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Abstract: In this work we consider the problem of determining the identity of hadrons
at high energies based on the topology of their energy depositions in dense matter, along
with the time of the interactions. Using GEANT4 simulations of a homogeneous lead
tungstate calorimeter with high transverse and longitudinal segmentation, we investigated
the discrimination of protons, positive pions, and positive kaons at 100 GeV. The analy-
sis focuses on the impact of calorimeter granularity by progressively merging detector
cells and extracting features like energy deposition patterns and timing information. Two
machine learning approaches, XGBoost and fully connected deep neural networks, were
employed to assess the classification performance across particle pairs. The results indicate
that fine segmentation improves particle discrimination, with higher granularity yielding
more detailed characterization of energy showers. Additionally, the results highlight the
importance of shower radius, energy fractions, and timing variables in distinguishing par-
ticle types. The XGBoost model demonstrated computational efficiency and interpretability
advantages over deep learning for tabular data structures, while achieving similar classifi-
cation performance. This motivates further work required to combine high- and low-level
feature analysis, e.g., using convolutional and graph-based neural networks, and extending
the study to a broader range of particle energies and types.

Keywords: particle detectors; calorimetry; particle identification; physics; machine learning

1. Introduction
For thirty or more years until the end of the last century, the purpose of hadron

calorimeters instrumenting detectors for particle colliders has been invariably the one
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of determining with the highest possible precision the collective energy of hadronic jets.
Although already in the late 1980s a few studies had shown promising results in the im-
provement of jet energy measurement through the analysis of the interactions of individual
particles within the jet cone and the use of momentum information for charged particles
provided by tracker measurements [1], a fine segmentation of the calorimeter did not
appear sufficiently motivated to be worth the added cost and data volume overhead. Then,
after the turn of the century, two separate advancements in data analysis dramatically
changed that paradigm: the demonstration of boosted jet tagging on one side [2–5], and
the success of particle flow techniques on the other [6,7].

The contrast could not be starker. The estimate of the total energy deposited by
a stream of hadrons does not require a calorimeter to be built with high longitudinal
or transverse segmentation: other attributes, such as passive material, total depth in
interaction lengths, hermeticity, and detection materials and sensors are the main drivers
of performance. Instead, the identification of sub-jet components produced within fat jets
by the decay of high-mass boosted particles such as W, Z, and H bosons and top quarks, as
well as the detailed accounting of energy deposited by charged and neutral particles within
a jet performed by particle flow algorithms, both require high granularity of detection
elements within the calorimeter volume.

If we consider broadly the problem of optimally designing a calorimeter for a future
collider application, the two recent motivations of high segmentation mentioned above
should be considered with care, as the cost of construction and independent readout of
a large number of cells can be very high. However, a third element in this equation may
then need to be considered, because a high longitudinal and transverse segmentation,
coupled with accurate timing of the harvested signals and with precise tracking of charged
particles entering the detector, may enable the identification of the particle species produc-
ing the energy deposits in localized portions of the detector, through the use of machine
learning techniques.

The discrimination of protons, charged pions, and charged kaons through the topology
and timing of their energy depositions in a hadron calorimeter is very difficult, and there
is a dearth of studies of this topic in the literature; we only know the CALICE attempt in
2015 [8]. However, the general push toward high granularity of today’s and tomorrow’s
hadron calorimeters requires a careful assessment of the ultimate particle identification
performance of these instruments. Kaon tagging, for example, may enable the identification
of leading kaons in strange quark jets, opening the way to studies of Higgs channels such
as H → ss̄ decays; separation of the three dominant charged hadrons also improves the
particle flow performance.

In this work we consider the above problem from a rather abstract standpoint: our goal
is to try and assess what may be the ultimate discrimination power of a hadron calorimeter
for protons, pions, and kaons, if the detector is built with arbitrarily high segmentation; in
addition, we aim to assess how that information gets lost if the cell size is progressively
increased. This way signal features that are particularly relevant to consider in order to
balance the discrimination power versus data readout rate and computational demands
can also be investigated (see, e.g., feature sampling in Ref. [9]). A quantitative answer to
these questions may be very important in informing the design of instruments for future
collider applications.

The purpose of this work is to examine how information degrades with granularity
in a controlled and simplified scenario. Introducing backgrounds and other effects would
obscure the ability to address the core research question, so we have intentionally left these
aspects for future studies.
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This article is organized as follows: in Section 2 we describe the Monte Carlo simula-
tions we produced as a basis of our studies. In Section 3 we describe the construction of
useful high-level features extracted from energy and time determinations in calorimeter
cells. In Section 4 we describe the metrics used to evaluate the performance and the models
we used to assess what discrimination is possible with the use of those topological features.
Section 5 describes the results we obtain from our study. In Section 6 we discuss related
works and their connection with our studies. We conclude in Section 7.

2. Simulation and Data Generation
In order to study the physical processes occurring inside the calorimeter, GEANT4

is used, specifically employing FTFP_BERT as the Reference Physics List [10–12]. The
simulated primary particles are p, K+, and π+, each with energy equal to 100 GeV, and
are generated at 3 m from the calorimeter surface. The particles enter the calorimeter
perpendicularly, with the impinging position at the center of the calorimeter’s XY plane.

The experimental simulated setup consists of a homogeneous calorimeter made up
of 100 × 100 × 100 cells constructed from Lead Tungstate (PbWO4) with dimensions of
3 × 3 × 12 mm3. Therefore, the total size of the calorimeter is 300 × 300 × 1200 mm3,
which corresponds to a lateral width of 7.66ρM (Molière radii) and 5.92λI (interaction
lengths), ensuring an average lateral containment of 100% and a longitudinal containment
of approximately 87% (see Figure 1). In each simulated event, the following quantities are
extracted through GEANT4’s SteppingAction:

• PDG index: This refers to the identity of the particle that released the energy, and its
value is encoded according to the Particle Data Group’s encoding;

• PostStep TotalMomentum: This variable retrieves the total momentum of the particle
after it has completed the current step in the simulation;

• Delta Kinetic Energy: This variable is computed as the difference between the
kinetic energy after and before the GEANT4 simulation step;

• TotalEnergyDeposit: This variable retrieves the total energy deposited during the
simulation step;

• PostStep GlobalTime: This variable measures the GlobalTime (time since the begin-
ning of the event) after the GEANT4 step.

• Spatial coordinates of the cell that recorded the step: Each step is recorded
by a cell, identified by a pair of indices: the cubelet index (representing a 10 × 10 × 10
region in the calorimeter) and the cell index (representing the cell within the cubelet).
Both indices range from 0 to 99.

