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b BSH Hausgeräte GmbH, Robert-Bosch-Straße 16, 89407 Dillingen an der Donau, Germany

A R T I C L E  I N F O

Keywords:
Interfacial properties
Phase separation
Droplet coalescence
Marangoni convection
Density gradient theory
Computational fluid dynamics

A B S T R A C T

Interfaces are critical in chemical engineering, as they govern mass transfer between phases and play a key role 
in the formation and behavior of droplets and bubbles. This is particularly true in liquid-liquid extraction col
umns, where droplet interactions such as coalescence and breakage are pivotal. In decades of research, droplet 
coalescence remains a complex phenomenon that is not yet fully understood, partly due to the challenges in 
experimentally analyzing the small-scale and fluid nature of interfaces. To address this gap, we propose a 
thermodynamically consistent simulation approach to accurately resolve interfaces and study droplet in
teractions. The developed model builds on the incompressible Density Gradient Theory (DGT) by Cahn and 
Hilliard, coupling it with the Navier-Stokes equations to form a novel Navier-Stokes/DGT framework. Within this 
framework, the Non-Random Two-Liquid model is employed as the thermodynamic foundation, enabling the 
accurate modeling of interfacial properties and prediction of coalescence behavior in liquid-liquid systems. The 
Navier-Stokes/DGT model, comprising a system of highly nonlinear partial differential equations is solved using 
the finite volume method in OpenFOAM. This approach enables the simulation of the single stages of droplet 
coalescence. Furthermore, complex interfacial effects like Marangoni convection and de-mixing behavior are 
investigated in more detail.

1. Introduction

Extraction is of crucial importance in the chemical industry as it is a 
key technology for separating, purifying and isolating valuable sub
stances from complex raw materials. It enables the recovery of starting 
materials necessary for the manufacture of a wide range of products, 
from medicines and foods to plastics and chemical compounds. Without 
extraction techniques, it would be almost impossible to obtain these 
valuable materials in the required purity and concentration. Examples of 
technical implementations of liquid-liquid extraction apparatuses 
include mixer-settler cascades and extraction columns [1]. In these ap
paratuses, various dynamic processes impact their efficiency, such as 
droplet rising velocity, axial dispersion, and rates of breakage or coa
lescence [2]. The limited availability of detailed physical insight into the 
underlying mechanisms necessitates extensive experimental investiga
tion during the design of separation processes. A critical parameter in 
this context is the droplet size distribution, as it governs the interfacial 
area available for mass transfer. Given its central role in determining the 
overall mass transfer rate, considerable research effort has been devoted 
to developing predictive models for droplet size distributions. One 

commonly employed modeling framework is the droplet population 
balance approach, which relies on rate expressions for droplet forma
tion, breakup, collision, and coalescence, typically derived from 
empirical or semi-empirical correlations [2–4]. Numerical in
vestigations of single droplets can contribute to the refinement of these 
correlations through the application of transfer coefficient models and 
can also serve as a valuable complement to experimental methodologies 
[5,6].

To more accurately capture the hydrodynamic behavior within 
extraction equipment, population balance models are integrated with 
Computational Fluid Dynamics (CFD), enabling detailed simulation of 
the flow field throughout the apparatus. This combined approach re
duces the need for extensive experimental trials, thereby conserving 
both material and time during process development and design [7]. 
However, these correlations often rely on equilibrium properties - such 
as interfacial tension - as essential input parameters. More detailed in
sights into the prevailing flow regimes can be achieved through 
advanced interface-capturing techniques, including the Volume of Fluid 
(VOF) method [8] and the Level-Set method [9]. Sharp-interface 
methods necessitate the formulation of a transport equation to track 
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the interface, along with additional boundary conditions to describe 
system behavior across the interfacial discontinuity. These include the 
appropriate treatment of the stress tensor and mass transport when 
dealing with systems beyond immiscible liquids or pure components. 
Within such frameworks, interfacial tension is typically introduced as a 
model parameter rather than being computed explicitly. For systems 
involving partially miscible components, interfacial tension becomes 
concentration-dependent, thereby requiring detailed thermodynamic 
modeling. Consequently, accurately capturing droplet interactions de
mands a modeling approach capable of describing interfacial properties, 
which cannot be adequately achieved using sharp-interface represen
tations alone.

