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 A B S T R A C T

Automation of mobile machinery is critical in the construction industry to improve efficiency and ensure safety. 
Perception technologies, particularly for detecting and monitoring the actions of construction machinery, 
are essential for optimizing workflows and mitigating accident risks. However, the complex nature of 
construction environments, the variety of machines, and the dynamic interactions at construction sites pose 
significant challenges for reliable object detection and action recognition. This study introduces a deep learning 
approach using temporal vision information for object detection and action recognition of mobile machinery 
in construction environments. In particular, a novel strategy called Integrated YL-SF is proposed, which 
integrates the YOLOv8 framework with the SlowFast model enhanced by Transformers to achieve robust action 
recognition and motion analysis of construction machinery. The proposed method is evaluated on a custom 
dataset with a variety of machine types and real-world operating environments, and it is benchmarked against 
the standard YOLOv8 model. The results show that the Integrated YL-SF framework outperforms existing 
methods and effectively addresses challenges such as dynamic scenarios, object occlusion, and multi-machine 
interactions in complex environments.
1. Introduction

1.1. Motivation

Ensuring safety while implementing advanced automation in the 
construction industry is a critical challenge, particularly with the 
widespread use of mobile machines [1]. Although the construction 
sector employs only about 7% of the global workforce, it accounts 
for a staggering 30%–40% of all workplace fatalities [2]. In complex 
and dynamic construction sites, real-time detecting and monitoring of 
machinery movements, such as excavators, are essential to prevent 
accidents, optimize workflows, and protect workers [3].

Traditional monitoring approaches, which often rely on human 
supervision, are labor-intensive, time-consuming, and costly [4]. In 
addition, the inherent complexities of construction sites — such as 
dynamic backgrounds, varying lighting conditions, and frequent ob-
ject occlusions — make traditional methods inadequate for accurately 
tracking and detecting machine movements in real time. With the in-
creasing use of cameras on construction sites, image and video data has 
become a reliable and cost-effective source of information. Computer 
vision and machine learning techniques have demonstrated their po-
tential to address object detection and action recognition challenges in 
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these environments [5]. Compared to alternative sensing technologies 
such as RFID, GPS, and UWB, which require sensors to be installed 
on each monitored entity and provide limited information (e.g., loca-
tion) [6–9], computer vision offers a more comprehensive and scalable 
solution. It enables efficient and detailed understanding of construction 
tasks and interactions in complex environments [10].

Current research in construction machine monitoring predomi-
nantly focuses on object detection from static single-frame images. 
While such methods are computationally efficient and suitable for 
certain scenarios [11], they lack the temporal context needed to in-
terpret complex, sequential activities. This limitation becomes critical 
in dynamic and cluttered environments like construction sites, where 
machines frequently interact, move intermittently, or remain partially 
occluded. Static-frame methods often fail to differentiate between 
visually similar but temporally distinct actions, such as swinging versus 
hauling, especially under occlusion or varying lighting conditions [12,
13].

To overcome these challenges, this study presents a vision-based 
method that integrates YOLOv8 for spatial object detection with the 
SlowFast framework for temporal action recognition [14–16]. The 
https://doi.org/10.1016/j.aei.2025.103691
Received 6 January 2025; Received in revised form 7 July 2025; Accepted 20 July
vailable online 5 August 2025 
474-0346/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/aei
https://www.elsevier.com/locate/aei
https://orcid.org/0000-0003-2484-5676
mailto:bobo.helian@kit.edu
https://doi.org/10.1016/j.aei.2025.103691
https://doi.org/10.1016/j.aei.2025.103691
http://creativecommons.org/licenses/by/4.0/


B. Helian et al. Advanced Engineering Informatics 68 (2025) 103691 
YOLOv8 model provides high-precision detection of construction ma-
chines, while the SlowFast architecture captures both slow-changing 
contextual cues and fast motion patterns. This dual-stream design en-
ables the system to understand time-dependent operations and machine 
behavior at a fine-grained level. Furthermore, leveraging temporal fea-
tures enhances the model’s generalization ability in out-of-distribution 
(OOD) settings, such as varying viewpoints, lighting, or machine types, 
supporting safer and more robust automation in real-world construction 
scenarios.

This approach is tailored to the complex conditions of construc-
tion sites, where multiple machines operate concurrently in dynamic 
and often obstructed environments. By validating the method on both 
training and out-of-distribution test data, we demonstrate its robustness 
and applicability in practical scenarios. Rather than attempting full 
automation, this work focuses on establishing a reliable foundation for 
machine-level activity understanding, which is essential for improv-
ing safety monitoring and enabling future automation in construction 
operations.

1.2. Related works

1.2.1. Typical object detection methods
Object detection has undergone significant advancements in com-

puter vision and machine learning, particularly through deep learning 
approaches, such as YOLO and Region Convolutional Neural Networks 
(R-CNN). R-CNN, introduced by Girshick et al. in 2014, marked a 
major breakthrough in static image-based object detection [17]. R-CNN 
demonstrated the potential of deep learning in object detection and 
ignited widespread interest in the field.