Some of the above listed quantities are inaccessible in a real experiment, whereas spatial
coordinates, deposited energy, and global time can be considered as a high-accuracy version
of the final variables observed in a real experiment.

To limit file size, only steps that satisfy the following conditions are saved:
TotalEnergyDeposit ≥ 1 keV OR Delta Kinetic Energy ≥ 1 keV. For each simulated
particle (p, π+, k+), 50,000 events are generated, each with the same initial conditions. The
produced event data are organized into 50 ROOT files, each containing 1000 events, where
the information is stored as a ColumnWise Ntuple. This format ensures more efficient space
management and speeds up read and write operations.
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Cumulative Energy profileFigure 1. (Top) Illustration of the interaction of a simulated charged hadron with a PbWO4.
(Bottom) the energy distribution of a proton shower projected in the XY and ZY planes.

2.1. Time Smearing

To mimic a more realistic experimental setup, the recorded globalTime is preprocessed
before using it to estimate the temporal variables describing the shower. To account for
the finite time resolution of the detector, a smearing time of σ = 30 ps has been introduced,
ensuring that the simulated detector is compatible with current technologies [13].

3. Definition of Sensitive Variables
To characterize energy showers within the calorimeter, it is essential to define a set of

variables that encapsulate the key physical and geometric properties of the event. These
variables are classified as global or local. Global variables represent the overall properties of
the event, and serve as a baseline to describe the system in the absence of segmentation. In
contrast, local variables are derived from the calorimeter’s segmentation, offering detailed
spatial insights of the shower.

Before delving into the detailed description of the calculated variables, it is important
to first define the properties extracted from each cell. These properties serve as the basis for
the calculation of the descriptive variables.

3.1. Properties of Calorimeter Cells

Each calorimeter cell is characterized by three fundamental properties:

• Position: The spatial coordinates of the cell within the calorimeter, which determine
its location in the detector geometry.

• Total absorbed energy: The total energy deposited in the cell during the event.
• Cell Characteristic time: The timing information associated with a cell, defined as

the weighted average of the times of all energy depositions within the cell, where the
deposited energy serves as the weight:

tcell =
∑i Ecell

i tcell
i

∑i Ecell
i

(1)
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Here, Ecell
i represents the i-th energy deposition within the cell, and tcell

i is the corre-
sponding time. The sum is taken over all the energy depositions within the cell.

3.2. Global Variables

The three global variables considered are the following:

• Total energy deposited in the calorimeter: In Figure 2, the corresponding distribution
is displayed in the bottom-left corner.

• Calorimeter characteristic time: The timing information associated with the calorime-
ter, defined as the weighted average of the characteristic times of all cells, where the
energy deposited in each cell serves as the weight:

tcalo =
∑cell Ecelltcell

∑cell Ecell
(2)

This property is computed using the cell properties, and for that reason, it could be
considered a local variable. However, its meaning is global, as it corresponds to the
mean signal time extracted from a homogeneous calorimeter.

• Time of flight of the particle: The time of flight (ToF) of the primary particle, hypo-
thetically extracted from a tracker-like detector that is 3 m long and placed before the
calorimeter. Assuming that it is possible to measure the creation time and the arrival
time of the particle at the calorimeter interface with perfect resolution, this feature is
extracted as follows:

p =

√
E2 − m2c4

c
(3)

v = (p/E) ∗ c2 (4)

tTOF = d/v (5)

where E and m are the total energy of the particle and its rest mass, respectively. Here
d is the distance traveled by the particle and it is equal to 3 m; a 30 ps smearing is
however added to time measurements later, see infra, Section 2.1.

3.3. Local Variables

The introduction of longitudinal and transverse segmentation in the calorimeter
enables the study of the evolution of the energy shower as the particle interacts with the
calorimeter. Based on this concept and considering the physical properties of the particles
under examination, it is possible to define a set of local variables:

• First nuclear interaction vertex position: The position of the first nuclear interaction
vertex provides an indirect measure of the probability that a particle will interact
with the medium through which it is passing. This probability, represented by the
particle’s nuclear cross section, depends on the properties of the medium, the energy
of the particle, and the particle’s identity. Therefore, when the first two factors are
held constant, the position of the first interaction vertex becomes a variable sensitive
to the particle’s identity. To determine this position, the First Nuclear Interaction
Vertex Finder is used (see Appendix A). In Figure 2, the corresponding distribution is
displayed in the top-left corner.

• First interaction vertex time: The instant at which the first nuclear interaction vertex
takes place can be defined as the characteristic time of the cell identified as containing
that vertex.

• Speed: Given the First Nuclear Interaction Vertex Position and the First Interaction
Vertex Time, the particle speed is defined as the ratio between these two quantities.
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• ∆t: Given the First Interaction Vertex Time tV and the time when 50% of the total
deposited energy is exceeded (t50), it is possible to define ∆t = tV − t50.

• Fraction of energy deposited after the first vertex: Referring only to longitudinal
segmentation, the calorimeter can be described as a set of layers perpendicular to the
direction of the primary particle. Based on this premise, the fraction of energy released
after the primary interaction vertex is defined as the energy deposited in the cells
located in the layers of the calorimeter that follow the layer containing the vertex.

• Number of non-empty cells before the first vertex layer: Using the same logic applied
to compute the Fraction of Energy Deposited after the First Vertex, it is also possible
to count the number of non-empty cells in the layers preceding the one containing
the vertex.

• Number of non-empty cells: The total number of cells for which the deposited energy
is greater than 0.1 MeV. In Figure 2, the corresponding distribution is displayed in the
top-right corner.

• Maximum cell energy: Maximum Cell Energy refers to the highest total energy
deposited in the cells of the calorimeter.

• Second maximum cell energy: This variable measures the total energy deposited in
the calorimeter cells, representing the second highest value.

• Total energy close to the first vertex and fraction of energy close to the first vertex:
Once the cell of the primary vertex has been identified, it is possible to define a sphere
with radius d, centered on the selected cell; for different studied segmentations d
varies between 2 and 5 cell units. The total energy deposited in the cells within this
sphere represents the Total Energy Close to the First Vertex. Thus it also represents a
fraction of the total energy deposited in the calorimeter.

• Maximum energy deposited close to the first vertex: Once the cell of the primary
vertex has been identified, it is possible to define a sphere with radius d, centered on
the selected cell; for different studied segmentations d varies between 2 and 5 cell
units. The maximum energy near the primary vertex corresponds to the highest total
energy deposited in one of the cells of the sphere.