Van der Waals proposed a gradient contribution [10] to the inter
facial free energy, later reformulated by Cahn and Hilliard [11,12]. 
Poser and Sanchez [13] rediscovered the work of Cahn and Hilliard and 
applied it to model the interfacial properties of polymer solutions. Based 
on this work Enders et al. developed the density gradient theory (DGT) 
to describe the surface properties of compressible vapor-liquid equilibria 
using an equation of state [14–16] or to describe the interfacial tension 
of incompressible liquid-liquid systems using a gE-model [17–19]. In the 
framework of the DGT, the Helmholtz energy functional is expressed by 
a Taylor series, with the homogeneous state as the starting point, which 
is minimized to evaluate the interfacial properties as interfacial tension 
and thickness. In the mathematical formulation of Density Gradient 
Theory (DGT), the series expansion is truncated, and an empirical 
parameter - referred to as influence parameter - is introduced. This 
parameter is typically fitted to single experimental measurement of the 
interfacial tension. Comparative studies between Monte Carlo and mo
lecular dynamics simulations demonstrate that, when an appropriate 
scaling law is applied, both theoretical predictions and simulation re
sults exhibit good agreement in terms of concentration profiles and 
interfacial tension [20]. In practice, DGT has been applied across a wide 
range of fields, including the analysis of surface tension in refrigeration 
fluids to support the optimization of industrial processes such as heat 
pumps [21], as well as the investigation of geological oil-brine systems 
aimed at enhancing oil recovery in the context of carbon capture and 
storage technologies [22].

Building upon the equilibrium framework of DGT, Cahn and Hilliard 
formulated a dynamic diffusion equation that incorporates phase equi
librium [23] and including the diffusive mobility coefficient, this 
formulation enables the calculation of interfacial mass transfer driven by 
diffusion. Nauman et al. [24] employed the Flory-Huggins theory [25] 
as a thermodynamic model for polymer solutions, initially focusing 
solely on diffusion. Subsequently, they extended the model by incor
porating the Stokes equation to represent the flow field [26], using a 
discontinuous stress tensor formulation that explicitly depends on 
interfacial tension. Furthermore, they derived an expression for volu
metric body forces resulting from concentration gradients and applied 
the framework to simulate spinodal decomposition in polymer blends 
subjected to shear flow. The application of Fickian diffusion in combi
nation with linearized chemical potentials near equilibrium leads to the 
homogenization of concentration fields, thereby inhibiting phase sepa
ration. However, using a phase field approach with a thermodynamic 
model allows phase separation to be calculated. Unlike traditional 
models that track sharp interfaces, phase-field models use a diffuse 
interface approach [27]. The interface is represented by a smooth 
transition between phases, which simplifies the mathematical treat
ment. Phase field models use an order parameter that varies continu
ously across the interface, taking distinct values in each phase. This 
diffuse interface approach eliminates the need for explicit tracking of the 
interface. But the application of these phase field models often leads to 
thermodynamic inconsistencies as they often apply double well poten
tial not able to represent the thermodynamic properties of any mixture.

