KIT | KIT-Bibliothek | Impressum | Datenschutz

Automating transfer function estimation: LSRF method with coherence-based pre-filtering and weighting filters

Oexle, Florian 1; Heimberger, Fabian 1; Puchta, Alexander 1; Fleischer, Jürgen 1; Gao, Robert [Hrsg.]; Xu, Xun [Hrsg.]; Bruschi, Stefania [Hrsg.]
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The increasing individualization of products, coupled with a shortage of skilled workers in the fields of science, technology, engineering and mathematics (STEM), is a challenge for manufacturing companies worldwide. To achieve batch size 1 production without the expertise of longtime employees, machine tools must be able to automatically optimize machining processes in virtual space prior to execution. This requires simulation of the machining process. Therefore digital models are needed that represent machine tool and process behavior. However, due to a lack of skilled workers, these models must be built by the machine tools themselves. Based on a previous publication by Oexle et al., this paper presents a methodology for automating transfer function estimation using the least squares rational function (LSRF) method combined with coherence-based pre-filtering and the use of specific weighting filters. Fits  > 70 % could be achieved on measurement data sets with good coherence. However, for measurement data sets with poor coherence, good fits are possible but not guaranteed.


Verlagsausgabe §
DOI: 10.5445/IR/1000184450
Veröffentlicht am 03.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2025
Sprache Englisch
Identifikator ISSN: 2213-8463
KITopen-ID: 1000184450
Erschienen in 53rd SME North American Manufacturing Research Conference (NAMRC 53, 2025) Hrsg.: Gao, Robert; Xu, Xun; Bruschi, Stefania
Verlag Elsevier
Band 44
Seiten 1306–1315
Schlagwörter Modelling, Simulation, Digital twin, Machine tool
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page