
Scalable Bayesian Inference of Large Simulations via
Asynchronous Prefetching Multilevel Delayed Acceptance

Maximilian Kruse
Karlsruhe Institute of Technology

Karlsruhe, Germany
maximilian.kruse@kit.edu

Zihua Niu
LMU Munich

Munich, Germany
zihua.niu@lmu.de

Sebastian Wolf
Technical University of Munich

Munich, Germany
wolf.sebastian@cit.tum.de

Mikkel B. Lykkegaard
Danish Technological Institute

Taastrup, Denmark
mbly@teknologisk.dk

Michael Bader
Technical University of Munich

Munich, Germany
bader@cit.tum.de

Alice-Agnes Gabriel
UCSD & LMU Munich

San Diego, USA & Munich, Germany
algabriel@ucsd.edu

Linus Seelinger
Karlsruhe Institute of Technology

Karlsruhe, Germany
linus.seelinger@kit.edu

ABSTRACT
Bayesian inference enables greater scientific insight into simulation
models, determining model parameters and meaningful confidence
regions from observed data. With hierarchical methods like Mul-
tilevel Delayed Acceptance (MLDA) drastically reducing compute
cost, sampling Bayesian posteriors for computationally intensive
models becomes increasingly feasible. Pushing MLDA towards the
strong scaling regime (i.e. high compute resources, short time-to-
solution) remains a challenge: Even though MLDA only requires a
moderate number of high-accuracy simulation runs, it inherits the
sequential chain structure and need for chain burn-in from Markov
chainMonte Carlo (MCMC).We present fully asynchronous parallel
prefetching for MLDA, adding an axis of scalability complementary
to forward model parallelization and parallel chains. A thorough
scaling analysis demonstrates that prefetching is advantageous in
strong scaling scenarios. We investigate the behavior of prefetch-
ing MLDA in small-scale test problems. A large-scale geophysics
application, namely parameter identification for non-linear earth-
quake modelling, highlights interaction with coarse-level quality
and model scalability.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; Modeling and simulation.

KEYWORDS
Uncertainty quantification, Bayesian inference, high performance
computing, parallelization, geophysics, earthquake modeling

This work is licensed under a Creative Commons Attribution 4.0 International License.
PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1886-1/2025/06 .
https://doi.org/10.1145/3732775.3733581

ACM Reference Format:
Maximilian Kruse, ZihuaNiu, SebastianWolf,Mikkel B. Lykkegaard,Michael
Bader, Alice-Agnes Gabriel, and Linus Seelinger. 2025. Scalable Bayesian
Inference of Large Simulations via Asynchronous Prefetching Multilevel
Delayed Acceptance. In Platform for Advanced Scientific Computing Confer-
ence (PASC ’25), June 16–18, 2025, Brugg-Windisch, Switzerland. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3732775.3733581

1 INTRODUCTION
Mathematical inverse problems provide a rich framework for gain-
ing insight into a multitude of problems and phenomena in science
and technology by combining models and data to infer unknown
parameters, such as material properties, reaction rates, or effective
potentials [4, 20, 33, 41]. Observational data is typically noisy and
incomplete, while computational models only approximate the true
system. Consequently, modern research increasingly focuses on in-
corporating these uncertainties into inference problems. A common
approach to Uncertainty Quantification (UQ) is to formulate an in-
verse problem in the Bayesian framework [28], assigning a posterior
probability to unknown parameters based on prior knowledge as
well as goodness-of-fit between model prediction and observational
data.

An attractive choice for solving Bayesian inverse problems (BIP)
are Markov chain Monte Carlo (MCMC) [8, 13, 22, 25, 36] algo-
rithms, as they impose minimal assumptions on the model. How-
ever, this generality comes at the price of requiring large numbers
of model evaluations. This cost can easily become excessive, particu-
larly for inverse problems governed by partial differential equations
(PDE) that already require High Performance Computing (HPC)
resources for a single evaluation.

