KIT | KIT-Bibliothek | Impressum | Datenschutz

Explainable Prediction of Mechanical Properties in Porous Microstructures

Griem, Lars Christoph ORCID iD icon 1; Greß, Alexander 2; Koeppe, Arnd Hendrik ORCID iD icon 1; Feser, Thomas 2; Selzer, Michael ORCID iD icon 1; Beeh, Elmar 2; Nestler, Britta 1,3
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Deutsches Zentrum für Luft- und Raumfahrt (DLR)
3 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In automotive design high-performance sandwich composite materials that combine light weight and high energy dissipation play an important role. In particular, sandwich composites with a polyurethane foam core and a metallic face material exhibit excellent performance. To dimension such composites, it is necessary to know the mechanical properties of the constituent materials. The determination of the properties of the polyurethane foam core, however, commonly requires extensive investigations as they greatly depend on the foam’s microstructure that varies significantly with manufacturing equipment and process parameters. Experimental testing can determine the mechanical properties, but offers a time-consuming and cost-intensive remedy to the underlying problem.

To avoid these resource intensive investigations, we propose a deep-learning strategy that can efficiently predict the mechanical properties of foams solely from their microstructures.
The basis for this approach is an algorithmically generated lookup table with digital twins of foam variants in the form of 3D models that resolve the microstructures on a micrometre scale. ... mehr


Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Vortrag
Publikationsdatum 11.05.2023
Sprache Englisch
Identifikator KITopen-ID: 1000184249
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Veranstaltung 1st International Seminar on Modelling, Simulation and Machine Learning for the rapid development of porous materials (2023), Köln, Deutschland, 10.05.2023 – 12.05.2023
Schlagwörter Explainable AI, Machine Learning, Mechanical Properties, Structure-Property Links, Foam Structures
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page