KIT | KIT-Bibliothek | Impressum | Datenschutz

Hadron Identification Prospects with Granular Calorimeters

De Vita, Andrea; Abhishek; Aehle, Max; Awais, Muhammad; Breccia, Alessandro; Carroccio, Riccardo; Chen, Long; Dorigo, Tommaso; Gauger, Nicolas R.; Keidel, Ralf; Kieseler, Jan 1; Lupi, Enrico; Nardi, Federico; Nguyen, Xuan Tung; Sandin, Fredrik; Schmidt, Kylian 2; Vischia, Pietro; Willmore, Joseph
1 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)
2 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)

Abstract:

In this work we consider the problem of determining the identity of hadrons at high energies based on the topology of their energy depositions in dense matter, along with the time of the interactions. Using GEANT4 simulations of a homogeneous lead tungstate calorimeter with high transverse and longitudinal segmentation, we investigated the discrimination of protons, positive pions, and positive kaons at 100 GeV. The analysis focuses on the impact of calorimeter granularity by progressively merging detector cells and extracting features like energy deposition patterns andtiming information. Two machine learning approaches, XGBoost and fully connected deep neural networks, were employed to assess the classification performance across particle pairs. The results indicate that fine segmentation improves particle discrimination, with higher granularity yielding more detailed characterization of energy showers. Additionally, the results highlight the importance of shower radius, energy fractions, and timing variables in distinguishing particle types. The XGBoost model demonstrated computational efficiency and interpretability advantages over deep learning for tabular data structures, while achieving similar classification performance. ... mehr


Volltext §
DOI: 10.5445/IR/1000184428
Veröffentlicht am 02.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000184428
Vorab online veröffentlicht am 15.02.2025
Schlagwörter particle detectors, calorimetry, particle identification, physics, machine learning
Nachgewiesen in arXiv
Dimensions
OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page