Subsequently, Faster R-CNN, introduced in 2016, integrated key 
processes such as feature extraction, region proposal generation, bound-
ing box regression, and classification into a unified network structure. 
This innovation resulted in substantial improvements in detection speed 
and overall performance, making Faster R-CNN a benchmark for object 
detection [18].

1.2.2. Two-stream approaches using optical flow
Two-stream networks have shown as a potential solution for action 

recognition tasks, using both static and temporal information from 
videos. These networks utilize two streams — one for RGB frames and 
another for optical flow — to enhance the understanding of dynamic 
content in videos [12]. For example, the study in [19] proposed a 
temporal- and appearance-guided object detection method for construc-
tion sites that integrates RGB images with optical flow, leading to 
improved recognition accuracy and enhanced generalization to out-of-
distribution (OOD) data. However, two-stream approaches have no-
table limitations. The need to process two independent data streams 
significantly increases computational requirements, especially for high-
resolution video data [20]. Additionally, while the combination of 
static and temporal information improves accuracy, there remains room 
for enhancement in both efficiency and precision.

1.2.3. Temporal action recognition methods
Construction sites present a wide range of dynamic actions, from 

fast and abrupt motions, such as a truck reversing or an excavator 
swinging, to slow and sustained activities, such as an excavator dig-
ging soil. The dynamic operations of construction machinery exhibit 
complex temporal characteristics, and effective extraction and anal-
ysis of these features are crucial for enhancing the reliability and 
generalizability of neural networks.

For instance, in [21], a three-dimensional convolutional neural 
network (3D CNN) is employed to accurately recognize and classify 
excavator activities into detailed categories, preserving both spatial and 
temporal information from video data. However, the study notes that its 
accuracy is constrained by challenges such as interference from nearby 
excavators and variations in lighting conditions, which impact the 
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robustness of activity recognition. In addition, the study [22] proposed 
a hybrid deep learning algorithm, combining CNN and Long Short Term 
Memory to learn the sequential patterns of excavator working actions. 
However, the deep learning model built in this study required excessive 
computational training time and a large amount of training data. 
Furthermore, Temporal Segment Networks (TSN) represent an improve-
ment over the typical two-stream approach, addressing its limitations in 
modeling long-duration videos. TSN divides a video into equal-length 
segments and randomly samples one frame (or a smaller segment) from 
each. This strategy enables the network to capture global temporal 
context while significantly reducing computational overhead [23,24]. 
While TSN achieves better results on datasets like HMDB51 [25] and 
UCF101 [26], which lack strong temporal dependencies, its ability to 
model temporal motion remains limited. TSN relies on pre-extracted 
optical flow information, making it less effective as a fully end-to-end 
video modeling approach. Moreover, its performance diminishes on 
datasets with complex temporal dynamics [27,28].

1.2.4. Multi-sensory approaches
Multi-sensor fusion represents a promising direction for enhancing 

perception tasks in mobile machinery by integrating complementary 
modalities such as LiDAR, radar, and visual data. For example, the 
study in [29] proposes an end-to-end multimodal fusion framework 
based on Transformers, incorporating deformable attention and resid-
ual structures within the fusion encoding module. This design allows 
for simultaneous sampling from 2D image features and 3D voxel fea-
tures, offering greater flexibility and adaptability. Similarly, the work 
in [30] presents a multi-sensory guidance system that generates nav-
igation maps for global obstacle avoidance by combining ORB-SLAM 
and YOLO-based object detection. Furthermore, the study in [31] in-
troduces a customized LSTM-based classifier for real-time excavation 
workload classification. This system utilizes multi-sensor signals, in-
cluding position, velocity, and hydraulic pressures from both chambers 
of the bucket cylinder actuator, demonstrating the practical effective-
ness of sensor fusion in recognizing external operating conditions. In 
contrast, the present study focuses exclusively on vision-based meth-
ods, considering the widespread availability and desired capability of 
camera sensors for object detection and action recognition in mobile 
construction equipment. 

As discussed above, deep-learning-based action recognition methods 
struggle to model both high-speed motion patterns and long-duration 
temporal dependencies within a unified framework. The SlowFast 
framework, proposed by Feichtenhofer et al. [14], addresses this limita-
tion through its dual-path architecture: a fast pathway operating at high 
temporal resolution captures fine-grained motion details, while a slow 
pathway processes semantically rich features over a longer timescale. 
This dual design is particularly well-suited to the construction domain, 
where both types of motion often occur simultaneously or in close 
sequence.

Furthermore, the SlowFast-based model, compared to conventional 
action recognition models that rely on computationally expensive 3D 
convolutions or optical flow (e.g., two-stream networks), significantly 
reduces resource requirements while maintaining strong recognition 
performance. For instance, methods that compute optical flow explic-
itly or use 3D CNNs over all frames often involve high memory and 
time costs, which make them less practical for real-time deployment in 
dynamic construction environments.