Joseph and Renardy [28] and Falk [29] incorporated density 
gradient terms into the stress tensor formulation, following the approach 
originally proposed by Korteweg [30]. Their work builds upon 

continuum mixture theory frameworks developed by Atkin and Craine 
[31] and Bedford and Drumheller [32], while assuming linear consti
tutive relations for diffusive mass transport. The 
Cahn-Hilliard/Navier-Stokes framework has been widely employed to 
investigate the dynamics of immiscible viscous liquid flows, accounting 
for capillary forces and coarsening phenomena. This approach utilizes 
an order parameter to represent the phase field and typically assumes 
constant density within each phase. Truskinovsky and Lowengrub [33] 
extended this framework by incorporating the square gradient term 
from the Cahn-Hilliard formulation into the surface free energy 
expression. By using the concentration of a single component as the 
phase field, they obtained a quasi-incompressible density field. Alter
native modeling strategies have employed level-set functions to repre
sent the phase field, with the interface evolution governed by a transport 
equation analogous to the Cahn-Hilliard formulation [34]. A variety of 
numerical techniques have been developed to solve the coupled 
Cahn-Hilliard/Navier-Stokes equations, including spectral methods 
[35], finite difference multigrid methods, and finite element methods 
[36]. However, when the phase variable is not directly related to molar 
concentration or molar fraction, and the velocity field is averaged using 
such a phase indicator, additional correction terms must be introduced 
into the momentum balance to ensure momentum conservation. More
over, these modeling frameworks typically lack incorporation of ther
modynamic equilibrium principles. Despite the utility of such phase 
field models, a significant limitation remains: the Helmholtz energy 
functional lacks a rigorous physical foundation. The Helmholtz energy 
functions used are often simplified representations - such as double-well 
potentials - that restrict the analysis to a single tie line of the phase di
agram for the given mixture. Exemplary approaches for the Helmholtz 
energy function f are given by the following equations: 

f =

(

φ −
1
2

)2

⋅
(

φ +
1
2

)2

[34] (1) 

f =
1
η⋅
(
|φ|2 − 1

)2
[35] (2) 

Whereas φ represents the order parameter of the system and η is a 
positive parameter determining the shape of the potential. A graphical 
representation of the double-well potential, as defined by Eq. (2), is 
provided by Fig. 1.

When the order parameter φ is employed as a phase field variable in 
apparatus design, the model does not directly provide information about 

Fig. 1. Double-well potential for the Helmholtz energy of a binary system as 
function of the order parameter φ according to Liu et al. [35]. The parameter η 
was set to 0.1 for representational purposes.
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the component concentrations, thereby limiting its applicability for 
processes requiring concentration-dependent analysis. In the context of 
chemical process design, however, accurate thermodynamic character
ization is essential. To address these limitations, the present work pro
poses an approach that integrates a thermodynamically consistent free 
energy model into the Cahn-Hilliard framework, enabling the use of 
detailed equilibrium data in hydrodynamic simulations.

2. Theoretical Framework

2.1. Density Gradient Theory in Equilibrium Systems

In DGT for systems in equilibrium [17], the interfacial tension in 
inhomogeneous systems is proportional to the grand thermodynamic 
potential ΔΩ. To evaluate this potential, the Helmholtz energy is 
employed as the thermodynamic potential of the system [17]. Under the 
assumption of incompressibility, the Helmholtz energy becomes equiv
alent to the Gibbs energy. In this context, the relevant quantity is not the 
density gradient but rather the concentration gradient of each compo
nent across the interface between two bulk phases. These concentration 
gradients serve as the basis for calculating the interfacial tension. The 
grand thermodynamic potential ΔΩ of a multicomponent liquid equi
librium (LLE) can be expressed as follows: 

ΔΩ = Δg(xi) −
∑n

i=1
μixi (3) 

where Δg(xi) denotes Gibbs energy at the corresponding composition, 
evaluated using an appropriate gE-model and μi represents the chemical 
potential of component i. At equilibrium, the grand potential is mini
mized, resulting in a Euler-Lagrange equation. Solving this equation and 
applying a coordinate transformation from the spatial domain to the 
concentration domain yields the expression for the minimal grand po
tential and the interfacial tension can be calculated as follows: 

σ =

∫x
II
1

xI
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2κΔΩ(x1)

√
dx1 (4) 

where xI
1 and xII

1 are the compositions of the corresponding phases and κ 
is the so-called influence parameter. This parameter represents the 
partial derivative of the free energy with respect to the curvature of the 
concentration and is typically assumed to be constant or temperature 
dependent. Previous studies have shown that adjusting the influence 
parameter to match a single experimentally obtained interfacial tension 
is sufficient [17–19]. This allows for the prediction of interfacial ten
sions at other temperatures and/or compositions with qualitative 
accuracy.