Multilevel Markov chain Monte Carlo (MLMCMC) [11] exploits
a hierarchy of models with varying fidelities, allocating most of the
computational effort to less accurate but fast approximate models.
MLMCMC thus achieves efficiency gains comparable to Multilevel
Monte Carlo (MLMC) [21] in uncertainty propagation. MLMCMC
relies on the assumption of independent samples from coarser levels,
which serve as proposals for the finer levels. However, in practice,

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3732775.3733581
https://doi.org/10.1145/3732775.3733581
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3732775.3733581&domain=pdf&date_stamp=2025-06-20

PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland M. Kruse, Z. Niu, S. Wolf, M. Lykkegaard, M. Bader, A.-A. Gabriel, L. Seelinger

(c) MLDA algorithm

Gaussian process regression

Physics-based, coarse

Physics-based, fine 𝜋3

𝜋2

𝜋1

117.6oW 117.4oW

3
5

.6
o
N

3
5

.9
o
N

-2

-1

0

1

2

0.01 0.05 0.09
velocity (m/s)

p
la

st
ic

 s
tr

a
in

1x10-2

1x10-3

1x10-4

(a) surface displacement data (b) 2019 Ridgecrest earthquake (d) model of off-fault nonlinear damage

Taufiqurrahman et al., 2023 Abram et al., 2023

Figure 1: Overview of theMultilevel DelayedAcceptanceMCMC (MLDA) algorithm and its target application, the 2019 Ridgecrest
earthquake. (a) Surface displacement data during the earthquake [50]. (b) Visualization of the simulated earthquake source and
the generated seismic wave field [2]. (c) Structure of the proposed MLDA model hierarchy. (d) Modeled plastic deformation,
which is controlled by physical parameters, the target of the inference in this work.

this independence only holds approximately, introducing bias. The
more recent MLDA [34], based on delayed-acceptance MCMC [7],
addresses this limitation. Compared to MLMCMC, which has been
successfully parallelized and deployed on HPC systems [47], MLDA
introduces stronger data dependencies between levels, and is there-
fore more challenging to parallelize.

In this work, we introduce a novel parallelization approach for
the MLDA algorithm based on prefetching [3, 49], the parallel eval-
uation of possible future Markov Chain states based on a binary de-
cision tree. Prefetching acts as an additional level of parallelism on
top of model parallelism and parallel execution of multiple MLDA
chains, each of which naturally exhibit diminishing returns.

We discuss the theoretical basis for prefetching in a multilevel
context. On an example problem, we investigate performance by
comparing prefetching to parallelization with multiple chains. The
results indicate that prefetching is in fact needed for optimal parallel
efficiency in the strong scaling regime, i.e. where many compute
resources are employed to rapidly achieve an inversion result.

Our prefetching MLDA implementation supports the UQ and
Modeling Bridge (UM-Bridge) interface [45], leading to a modular
pipeline that transparently scales to HPC clusters and allows linking
to any simulation code. It is available open-source at [31].

Finally, we apply prefetching MLDA to a novel, computationally
challenging inverse problem in geoscience. It aims to infer sub-
surface material parameters in a non-linear seismic model using
earthquake data. We use three-dimensional, non-linear dynamic
rupture models of the Ridgecrest earthquakes (similar to [50]), Cali-
fornia’s biggest earthquakes in more than 20 years which ruptured
multiple segments of a complex fault system [43]. Our inversion
aims to explain high-rate global positioning system datasets with
earthquake physics. The model is implemented in the earthquake
simulation software SeisSol [24, 30, 53], which integrates seamlessly
with our computational pipeline. We construct the multilevel model
hierarchy by varying the PDE discretization level, and augment it

with an adaptive surrogate model based on Gaussian Process (GP)
regression [42] on the coarsest level.