1.3. Technical problem formulation

Although existing methods for object detection and action recog-
nition have made significant progress in many fields, designing an 
efficient, robust algorithm that effectively combines static and temporal 
information remains a major challenge in complex construction site 
environments.
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1.3.1. Limitations of current methods
Object Detection Methods: R-CNN and Faster R-CNN methods rely 

on extracting candidate regions and features for detection. However, 
they struggle to meet real-time requirements due to computational 
inefficiency, making them unsuitable for dynamic construction site 
scenarios with multiple objects. YOLO series (e.g., YOLOv8) have op-
timized the balance between detection speed and accuracy, making 
them better suited for real-time object detection. However, YOLO-based 
methods are limited to single-frame static information, lacking the 
ability to incorporate temporal dynamics for action recognition.

Action Recognition Methods: Two-Stream networks (e.g., RGB-
optical flow) use parallel streams to extract RGB images (static infor-
mation) and optical flow (temporal information) for action recognition. 
However, computing optical flow incurs high computational costs and 
is susceptible to noise and lighting changes, resulting in reduced ro-
bustness. Temporal Segment Networks (TSN) attempt to capture global 
temporal dynamics by segmenting videos and sampling keyframes. 
While effective for coarse-grained analysis, TSN struggles to model 
fine-grained dynamic actions, limiting its performance in complex 
scenarios.

1.3.2. Challenges in detection on construction sites
Detection and action recognition of construction machinery in dy-

namic construction site environments present significant challenges due 
to the following limitations in existing methods: (1) Insufficient static-
temporal data fusion: Current approaches, relying on either single-
frame static analysis or purely temporal methods, fail to comprehen-
sively capture the intricate interplay of static and temporal features in 
machinery motion, resulting in limited accuracy for complex and dy-
namic actions. (2) Trade-off between real-time performance and accu-
racy: While methods like R-CNN or optical flow-based methods achieve 
high precision, they come at the cost of substantial computational over-
head, making them unsuitable for real-time monitoring and decision-
making in construction scenarios. (3) Limited robustness in challenging 
environments: Variations in lighting, dynamic backgrounds, frequent 
occlusions, and interaction of different types of machines significantly 
degrade the performance of existing models, hindering their ability to 
reliably detect and recognize actions across diverse and unpredictable 
construction site conditions.

1.4. Contributions

This study proposes a novel framework, Integrated YL-SF, for recog-
nizing multiple machines, actions, and objects on construction sites. By 
integrating YOLOv8 for object detection and SlowFast for action recog-
nition, the framework effectively processes both dynamic and static 
information, addressing challenges such as complex environments, oc-
clusions, and multi-machine interactions. The key contributions of this 
study are as follows:

(1) This study introduces an innovative temporal sequence-based ap-
proach for object detection and action recognition of construction 
machinery in complex environments. The proposed Integrated YL-
SF, integrates the YOLOv8 framework for high-performance ob-
ject detection with the SlowFast model, enhanced by Transform-
ers, to analyze temporal information for dynamic action recog-
nition. This design effectively captures both dynamic and static 
features, enabling reliable perception in challenging multi-object, 
dynamic scenarios.

(2) To enhance the generalization and adaptability of the proposed 
framework, a comprehensive custom dataset was developed. This 
dataset encompasses a wide variety of construction machinery, 
diverse operating environments, and machine actions, providing 
a solid foundation for training and validating the framework in 
real-world conditions.
3 
Fig. 1. Workflow of integrated YL-SF network.

(3) Rigorous multi-scenario evaluations were conducted to assess 
the performance of the Integrated YL-SF framework. The results 
demonstrate superior accuracy and generalization capabilities in 
challenging conditions, such as occlusions, complex backgrounds, 
and multi-machine interactions, showcasing its effectiveness in 
addressing the perception challenges of construction sites.

2. Design of the integrated YL-SF network

This section mainly introduces the framework of Integrated YL-SF, 
as well as how to use YOLOv8 for object detection and SlowFast for 
action recognition. The overall process is shown in Fig.  1. The work-
flow illustrates the proposed pipeline, where input video sequences 
are processed through the YOLOv8 framework for object detection 
to generate bounding boxes and regions of interest (ROIs), which 
are subsequently fed into the SlowFast model for action recognition, 
ultimately producing class probability outputs.

2.1. Tasks distribution

Industrial automation on construction sites requires addressing two 
key tasks:

• Object Detection: Detecting and identifying various equipment 
and vehicles (e.g., excavators, loaders, trucks) on the construc-
tion site is essential. This requires accurately determining their 
locations within the environment and real-time image processing 
to get the classification results (i.e., type of the machine).

• Action Recognition: After detecting these objects, the task is 
to recognize their actions or working status, such as whether 
an excavator is ‘‘digging’’ or ‘‘swinging’’ and whether a truck is 
‘‘transporting’’ or ‘‘unloading’’.

The SlowFast model is not designed for object detection; its pri-
mary purpose is action recognition in videos. It processes a complete 
sequence of video frames to extract features, capture temporal infor-
mation in dynamic actions, and identify actions occurring throughout 
the video. However, this approach does not include explicit object 
detection or localization, making it unsuitable for determining the 
specific positions of machines on construction sites.

