KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep learning enables city-wide climate projections of street-level heat stress

Briegel, Ferdinand ORCID iD icon 1; Schrodi, Simon; Sulzer, Markus; Brox, Thomas; Pinto, Joaquim G. 1; Christen, Andreas
1 Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO), Karlsruher Institut für Technologie (KIT)

Abstract:

Urban areas are increasingly vulnerable to the impacts of climate change, especially heatwaves, due to their distinct characteristics. However, the influence of urban form and land cover on future outdoor thermal comfort remains inadequately quantified in climate models. This study addresses this issue by introducing the Unified Human Thermal Comfort Neural Network (UHTCNN), a novel deep learning framework that efficiently and accurately maps pedestrian-level urban heat stress at a building-resolved scale of 1 m across entire cities. Using the city of Freiburg, Germany, as a case study, the model uses extensive spatial data to generate detailed Universal Thermal Climate Index (UTCI) maps by downscaling CMIP5 climate ensembles for the period 2070-2099. The model results show significant increases in heat stress hours under future climate scenarios (RCP4.5 and RCP8.5), with climate signals emerging as the dominant effect. Our model reveals that future heat stress hours will exhibit significant spatial variability, with contrasting day-night dynamics. While overall heat stress hours (UTCI >= 26 degrees C) increase more uniformly during the day, nighttime heat stress hours and daytime extremes (UTCI >= 38 degrees C) increase more heterogeneously. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184493
Veröffentlicht am 05.09.2025
Originalveröffentlichung
DOI: 10.1016/j.uclim.2025.102564
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2025
Sprache Englisch
Identifikator ISSN: 2212-0955
KITopen-ID: 1000184493
HGF-Programm 12.11.33 (POF IV, LK 01) Regional Climate and Hydrological Cycle
Erschienen in Urban Climate
Verlag Elsevier
Band 62
Seiten 102564
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page