KIT | KIT-Bibliothek | Impressum | Datenschutz

Application of Neural Networks for Advanced Ir Spectroscopy Characterization of Ceria Catalysts Surfaces

Jalali, Mehrdad ORCID iD icon 1; Caulfield, Lachlan 2; Sauter, Eric 2; Nefedov, Alexei 1; Yang, Chengwu; Wöll, Christof 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

This study presents a novel convolutional neural network (CNN) architecture that represents a significant advancement in the unsupervised analysis of data from infrared (IR) spectroscopy, both in IRRAS (infrared reflection absorption spectroscopy) and in DRIFTS (diffuse reflection infrared Fourier transform spectroscopy). After measuring reference data for single-crystal samples using IRRAS, DRIFTS allows the characterization of surfaces exposed by cerium oxide powder particles through the stretch frequency of adsorbed probe molecules. To enable real-time monitoring of catalyst modification during exposure to reactive gases under reaction conditions, a rapid, unsupervised analysis of the DRIFTS data is required. It is demonstrated that this goal can be achieved by using a CNN with an optimized architecture. This model is proficient in determining the intensities of the adsorbed CO bands, which depend on the crystallographic orientation and oxidation state of the exposed facets. The CNN design incorporates parallel 1D convolutional layers with varied kernel sizes. These layers work in tandem to capture spectral features. To address the challenge of overfitting, advanced regularization techniques within the CNN are integrated, enhancing the model's performance on new, unseen data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184367
Veröffentlicht am 01.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2943-9981
KITopen-ID: 1000184367
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Advanced Intelligent Discovery
Verlag John Wiley and Sons
Seiten 202500046
Vorab online veröffentlicht am 25.08.2025
Nachgewiesen in OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page