In this section, to address these requirements, a strategy is proposed 
that utilizes YOLOv8 for object recognition and a SlowFast model to 
perform robust action recognition.

2.2. Object detection with YOLOv8

The one-stage YOLO model proposed by Joseph Redmon et al. 
changes the traditional object detection framework by predicting the 
bounding box and category probabilities directly from the whole image 
through a single neural network. This type of approach uses the idea 
of regression, using the whole image as the input to the network, and 
directly regresses the object bounding box at this location, and the 
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Fig. 2. Object detection with YOLOv8.

category to which the object belongs, at multiple locations in the image, 
enabling YOLO to provide high accuracy while achieving true real-
time object detection [32]. In this paper, we utilize YOLOv8 to perform 
object detection. YOLOv8 is the newest object detection model in the 
YOLO family, which is known for its real-time performance and high 
accuracy [33].

The main task of YOLOv8 is to perform object detection on each 
frame of the video, pinpointing and labeling objects of interest (e.g., ex-
cavators, trucks, etc.). Object detection provides not only the class of 
the object, but also information about the position of each object in the 
image, i.e., the bounding box. This provides precise inputs for subse-
quent action recognition, allowing the system to focus on the detected 
object detection area, thereby reducing unnecessary computation and 
improving overall efficiency and accuracy. As shown in Fig.  2. The pro-
cess begins by preprocessing the excavator video to extract RGB images 
from each frame. Once the images are prepared, they are annotated. 
After annotation, the RGB images are input into a backbone network, 
Darknet53, which is responsible for feature extraction. This backbone 
produces five different feature layers, referred to as P1 through P5. The 
P1 layer, with the highest resolution, captures fine details like edges 
and textures, while the P5 layer, with the lowest resolution, captures 
more abstract and complex structural information. These multi-scale 
feature maps are then merged using a mechanism called the Path 
Aggregation Feature Pyramid Network (PAFPN). Finally, the head of 
the network carries out two key tasks: first, it identifies the current 
operational patterns of the excavator, and second, it determines the 
location of the excavator within the image by generating bounding 
boxes.

2.3. Action recognition with SlowFast framework

2.3.1. SlowFast network architecture design
After object detection with YOLOv8 and passing through the multi-

Object tracking algorithm, ROI (Region of Interest) extraction is per-
formed: each tracked object will have its corresponding bounding box. 
These frame sequences (images in consecutive frames for each Object) 
will be used as input to SlowFast.

The entire processing flow is shown in Fig.  3 below:
(1) Two-path Processing

• Slow Path
Input: Low frame rate segments of a video sequence. In this work, 
we use 5 frames from a 3-s video sequence (from the beginning, 
the end, and the middle three frames), which are fed into the Slow 
Path for processing.
Feature Output (C, T): After 3D convolutional processing, the 
output feature contains the time dimension (T) and the number 
of channels (C), representing long-term action features in the low 
frame rate video.
4 
• Fast Path
Input: A high frame rate segment of the video sequence. In this 
work, we take a 3-s video with 90 frames per second. These 
frames are input into the Fast Path, which is designed to capture 
short, rapid changes and is suitable for recognizing fast move-
ments or transient actions in videos, such as the instantaneous 
rotation of an excavator or the acceleration of a truck.
Feature Output (𝛽𝐶, 𝛼𝑇 ): The Fast Path outputs a feature map 
with a reduced number of channels (𝛽𝐶) and a downsampled 
temporal frame rate (𝛼𝑇 ). This ensures that although it processes 
more frames, it outputs fewer channels of features to keep the 
model computationally efficient.

(2) 3D Convolution
3D convolution is the foundational module in this framework, focus-

ing on extracting local spatiotemporal features. By performing convolu-
tion operations simultaneously across static and temporal dimensions, 
it captures static features within individual frames (such as shapes 
and textures) and temporal dynamics between frames (such as the 
continuity of actions). In the Slow Path, 3D convolution specializes in 
extracting long-term action features from low frame-rate videos, such 
as slow movements or sustained states, helping the model comprehend 
overall action trends. In the Fast Path, 3D convolution emphasizes 
capturing short-term rapid dynamics in high frame-rate videos, such as 
instantaneous fast movements or abrupt changes. By generating feature 
maps that retain the temporal dimension, 3D convolution provides 
a rich, locally sensitive spatiotemporal representation that lays the 
groundwork for subsequent global modeling.

(3) Transformer
The Transformer module, on the other hand, focuses on global fea-

ture modeling and capturing complex temporal dependencies. Using the 
self-attention mechanism, the Transformer dynamically evaluates the 
relationships between all temporal frames in a video sequence, enabling 
the model to globally focus on key frames, such as the beginning, 
end, or peak of an action. The multi-head attention mechanism pro-
cesses multiple feature patterns in parallel, ensuring a comprehensive 
understanding of different phases of an action’s evolution. Positional 
encoding is incorporated to help the Transformer accurately perceive 
the temporal order of frames, preventing the loss of sequence informa-
tion. In the Slow Path, the Transformer further refines the long-term 
features extracted by 3D convolution, allowing the model to capture 
temporal dependencies over a global scope. In the Fast Path, it focuses 
on modeling the details of rapid short-term changes, enabling the model 
to identify more complex and fast-paced action patterns. Thus, the 
Transformer and 3D convolution form a complementary relationship: 
3D convolution emphasizes the extraction of local dynamics, while the 
Transformer focuses on the integration and modeling of global temporal 
information.