• Energy variance close to the first vertex: Once the cell containing the primary ver-
tex has been identified, a transverse section cross-section of the calorimeter can be
examined, encompassing all the cells within it. The individual energy values of these
cells can then be used to calculate the variance of the energy deposited within the
calorimeter slice centered on the cell containing the primary vertex.

• Distance between the cell with maximum energy and the first vertex cell: By con-
sidering all the cells of the calorimeter, it is possible to define the distance between
the cell containing the primary interaction vertex and the cell with the maximum
energy deposition.

• Distance between the maximum energy and second maximum energy cells: By
considering all the cells of the calorimeter, it is possible to define the distance between
the cells with the first and second maximum energy depositions.

• Energy close to energy peak and fraction of energy close to energy peak: After the
primary vertex, a peak of deposited energy is generated. The position of this peak
can be determined using the energy peak finder (see Appendix B). Similar to the cell
containing the primary vertex, a sphere with radius d (cell unit), centered on the cell
containing the energy peak, can be defined. This sphere allows for the assessment of
the total energy deposited around the peak, as well as the fraction of the total energy
deposited within it.
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• Left and right energy deposition asymmetry: The impinging position of the primary
particle can be considered the center of the reference system, so it is necessary to
change the reference system from that of the simulation to the one just described.

x∗ = x − xc (6)

y∗ = y − yc (7)

Once the new reference system has been adopted, it is possible to compare the left and
right energy deposition. There are two methods: the standard definition (ELR) and the
geometrical definition (ĒLR). The former is defined as follows

ELR
x =

N

∑
i=1

sgn(x∗i ) · Ei where sgn(x∗i ) =


1 if x∗i > 0

−1 if x∗i < 0

0 if x∗i = 0

(8)

ELR
y =

N

∑
i=1

sgn(y∗i ) · Ei where sgn(y∗i ) =


1 if y∗i > 0

−1 if y∗i < 0

0 if y∗i = 0

(9)

ELR =
√
(ELR

x )2 + (ELR
y )2 (10)

The geometrical definition, on the other hand, is defined as the following:

ĒLR
x =

N

∑
i=1

x∗i · Ei (11)

ĒLR
y =

N

∑
i=1

y∗i · Ei (12)

ĒLR =
√
(ĒLR

x )2 + (ĒLR
y )2 (13)

This definition involves the product of the position of the energy depositions and
the energy deposits. The former is expressed in cell units, making it dimensionless.
Consequently, the geometric definition yields pure energy values, expressed in MeV.

• Rcell
E : The energy ratio Rcell

E is defined as the following

Rcell
E =

Emax − E2ndmax
Emax + E2ndmax

(14)

Here, Emax represents the maximum total energy deposited in one cell and E2ndmax is
the second maximum total energy.

• ∆cell
E : The energy Delta ∆cell

E is the numerator of Rcell
E .

• FE: The energy fraction is defined as the following

FE =
E (within up to ±N cells around Emax)

E (within up to 1 cell around Emax)
− 1 (15)

Here, N can be tuned and it defines a cube around the cell with the maximum
total energy.

3.3.1. Physics-Based Observables

The slightly lower response of the calorimeter to protons compared to pions of the
same energy can be attributed to the fact that, on average, a smaller fraction of the shower
energy in proton-induced showers is carried by π0-mesons than in pion-induced ones. This
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difference arises because of the requirement of baryon-number conservation in nuclear
interactions. When a proton undergoes its first nuclear interaction in the absorber material,
the leading (most energetic) particle produced is typically a baryon. As this leading
particle undergoes subsequent interactions, the most energetic produced particle remains
likely to be a baryon. This conservation of baryon number limits the energy available for
the production of π0, which generates the calorimeter signal. In contrast, pion-induced
showers are not subject to this restriction, which allows more energy to be channeled into
π0 production [14].

The origin of these observed differences between proton and pion showers strongly
suggests that the measurable effects are not limited to these particles. In particular, signif-
icant differences are also expected between kaon and pion showers. Similarly to baryon
number conservation in proton showers, the strangeness quantum number is conserved
by strong interactions that occur during kaon-induced showers. The strange (anti-)quark
contained in the incident kaon is likely to be transferred to a highly energetic particle
during each stage of the shower development [14].

The expected outcome is a broader lateral shower profile and a more symmetric signal
distribution for protons and kaons compared to pion-induced showers. Furthermore, the
electromagnetic fraction is higher for pions than for protons and kaons [14].

• Fraction of energy deposited close to the beam axis: The differences in the fraction of
calorimetric signal in the central tower can also be explained by this leading particle
effect [14]. The leading particle carries a large fraction of the momentum of the incident
particle. Therefore, it may be expected to travel almost in the same direction as the
incident particle [14]. If this particle is a π0, it will thus generate a large signal in the
central calorimeter tower. The soft π0’s that constitute the signal from proton-induced
showers are produced, on average, at larger angles than the leading particles [14]. As a
result, the lateral profile of the energy deposition by the π0 is wider for proton-induced
showers than for pion-induced ones. Thus, the fraction of the total signal recorded in
the central tower is, on average, smaller for protons and kaons than for pions [14].

• Standard spatial observables: Each energy deposit position can be described by the
position of the cell in which it occurred. Thus, it is possible to define the average
position along the x, y and z axes of the laboratory reference system (x̄, ȳ, z̄). With these
quantities, the average radius of the energy shower (R) and the σR are the following

R =
∑N

i=1 ri

N
with ri =

√
(xi − x̄)2 + (yi − ȳ)2 (16)

σR =

√
∑N

i=1 r2
i

N
− R2 with ri =

√
(xi − x̄)2 + (yi − ȳ)2 (17)

In Figure 2, the R distribution is displayed in the bottom-right corner.
Similarly, the average length of the energy shower (L) and its standard deviation
are following

L =
∑N

i=1 li
N

with li = zi − z̄ (18)

σL =

√
∑N

i=1 l2
i

N
− L2 with li = zi − z̄. (19)

• Weighted spatial observables: Alternatively, the spatial observables can be calculated
using the deposited energy as weight. This is how the standard spatial observables
are modified once the deposited energy is also taken into account:
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Rw =
∑N

i=1 Ei · ri

∑N
i=1 Ei

with ri =
√
(xi − x̄)2 + (yi − ȳ)2 (20)

σw
R =

√√√√∑N
i=1 Ei · r2

i

∑N
i=1 Ei

− (Rw)2 with ri =
√
(xi − x̄)2 + (yi − ȳ)2 (21)