2.2. Navier-Stokes & Density Gradient Theory

To characterize interfacial interactions in multicomponent mixtures 
of liquids with similar densities on a macroscopic scale, it is essential to 
consider hydrodynamics. The evolution over time of the molar fraction 
fields and velocities can be conveniently described using the Navier- 
Stokes equations for incompressible fluids, coupled with the transport 
equation for the phase-forming component. The Cahn-Hilliard equation 
uses the density gradient to calculate the Helmholtz energy of the system 
[12,13]. Applying the incompressible version of the Cahn-Hilliard 
equations allows for consideration of concentration gradients in the 
system. In combination with the Navier-Stokes equation the 
Navier-Stokes/DGT model is proposed. In this context, it is taken into 
account that the order variable is not the density as in the classical DGT 
but the concentration, since this is an incompressible system [37]. 

∇⋅u = 0 (5) 

∂u
∂t

+ (u⋅∇)u = −
1
ρ ∇p + νΔu −

1
M
∑n

i=1
xi∇μi (6) 

∂xi

∂t
+ u⋅∇xi = ∇⋅

⎡

⎢
⎢
⎢
⎢
⎣

∑n

j=1

j∕=i

Lij

RT
xixj∇

(
μi − μj

)

⎤

⎥
⎥
⎥
⎥
⎦

(7) 

The first equation Eq. (5) is the conservation equation for an 
incompressible system with the velocity vector u and the second equa
tion Eq. (6) is the momentum balance with the density ρ, the pressure p, 
the viscosity ν and the chemical potential μi of component i. The last 
term of Eq. (6) is the Korteweg tensor which accounts for capillary ef
fects in a fluid [30]. The third equation Eq. (7) represents the species 
transport, whereas xi is the mole fraction of component i and Lij is the 
binary mobility coefficient. Here we consider the Onsager relations [38]. 
In equilibrium and bulk phase thermodynamics, the chemical potential 
μi of incompressible liquids is derived from the Gibbs energy using the 
DGT approach as follows: 

g = g(xi) +
κ
2
(∇xi)

2 (8) 

The total Gibbs energy comprises the bulk phase contribution and a 
gradient term, weighted by the influence parameter κ. The bulk Gibbs 
energy itself includes contributions from an ideal mixture and an excess 
part: 

g(xi) = gid(xi) + gE(xi) = RT

(
∑n

i=1

xilnxi

)

+ gE( xi) (9) 

In this work, the Non-Random Two-Liquid (NRTL) model developed 
by Prausnitz and Renon [39] is employed to calculate the excess Gibbs 
energy, as described by the following equation: 

gE(xi)

RT
=
∑n

i=1

xi

[∑n
j=1τjigjixj

∑n
k=1gkixk

]

(10) 

Where τij = Aij +
Bij
T is a temperature dependent parameter and gij =

exp
(
− αijτij

)
contains the symmetric parameter αij which accounts for 

the non-randomness of local concentrations.
The Gibbs energy formulation is employed in this context as it fa

cilitates the treatment of incompressible systems, avoiding internal nu
merical solutions for the pressure, but necessitates the calculation of a 
pressure-like field to maintain mass balance. Without additional as
sumptions, the current formulation cannot account for systems 
involving fluids with differing densities, and thus gravitationally 
induced sedimentation is excluded. To visualize DGT as an incom
pressible version, the Gibbs energy of a two-phase liquid-liquid system 
can be considered (Fig. 2), determine the phase equilibrium as well the 
decomposition of the phases.