(4) Lateral Connection
Lateral connection is represented by the dotted arrow from the 

Fast Path to the Slow Path. This connection transfers the short-term 
dynamics captured by the Fast Path to the Slow Path, enabling the Slow 
Path to incorporate these short-term dynamics when processing long-
term information. This unidirectional transfer of information helps the 
Slow Path better understand changes in the object’s behavior.

(5) Feature Fusion
After the Slow Path and Fast Path feature maps are processed, they 

enter the feature fusion stage. Here, features from different time scales 
(long and short) are combined to produce a feature representation that 
contains both long-term information and short-term details. This fusion 
helps the model capture both global and local rapid changes in the 
action, improving the understanding of complex actions.

(6) Global Average Pooling (GAP)
After feature fusion, the model performs dimensionality reduction 

on the feature map through Global Average Pooling (GAP). GAP glob-
ally aggregates the information in all feature maps to form a more 
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Fig. 3. SlowFast network architecture design for action recognition.
compact feature vector, reducing data dimensionality while retain-
ing global semantic information. This step prepares the features for 
subsequent classification operations.

(7) Fully Connected Layer (FCL)
The pooled feature vectors are passed through a fully connected 

layer (FCL), which further compresses the features and generates more 
discriminative features for the final classification task.

(8) Softmax Classification
The final step in action recognition is Softmax classification. In this 

step, the model classifies the Object actions in each input video clip, 
generating probability distributions for each category. For example, the 
action of an excavator may be categorized as ‘‘digging’’ or ‘‘swinging’’, 
while a truck may be categorized as ‘‘transporting’’ or ‘‘unloading’’. 
The detailed dataset distribution across three machine types and eight 
action types is given in Table  1 and later sections.

(9) Action Prediction
After classification, the system outputs the action category of the 

Object, which is the result of action prediction. Combined with the 
previous YOLOv8 object detection, the system can output action recog-
nition results for each individually detected object.

3. Comparative experiments and analysis

3.1. Dataset generation on the construction site

3.1.1. Data source
The training dataset we use as an action recognition model comes 

from MegaMachinesChannel [34] on YouTube, a channel that features 
videos of various construction machinery. As a foundational study, we 
focused on three representative types of construction machinery: exca-
vators, dump trucks, and wheel loaders. These machines were selected 
because they are among the most commonly used on construction sites 
and are frequently involved in coordinated operations, which makes 
their action recognition tasks both practically important and technically 
challenging.

We selected some of the most typical tasks in construction. For 
example, the actions in the dataset include digging, dumping, hauling, 
swinging (performed by an excavator), transporting, unloading (per-
formed by a dump truck), and loading and unloading (performed by a 
loader), as shown in Fig.  4. The action recognition of these actions can 
effectively help us provide improved construction efficiency and safety. 
In addition, these machines often perform overlapping or sequential 
actions, as shown in Fig.  13, such as digging and unloading, in shared 
workspaces, leading to complex visual and temporal interactions. In 
total, eight distinct action categories were defined and annotated across 
these machines.
5 
Fig. 4. Action category examples.

3.1.2. Keyframe extraction and data volume
To capture both fine-grained motion and longer-term temporal con-

text, we adopt a dual-pathway frame sampling strategy following the 
principles of the SlowFast architecture. For the Slow Path, we extracted 
5 keyframes from each 3-s video clip and labeled them using YOLO’s 
labeling format. These keyframes were evenly sampled across the start 
to end of the clip, specifically, at 0.0 s, 0.6 s, 1.2 s, 1.8 s, and 2.4 s—
ensuring that critical stages of the action were captured. This sampling 
strategy enables the Slow Path to capture high-level semantic features 
and longer-term temporal evolution, which is especially important 
for recognizing sustained or gradual actions in construction tasks. In 
parallel, the Fast Path processes all 90 frames from the same 3-s video, 
sampled at 30 frames per second. This dense sampling allows the model 
to detect fast, transient movements and subtle motion changes that 
occur between keyframes.

The choice of a 3-s window is based on empirical observation and 
domain knowledge: most atomic actions of construction machinery 
(such as an excavator swinging or a truck unloading) typically unfold 
within a 2–4 s range. Thus, 3 s provides a reasonable balance between 
capturing the full action context and maintaining computational effi-
ciency. Additionally, the model processes video using a sliding window 
updated every second (e.g., 1–3 s, 2–4 s, 3–5 s), enabling timely and 
continuous action recognition for real-time perception, as shown in Fig. 
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Fig. 5. Sliding window strategy for parallel keyframe extraction.