2 ASYNCHRONOUS PREFETCHING MLDA
Bayesian inverse problems define, for some parameter of interest
𝜃 ∈ R𝑑 , a posterior distribution 𝜋post (𝜃 |𝑑obs), given observations
𝑑obs ∈ R𝑞 of the system under consideration. In this work, we
consider scenarios where the data is the perturbed output of a PDE
model, given a specific parameter set as its input, 𝑑obs = 𝐺 (𝜃) + 𝜂.
𝜂 ∈ R𝑞 is the realization of a noise variable with known statistics.
This induces a likelihood 𝑙 (𝑑obs |𝜃) to observe the data, given a
parameter candidate. In combination with some prior distribution
𝜋prior (𝜃), Bayes’ theorem yields the posterior as

𝜋 (𝜃) ≡ 𝜋post (𝜃 |𝑑obs) ∝ 𝑙 (𝑑obs |𝜃)𝜋prior (𝜃). (1)

MLDA algorithm. MCMC methods generate correlated samples
from a target distribution 𝜋 (in our scenario a Bayesian posterior).
Given a sample 𝜃𝑛 ∈ R𝑑 , MCMC algorithms generate a new sample
𝜃𝑛+1 in a two-step procedure. Firstly, a proposal candidate 𝜃𝑛+1
is drawn from a distribution 𝑞(·|𝜃𝑛), which is typically cheap to
evaluate. The proposal is then accepted (𝜃𝑛+1 = 𝜃𝑛+1) or rejected
(𝜃𝑛+1 = 𝜃𝑛) according to a transition probability 𝛼 (𝜃𝑛+1 |𝜃𝑛). Impor-
tantly, proposals tend to be cheap to compute, while the transition
probability depends on costly target density evaluations 𝜋 (𝜃𝑛+1)
and 𝜋 (𝜃𝑛).

A major drawback of MCMC methods is that they typically re-
quire a large number of evaluations of the target density to achieve
a sufficient number of effectively uncorrelated samples. Multilevel
algorithms may drastically reduce that cost. We employ the MLDA
algorithm [34] in this work. The basic idea of MLDA (as for other
multilevel methods) is to employ a hierarchy of models with differ-
ent accuracy-cost tradeoff. We denote this hierarchy as subchain

Scalable Bayesian Inference of Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland

levels 𝑠 = 1, 2, . . . , 𝐾 with corresponding target densities 𝜋𝑠 . We pre-
sume that densities on lower levels are cheap to compute but coarse
approximations of the posterior, whereas evaluations on higher
levels are computationally more expansive, but more exact. We set
𝜋 = 𝜋𝐾 . MLDA generates high-quality proposals on subchain level
𝑙 by spawning an MCMC chain on subchain level 𝑙 −1 at the current
state. The final sample of that coarser-level subchain is then used
as a proposal for level 𝑙 . Applying this recursively across levels
results in an increasingly fast rate of decorrelation for samples
on finer levels. Through a careful choice of model hierarchy and
subchain lengths (see [34] for details on convergence rates), MLDA
can achieve a significant reduction in overall cost for sampling 𝜋 .

Prefetching MLDA. Like single-level MCMC algorithms, MLDA
is inherently sequential. A trivial method of parallelization is the
generation of multiple independent chains. However, since each
chain requires a burn-in period and mixing, parallel chains scale at
diminishing returns. Thus, we additionally employ within-chain
parallelization through prefetching [3, 5, 49]. The underlying con-
cept of prefetching is to expand possible future states of a MCMC
chain 𝜃𝑛+𝑗 , 𝑗 = 1, 2, . . . from a given state 𝜃𝑛 in a binary tree, repre-
senting all future accept/reject decisions. We refer to this structure
as a Markov tree. Possible future states can be determined in ad-
vance, since proposals are typically cheap. We can then conduct the
costly target density evaluations for possible future states in paral-
lel. Now, given a pool of 𝑁𝑝 workers, 𝑁𝑝 target density evaluations
across the Markov tree can be conducted simultaneously. With the
obtained results, the Markov chain can potentially be advanced
by 𝑁𝑝 > 1 steps. Since we might precompute density evaluations
in branches that the MCMC algorithm ultimately does not take,
the efficiency of prefetching depends on a “clever” distribution of
computational resources onto the possible future states of the chain.