This process occurs when the system is quenched into the unstable/ 
metastable region of its phase diagram [40]. The free energy of a 
de-mixing system shows a concave region. When the systems concen
tration is within this concave region, any small fluctuation in composi
tion will lower the free energy, leading to spontaneous phase separation. 
The spinodal region is defined by the points where the second derivative 
of the free energy with respect to composition is zero. In the spinodal 
region, the mixture is unstable and undergoes rapid spontaneous 
decomposition into two distinct phases. For systems where interfacial 
effects are significant, it is necessary to account for the metastable and 
unstable regions in phase diagrams, where gE-models are not defined. 
Therefore, a functional expression is necessary as provided by DGT. This 
is a key feature of the Navier-Stokes/DGT framework, as it enables the 
incorporation of a thermodynamically consistent fluid dynamic model 
applicable to real systems.
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The Navier-Stokes/DGT model consists of highly non-linear balance 
equations for mass, momentum and species transport. To solve accu
rately the balance model equations, they are solved numerically in every 
cell at each timestep to obtain the concentration and velocity field. It 
turns out, these iterations are the bottleneck of the calculations. Addi
tionally, to the solution of the non-linear equations in every cell, three 
waves of spatial derivatives are applied. To describe the evolution of the 
system’s composition, nonlinear diffusion is modeled as a function of the 
gradient of the chemical potentials, which, within the framework of the 
Cahn-Hilliard model, depend on the second spatial derivative of the 
density distribution in the system. The change of the systems composi
tion itself then is the divergence of the diffusion fluxes.

The Navier-Stokes/DGT model is implemented into OpenFOAM 
based on the PISO-Solver for transient simulations [41]. OpenFOAM is 
an open-source finite volume method library based on C++. The 
Navier-Stokes/DGT framework is incorporated into the source code of 
OpenFOAM while the convection term is solved implicitly, and the 
diffusion term is treated explicitly. The convection term is discretized 
using a linear central differencing interpolation scheme, while the 
Laplacian operators in the diffusion term are evaluated using a 
surface-normal gradient scheme with explicit non-orthogonal correc
tion. Time discretization is performed using a backward differencing 
scheme, which is a second-order implicit method offering improved 
stability for transient simulations. The conservation equations are solved 
on a 2D mesh starting with 1024 × 1024 hexaeder mesh. The mesh is 
continuously adapted in the region of large concentration gradients 
using adaptive mesh refinement. The time resolution of the system with 
is set to Δt = 10− 8 s since the occurring gradients in chemical potential 
reach high values. The mesh and time resolution are chosen carefully 
since they depend on the influence parameter κ which determines the 
thickness of the interface in the system. As Zimmermann et al. [42] 
already demonstrated does the numerical stability as well as the for
mation of the interfaces depend strongly on this influence parameter.

3. Results and Discussion

This work utilizes thermodynamic data for the binary systems 
methanol (MeOH) - n-hexane and toluene-water, as well as the ternary 
system MeOH - n-hexane - isopropanol, obtained from previously con
ducted diffusion experiments [43]. The NRTL parameters are retrieved 
from literature [44] linearly interpolated regarding temperature 
dependency.

For the binary system toluene-water the combination of the NRTL 

model with DGT enables the calculation of interfacial tension in equi
librium. To perform this calculation, a single experimental measurement 
[45] of interfacial tension with 34.7⋅10− 3mN

m at 295 K was fit to obtain an 
influence parameter κ = 7.64⋅10− 7Jmol

m4 . Fig. 3 shows the interfacial 
tension (IFT, Eq. 4) of the binary system toluene - water with respect to 
temperature.

The predicted interfacial tension for the toluene-water system shows 
good agreement with available experimental data [45,46]. The close 
correspondence between calculated and experimental values suggests 
that the influence parameter, derived from a single data point, provides 
a reliable basis for modeling interfacial properties. This further validates 
the applicability to systems exhibiting sharp phase boundaries and sig
nificant differences in polarity and molecular interactions, as is char
acteristic of the toluene-water system.