Table 1
Single-machine single-action dataset.
 Machinery Action Videos (3s) Keyframes Train Val  
 Excavator Digging 75 375 335 40  
 Excavator Dumping 75 375 335 40  
 Excavator Hauling 75 375 335 40  
 Excavator Swinging 75 375 335 40  
 Dump truck Transport 75 375 335 40  
 Dump truck Unloading 75 375 335 40  
 Loader Loading 75 375 335 40  
 Loader Unloading 75 375 335 40  
 Total 600 3000 2680 320 

Table 2
Multi-machine multi-action dataset.
 Machinery Action Videos (3s) Keyframes Train Val  
 Excavator, Dump 
truck

Digging, Dumping, 
Hauling, Swinging, 
Transport, 
DT_Unloading

100 500 420 80  

 Dump truck, 
Loader

Transport, 
DT_Unloading, 
LD_Loading, 
LD_Unloading

100 500 420 80  

 Excavator, Dump 
truck, Loader

Digging, Dumping, 
Hauling, Swinging, 
Transport, 
DT_Unloading, 
LD_Loading, 
LD_Unloading

100 500 420 80  

 Total 300 1500 1260 240 

5. The processing time for a single 3-s video clip (comprising 90 frames 
for the Fast Path and 5 frames for the Slow Path, as depicted in Fig.  5) 
is approximately one second (i.e., 1 s per video or 1∕95 ≈ 0.01 s per 
frame).

The total number of videos is 600 (75 videos per action), which 
translates into 3000 keyframes for the Slow input. The dataset is di-
vided into 2680 training images and 320 validation images, distributed 
across the eight action classes as shown in Table  1.

Additionally, to enhance the model’s generalization in mixed and 
time-varying scenarios involving different machine types and overlap-
ping actions, we constructed a Multi-Machine Multi-Action Dataset. As 
shown in Table  2, this dataset comprises 1500 keyframes extracted 
from 300 video clips, capturing various cooperative behaviors among 
multiple construction machines.

3.1.3. Data augmentation
Construction sites are visually complex environments where ma-

chinery often occludes one another, lighting varies dramatically, and 
6 
Fig. 6. Examples of recognition challenges due to occlusion, lighting, and clutter.

Fig. 7. Data augmentation techniques applied to construction machinery.

camera viewpoints are inconsistent. These factors can severely impact 
recognition accuracy, as illustrated in Fig.  6.

To improve model robustness, we apply a series of data augmen-
tation techniques commonly used in deep learning, including flipping, 
cropping, rotation, brightness adjustment, and noise addition as shown 
in Fig.  7. These augmentations address the following challenges:

• Occlusion Handling: Techniques like random cropping and ro-
tation allow the model to recognize partially visible machinery.

• Lighting Variability: Adjustments in brightness and color help 
the model generalize across different lighting conditions.

• Viewpoint Diversity: Random rotations and flips simulate differ-
ent camera angles, enhancing recognition from multiple perspec-
tives.

• Scale Variation: Scaling helps the model detect machinery at 
different distances and frame sizes.

• Generalization: Additional transformations (e.g., Gaussian blur 
and noise) simulate real-world variation without requiring extra 
data collection.

Together, these augmentations enhance the generalization ability of 
the integrated YL-SF model, enabling reliable action recognition across 
dynamic and challenging construction scenarios.

3.2. Training configuration for transformer

The Transformer module is trained end-to-end using Cross-Entropy 
Loss, which is standard for multi-class classification tasks such as 
action recognition. We fine-tuned the entire model on our construction-
specific dataset. The model was initialized using a pre-trained SlowFast 
backbone (SLOWFAST_32 × 2_R101_50_50.pkl) from the AVA dataset. 
This pre-trained model provides a strong foundation by leveraging pre-
viously learned features from a broad dataset, significantly accelerating 
the training process and enhancing the model’s ability to generalize 
from the outset. The model was then fine-tuned on our custom dataset 
with the following training configuration (see Table  3):

This configuration balances training stability and learning effi-
ciency, particularly with the warm-up strategy that avoids gradient 
instability during early epochs. Fine-tuning the model with a learn-
ing rate schedule and decay helps adapt the pretrained network to 
construction-specific visual and motion patterns without overfitting.
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Table 3
Training configuration for the transformer module.
 Parameter Value Description  
 base_lr 0.01 Initial learning rate  
 lr_policy steps_with_relative_lrs Learning rate schedule  
 steps [0, 20, 40, 60] Epochs for lr change  
 lrs [1, 0.1, 0.01, 0.001] Corresponding lr 

multipliers
 

 max_epoch 300 Max training epochs  
 momentum 0.9 Momentum for SGD  
 weight_decay 1 × 10−4 Regularization factor  
 warmup_epochs 10.0 Warm-up period 

duration
 

 warmup_start_lr 0.00001 Initial lr for warm-up  
 optimizer SGD Optimization algorithm  
 pretrained SLOWFAST_32 × 2_R101_50_50.pkl Pre-trained model used  
 loss Cross-entropy Loss function for 

classification
 

Fig. 8. Training results of integrated YL-SF.

