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Interfaces are critical in chemical engineering, as they govern mass transfer between phases and play a key role
in the formation and behavior of droplets and bubbles. This is particularly true in liquid-liquid extraction col-
umns, where droplet interactions such as coalescence and breakage are pivotal. In decades of research, droplet
coalescence remains a complex phenomenon that is not yet fully understood, partly due to the challenges in
experimentally analyzing the small-scale and fluid nature of interfaces. To address this gap, we propose a
thermodynamically consistent simulation approach to accurately resolve interfaces and study droplet in-
teractions. The developed model builds on the incompressible Density Gradient Theory (DGT) by Cahn and
Hilliard, coupling it with the Navier-Stokes equations to form a novel Navier-Stokes/DGT framework. Within this
framework, the Non-Random Two-Liquid model is employed as the thermodynamic foundation, enabling the
accurate modeling of interfacial properties and prediction of coalescence behavior in liquid-liquid systems. The
Navier-Stokes/DGT model, comprising a system of highly nonlinear partial differential equations is solved using
the finite volume method in OpenFOAM. This approach enables the simulation of the single stages of droplet
coalescence. Furthermore, complex interfacial effects like Marangoni convection and de-mixing behavior are

investigated in more detail.

1. Introduction

Extraction is of crucial importance in the chemical industry as it is a
key technology for separating, purifying and isolating valuable sub-
stances from complex raw materials. It enables the recovery of starting
materials necessary for the manufacture of a wide range of products,
from medicines and foods to plastics and chemical compounds. Without
extraction techniques, it would be almost impossible to obtain these
valuable materials in the required purity and concentration. Examples of
technical implementations of liquid-liquid extraction apparatuses
include mixer-settler cascades and extraction columns [1]. In these ap-
paratuses, various dynamic processes impact their efficiency, such as
droplet rising velocity, axial dispersion, and rates of breakage or coa-
lescence [2]. The limited availability of detailed physical insight into the
underlying mechanisms necessitates extensive experimental investiga-
tion during the design of separation processes. A critical parameter in
this context is the droplet size distribution, as it governs the interfacial
area available for mass transfer. Given its central role in determining the
overall mass transfer rate, considerable research effort has been devoted
to developing predictive models for droplet size distributions. One
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commonly employed modeling framework is the droplet population
balance approach, which relies on rate expressions for droplet forma-
tion, breakup, collision, and coalescence, typically derived from
empirical or semi-empirical correlations [2-4]. Numerical in-
vestigations of single droplets can contribute to the refinement of these
correlations through the application of transfer coefficient models and
can also serve as a valuable complement to experimental methodologies
[5,6].

To more accurately capture the hydrodynamic behavior within
extraction equipment, population balance models are integrated with
Computational Fluid Dynamics (CFD), enabling detailed simulation of
the flow field throughout the apparatus. This combined approach re-
duces the need for extensive experimental trials, thereby conserving
both material and time during process development and design [7].
However, these correlations often rely on equilibrium properties - such
as interfacial tension - as essential input parameters. More detailed in-
sights into the prevailing flow regimes can be achieved through
advanced interface-capturing techniques, including the Volume of Fluid
(VOF) method [8] and the Level-Set method [9]. Sharp-interface
methods necessitate the formulation of a transport equation to track
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the interface, along with additional boundary conditions to describe
system behavior across the interfacial discontinuity. These include the
appropriate treatment of the stress tensor and mass transport when
dealing with systems beyond immiscible liquids or pure components.
Within such frameworks, interfacial tension is typically introduced as a
model parameter rather than being computed explicitly. For systems
involving partially miscible components, interfacial tension becomes
concentration-dependent, thereby requiring detailed thermodynamic
modeling. Consequently, accurately capturing droplet interactions de-
mands a modeling approach capable of describing interfacial properties,
which cannot be adequately achieved using sharp-interface represen-
tations alone.