Lw =
∑N

i=1 Ei · li
∑N

i=1 Ei
with li = zi − z̄ (22)

σw
L =

√√√√∑N
i=1 Ei · l2

i

∑N
i=1 Ei

− (Lw)2 with li = zi − z̄. (23)

• A and Aw: The presence of asymmetries in the transverse profile of the shower can be
estimated with the parameters A and Aw. Similarly to the left-right energy asymmetry,
the impinging position of the primary particle can be considered the center of the
reference system. Once the new reference system has been adopted, the parameters A
and Aw can be calculated as follows:

A =
√

A2
x + A2

y with Ax =
N

∑
i=1

x∗i and Ay =
N

∑
i=1

y∗i (24)

Aw =
√
(Aw

x )
2 + (Aw

y )
2 with Aw

x =
∑N

i=1(x∗i · Ei)

∑N
i=1 Ei

and Aw
y =

∑N
i=1(y

∗
i · Ei)

∑N
i=1 Ei

(25)
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Figure 2. Selected feature distributions for proton, pion and kaons (cell size of 3 × 3 × 12 mm3).
For each particle, the corresponding Jensen-Shannon divergence is also reported to quantify the
similarity between their respective distributions [15]. (Top-Left) First Nuclear Interaction Vertex
Position. (Top-Right) Number of non-empty Cells. (Bottom-Left) Total energy deposited in the
calorimeter. (Bottom-Right) Radius of the shower.

4. Study Setup and Methodology
To evaluate the performance of different classifiers, it is crucial to define a set of metrics

that emphasize the discrimination power achieved by extracting descriptive features from
the showers within the calorimeter. These performance metrics serve as quantitative tools
to assess the model’s ability to generalize and make accurate predictions. They are indis-
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pensable for comparing different models and identifying areas for potential improvement.
This section introduces the key metrics used in the study, along with a brief description of
each. In addition, the various models tested in this work are presented.

4.1. Metrics

• Confusion Matrix: The confusion matrix is a fundamental tool for evaluating classifi-
cation models. The confusion matrix provides a foundation for deriving other metrics
such as accuracy, precision, recall, and F1-score.

• ROC Curve: The Receiver Operating Characteristic (ROC) curve is a graphical rep-
resentation of a classification model’s performance across different threshold values.
For example, when considering the p/π classification, it plots the Proton Positive Rate
(PRp) against the Pion Positive Rate (PRπ), defined as:

PRp =
number of protons classified as protons
number of particles classified as protons

,

PRπ =
number of pions classified as pions

number of particles classified as pions
.

The uncertainty associated with the ROC curve is calculated with Wald intervals for
the binomial ratio, which is sufficient as the numbers at numerator and denominator
are large and the ratio is not close to 0 or 1.

• Feature Importance: Feature importance quantifies the contribution of each input
variable to the model’s predictions. It helps identify the most relevant features for
the task and provides insights into the underlying data. In the following analysis
this metric is available when testing the XGBoost model. The chosen importance
metric is “gain”, which represents the relative contribution of a feature to the model,
calculated based on its impact across each tree. A higher gain compared to another
feature signifies greater importance in the prediction. It measures the improvement
in accuracy brought by a feature to the branches it influences: by adding a split on
feature X, two new branches are created, each exhibiting higher accuracy than before,
thereby reducing misclassifications.

• Accuracy and Efficiency: The models used for classifying showers into particle classes
(p/π, p/K, or π/K) output pairs of values summing to 1, representing the probability
that an event belongs to either the first or second class. For example, in the classifica-
tion of protons and pions, the model might output a probability of 0.7 for a proton,
meaning the probability for a pion would be 0.3.
A threshold can be defined based on these probabilities to determine the reliability of
the model’s output. By setting such a threshold, fewer outputs are considered reliable,
reducing the algorithm’s efficiency, which refers to number of output that are reliable
over the total number of inputs. However, this trade-off leads to improved accuracy, a
measure of how well the model’s predictions match the true class labels, calculated as
the proportion of correct predictions out of all predictions made. The accuracy and
efficiency curves show how these metrics change with varying threshold values.
Moreover, the accuracy values as a function of the calorimeter cell size are presented.
This analysis is carried out for various configurations, with comparisons made by
incorporating the uncertainty in the accuracy values. The uncertainty is estimated
using the Clopper-Pearson interval, which provides a confidence interval for a bi-
nomial proportion. For an accuracy a, estimated over a sample of n observations
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with k successes, the confidence interval [alow, ahigh] at a confidence level of 1 − α is
defined as:

alow = BetaInv
(α

2
, k, n − k + 1

)
, (26)

ahigh = BetaInv
(

1 − α

2
, k + 1, n − k

)
, (27)

where BetaInv(. . . ) represents the inverse cumulative distribution function of the Beta
distribution.

4.2. Machine Learning Strategy

Two different models were studied to conduct the following study. The first model was
built using the XGBoost gradient boosting algorithm, while the second consists of a Fully
Connected Deep Neural Network (DNN). Specifically, for each model, a hyperparameter
tuning study was conducted using Grid Search.

For each classification task (p/π, p/K, π/K) the dataset consists of 100k events evenly
split between the two particles under examination. It includes the features described
in Section 3 and it is partitioned into 60% for training, 20% for validation, and 20% for
evaluating the model’s accuracy.

4.2.1. XGBoost

XGBoost, or eXtreme Gradient Boosting, is a powerful machine learning algorithm
under the ensemble learning category, specifically within the gradient boosting framework.
It combines predictions from multiple decision trees to build a strong predictive model,
using gradient descent optimization to minimize errors. Key features include its computa-
tional efficiency, ability to handle complex relationships, and regularization techniques to
prevent overfitting.

Boosting is a technique where trees are built sequentially, with each tree correcting
the errors of the previous one by learning from updated residuals. The base learners in
boosting are weak learners with high bias and low predictive power, but their combination
produces a strong learner that reduces both bias and variance. Unlike bagging methods
like Random Forest, boosting uses smaller, shallow trees that are more interpretable. In
order to find optimized parameters such as number of trees, learning rate, and tree depth a
3-fold cross-validation has been performed.

In order to obtain the output described in Section 4.1, the objective function should be
set to binary:logistic.

4.2.2. Deep Neural Network

In addition to utilizing XGBoost, a fully connected Deep Neural Network (DNN) is
used for classifying protons and pions. However, DNNs often struggle with highly imbal-
anced datasets and tabular data structures, as highlighted in Grinsztajn et al.’s findings [16].
This limitation arises because DNNs are generally less effective at capturing relationships
in tabular data compared to tree-based models.