In this study, the YL-SF model for action recognition was trained on 
the self-generated dataset using an RTX 3090 GPU (24 GB), 15 vCPUs 
(AMD EPYC 7642 48-Core Processor), and 80 GB memory, with a total 
runtime of under three hours.

3.3. Training results in YOLOv8 and integrated YL-SF networks

This section compares the performance of object detection and 
action recognition using two approaches: (1) YOLOv8 applied indepen-
dently for both tasks of object detection and action recognition, and 
(2) the proposed hybrid approach where YOLOv8 is used for object 
detection and the integrated YL-SF network is used for action recog-
nition. All models are trained and evaluated on the same dataset, with 
identical training, validation, and test splits to ensure a fair comparison. 
The training curves of the integrated YL-SF network, shown in Fig. 
8, demonstrate stable loss convergence as well as high precision and 
recall, indicating effective training.

3.3.1. Confusion matrix
The following analysis compares the performance of Integrated YL-

SF and YOLOv8 for action recognition in a construction site scenario 
using confusion matrices, as shown in Figs.  9 and 10. We discuss the 
differences in action recognition accuracy, how they handle time-based 
information, and their applicability to complex tasks.

(1) Accuracy Comparison: The Integrated YL-SF framework
demonstrates exceptional accuracy across all action categories, partic-
ularly excelling in distinguishing similar actions. Minimal confusion is 
observed, even for complex scenarios. In contrast, YOLOv8 performs 
well on simpler actions but shows significantly lower accuracy for 
actions that require temporal analysis.

(2) Confusion Analysis: Integrated YL-SF exhibits almost no confu-
sion between action classes, excelling in identifying subtle differences 
between similar actions, such as Swinging and Dumping. However, 
YOLOv8 struggles with considerable confusion between action classes, 
especially for actions with similar static features, such as Digging and
Dumping or Hauling and Swinging.
7 
Fig. 9. Integrated YL-SF confusion matrix.

Fig. 10. YOLOv8 (baseline) confusion matrix.

(3) Temporal Information Processing: Integrated YL-SF effec-
tively captures both short-term and long-term action dynamics through 
its dual-pathway design, resulting in highly accurate recognition of 
complex and continuous actions. By contrast, YOLOv8 lacks the abil-
ity to process time-series data and focuses primarily on frame-by-
frame detection, making it ineffective for actions requiring temporal 
progression.

3.3.2. Precision-Confidence curve analysis
Figs.  11 and 12 represent the precision confidence curve for Inte-

grated YL-SF and YOLOv8 in various action classes in a construction site 
scenario. Precision measures the proportion of true positive predictions 
out of all positive predictions, while confidence reflects the model’s 
certainty about its predictions.

(1) Precision: Integrated YL-SF consistently maintains higher pre-
cision across all action classes, with minimal variance as confidence 
increases. This stability is attributed to its dual-path temporal pro-
cessing, which enables it to handle time-sensitive action sequences 
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Fig. 11. Precision-Confidence curve of the integrated YL-SF.

Fig. 12. Precision-Confidence curve of baseline YOLOv8.

effectively. In contrast, YOLOv8 exhibits greater fluctuation in pre-
cision, particularly for actions involving subtle or dynamic motion 
changes, highlighting its limitations in complex action recognition 
tasks.

(2) Performance Across Confidence Levels: For Integrated YL-
SF, precision grows rapidly and stabilizes at a high level even for 
lower confidence values, demonstrating robust performance even when 
predictions are less confident. By comparison, YOLOv8 requires higher 
confidence levels to achieve acceptable precision, especially for actions 
requiring temporal context, such as Swinging and LoaderUnloading.

3.4. Test results in YOLOv8 and integrated YL-SF networks

In this study, we carefully designed the test set to include out-of-
distribution (OOD) samples that differ from the training set in terms 
of construction environments, machinery types, and visual conditions. 
This allows us to assess the model’s robustness in practical deployment 
scenarios. Specifically, the OOD test data includes:

• Unseen Construction Sites: Videos recorded at different locations 
not included in the training set, featuring distinct backgrounds, 
terrain, and construction layouts.
8 
Fig. 13. Comparison single action recognition.

Fig. 14. Comparison of multiple action recognition.

• Different Machine Brands and Appearances: Although the action 
classes remain consistent, the test data involves machines of the 
same type but from different manufacturers or with different 
visual appearances (e.g., color, wear, and decals), which were not 
seen during training.

• Environmental and Lighting Variations: The test set includes clips 
taken under diverse lighting conditions (e.g., dusk, backlight, 
cloudy weather) and environmental factors such as fog or dust, 
which affect the visual clarity and introduce domain shift.

• Input Quality Shift: Some test videos were collected using dif-
ferent cameras or at varied distances, resulting in changes in 
resolution, motion blur, or occlusion.

To investigate the performance differences between YOLOv8 and 
Integrated YL-SF in object recognition tasks, we conducted evaluations 
using out-of-distribution (OOD) data. The dataset involves challenging 
scenarios, including: (1) single-object recognition in complex envi-
ronments, (2) multi-objective recognition under multi-angle and long-
distance conditions, (3) potential contextual confusion due to visually 
similar actions across objects.

