an impressive cumulative capacity exceeding 3500 mAh
cm$^{-2}$at 30 mA cm$^{-2}$, demonstrating its remarkable kinetics and stability. The assembled vanadium-based full
cell exhibits superior performance of 411.1 mAh g$^{-1}$ at 10 A g$^{-1}$ and maintained the capacity-retention of 90.7%
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184225
Veröffentlicht am 01.09.2025
Originalveröffentlichung
DOI: 10.1016/j.cej.2025.164989
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2025
Sprache Englisch
Identifikator ISSN: 1385-8947
KITopen-ID: 1000184225
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Chemical Engineering Journal
Verlag Elsevier
Band 519
Seiten 164989
Nachgewiesen in Web of Science
Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page