KIT | KIT-Bibliothek | Impressum | Datenschutz

In‐Depth Analysis of the Origin of Enhanced Ionic Conductivity of Halide‐Based Solid‐State Electrolyte by Anion Site Substitution

Ganesan, Priya 1; Zimmermanns, Ramon ORCID iD icon 2; Liang, Jianneng 1; Hu, Yang 1; Cuello, Gabriel J.; Puente Orench, Inés; Baumgart, Sebastian; Sotoudeh, Mohsen; Groß, Axel; Diemant, Thomas 1; Varzi, Alberto ORCID iD icon 2; Fichtner, Maximilian 2
1 Karlsruher Institut für Technologie (KIT)
2 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)

Abstract:

Halide-based solid-state electrolytes (HSEs) offer higher anodic stability than sulfide solid electrolytes with Li₂ZrCl₆ (LZC) standing out due to its low cost and elemental abundance. However, its limited ionic conductivity has inhibited wider application up to now. In this context, S-doped Li₂ZrCl₆ (LZCS) electrolytes that reach a conductivity of up to 0.64 mS cm$^{-1}$ (3 times higher than pristine LZC, 0.21 mS cm$^{-1}$) with good electrochemical stability have been synthesized and studied. X-ray and neutron diffraction reveal the coexistence of monoclinic and trigonal phases in LZCS, which is the probable reason for enhanced ionic conductivity. The monoclinic phase with antisite disorder leads to 2D diffusion pathway, which is confirmed by density functional theory simulations. Stripping/plating results show that Li₂ZrCl$_ {5.6}$S$_ {0.2}$ exhibits the smallest polarization over 600 h at 0.1 mA cm$^{-2}$. Full cell tests with LiNi$_{0.6}$Mn$_{0.2}$Co$_{0.2}$O₂ (NMC622) positive electrode further demonstrate a better capacity retention of 96.3% for Li₂ZrCl$_ {5.6}$S$_ {0.2}$ (LZCS02) in comparison to that of Li₂ZrCl₆ (68.5%).Focused ion beam (FIB) line scans show less nickel and oxygen diffusion at the LZCS02/NMC622 interface. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184262
Veröffentlicht am 27.08.2025
Originalveröffentlichung
DOI: 10.1002/batt.202500378
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2566-6223
KITopen-ID: 1000184262
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Batteries and Supercaps
Verlag John Wiley and Sons
Seiten Art.-Nr.: 2500378
Vorab online veröffentlicht am 02.07.2025
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page