Van der Waals proposed a gradient contribution [10] to the inter-
facial free energy, later reformulated by Cahn and Hilliard [11,12].
Poser and Sanchez [13] rediscovered the work of Cahn and Hilliard and
applied it to model the interfacial properties of polymer solutions. Based
on this work Enders et al. developed the density gradient theory (DGT)
to describe the surface properties of compressible vapor-liquid equilibria
using an equation of state [14-16] or to describe the interfacial tension
of incompressible liquid-liquid systems using a gf-model [17-19]. In the
framework of the DGT, the Helmholtz energy functional is expressed by
a Taylor series, with the homogeneous state as the starting point, which
is minimized to evaluate the interfacial properties as interfacial tension
and thickness. In the mathematical formulation of Density Gradient
Theory (DGT), the series expansion is truncated, and an empirical
parameter - referred to as influence parameter - is introduced. This
parameter is typically fitted to single experimental measurement of the
interfacial tension. Comparative studies between Monte Carlo and mo-
lecular dynamics simulations demonstrate that, when an appropriate
scaling law is applied, both theoretical predictions and simulation re-
sults exhibit good agreement in terms of concentration profiles and
interfacial tension [20]. In practice, DGT has been applied across a wide
range of fields, including the analysis of surface tension in refrigeration
fluids to support the optimization of industrial processes such as heat
pumps [21], as well as the investigation of geological oil-brine systems
aimed at enhancing oil recovery in the context of carbon capture and
storage technologies [22].

Building upon the equilibrium framework of DGT, Cahn and Hilliard
formulated a dynamic diffusion equation that incorporates phase equi-
librium [23] and including the diffusive mobility coefficient, this
formulation enables the calculation of interfacial mass transfer driven by
diffusion. Nauman et al. [24] employed the Flory-Huggins theory [25]
as a thermodynamic model for polymer solutions, initially focusing
solely on diffusion. Subsequently, they extended the model by incor-
porating the Stokes equation to represent the flow field [26], using a
discontinuous stress tensor formulation that explicitly depends on
interfacial tension. Furthermore, they derived an expression for volu-
metric body forces resulting from concentration gradients and applied
the framework to simulate spinodal decomposition in polymer blends
subjected to shear flow. The application of Fickian diffusion in combi-
nation with linearized chemical potentials near equilibrium leads to the
homogenization of concentration fields, thereby inhibiting phase sepa-
ration. However, using a phase field approach with a thermodynamic
model allows phase separation to be calculated. Unlike traditional
models that track sharp interfaces, phase-field models use a diffuse
interface approach [27]. The interface is represented by a smooth
transition between phases, which simplifies the mathematical treat-
ment. Phase field models use an order parameter that varies continu-
ously across the interface, taking distinct values in each phase. This
diffuse interface approach eliminates the need for explicit tracking of the
interface. But the application of these phase field models often leads to
thermodynamic inconsistencies as they often apply double well poten-
tial not able to represent the thermodynamic properties of any mixture.

Joseph and Renardy [28] and Falk [29] incorporated density
gradient terms into the stress tensor formulation, following the approach
originally proposed by Korteweg [30]. Their work builds upon
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continuum mixture theory frameworks developed by Atkin and Craine
[31] and Bedford and Drumbheller [32], while assuming linear consti-
tutive relations for diffusive mass transport. The
Cahn-Hilliard/Navier-Stokes framework has been widely employed to
investigate the dynamics of immiscible viscous liquid flows, accounting
for capillary forces and coarsening phenomena. This approach utilizes
an order parameter to represent the phase field and typically assumes
constant density within each phase. Truskinovsky and Lowengrub [33]
extended this framework by incorporating the square gradient term
from the Cahn-Hilliard formulation into the surface free energy
expression. By using the concentration of a single component as the
phase field, they obtained a quasi-incompressible density field. Alter-
native modeling strategies have employed level-set functions to repre-
sent the phase field, with the interface evolution governed by a transport
equation analogous to the Cahn-Hilliard formulation [34]. A variety of
numerical techniques have been developed to solve the coupled
Cahn-Hilliard/Navier-Stokes equations, including spectral methods
[35], finite difference multigrid methods, and finite element methods
[36]. However, when the phase variable is not directly related to molar
concentration or molar fraction, and the velocity field is averaged using
such a phase indicator, additional correction terms must be introduced
into the momentum balance to ensure momentum conservation. More-
over, these modeling frameworks typically lack incorporation of ther-
modynamic equilibrium principles. Despite the utility of such phase
field models, a significant limitation remains: the Helmholtz energy
functional lacks a rigorous physical foundation. The Helmholtz energy
functions used are often simplified representations - such as double-well
potentials - that restrict the analysis to a single tie line of the phase di-
agram for the given mixture. Exemplary approaches for the Helmholtz
energy function f are given by the following equations:

f= <¢7%>2-(¢+%>2 34] )

g = (ol =1)" s @

Whereas ¢ represents the order parameter of the system and 5 is a
positive parameter determining the shape of the potential. A graphical
representation of the double-well potential, as defined by Eq. (2), is
provided by Fig. 1.