One effective way to mitigate these issues is through proper data preprocessing, such
as standardizing the features. By using Scikit-learn’s StandardScaler, one can normalize
the dataset to have a mean (µ) of zero and a standard deviation (σ) of one, ensuring that all
features are on a similar scale. This helps DNNs converge more efficiently during training
and can significantly improve performance, especially when the dataset is skewed.

Figure 3 illustrates the architecture utilized for implementing the Neural Network.
The network consists of four hidden layers with [96, 32, 16, 4] neurons in each respective
layer. Each hidden layer employs a LeakyRelu activation function along with Batch Nor-
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malization. Additionally, 15% random dropout is applied to prevent overfitting. The final
layer output is passed through Softmax activation function to transform the raw scores into
probability scores. (Note: The Softmax function is not used explicitly here, but is implicitly
included in PyTorch’s CrossEntropyLoss loss function.)
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Figure 3. Deep Neural Network architecture used for classification of hadrons.

Table 1 presents the optimal hyperparameters identified through Grid Search. During
training, a dynamic learning rate is adopted, which makes learning more stable [17].

Table 1. Main parameters used in the neural network, sourced from PyTorch’s library.

Parameter Setting or Value

Batch size 128
Type of loss function CrossEntropyLoss
Weight decay 0.001
Learning rate (initial) 0.0009
Learning rate (schedule) lr = lr

1+weight_decay·(epoch)2.5

Optimizer AdamW

5. Results
This section presents the results achieved by the considered models. Using the metrics

detailed in Section 4.1, the performance was evaluated for three distinct classification tasks.
Specifically, for each simulated particle pair (p/π, p/K, and π/K), the study examines the
impact of segmentation in a calorimeter compared to a homogeneous calorimeter which
serves as baseline. Additionally, the analysis explores how this contribution evolves with
changes in cell size.

5.1. XGBoost

Using the setup described in Section 4.2, the results of the study conducted for the
three different classification tasks are reported below.

5.1.1. p/π Classification

As explained in Section 3.3.1, the conservation of baryon number for protons and
the dominant branching ratio of neutral pions for charged pions are the key factors used
to investigate the differences between showers produced by protons and pions. The
consequences of these differences are manifested in some of the features, particularly the
transverse size of the showers, represented by the radius and the fraction of energy released
along the direction of the interacting particle, i.e., the shower core. In addition, the higher
radius of protons induces a higher probability of nuclear interaction with the calorimeter
material than for pions. From this it follows that on average a smaller fraction of the pion
energy will be deposited in the calorimeter because 100% containment of charged pions
would require a larger longitudinal dimension of the calorimeter.
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These assumptions are confirmed by the ranking of the features that contribute the
most to identifying the primary particle (see Section 4.1). Figure 4 shows that the features
related to the transverse development of the shower are the highest, along with the total
deposited energy. However, the position of the primary interaction vertex does not play
a dominant role in distinguishing between the two particle species. This result may be
due to the fact that, in order to be sensitive to this quantity in a PbWO4 calorimeter, it
is necessary to use cells with a longitudinal size smaller than 12 mm. Additionally, it is
important to note that the exact position of the interaction vertex is not directly accessible in
a real experiment and it is identified using an algorithm with an accuracy of less than 100%
(see Appendix A for details on the algorithm’s definition and performance analysis). The
physical insights offered by the XGBoost model represent a key advantage of its application.
Interpreting the results within a physical context not only enhances the understanding of
the underlying processes but also, as in this case, provides valuable guidance for defining
the practical requirements to be applied in the design of future detectors.
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Feature Importance for p/K

Figure 4. Top 8 most important features used by the XGBoost model in the p/π classification (cell
size of 3 × 3 × 12, mm3), ranked in descending order of significance. Each bar represents a feature,
with its length proportional to its contribution, measured using the “gain” metric.

Another significant result concerns the study of the model’s output. As described in
Section 4.1, the output can be interpreted as a pair of probabilities indicating the likelihood
that the sample is a proton or a pion. By taking the higher of the two probabilities and
defining this value as the winning probability, two distributions can be constructed. One
distribution corresponds to the winning probability when the classification is correct, while
the other represents the winning probability when the sample is misclassified.

In Figure 5, it can be seen that these values are, by definition, greater than 0.5. Moreover,
above a certain winning probability threshold, the model consistently returns the correct
class. This finding is noteworthy because it suggests the possibility of defining a confidence
level that the model must meet to produce reliable output.

This observation can also be related to Figure 5, where the accuracy and efficiency
curves described in Section 4.1 are shown. Increasing the confidence level reduces the
model’s efficiency but simultaneously improves its accuracy. Additionally, the impact of
this choice on individual particles can be observed: raising the threshold shows that pions
are more easily discriminated.
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Figure 5. Analysis of the winning probability and its impact on accuracy and efficiency values (cell
size of 3× 3× 12, mm3 with XGBoost). (Top-Left) Distribution of the winning probability, categorized
into winning probabilities with correct classification (in blue) and winning probabilities with incorrect
classification (in red). (Top-Right) Accuracy and efficiency curves considering both protons and
pions. (Bottom-Left) Accuracy and efficiency curves for protons. (Bottom-Right) Accuracy and
efficiency curves for pions.

The analysis proceeds by evaluating the accuracy achieved in distinguishing protons
from pions. The right plot of Figure 6 presents two confusion matrices. The first matrix
illustrates the maximum accuracy achieved at full efficiency, with the corresponding ROC
curve shown on the left side of the same figure. The second matrix represents the accuracy
obtained when the threshold on the model’s output is set to the value that yields the highest
achievable accuracy for protons.

The analysis concludes with a study on the impact of segmentation compared to the
use of a homogeneous, non-segmented calorimeter and the effect of cell size on the model’s
performance. In the top-left panel of Figure 7, the accuracy is shown as a function of
the cell cross-section for various longitudinal segmentations, while in the top-right panel,
the accuracy is plotted against the longitudinal segmentation size for different transverse
segmentations. Both plots highlight an improvement in performance with the introduction
of segmentation, increasing the baseline accuracy from 58.7% to an average value of 61.4%.

In the bottom-left panel of Figure 7, the dependence of accuracy on the cell volume
is shown, revealing a decreasing trend as the cell volume increases. This result confirms
that introducing smaller-volume cells can provide a better description of showers within
the calorimeter.