We now introduce an extension of prefetching for MLDA, in-
cluding fully asynchronous operations accommodating differing
run times across levels. We begin by establishing a formal notation
for a Markov tree and its nodes. A general Markov tree consists of
a sequence of levels 𝑙 ∈ N+0 , not to be confused with the subchain
levels 𝑠 of the MLDA algorithm. We characterize a node 𝑡 in layer
𝑇𝑙 by a string,

𝑡 ∈ 𝑇𝑙 with 𝑇𝑙 ⊂ {𝑎, 𝑟 }𝑙 , (2)
indicating the sequence of accepts (𝑎) and rejects (𝑟) leading to
the state of that node. We denote the root level as 𝑇0, which only
contains the root node 𝑡0. Moving on, we define the concatenation
operation to create a descendant or child of a given node,

⊕ : 𝑇𝑙 × {𝑎, 𝑟 } → 𝑇𝑙+1 . (3)

Informally, this means that a child node is generated from its parent
by appending a letter from {𝑎, 𝑟 } to its defining string. A complete
Markov tree is given as the directed acyclic graph resulting from
the concatenation of nodes over subsequent layers. Under abuse of
notation, we resemble this by the union of layers,

𝑇 B
⋃
𝑙∈N+0

𝑇𝑙 . (4)

An exemplary Markov tree is depicted in fig. 2.
For the MLDA algorithm, tree nodes carry two additional quan-

tities, their subchain levels 𝑠 (𝑡) ∈ {1, 2, . . . , 𝐾} and their indices

a

aa ar

aaa aar ara arr

Figure 2: Three levels of a Markov decision tree. Nodes are labelled
with the sequence of accepts and rejects leading to that node.

𝑖 (𝑡) ∈ {1, 2, . . . , 𝐼𝑠 (𝑡) } within the respective subchain. We define for
the root node

𝑠 (𝑡0) = 𝐾, 𝑖 (𝑡0) = 1, (5)
and for all 𝑡 ∈ 𝑇 , 𝑥 ∈ {𝑎, 𝑟 } through recursive concatenation

𝑠 (𝑡 ⊕ 𝑥) =


𝑠 (𝑡) if 𝑠 (𝑡) = 1 and 𝑖 (𝑡) < 𝐼0
𝑠 (𝑡) + 1 if 𝑠 (𝑡) < 𝐾 and 𝑖 (𝑡) = 𝐼𝑠 (𝑡)
𝑠 (𝑡) − 1 else,

(6)

and

𝑖 (𝑡 ⊕ 𝑥) =


𝑖 (𝑡) + 1 if 𝑠 (𝑡) = 1 and 𝑖 (𝑡) < 𝐼0
𝑖 (𝜈𝑠 (𝑡 ⊕ 𝑥)) + 1 if 𝑠 (𝑡) < 𝐾 and 𝑖 (𝑡) = 𝐼𝑠 (𝑡)
1 else.

(7)

Here, we have introduced the mapping 𝜈𝑠 : 𝑇 → 𝑇 from a node to
its closest ancestor on the same subchain level, i.e. 𝑠 (𝜈𝑠 (𝑡)) = 𝑠 (𝑡).

