KIT | KIT-Bibliothek | Impressum | Datenschutz

End-to-End Detector Optimization with Diffusion Models: A Case Study in Sampling Calorimeters

Schmidt, Kylian 1; Kota, Krishna Nikhil 1; Kieseler, Jan 1; Vita, Andrea De; Klute, Markus 1; Abhishek; Aehle, Max; Awais, Muhammad; Breccia, Alessandro; Carroccio, Riccardo; Chen, Long; Dorigo, Tommaso; Gauger, Nicolas R.; Lupi, Enrico; Nardi, Federico; Nguyen, Xuan Tung; Sandin, Fredrik; Willmore, Joseph; Vischia, Pietro
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Recent advances in machine learning have opened new avenues for optimizing
detector designs in high-energy physics, where the complex interplay of geometry, materi-
als, and physics processes has traditionally posed a significant challenge. In this work, we
introduce the end-to-end. AI Detector Optimization framework (AIDO), which leverages
a diffusion model as a surrogate for the full simulation and reconstruction chain, enabling
gradient-based design exploration in both continuous and discrete parameter spaces. Al-
though this framework is applicable to a broad range of detectors, we illustrate its power
using the specific example of a sampling calorimeter, focusing on charged pions and photons
as representative incident particles. Our results demonstrate that the diffusion model effec-
tively captures critical performance metrics for calorimeter design, guiding the automatic
search for a layer arrangement and material composition that align with known calorimeter
principles. The success of this proof-of-concept study provides a foundation for the future ap-
plications of end-to-end optimization to more complex detector systems, offering a promising
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184278
Veröffentlicht am 28.08.2025
Originalveröffentlichung
DOI: 10.3390/particles8020047
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2571-712X
KITopen-ID: 1000184278
Erschienen in Particles
Verlag MDPI
Band 8
Heft 2
Seiten Art.-Nr.: 47
Vorab online veröffentlicht am 23.04.2025
Nachgewiesen in Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page