In all the graphs of accuracy versus cell dimensions, the quoted accuracy values are
strongly correlated because of the use of the same input data for training, validation, and
testing. Therefore the variability shown by the accuracy results over cell dimensions is
more significant than what the uncertainty bars seem to imply. Finally, the bottom-right
panel of Figure 7 shows the accuracy achieved for various configurations of longitudinal
and transverse segmentations.
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Figure 6. (Left) p/K classification ROC curve. The uncertainty region is computed as described
in Section 4.1. (Right) Confusion matrices illustrating XGBoost’s performance with a cell size of
3 × 3 × 12, mm3: confusion matrix at full efficiency and when the threshold on the model’s output
is set to the value corresponding to the highest achievable accuracy for protons. Particles whose
classification confidence falls below the reliability threshold are labeled as ’Not Classified’ (NC).
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Figure 7. Summary of results for p/π classification with XGBoost. (Top-Left) Dependence of accuracy
on cell cross section for different longitudinal segmentations. (Top-Right) Dependence of accuracy
on cell length section for different transverse segmentations. (Bottom-Left) Dependence of accuracy
on cell volume. (Bottom-Right) Accuracy for different longitudinal and transverse segmentation
configurations. Because of the use of the same input data, the reported accuracy values are correlated.

5.1.2. π/K Classification

Similarly to the p/π classification case discussed above, there are physical reasons
that could potentially create a difference between a shower produced by a charged pion
and one produced by a charged kaon. Just as the baryon number is conserved in proton
showers, the strangeness quantum number is conserved in the strong interactions occurring
in kaon-induced showers. The strange (anti-)quark contained in the incident particle is
likely to be transferred to a highly energetic particle in each generation of the shower
development. The production of π0’s in kaon showers is therefore limited by a mechanism
very similar to that in proton showers. This can lead to showers that are wider and more
symmetric compared to those produced by pions.

As highlighted in Figure 8 on the left, this is confirmed by the presence of variables
describing the transverse development of the shower, such as the radius, among the top-
ranking features. It is worth noting the presence of the number of non-empty cells, which
indicates a difference between the two types of showers. In particular, looking at Figure 2 it
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can be seen that the number of non-empty cells for pions is, on average, smaller than that
for kaons.

In the analysis of the winning probability distributions, it becomes clear that the
principle outlined in Section 5.1.1 does not apply here, as no threshold exists where correct
predictions consistently outnumber incorrect ones (see Figure 8 on the right).
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Figure 8. Analysis with the XGBoost model for the π/K classification (cell size of 3 × 3 × 12 mm3).
(Left) Top 8 most important features used by the XGBoost model in the π/K classification, ranked in
descending order of feature importance. Each bar represents a feature, with its length proportional to
its contribution, measured using the “gain” metric. (Right) Analysis of the winning probability and
its impact on accuracy and efficiency values. Distribution of the winning probability, categorized into
correct classification (blue) and incorrect classification (red).

Finally, observing the contribution of segmentation to the particle identification power
π/K, an improvement is noted in this case as well (see Figure 9, top). On the other hand,
the trend with respect to cell volume does not seem to follow a defined pattern, suggesting
that exploring smaller cell sizes might be necessary to fully resolve the showers induced by
pions and kaons (see Figure 9, bottom left).
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Figure 9. Summary panels for π/K classification with XGBoost. (Top-Left) Dependence of accuracy
on cell cross section for different longitudinal segmentations. (Top-Right) Dependence of accuracy
on cell length section for different transverse segmentations. (Bottom-Left) Dependence of accuracy
on cell volume. (Bottom-Right) Accuracy for different longitudinal and transverse segmentation
configurations. Because of the use of the same input data, the reported accuracy values are correlated.
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5.1.3. p/K Classification

This third analysis yields results that can be considered intermediate compared to
the two previous analyses. By examining the distribution of winning probabilities (see
Figure 10, left), an inflection point can be observed where the distribution of correct
predictions surpasses that of incorrect ones. However, this outcome is not as beneficial as
the one described in Section 5.1.1, as it would result in a considerable loss of efficiency in
exchange for only a slight improvement in accuracy.

In Figure 10 on the right, it can be noted that the total energy released dominates
among the input features, suggesting that the impact of segmentation in this case is less
significant. Finally, the trend of accuracy relative to the baseline and its dependence on cell
size are observed. In the bottom left of Figure 11, a decreasing trend is visible as the cell
volume increases, and the same trend can be observed for both transverse and longitudinal
segmentation (see Figure 11, top).
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Figure 10. Analysis with the XGBoost model for the p/K classification (cell size of 3 × 3 × 12 mm3).
(Left) Distribution of the winning probability, categorized into correct classification (blue) and
incorrect classification (red). (Right) Top 8 most important features used by the XGBoost model in
the p/K classification, ranked in descending order of significance.
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Figure 11. Summary results on p/K classification with XGBoost. Studies on the dependence of the
accuracy on cell cross section, longitudinal segmentation and volume. Because of the use of the same
input data, the reported accuracy values are correlated.
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5.2. Deep Neural Network

This section discuss the results obtained using Deep Neural Network (DNN). The
DNN model is trained on the NVIDIA GeForce RTX 4090 GPU, completing 180 epochs in
approximately 25 min.

Figure 12 shows the training and validation loss, as well as the training and valida-
tion accuracy. It is evident that both the loss and accuracy saturate within the range of
epochs studied.
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Figure 12. Training and validation accuracy, along with training and validation loss.

Figure 13 show the results obtained using a Deep Neural Network (DNN) for the
classification of p/π. The plots illustrate how accuracy varies with changes in the granu-
larity of the calorimeter. Uncertainty bars in the DNN graphs of accuracy are computed
using Clopper-Pearson interval with α = 0.32 using Equation (27) (see Section 4.1 for more
details). Along with p/π classification, DNN model for the classification between π/K
and p/K has been tested.

Figures 14 and 15 illustrate the relationship between granularity and accuracy for
p/K and π/K classifications, respectively. A slight decrease in accuracy is observed as the
cell volume increases. However, this decline is not monotonic, and considering the error
bars, the variation appears minimal. The specific reasons for this behavior are discussed in
Sections 5.1.1–5.1.3 .