When the order parameter ¢ is employed as a phase field variable in
apparatus design, the model does not directly provide information about

Free Energy f
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Fig. 1. Double-well potential for the Helmholtz energy of a binary system as
function of the order parameter ¢ according to Liu et al. [35]. The parameter 5
was set to 0.1 for representational purposes.
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the component concentrations, thereby limiting its applicability for
processes requiring concentration-dependent analysis. In the context of
chemical process design, however, accurate thermodynamic character-
ization is essential. To address these limitations, the present work pro-
poses an approach that integrates a thermodynamically consistent free
energy model into the Cahn-Hilliard framework, enabling the use of
detailed equilibrium data in hydrodynamic simulations.

2. Theoretical Framework
2.1. Density Gradient Theory in Equilibrium Systems

In DGT for systems in equilibrium [17], the interfacial tension in
inhomogeneous systems is proportional to the grand thermodynamic
potential AQ. To evaluate this potential, the Helmholtz energy is
employed as the thermodynamic potential of the system [17]. Under the
assumption of incompressibility, the Helmholtz energy becomes equiv-
alent to the Gibbs energy. In this context, the relevant quantity is not the
density gradient but rather the concentration gradient of each compo-
nent across the interface between two bulk phases. These concentration
gradients serve as the basis for calculating the interfacial tension. The
grand thermodynamic potential AQ of a multicomponent liquid equi-
librium (LLE) can be expressed as follows:

AQ = Ag(x;) — Z WX 3
io1

where Ag(x;) denotes Gibbs energy at the corresponding composition,
evaluated using an appropriate g®-model and y; represents the chemical
potential of component i. At equilibrium, the grand potential is mini-
mized, resulting in a Euler-Lagrange equation. Solving this equation and
applying a coordinate transformation from the spatial domain to the
concentration domain yields the expression for the minimal grand po-
tential and the interfacial tension can be calculated as follows:

X{I
6= / V2kAQ(x) dx; 4
x

where x| and xI are the compositions of the corresponding phases and
is the so-called influence parameter. This parameter represents the
partial derivative of the free energy with respect to the curvature of the
concentration and is typically assumed to be constant or temperature
dependent. Previous studies have shown that adjusting the influence
parameter to match a single experimentally obtained interfacial tension
is sufficient [17-19]. This allows for the prediction of interfacial ten-
sions at other temperatures and/or compositions with qualitative
accuracy.

2.2. Navier-Stokes & Density Gradient Theory

To characterize interfacial interactions in multicomponent mixtures
of liquids with similar densities on a macroscopic scale, it is essential to
consider hydrodynamics. The evolution over time of the molar fraction
fields and velocities can be conveniently described using the Navier-
Stokes equations for incompressible fluids, coupled with the transport
equation for the phase-forming component. The Cahn-Hilliard equation
uses the density gradient to calculate the Helmholtz energy of the system
[12,13]. Applying the incompressible version of the Cahn-Hilliard
equations allows for consideration of concentration gradients in the
system. In combination with the Navier-Stokes equation the
Navier-Stokes/DGT model is proposed. In this context, it is taken into
account that the order variable is not the density as in the classical DGT
but the concentration, since this is an incompressible system [37].