We can now define the states of the nodes in the Markov tree.
Assuming that proposals on the coarsest level of the MLDA hier-
archy are generated by a distribution 𝑞(·|·), we set 𝜃𝑡0 = 𝜃𝑛 and
define subsequent states recursively:

If 𝑠 (𝑡 ⊕ 𝑥) = 𝑠 (𝑡) = 1 : 𝜃𝑡⊕𝑥 =

{
𝜃𝑡 ∼ 𝑞(·|𝜃𝑡) if 𝑥 = 𝑎,

𝜃𝑡 if 𝑥 = 𝑟,
(8a)

If 𝑠 (𝑡 ⊕ 𝑥) = 𝑠 (𝑡) + 1 : 𝜃𝑡⊕𝑥 =

{
𝜃𝑡 if 𝑥 = 𝑎,

𝜃 𝜈𝑠 (𝑡⊕𝑥) if 𝑥 = 𝑟,
(8b)

If 𝑠 (𝑡 ⊕ 𝑥) = 𝑠 (𝑡) − 1 : 𝜃𝑡⊕𝑥 = 𝜃𝑡 . (8c)

Asynchronous prefetching. In our work, we employ asynchro-
nous prefetching, making use of computational resources as soon
as they become available. This is absolutely crucial in MLDA, since
model run times may vary extremely across levels: An entire sub-
chain may complete before a previous finer-level node. To this
end, we distinguish four computational states for each node in
the Markov tree. Nodes in the set 𝑂 ⊆ 𝑇 have not been assigned
any computational resources yet. Nodes in𝑊 ⊆ 𝑇 are currently
running evaluations of the target density. For nodes in 𝐷 ⊆ 𝑇 ,
the computation has been completed, and computational resources
have been freed. And finally, nodes in 𝐸 ⊂ 𝑇 have been eliminated
through MCMC accept/reject decisions.

PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland M. Kruse, Z. Niu, S. Wolf, M. Lykkegaard, M. Bader, A.-A. Gabriel, L. Seelinger

We make these decisions as soon as the target densities for all
relevant nodes have been computed. If an MCMC move from the
state 𝜃𝑡 is accepted, we prune 𝑡 ⊕ 𝑟 and all its children, i.e. we
put these nodes into the set 𝐸. If the move is rejected, we prune
𝑡 ⊕ 𝑎 and its subtree. Note that the MLDA algorithm comprises
different types of MCMC decisions, each requiring different target
densities to be evaluated. For subchains on levels 𝑠 = 1, 2, . . . , 𝐾 − 1,
this facilitates additional within-subchain pruning. On these levels,
only the target densities at the first and last subchain index are
needed for a subsequent MCMC decision on the next finer level.
Consequently, as soon as a succession of three or more nodes in
a subchain are uniquely connected, we can make the first node in
that sequence the immediate parent of the last node, effectively
pruning all intermediates. Given the recursive nature of MLDA’s
subchains, we would otherwise have to track an extreme amount
of subchain nodes before advancing to the next fine-level state.

Next, we devise a strategy for optimally assigning computational
resources to nodes in the Markov tree. For this, we assume that we
can approximately predict the acceptance probability for a node on
subchain level 𝑠 by a level-dependent estimate 𝛼𝑠 . Such estimates
can be static guesses or adaptive (e.g., depending on the previous
behavior of the Markov chain). In addition, we have to take into
account that the acceptance probability is either zero or one if
the MCMC decision has already been made. We hence define the
approximate acceptance rate 𝛾 as

𝛾 (𝑡 ⊕ 𝑎) B


𝛼𝑠 (𝑡⊕𝑎) if 𝑡 ⊕ 𝑎, 𝑡 ⊕ 𝑟 ∉ 𝐸,
1 if 𝑡 ⊕ 𝑟 ∈ 𝐸,
0 if 𝑡 ⊕ 𝑎 ∈ 𝐸.