When comparing the performance of the XGBoost model and Deep Neural Networks
(DNN), it is observed that both models yield similar results, effectively eliminating the
possibility of selection bias. However, XGBoost stands out as a more feasible and cost-
effective option in terms of computational efficiency. While DNNs are highly effective for
tensor-based data, the tabular data structure used in this context aligns better with the
strengths of XGBoost. Additionally, XGBoost offers a simpler implementation and has the
advantage of being an interpretable model, as it provides explicit feature importance. In
contrast, DNNs determine feature importance implicitly, making their interpretability more
challenging. This makes XGBoost not only a computationally efficient choice but also a
model that offers greater insights into the data.
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Figure 13. Summary of classification results for the p/π with DNN. The (top-left) panel shows the
variation in accuracy with changes in transverse (XY) segmentation for a highly granular calorimeter
while fixing longitudinal segmentation (Z). The (top-right) panel demonstrates how accuracy changes
with variations in longitudinal (Z) segmentation while keeping the XY segmentation constant. The
(bottom-left) panel illustrates accuracy variations with changes in the overall volume of calorimeter
cells. Finally, the (bottom-right) panel displays an accuracy matrix, summarizing accuracy values
for different datasets. Because of the use of the same input data, the reported accuracy values
are correlated.101 102 103
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Figure 14. p/K classification results using DNN: (a) Accuracy variation with changes in cell vol-
ume (b) Accuracy matrix for different cell dimensions. Because of the use of the same input data, the
reported accuracy values are correlated.
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Figure 15. π/K classification results using DNN: (a) Accuracy variation with changes in cell vol-
ume (b) Accuracy matrix for different cell dimensions. Because of the use of the same input data, the
reported accuracy values are correlated.

6. Related Work
High-Granularity Calorimeters will be the natural choice in future particle physics

experiments at high-luminosity colliders, where the number of produced particles in each
interaction may further increase from the already large value they have in today’s LHC
collisions. This will generate a large amount of data, which is difficult to process using
traditional methods due to the high computational demands. Recently, machine learning
algorithms have become useful tools for handling this data, especially for tasks like particle
classification and regression. For example, as shown in [18], neural networks have demon-
strated significant progress in energy regression and particle classification for HGCAL.
They simulated CMS and ATLAS calorimeter geometry and used both electromagnetic and
hadron calorimeter to seperate γ/π0 and e−/π±. The GlueX experiment at Jefferson Lab
used neural networks to separate background photons from hadron interactions and signal
photons from ω-meson decays. This highlights the power of neural networks in rejecting
background noise, especially for neutral particles [19]. Many existing methods employ
Convolutional Neural Networks (CNNs), which are well-suited for image-based data,
including visualizations of calorimetric showers. However, calorimetric showers inherently
lack a natural ordering, unlike images which are structured grids. This unordered nature of
calorimetric data makes point cloud representations a more suitable and intuitive choice.

As demonstrated in Ref. [20], point cloud representations effectively capture the spatial
and energy distribution of calorimetric showers. These representations enable the use of
permutation-invariant architectures like DeepSets [21], which are specifically designed to
handle unordered data. This approach allows for a more natural modeling of calorimetric
showers and has been successfully applied to accelerate their simulation, offering both
computational efficiency and accuracy compared to traditional methods.

7. Conclusions
High granularity is today an important requirement for calorimeters in high-energy

physics applications, due to the possibility to identify sub-jets from the decay of hadroni-
cally decaying, boosted heavy particles within wide jets, as well as to due to the benefits of
the use of particle-flow techniques in event reconstruction. In this work we have set out to
study the possibility of distinguishing charged hadrons by the topological and time struc-
ture of their energy deposition in a homogeneous calorimeter of extremely high granularity,
as a complementary piece of information that together with the requirements of boosted-jet
tagging and particle-flow reconstruction may better inform the optimal design of future
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instruments. By studying a lead tungstate calorimeter block impinged by protons, pions,
and kaons of positive charge and of 100 GeV of energy, we studied the distinguishability of
these three classes through high-level features constructed with the information available
from a hypothetical readout of energy and time of energy deposition in individual cells of
very small size. By progressively merging cells into larger units we tried to ascertain how
the harvested information would degrade in a less granular calorimeter.

Our findings indicate that increased granularity enhances the accuracy of particle
identification, marking a promising starting point for further investigations. Although
the simulation takes into account only particles at 100 GeV, and therefore the possibility
of identifying different charged hadrons is reduced, the results show the presence of a
small discrimination power offered by granularity. The trends presented in Section 5
demonstrate that an accuracy of approximately 62% can be achieved for p/π classification,
while the performance is worse for the other classification tasks. Despite the significant
uncertainties in the data, an overall decreasing trend in accuracy is observed as the cell
volumes increase. Therefore, this provides a first indication of the potential advantages
that increased granularity could offer for future experiments and related analyses.

As reported in Section 5, features related to the transverse development of the shower
are important, while the primary interaction vertex does not play a dominant role. In
principle, this result might not be expected, as the primary vertex is closely related to the
interaction cross section between the primary particle and the material. We believe this
outcome can be explained by the energy of the particles as, at high energies, the cross
sections are similar. This suggests that the discrimination power could be more pronounced
at lower energies.

Our results reflect the current status of our investigations; they are still preliminary, as
they do not conclusively ascertain yet what is the attainable, ultimate state-of-the-art level of
discrimination of the different particle species, nor the scale of cell volume below which the
required information is preserved. To achieve those goals it will be necessary to couple the
high-level feature approach with a convolutional neural network or graph-based network,
which can extract the hierarchical structure of shower evolution because representing cell
relationships through graphs would allow for a comprehensive description of the shower,
capturing both its global structure and local properties; the combined information of low-
level and high-level information is guaranteed to offer results of closer to ultimate power.
In addition, a study of a full spectrum of different particle energies in the range typical
of collider physics applications [1 GeV–1 TeV], and consideration of negatively-charged
particles (antiprotons, negative pions and kaons), neutral ones (neutrons, K0

L) as well as
deuterons and anti-deuterons will provide a better overall picture of the use of granular
calorimeters for event reconstruction and particle identification.

Regarding the choice of a lead tungstate calorimeter with 3 × 3 × 12 mm3 sized cells,
we believe that, although this configuration may not be realizable in a physical system
it can serve as useful test point for investigation of information extraction in high gran-
ular calorimeters. State-of-the-art calorimeters indicate that the community is moving
towards granular designs incorporating both crystal and fiber scintillators. Several R&D
studies highlight the feasibility of small calorimeter units, as demonstrated by the SPACAL
prototype [22].