Vu=0 ()]
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The first equation Eq. (5) is the conservation equation for an
incompressible system with the velocity vector u and the second equa-
tion Eq. (6) is the momentum balance with the density p, the pressure p,
the viscosity v and the chemical potential y; of component i. The last
term of Eq. (6) is the Korteweg tensor which accounts for capillary ef-
fects in a fluid [30]. The third equation Eq. (7) represents the species
transport, whereas x; is the mole fraction of component i and Lj is the
binary mobility coefficient. Here we consider the Onsager relations [38].
In equilibrium and bulk phase thermodynamics, the chemical potential
u; of incompressible liquids is derived from the Gibbs energy using the
DGT approach as follows:

g = glxi) +5(Vx)’ ®

The total Gibbs energy comprises the bulk phase contribution and a
gradient term, weighted by the influence parameter «. The bulk Gibbs
energy itself includes contributions from an ideal mixture and an excess
part:

8(x:) = g (x:) + 8°(x;) = RT(iXiIDXi> +&(x) (©)]

In this work, the Non-Random Two-Liquid (NRTL) model developed
by Prausnitz and Renon [39] is employed to calculate the excess Gibbs
energy, as described by the following equation:

g8 (x:) > i1 TiigjiX;
—_— = Xi|l <n——— (10)
RT ; > k-1 8kiXk

Where 7; = Ay +¥ is a temperature dependent parameter and g; =
exp( — a;7y) contains the symmetric parameter a; which accounts for
the non-randomness of local concentrations.

The Gibbs energy formulation is employed in this context as it fa-
cilitates the treatment of incompressible systems, avoiding internal nu-
merical solutions for the pressure, but necessitates the calculation of a
pressure-like field to maintain mass balance. Without additional as-
sumptions, the current formulation cannot account for systems
involving fluids with differing densities, and thus gravitationally
induced sedimentation is excluded. To visualize DGT as an incom-
pressible version, the Gibbs energy of a two-phase liquid-liquid system
can be considered (Fig. 2), determine the phase equilibrium as well the
decomposition of the phases.

This process occurs when the system is quenched into the unstable/
metastable region of its phase diagram [40]. The free energy of a
de-mixing system shows a concave region. When the systems concen-
tration is within this concave region, any small fluctuation in composi-
tion will lower the free energy, leading to spontaneous phase separation.
The spinodal region is defined by the points where the second derivative
of the free energy with respect to composition is zero. In the spinodal
region, the mixture is unstable and undergoes rapid spontaneous
decomposition into two distinct phases. For systems where interfacial
effects are significant, it is necessary to account for the metastable and
unstable regions in phase diagrams, where g&-models are not defined.
Therefore, a functional expression is necessary as provided by DGT. This
is a key feature of the Navier-Stokes/DGT framework, as it enables the
incorporation of a thermodynamically consistent fluid dynamic model
applicable to real systems.
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Fig. 2. Gibbs energy of the binary system Methanol (MeOH) - n-hexane at 5 °C.
The blue dots represent the spinodal points (inflection points) of the
Gibbs energy.

The Navier-Stokes/DGT model consists of highly non-linear balance
equations for mass, momentum and species transport. To solve accu-
rately the balance model equations, they are solved numerically in every
cell at each timestep to obtain the concentration and velocity field. It
turns out, these iterations are the bottleneck of the calculations. Addi-
tionally, to the solution of the non-linear equations in every cell, three
waves of spatial derivatives are applied. To describe the evolution of the
system’s composition, nonlinear diffusion is modeled as a function of the
gradient of the chemical potentials, which, within the framework of the
Cahn-Hilliard model, depend on the second spatial derivative of the
density distribution in the system. The change of the systems composi-
tion itself then is the divergence of the diffusion fluxes.

The Navier-Stokes/DGT model is implemented into OpenFOAM
based on the PISO-Solver for transient simulations [41]. OpenFOAM is
an open-source finite volume method library based on C++. The
Navier-Stokes/DGT framework is incorporated into the source code of
OpenFOAM while the convection term is solved implicitly, and the
diffusion term is treated explicitly. The convection term is discretized
using a linear central differencing interpolation scheme, while the
Laplacian operators in the diffusion term are evaluated using a
surface-normal gradient scheme with explicit non-orthogonal correc-
tion. Time discretization is performed using a backward differencing
scheme, which is a second-order implicit method offering improved
stability for transient simulations. The conservation equations are solved
on a 2D mesh starting with 1024 x 1024 hexaeder mesh. The mesh is
continuously adapted in the region of large concentration gradients
using adaptive mesh refinement. The time resolution of the system with
is set to At = 1078 s since the occurring gradients in chemical potential
reach high values. The mesh and time resolution are chosen carefully
since they depend on the influence parameter x which determines the
thickness of the interface in the system. As Zimmermann et al. [42]
already demonstrated does the numerical stability as well as the for-
mation of the interfaces depend strongly on this influence parameter.