(9)

Moving on, we recursively construct the estimated probability
𝑃𝑅 (𝑡) of a node 𝑡 to be reached by the actual Markov chain. We set
𝑃𝑅 (𝑡0) = 1 and extend to other nodes as

𝑃𝑅 (𝜃𝑡⊕𝑥) =
{
𝑃𝑅 (𝜃𝑡)𝛾 (𝑡 ⊕ 𝑎) if 𝑥 = 𝑎,

𝑃𝑅 (𝜃𝑡) (1 − 𝛾 (𝑡 ⊕ 𝑎)) if 𝑥 = 𝑟 .
(10)

We can now formulate an optimization problem for finding a
node 𝑡∗ whose target density should be evaluated next, as soon
as computational resources become available. This is simply the
node 𝑡 ∈ 𝑂 that has maximum probability of being required for
the propagation of the Markov chain. The probability of a node
being required, in turn, is given by the probability of its immediate
ancestor being reached. So we define the mapping 𝜈 : 𝑇 → 𝑇 from
a node to its parent, and obtain the next candidate for target density
evaluation according to

𝑡∗ = argmax
𝑡 ∈𝑂

𝑃𝑅 (𝜈 (𝑡)) . (11)

Under this choice of optimality condition, the probabilities of child
nodes are necessarily lower than those of their parents. Consequen-
tially, the optimal node can always be found in the subtree of layers
𝑙 ≤ 𝐿∗, where 𝐿∗ is the first layer for which no target densities have
been computed yet.

Active subtree. While considering an infinite tree on a theoretical
level, we operate only on an active subtree 𝑇𝐴 ⊂ 𝑇 in practice,
adding and pruning nodes as the algorithm progresses. New node
pairs (𝑡 ⊕ 𝑎, 𝑡 ⊕ 𝑟) are only added to the active tree if their parent
meets one of the following conditions:

p=1

p=0.25 p=0.75

p=0.15 p=0.1 p=0.45

α=0.6

α=0.25

p=0.3

α=0.6

Figure 3: Traversal of node probabilities through an exemplary
Markov tree. Green color indicates finished posterior evaluation, or-
ange indicates computations in progress. The most likely candidate,
selected for the next posterior evaluation, is encircled in red.

(a) 𝑡 is the root
(b) 𝑡 is an accept node, meaning that the last letter in its string

is an “a”, and 𝑡 ∈ 𝐷 ∪𝑊
(c) 𝑡 is a reject node, meaning that the last letter in its string is

an “r”, and its accept sibling 𝑡𝑠 ∈ 𝐷 ∪𝑊
This ensures that along any possible path, exactly one advance
accept/reject decision that still needs target density evaluation is in
the active subtree. As soon as computational resources are available,
evaluation is started for the current 𝑡∗ ∈ 𝑂 . As soon as results of
computations are returned and resources freed, available MCMC
decisions are performed and subtrees pruned, including within-
subchain pruning. Importantly, as soon as there is a unique path
between the root node and a fine level child 𝑡𝑁 , that child’s state is
a new sample of the Markov chain. We then discard the entire tree
before that sample and make it the new root, i.e. 𝑡0 ← 𝑡𝑁 .

Overall, the presented MLDA algorithm iteratively performs a
sequence of steps, until the desired number of fine-level samples is
reached. These steps can be summarized as follows:

(1) Expand the Markov tree, request new posterior evaluations,
(2) update the Markov tree with finished jobs,
(3) compute available MCMC decisions,
(4) prune the Markov tree, and
(5) if possible, propagate the Markov chain.

3 SCALING MLDA FOR HPC SIMULATORS VIA
UM-BRIDGE

Prefetching MLDA applies to a very wide range of inverse prob-
lems, since it only requires access to pointwise evaluations of the
posterior (and no gradients of the forward model etc.). In order to
make our software equally universal, we perform model evaluation
calls through UM-Bridge. UM-Bridge is an easy-to-use framework
for interacting with simulation codes regardless of programming
language or platform, as demonstrated in [46].

It allows our Python implementation of prefetching MLDA to
link to any simulation model from simple test problems to highly

Scalable Bayesian Inference of Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland

optimized simulations running on massively parallel HPC architec-
tures. We illustrate the resulting setup in fig. 4.

Parallel Requests

MCMC Client

Forward

Load Balancer

Simulation Model
Level K

Simulation Model
Level 1

Forward

...