As shown in Fig.  13, Integrated YL-SF consistently achieves higher 
confidence scores and recognition accuracy compared to YOLOv8. For 
instance, in single-object recognition tasks, Integrated YL-SF achieves a 
confidence score of 1.00 for ‘‘Dumping’’, outperforming YOLOv8, which 
records a lower score of 0.87.

Similarly, As shown in Fig.  14, multi-objective recognition sce-
narios, YOLOv8 struggles with false recognition (e.g., labeling ‘‘Haul-
ing’’ with a confidence of 0.21), whereas Integrated YL-SF effectively 
distinguishes multiple objects with accurate classifications and high 
confidence across all detections.

Further quantitative evaluations are depicted in Fig.  15 and Fig.  16. 
The Integrated YL-SF model demonstrates superior generalization and 
recognition capabilities under complex environmental conditions.

These results clearly demonstrate the advantages of incorporat-
ing the SlowFast temporal modeling into YOLOv8. The Integrated 
YL-SF model significantly enhances detection robustness, particularly 
in multi-objective, multi-angle, and long-distance recognition tasks, 
showcasing its superior performance in real-world industrial scenarios.

Regarding scalability, the YL-SF framework is designed with modu-
larity and computational efficiency. Its dual-branch
architecture — comprising Slow and Fast pathways — enables selective 
frame processing, avoiding the need for exhaustive 3D convolutions 
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Fig. 15. Performance indicators of integrated YL-SF.

Fig. 16. Performance indicators of YOLOv8 (baseline).

across entire video sequences. This design significantly reduces com-
putational overhead and allows flexibility in adapting the framework 
to various hardware environments. Key parameters such as frame 
sampling rate or input resolution, can be adjusted to meet the resource 
constraints of edge devices. The proposed model was tested with an 
NVIDIA RTX 3090 GPU in this study. For industrial applications with 
high requirements for real-time performance, more powerful industrial 
GPUs can be applied. Moreover, its modular structure facilitates tar-
geted refinement of individual components, such as the object detector 
or temporal model for action recognition.

4. Limitations and future work

While the Integrated YL-SF framework demonstrates strong per-
formance in recognizing complex machine actions, several limitations 
remain. The testing and evaluation were conducted primarily on a 
single custom dataset collected from publicly available YouTube videos. 
Although this dataset includes diverse machinery types and operating 
conditions, it does not comprehensively represent the full range of ac-
tivities, environmental variations, and site-specific challenges encoun-
tered across different construction projects worldwide. Additionally, 
the framework depends on fully labeled data, which is a common issue 
that might restrict scalability and practical deployment in large-scale, 
real-world scenarios.

To address these limitations, future work will focus on expanding 
the dataset to cover a wider variety of construction machinery, ac-
tion categories, and environmental contexts, including multi-machine 
and cooperative scenarios. Moreover, to facilitate real-world appli-
cability and reduce dependence on manual labeling, we intend to 
explore advanced learning paradigms such as weakly supervised and 
self-supervised methods. For example, methods such as pseudo-label 
generation based on pretrained models or consistency learning can be 
used to automatically label large volumes of unlabeled video data, en-
hancing the scalability and adaptability of the framework. These efforts 
will collectively advance the practical deployment of the Integrated 
YL-SF framework as a reliable perception module for autonomous and 
9 
semi-autonomous mobile machinery in construction automation. We 
also plan to explore multi-sensory fusion by integrating data from 
LiDAR, radar, or onboard sensors to improve perception robustness in 
complex scenes.

5. Conclusion

This study designed an integrated framework, named Integrated YL-
SL, of YOLOv8 and SlowFast to achieve multi-machine, multi-action, 
and multi-object recognition on construction sites. In complex environ-
ments such as construction sites, YOLOv8 was employed for precise 
static object detection, while SlowFast processed temporal information, 
significantly enhancing the model’s ability to recognize dynamic and 
multi-object actions. Additionally, a self-created dataset was devel-
oped, covering various construction machine actions such as digging, 
hauling, and unloading, and capturing various cooperative behaviors 
among multiple construction machines. This dataset provided diverse 
scene data for model training and facilitated action recognition in 
real-world construction scenarios. Comparative experiments validated 
the high accuracy and generalization ability of the Integrated YL-SF 
framework, demonstrating its superior performance in distinguishing 
complex and similar actions, such as ‘‘digging’’ and ‘‘unloading’’, with 
significantly higher precision than YOLOv8 alone. Further experimental 
analysis demonstrated the benefits of temporal information processing 
by comparing YOLOv8 and the Integrated YL-SF across various action 
categories. The proposed Integrated YL-SF consistently achieved higher 
precision and reliability, reaching a precision of 0.93 compared to 
YOLOv8’s 0.87. This comparative validation provides valuable insights 
and practical guidance for future related research. The proposed In-
tegrated YL-SF strategy contributes to the advancement of automated 
construction systems and the enhancement of overall construction site 
safety and operational efficiency.
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