3. Results and Discussion

This work utilizes thermodynamic data for the binary systems
methanol (MeOH) - n-hexane and toluene-water, as well as the ternary
system MeOH - n-hexane - isopropanol, obtained from previously con-
ducted diffusion experiments [43]. The NRTL parameters are retrieved
from literature [44] linearly interpolated regarding temperature
dependency.

For the binary system toluene-water the combination of the NRTL
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model with DGT enables the calculation of interfacial tension in equi-
librium. To perform this calculation, a single experimental measurement
[45] of interfacial tension with 34.7-1073™¥ at 295 K was fit to obtain an
influence parameter x = 7.64-10’”%’1. Fig. 3 shows the interfacial
tension (IFT, Eq. 4) of the binary system toluene - water with respect to
temperature.

The predicted interfacial tension for the toluene-water system shows
good agreement with available experimental data [45,46]. The close
correspondence between calculated and experimental values suggests
that the influence parameter, derived from a single data point, provides
a reliable basis for modeling interfacial properties. This further validates
the applicability to systems exhibiting sharp phase boundaries and sig-
nificant differences in polarity and molecular interactions, as is char-
acteristic of the toluene-water system.

All binary interaction parameters employed in this work are sum-
marized in the following Table 1. It should be noted that the influence
parameter is zero, if the considered subsystem shows no LLE.

3.1. Phase Separation

Phase separation in liquid-liquid systems occurs when a homoge-
neous mixture of two or more liquids separates into distinct phases. This
phenomenon is driven by differences in the physical or chemical prop-
erties of the components, such as density, solubility, or molecular in-
teractions. Phase separation is governed by the principles of
thermodynamics. When the Gibbs energy of the system is minimized, the
mixture separates into phases with different compositions.

A binary mixture of MeOH and n-hexane is investigated within a
simulation domain of approximately 10 x 10 mm. The initial compo-
sition is set to an equal ratio, with a molar fraction MeOH of 0.5 22 . To
introduce variability and simulate realistic conditions, perturbations of
the local composition are applied. These perturbations are generated
using normally distributed random numbers, which create slight varia-
tions in the range of 10~* ”m% in the concentration of MeOH and n-
hexane throughout the domain. This approach helps to mimic the nat-
ural fluctuations that might occur in a real-world scenario, providing a
more accurate representation of the system’s behavior over time.
Furthermore, the process is visualized in an LLE phase diagram. In the
following Fig. 4 the decomposition of the binary system MeOH - n-
Hexane can be seen.

The interfacial tension between the separated phases influences the

46 -
——DGT + NRTL
m Exp.Data (Wiegand et. al)

dr ® Exp.Data (Saien et. al)
— 42+
£
zZ

40 -
)
H 38l
e 38
= (] [ ]

36 - ([ ] °

° °
34+
290 300 310 320 330
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Fig. 3. Experimental and calculated IFT (Eq. 4) for the system toluene-water in
dependence of the temperature. Exp. data obtained from the literature [45,46]
are indicated by dots and squares. The line represents interfacial tension pre-
dicted by DGT with NRTL.



M. Singer et al.

Table 1
Binary parameters used in this work.
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Model Parameter Units Component pair i — j
MeOH - n-Hexane MeOH - Isopropanol n-Hexane — Isopropanol Toluene — Water
NRTL [44] Aj -] —0.26 0 0 —7.2357
Aj; [-] —4.347 0 0 3.9884
Bj 1] 496.44 234.41 —340.72 3433.95
Bji [T 1664.56 —1351.52 —889.36 647.86
ajj -] 0.20 0.20 0.20 0.20
DGT Kij 10~7 [JLOZ] 1.13 [47] 0 0 7.64
mt
Diffusion L 10-16 [molj 28.0 [47] 2.64 [43] 19.1 [43] 1.64 [38]
Jsm*

