KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning to Detect Label Errors by Making Them: A Method for Segmentation and Object Detection Datasets

Penquitt, Sarina; Riedlinger, Tobias; Heller, Timo; Reischl, Markus ORCID iD icon 1; Rottmann, Matthias
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Recently, detection of label errors and improvement of label quality in datasets for supervised learning tasks has become an increasingly important goal in both research and industry. The consequences of incorrectly annotated data include reduced model performance, biased benchmark results, and lower overall accuracy. Current state-of-the-art label error detection methods often focus on a single computer vision task and, consequently, a specific type of dataset, containing, for example, either bounding boxes or pixel-wise annotations. Furthermore, previous methods are not learning-based. In this work, we overcome this research gap. We present a unified method for detecting label errors in object detection, semantic segmentation, and instance segmentation datasets. In a nutshell, our approach - learning to detect label errors by making them - works as follows: we inject different kinds of label errors into the ground truth. Then, the detection of label errors, across all mentioned primary tasks, is framed as an instance segmentation problem based on a composite input. In our experiments, we compare the label error detection performance of our method with various baselines and state-of-the-art approaches of each task's domain on simulated label errors across multiple tasks, datasets, and base models. ... mehr


Volltext §
DOI: 10.5445/IR/1000184235
Veröffentlicht am 26.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 25.08.2025
Sprache Englisch
Identifikator KITopen-ID: 1000184235
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Weitere HGF-Programme 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Verlag arxiv
Schlagwörter Machine Learning (cs.LG), Computer Vision and Pattern Recognition (cs.CV)
Nachgewiesen in arXiv
Dimensions
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und InfrastrukturZiel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page