We intend to pursue the above studies in future work; regardless of the interim nature
of presented results, we believe they already show how useful particle identity infor-
mation is extractable from the construction of informative high-level features that sum-
marize the properties of the patterns of deposited energy and their time structure. For
this reason we propose this methodology as possible application of granularity in future
granular calorimeters.
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Appendix A. First Nuclear Interaction Vertex Finder
The First Nuclear Interaction Vertex Finder algorithm is designed to identify

the index of the first “peak” in a vector of values, based on a specified threshold criterion.
Below is a detailed breakdown of its components and functionality.

Appendix A.1. Inputs and Parameters

The function takes the following inputs:

• energyCoordinates: A vector representing the spatial energy coordinates.
• energyDeposition: A vector representing the energy deposited at each coordinate.
• threshold: The initial threshold used to detect the peak in the energy profile.

Appendix A.2. Step-by-Step Algorithm Overview

• Energy Profile Calculation The algorithm processes the interactions to construct an
energy profile along the z-dimension:

1. Spatial coordinates and energy deposition (E) are retrieved for each interaction.
2. Energy contributions are accumulated into z-slices within the XY window range.
3. To improve peak detection, the energy profile is smoothed using a moving

average filter.

• First Pass: Initial Peak Detection In the first pass, the algorithm scans the
energyProfile to locate the first peak using the original threshold:

1. Iterate through the elements of the energy profile:

1 for (int i = 0; i < size; ++i) {
2 if (energyProfile[i] > threshold) {
3 return i;
4 } else if (energyProfile[i + 1] - energyProfile[i] >

threshold) {
5 return i + 1;
6 }
7 }

https://github.com/andread3vita/TowardPIDwithGranularCalorimeters
https://github.com/andread3vita/TowardPIDwithGranularCalorimeters
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2. The algorithm identifies significant peaks in a sequence by comparing the values
of consecutive elements. If an element surpasses a predefined threshold, its index
is immediately returned as a peak. Alternatively, if the difference between two
consecutive elements exceeds the threshold, the index of the second element is
returned, marking it as the peak.

• Second Pass: Threshold Reduction If no peak is found in the first pass, the threshold
is gradually reduced, and the search is repeated:

1. Decrease the threshold by 10% in each iteration:

1 for (int j = 1; j < 5; ++j) {
2 double thr = threshold - (j * 0.1) * threshold;
3 }

2. Perform the peak detection search with the new threshold:

1 for (int i = 0; i < size; ++i) {
2 if (energyProfile[i] > thr) {
3 return i;
4 } else if (energyProfile[i + 1] - energyProfile[i] >

thr) {
5 return i + 1;
6 }
7 }

• Handling Cases with No Peak If no peak is detected after both passes, the function
returns −1, indicating that no significant peaks were found in the vector.

Appendix A.3. Summary of Behavior

• The function employs a greedy approach, returning the index of the first detected
peak in the energy profile.

• By gradually reducing the threshold, the function becomes more sensitive to smaller
variations in the data, improving peak detection in cases of low-energy deposition.

• If no peak is identified after both search passes, the function returns −1, indicating
that no peak meets the specified criteria.

Appendix A.4. Performance Evaluation

To evaluate the algorithm’s performance, an accuracy metric is defined. This metric
corresponds to the ratio between the number of events where the absolute difference
between the trueZvertex and the recoZvertex is less than 2 cell units, and the total number
of events. Based on this definition, the algorithm’s performance was analyzed for various
longitudinal segmentations.

As shown in Figure A1, the accuracy is always above 90%, with a minimum value of
90.78% when the segmentation is set to 100 cells along the z axis.
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Figure A1. Accuracy of First Nuclear Interaction Vertex Finder as a function of the lon-
gitudinal segmentation.

Appendix B. Energy Peak Finder
The Energy Peak Finder function is designed to analyze events, identifying the most

significant peak in the energy deposition profiles along the X, Y, and Z axes. Below is a
step-by-step explanation of the function and its operations.

Appendix B.1. Inputs and Parameters

The function accepts the sphere_radius as parameter. It defines the radius of the
sphere centered on the cell containing the energy peak.

Appendix B.2. Step-by-Step Algorithm Overview

• Histograms Creation: Two 2D histograms (hist_cell_zy and hist_cell_zx) are
created to represent energy deposits in the Z-Y and Z-X planes, respectively. These
histograms are filled on the basis of the event data.

• Energy Profile Along Z-Axis and Peak Detection: The energy deposition data are
projected along the Z-axis:

1. A projection of the hist_cell_zy histogram onto the Z axis is stored in projZ.
2. TSpectrum::Search is used to find peaks in projZ with a threshold of 0.1 [23].
3. The positions of the detected peaks along the Z-axis are stored in peaksZ.
4. The peaks are sorted in increasing order of associated energy, and the highest

energy one is finally stored.

In most analyzed events the algorithm finds a single peak; cases when multiple peaks
compete for being classified as the first event vertex are very rare; the highest-energy
one is anyway used.

• Peak Filtering and Search in X and Y Projections: Given the Z peak position, the
function performs the following steps:

1. Filters the hist_cell_zx and hist_cell_zy histograms based on the Z
peak position.

2. Projects the filtered histograms onto the X and Y axes, respectively, creating
projX and projY.

3. Searches for peaks in the X and Y projections using TSpectrum::Search [23].
4. If multiple peaks are found in X or Y, the algorithm selects the most prominent

peak by comparing the peak intensities.

• Energy Accumulation Around Peaks: The function accumulates the energy deposition
values around the detected peak:
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1. For each energy deposition in the event, the 3D position is converted to
cell coordinates.

2. The proximity of the energy deposition to the detected peaks is evaluated, and
the energy is added if the energy deposition is within the sphere defined by
sphere_radius.

Appendix B.3. Results

Finally, the function returns a vector that contains the energy and the energy ratio of
the most significant peak.

Appendix C. Feature Distributions for Proton, Pion and Kaons
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Figure A2. These figures present the distributions of all features used in the analysis (cell size of
3 × 3 × 12 mm3). The results are shown for each particle, and the Jensen-Shannon Divergence is
reported for each particle pair to quantify the similarity between their respective distributions.
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Figure A3. These figures present the distributions of all features used in the analysis (cell size of
3 × 3 × 12 mm3). The results are shown for each particle, and the Jensen-Shannon Divergence is
reported for each particle pair to quantify the similarity between their respective distributions.
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Figure 1: Overall caption for both figures.
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Figure A4. These figures present the distributions of all features used in the analysis (cell size of
3 × 3 × 12 mm3). The results are shown for each particle, and the Jensen-Shannon Divergence is
reported for each particle pair to quantify the similarity between their respective distributions.
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