shape and stability of the phases. As observed in the early stages of the
simulation, the decomposition into distinct phases is primarily driven by
diffusion. The interfaces between the phases are forming while the
MeOH bulk concentrations in the respective phases are increasing and
decreasing. Further, it can be observed, that faster mass transfer
behavior can be observed in the regions where the concentration is in
the metastable region. As soon as the concentration reaches the meta-
stable region the process slows down. The occurrence of interfaces in the
system leads also to convective flow which mixes the phases while the
concentrations in the phases further change. The simulation captures
both coalescence and breakup of individual droplets and larger struc-
tures, ultimately resulting in the formation of two macroscopically
distinct phases. Additionally, droplet repulsion phenomena are observed
within the domain. These two phases continue to grow, while the bulk,
minimal and maximal compositions evolve toward the equilibrium
compositions predicted by the underlying thermodynamic model. These
points determine the physical limits for the system while the conserva-
tion equations for mass, momentum and species transport control the
dynamics. The phase separation of a system cannot be modeled by a
classical CFD approach based on Euler-Euler framework as in the two-
phase flow was inherently implemented and is not a result of the ther-
modynamic driving force because of the difference in the chemical
potential.

3.2. Droplet Coalescence

Droplet coalescence describes the merging of two or more individual
droplets upon contact to a single, larger droplet, driven by interfacial
forces and governed by thermodynamic and hydrodynamic conditions.
The single stages of droplet coalescence are displayed in the following
Fig. 5 for the binary system toluene - water with respect to the temporal
evolution. For the system two droplets with a size of about 2 mm in
diameter are collided. The simulation domain is 10 x 10 mm.

In Fig. 5 all stages of drop coalescence are visible as described in the
review of Kamp et al. [3]. The two droplets move towards each other due
to external forces like gravity fields or surface tension gradients
(Fig. 5A). As the droplets come close, they displace the surrounding
liquid and touch, forming a thin liquid bridge (or neck) between them
(Fig. 5B). This bridge is driven by surface tension, which acts to mini-
mize the surface area. The liquid bridge rapidly expands as surface
tension pulls the droplets together. The rate of expansion is influenced
by the viscosity and surface tension of the liquid. The growth of the
liquid bridge can occur in different regimes depending on the balance
between viscous and inertial forces. In the viscous regime, the growth is
slower and dominated by the liquid’s viscosity. In the inertial regime,
the growth is faster and dominated by the liquid’s inertia (Fig. 5C)
Eventually, the liquid bridge grows large enough that the two droplets
fully merge into a single, larger droplet (Fig. 5D). This process is driven
by the minimization of surface energy. Following coalescence, the newly
formed droplet undergoes a relaxation process driven by surface tension
forces, ultimately adopting a stable, typically spherical shape. In

contrast to classical Euler-Euler CFD models, where droplet coalescence
must be incorporated through explicit modeling approaches, this phe-
nomenon is inherently captured in interface resolving simulations using
the Navier-Stokes/DGT model. The necessity for direct implementation
of coalescence in Euler-Euler models has been demonstrated by Wecker
and Kenig [48].

3.3. Marangoni Convection

Marangoni convection [49,50] is driven by gradients in surface
tension along an interface between two fluids. This phenomenon can be
caused by variations in temperature or concentration. The primary
driver of Marangoni convection is the gradient in surface tension. Sur-
face tension decreases with increasing temperature or changes in con-
centration. This gradient causes the fluid to flow from regions of low
surface tension to regions of high surface tension. In technical applica-
tions the Marangoni convection leads to an enhancement in the mass
transfer. This phenomenon is investigated in the ternary system MeOH -
n-hexane - isopropanol, whereas MeOH - n-hexane are forming the
immiscible system and isopropanol the transferring component. Hereby,
the mass transfer of isopropanol leads to a change in the interfacial
tension causing Marangoni convection. The simulation domain is 10 x

10 mm. At the start of the simulation isopropanol is enriched in the
middle of the drop and starts to diffuse to the interface. The following
Fig. 6 shows a single droplet and the surrounding concentration field.