All binary interaction parameters employed in this work are sum
marized in the following Table 1. It should be noted that the influence 
parameter is zero, if the considered subsystem shows no LLE.

3.1. Phase Separation

Phase separation in liquid-liquid systems occurs when a homoge
neous mixture of two or more liquids separates into distinct phases. This 
phenomenon is driven by differences in the physical or chemical prop
erties of the components, such as density, solubility, or molecular in
teractions. Phase separation is governed by the principles of 
thermodynamics. When the Gibbs energy of the system is minimized, the 
mixture separates into phases with different compositions.

A binary mixture of MeOH and n-hexane is investigated within a 
simulation domain of approximately 10 × 10 mm. The initial compo
sition is set to an equal ratio, with a molar fraction MeOH of 0.5 mol

mol . To 
introduce variability and simulate realistic conditions, perturbations of 
the local composition are applied. These perturbations are generated 
using normally distributed random numbers, which create slight varia
tions in the range of 10− 4 mol

mol in the concentration of MeOH and n- 
hexane throughout the domain. This approach helps to mimic the nat
ural fluctuations that might occur in a real-world scenario, providing a 
more accurate representation of the system’s behavior over time. 
Furthermore, the process is visualized in an LLE phase diagram. In the 
following Fig. 4 the decomposition of the binary system MeOH - n- 
Hexane can be seen.

The interfacial tension between the separated phases influences the 

Fig. 2. Gibbs energy of the binary system Methanol (MeOH) - n-hexane at 5 ◦C. 
The blue dots represent the spinodal points (inflection points) of the 
Gibbs energy.

Fig. 3. Experimental and calculated IFT (Eq. 4) for the system toluene-water in 
dependence of the temperature. Exp. data obtained from the literature [45,46] 
are indicated by dots and squares. The line represents interfacial tension pre
dicted by DGT with NRTL.
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shape and stability of the phases. As observed in the early stages of the 
simulation, the decomposition into distinct phases is primarily driven by 
diffusion. The interfaces between the phases are forming while the 
MeOH bulk concentrations in the respective phases are increasing and 
decreasing. Further, it can be observed, that faster mass transfer 
behavior can be observed in the regions where the concentration is in 
the metastable region. As soon as the concentration reaches the meta
stable region the process slows down. The occurrence of interfaces in the 
system leads also to convective flow which mixes the phases while the 
concentrations in the phases further change. The simulation captures 
both coalescence and breakup of individual droplets and larger struc
tures, ultimately resulting in the formation of two macroscopically 
distinct phases. Additionally, droplet repulsion phenomena are observed 
within the domain. These two phases continue to grow, while the bulk, 
minimal and maximal compositions evolve toward the equilibrium 
compositions predicted by the underlying thermodynamic model. These 
points determine the physical limits for the system while the conserva
tion equations for mass, momentum and species transport control the 
dynamics. The phase separation of a system cannot be modeled by a 
classical CFD approach based on Euler-Euler framework as in the two- 
phase flow was inherently implemented and is not a result of the ther
modynamic driving force because of the difference in the chemical 
potential.

3.2. Droplet Coalescence

Droplet coalescence describes the merging of two or more individual 
droplets upon contact to a single, larger droplet, driven by interfacial 
forces and governed by thermodynamic and hydrodynamic conditions. 
The single stages of droplet coalescence are displayed in the following 
Fig. 5 for the binary system toluene - water with respect to the temporal 
evolution. For the system two droplets with a size of about 2 mm in 
diameter are collided. The simulation domain is 10 × 10 mm.

