KIT | KIT-Bibliothek | Impressum | Datenschutz

Unexpectedly High Electronic Partial Conductivity of Porous Yttria-Stabilized Zirconia Thin Films

Celik, Erdogan; Usler, Adrian; Wiche, Miguel; Mazilkin, Andrey 1,2; Brezesinski, Torsten ORCID iD icon 1; De Souza, Roger A.; Elm, Matthias T.
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

In porous form, ion conductors are key components for a vast number of applications, making detailed understanding of the impact of high surface area on electrochemical properties indispensable. Here, we report on the electrical characterization of dense and porous yttria-stabilized zirconia (YSZ) thin films deposited by pulsed laser deposition. While dense films exhibit high and dominant ionic conductivity over a wide oxygen partial pressure range, as expected for YSZ, porous films reveal an unexpectedly high electronic partial conductivity, which determines the transport properties under highly reducing conditions. By means of continuum simulations, we demonstrate that the high electronic conductivity contribution may be explained in terms of a space-charge region at the free surface, where electrons accumulate due to the positive surface charge. The latter results in increased electronic conductivity in the space-charge region, which dominates the transport properties of the porous thin films under highly reducing conditions. The results emphasize the importance of considering surface effects in nanostructured ion conductors for tailoring the overall electrochemical properties for device applications.


Verlagsausgabe §
DOI: 10.5445/IR/1000184282
Veröffentlicht am 27.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 10.07.2025
Sprache Englisch
Identifikator ISSN: 1932-7447, 1932-7455
KITopen-ID: 1000184282
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in The Journal of Physical Chemistry C
Verlag American Chemical Society (ACS)
Band 129
Heft 27
Seiten 12585–12594
Vorab online veröffentlicht am 26.06.2025
Nachgewiesen in OpenAlex
Dimensions
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page