In the vicinity of a droplet with a diameter of approximately 5 mm,
Marangoni convection induces characteristic flow patterns resulting
from gradients in surface tension, typically caused by compositional or
thermal variations. These gradients drive fluid motion along the droplet
interface, with liquid ascending along the outer surface and descending
along the droplet’s interior toward the contact point at the substrate.
This circulation forms a toroidal convection cell, often referred to as a
Marangoni vortex. The resulting flow significantly enhances internal
mixing and mass transport within the droplet. In systems involving
isopropanol, the induced interfacial tension gradients give rise to visible
Marangoni streaks around the droplet, which have also been charac-
terized through experimental observation [51]. Such flow phenomena
play a crucial role in understanding droplet dynamics, interfacial
transport, and the evolution of concentration fields in multicomponent
systems. Unlike traditional CFD approaches [52], variations in interfa-
cial tension emerge naturally from the thermodynamic formulation and
do not require empirical correlations.

4. Conclusion and Outlook

This work introduces an alternative modeling approach based on the
coupled Cahn-Hilliard and Navier-Stokes equations in a Navier-Stokes/
DGT framework to simulate droplet interactions in liquid-liquid systems,
incorporating key physical properties such as interfacial tension, vis-
cosity, diffusion coefficients, and phase equilibrium. The proposed
methodology enables the direct integration of experimentally deter-
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Fig. 4. De-mixing of the binary system MeOH - n-hexane using the parameters shown in Table 1. Left: the decomposition of the mixture in the simulation domain.
Right the visualization of the process in the phase diagram (line: binodal curve, dotted line: spinodal curve).
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Fig. 5. Single stages of the droplet coalescence in the binary system toluene-water with the parameter shown in Table 1.
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Fig. 6. Marangoni streaks formation around a droplet in the ternary system MeOH - n-hexane - isopropanol. Simulation parameters can be found in Table 1.

mined phenomena - such as phase equilibrium data, interfacial tension
measurements, and droplet coalescence behavior - into numerical fluid
dynamics simulations, without relying on predefined assumptions
regarding the distributions of the dispersed and continuous phases. In
contrast to classical phase field models, the present approach employs a
thermodynamically consistent model to define the driving forces gov-
erning phase field evolution. This is achieved by applying the molar
fraction as the concentration field and using the NRTL model that has
been successfully applied in equilibrium thermodynamics to dictate flow
directions. The Navier-Stokes/DGT framework allows for the consider-
ation of interfacial effects and the investigation of droplet interactions.
However, accounting for these effects necessitates a high cell resolution,
limiting the model to small system sizes of about 10 x 10 mm.
Nonetheless, numerical investigations of small systems can help
parameterize large-scale models like population balances.

As an example, the qualitative and quantitative de-mixing in a binary
mixture of MeOH and n-hexane was investigated. Within this de-mixing
process complex interfacial behavior was investigated as mass transfer
between the immiscible phases as well as the occurring of phase sepa-
ration, coalescence behavior and break-up of droplets. Furthermore, the
Navier-Stokes/DGT model proves suitable for calculating the coales-
cence processes with respect to their single stages. This theoretical
framework can be used to perform multiple numerical tests to determine
coalescence or break-up probabilities based on droplet size, shape, dis-
tance, and shear influences, aiding in the parameterization of large-scale
simulations for technical applications. Furthermore, complex interfacial
phenomena as Marangoni convection around a single droplet in a
ternary system could be predicted. The transfer component produced a
distinct flow pattern, forming a toroidal convection pattern leading to
observable Marangoni streaks.

A major advantage of the proposed approach compared to classical
CFD methods is that phase formation emerges naturally from chemical
potential gradients, without the need to predefine the presence or dis-
tribution of individual phases at the beginning of the simulation.
Consequently, the interfacial phenomena observed in this work cannot
be replicated in this form using traditional CFD models. Furthermore,

the developed Navier-Stokes/DGT framework offers a significant benefit
over conventional phase-field methods by enabling direct parameteri-
zation with experimental data, thereby enhancing the physical fidelity
and predictive capability of the simulations.

Further consideration of different densities and additional compo-
nents could lead to a fully thermodynamically consistent and spatially
resolved description of extraction systems. Numerical experiments using
this framework can then be compared to experiments such as droplet
collision and droplet behavior in shear flow found in the literature.
Further experiments could lead to the development of a formalism to
extract droplet size distributions based on initial conditions, mass
transfer, or interfacial enrichment.
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