In Fig. 5 all stages of drop coalescence are visible as described in the 
review of Kamp et al. [3]. The two droplets move towards each other due 
to external forces like gravity fields or surface tension gradients 
(Fig. 5A). As the droplets come close, they displace the surrounding 
liquid and touch, forming a thin liquid bridge (or neck) between them 
(Fig. 5B). This bridge is driven by surface tension, which acts to mini
mize the surface area. The liquid bridge rapidly expands as surface 
tension pulls the droplets together. The rate of expansion is influenced 
by the viscosity and surface tension of the liquid. The growth of the 
liquid bridge can occur in different regimes depending on the balance 
between viscous and inertial forces. In the viscous regime, the growth is 
slower and dominated by the liquid’s viscosity. In the inertial regime, 
the growth is faster and dominated by the liquid’s inertia (Fig. 5C) 
Eventually, the liquid bridge grows large enough that the two droplets 
fully merge into a single, larger droplet (Fig. 5D). This process is driven 
by the minimization of surface energy. Following coalescence, the newly 
formed droplet undergoes a relaxation process driven by surface tension 
forces, ultimately adopting a stable, typically spherical shape. In 

contrast to classical Euler-Euler CFD models, where droplet coalescence 
must be incorporated through explicit modeling approaches, this phe
nomenon is inherently captured in interface resolving simulations using 
the Navier-Stokes/DGT model. The necessity for direct implementation 
of coalescence in Euler-Euler models has been demonstrated by Wecker 
and Kenig [48].

3.3. Marangoni Convection

Marangoni convection [49,50] is driven by gradients in surface 
tension along an interface between two fluids. This phenomenon can be 
caused by variations in temperature or concentration. The primary 
driver of Marangoni convection is the gradient in surface tension. Sur
face tension decreases with increasing temperature or changes in con
centration. This gradient causes the fluid to flow from regions of low 
surface tension to regions of high surface tension. In technical applica
tions the Marangoni convection leads to an enhancement in the mass 
transfer. This phenomenon is investigated in the ternary system MeOH - 
n-hexane - isopropanol, whereas MeOH - n-hexane are forming the 
immiscible system and isopropanol the transferring component. Hereby, 
the mass transfer of isopropanol leads to a change in the interfacial 
tension causing Marangoni convection. The simulation domain is 10 ×

10 mm. At the start of the simulation isopropanol is enriched in the 
middle of the drop and starts to diffuse to the interface. The following 
Fig. 6 shows a single droplet and the surrounding concentration field.

In the vicinity of a droplet with a diameter of approximately 5 mm, 
Marangoni convection induces characteristic flow patterns resulting 
from gradients in surface tension, typically caused by compositional or 
thermal variations. These gradients drive fluid motion along the droplet 
interface, with liquid ascending along the outer surface and descending 
along the droplet’s interior toward the contact point at the substrate. 
This circulation forms a toroidal convection cell, often referred to as a 
Marangoni vortex. The resulting flow significantly enhances internal 
mixing and mass transport within the droplet. In systems involving 
isopropanol, the induced interfacial tension gradients give rise to visible 
Marangoni streaks around the droplet, which have also been charac
terized through experimental observation [51]. Such flow phenomena 
play a crucial role in understanding droplet dynamics, interfacial 
transport, and the evolution of concentration fields in multicomponent 
systems. Unlike traditional CFD approaches [52], variations in interfa
cial tension emerge naturally from the thermodynamic formulation and 
do not require empirical correlations.

4. Conclusion and Outlook

This work introduces an alternative modeling approach based on the 
coupled Cahn-Hilliard and Navier-Stokes equations in a Navier-Stokes/ 
DGT framework to simulate droplet interactions in liquid-liquid systems, 
incorporating key physical properties such as interfacial tension, vis
cosity, diffusion coefficients, and phase equilibrium. The proposed 
methodology enables the direct integration of experimentally deter

Table 1 
Binary parameters used in this work.

