KIT | KIT-Bibliothek | Impressum | Datenschutz

Kadi4Mat: AI Driven Extraction of Structure-Property Linkages from Material Databases

Griem, Lars Christoph ORCID iD icon 1; Koeppe, Arnd Hendrik ORCID iD icon 1; Selzer, Michael ORCID iD icon 1; Nestler, Britta 1,2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

When data is available in a structured format, machine learning can effectively identify complex
relationships and hidden dependencies. Materials databases are prime examples, providing rich and
well-organised datasets on different material systems. Applying machine learning to these databases
can therefore be a powerful tool for discovering hidden structure-property linkages.
In this study, we present a use case where generic interactive workflows use machine learning to
automatically reveal such connections within the research data infrastructure Kadi4Mat
[https://kadi.iam.kit.edu/].
Within this infrastructure, data from both simulated and experimental analyses of materials systems
are organised and structured using a standardised metadata scheme.
In our use case, we begin by extracting the uniformly structured data from the Kadi4Mat platform
and preparing it for machine learning applications.
We then iteratively train neural networks to detect correlations between the microstructural
compositions of the studied materials and their resulting macroscopic properties. By employing
explainable AI techniques, in particular layer-wise relevance propagation, we identify the most
... mehr


Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Vortrag
Publikationsdatum 09.10.2024
Sprache Englisch
Identifikator KITopen-ID: 1000184251
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Veranstaltung Materials Process Applications Seminar (MPA 2024), Universität Stuttgart, 08.10.2024 – 10.10.2024
Schlagwörter Structure-Property-Linkages, Research Data Management, Kadi4Mat, Explainable AI
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page