Model Parameter Units Component pair i − j

MeOH – n-Hexane MeOH – Isopropanol n-Hexane – Isopropanol Toluene – Water

NRTL [44] Aij [ − ] − 0.26 0 0 − 7.2357
Aji [ − ] − 4.347 0 0 3.9884
Bij [T] 496.44 234.41 − 340.72 3433.95
Bji [T] 1664.56 − 1351.52 − 889.36 647.86
αij [ − ] 0.20 0.20 0.20 0.20

DGT κij 10− 7
[
Jmol
m4

]
1.13 [47] 0 0 7.64

Diffusion Lij
10− 16

[
mol3

Jsm4

]
28.0 [47] 2.64 [43] 19.1 [43] 1.64 [38]
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Fig. 4. De-mixing of the binary system MeOH - n-hexane using the parameters shown in Table 1. Left: the decomposition of the mixture in the simulation domain. 
Right the visualization of the process in the phase diagram (line: binodal curve, dotted line: spinodal curve).
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mined phenomena - such as phase equilibrium data, interfacial tension 
measurements, and droplet coalescence behavior - into numerical fluid 
dynamics simulations, without relying on predefined assumptions 
regarding the distributions of the dispersed and continuous phases. In 
contrast to classical phase field models, the present approach employs a 
thermodynamically consistent model to define the driving forces gov
erning phase field evolution. This is achieved by applying the molar 
fraction as the concentration field and using the NRTL model that has 
been successfully applied in equilibrium thermodynamics to dictate flow 
directions. The Navier-Stokes/DGT framework allows for the consider
ation of interfacial effects and the investigation of droplet interactions. 
However, accounting for these effects necessitates a high cell resolution, 
limiting the model to small system sizes of about 10 × 10 mm. 
Nonetheless, numerical investigations of small systems can help 
parameterize large-scale models like population balances.

As an example, the qualitative and quantitative de-mixing in a binary 
mixture of MeOH and n-hexane was investigated. Within this de-mixing 
process complex interfacial behavior was investigated as mass transfer 
between the immiscible phases as well as the occurring of phase sepa
ration, coalescence behavior and break-up of droplets. Furthermore, the 
Navier-Stokes/DGT model proves suitable for calculating the coales
cence processes with respect to their single stages. This theoretical 
framework can be used to perform multiple numerical tests to determine 
coalescence or break-up probabilities based on droplet size, shape, dis
tance, and shear influences, aiding in the parameterization of large-scale 
simulations for technical applications. Furthermore, complex interfacial 
phenomena as Marangoni convection around a single droplet in a 
ternary system could be predicted. The transfer component produced a 
distinct flow pattern, forming a toroidal convection pattern leading to 
observable Marangoni streaks.

A major advantage of the proposed approach compared to classical 
CFD methods is that phase formation emerges naturally from chemical 
potential gradients, without the need to predefine the presence or dis
tribution of individual phases at the beginning of the simulation. 
Consequently, the interfacial phenomena observed in this work cannot 
be replicated in this form using traditional CFD models. Furthermore, 

the developed Navier-Stokes/DGT framework offers a significant benefit 
over conventional phase-field methods by enabling direct parameteri
zation with experimental data, thereby enhancing the physical fidelity 
and predictive capability of the simulations.

Further consideration of different densities and additional compo
nents could lead to a fully thermodynamically consistent and spatially 
resolved description of extraction systems. Numerical experiments using 
this framework can then be compared to experiments such as droplet 
collision and droplet behavior in shear flow found in the literature. 
Further experiments could lead to the development of a formalism to 
extract droplet size distributions based on initial conditions, mass 
transfer, or interfacial enrichment.

CRediT authorship contribution statement

Matthias Singer: Writing – original draft, Visualization, Methodol
ogy, Investigation, Formal analysis, Conceptualization. Patrick Zim
mermann: Writing – original draft, Supervision. Tim Zeiner: Writing – 
review & editing, Supervision, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

The authors are gratefully thank the Deutsche For
schungsgemeinschaft (DFG) (ZE 990/6-1) for funding of this project.

Sabine’s outstanding dedication and significant contributions to 
interfacial thermodynamics and polymer thermodynamics have had a 
major impact on the scientific community. In addition, she is charac
terized by her open, supportive nature and is always ready with valuable 
advice and an attentive ear for her colleagues, young scientists, students. 
We thank you wholeheartedly for this.
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