Forward

Surrogate
Retrain

Figure 4: Computational setup consisting of UQ client,
cluster-side load balancer, adaptive surrogate model and par-
allel simulation instances.

The prefetching MLDA Python code constitutes the client side
in our setup, requesting model evaluations from the cluster via
UM-Bridge. The load balancer, typically running on the login node
of an HPC cluster, launches simulation model instances as needed
and forwards evaluation requests to them.

In total, we employ three levels of parallelism:

• We run multiple independent MLDA samplers and collect
their results (which is valid since they sample the same pos-
terior), making use of multiprocessing.
• Each sampler performs asynchronous prefetching (section 2)
for in-chain parallelism.
• The simulation model itself may be parallelized.

Importantly, since the generic load balancer handles simula-
tion runs on the cluster, Python’s multiprocessing framework is
enough for prefetching MLDA to control parallel simulation runs
across thousands of cores. Model parallelism is entirely transparent
to the UQ side.

In our geophysics application (section 5), we employ a MLDA
model hierarchy that includes a GP surrogate [42] in addition to
numerical simulators. The GP approximates the simulation model
on the coarsest simulation level at extremely low cost.

We ensure GP accuracywhile restricting training to high-posterior
areas through an adaptive procedure: We initially pretrain the sur-
rogate from simulation runs on only a small number of Latin Hyper-
cube points. During the UQ run, we employ the mean prediction as
an approximation to the simulator. However, if GP variance exceeds
a threshold (indicating high approximation error), we trigger an
additional coarse-level simulation for that parameter, updating the
GP for higher confidence in that area.

4 APPLICATION: BAYESIAN INFERENCE IN
SEISMOLOGY

Demonstrating prefetching MLDA in a real-world application, we
target a highly relevant inverse problem from computational seis-
mology: Inferring information about earthquake sources from sur-
face recordings only.

4.1 Modeling Earthquakes in SeisSol
The forward problem is solved by the earthquake simulation soft-
ware SeisSol (www.seissol.org). The Earth is modeled as a 3D elastic
body and the respective elastic wave equation is expressed in first-
order formulation,

𝜕𝑡𝑢 +𝐴𝜕𝑥𝑢 + 𝐵𝜕𝑦𝑢 +𝐶𝜕𝑧𝑢 = 0, (12)

where 𝑢 is the vector of unknowns (stress and particle velocities).
The flux matrices𝐴, 𝐵 and𝐶 contain the material parameters (Lamé
parameters and density). This hyperbolic partial differential equa-
tion is solved using the Discontinuous Galerkin method with Arbi-
trary high-order DERivatives time stepping (ADER-DG) [14].

SeisSol implements ADER-DG for elastic [14], viscoelastic [15,
51], anisotropic [10, 55] and poroelastic [9, 56] material models. In
addition, it features plastic deformation [57] and the coupling of
acoustic and elastic domains [30]. A key component of SeisSol are
dynamic rupture earthquake sources [38, 39]. For this source type,
the non-linear frictional failure along prescribed fault planes is
simulated along with the seismic wave fields. The movement of the
sliding fault induces wave motion in the surrounding bulk volume.
Interaction of frictional failure and wave motion allows researchers
to investigate earthquake physics. For example, dynamic models
can explain how rupture jumps from one fault segment to another
one [17, 50].

SeisSol has been used on several petascale supercomputers to
model earthquake scenarios with several billion degrees of freedom,
achieving a significant fraction of the theoretical peak performance
[24, 30, 53]. On the node level, SeisSol relies on the code generator
YATeTo [52], which generates high-performance code by mapping
kernel descriptions (in Einstein sum convention) to highly opti-
mized backends for small matrix operations. Through different
backends, SeisSol achieves performance portability between dif-
ferent compute architectures including GPUs [12]. SeisSol uses
a hybrid parallelization approach: On node level, we use either
OpenMP (for CPUs) or CUDA/SYCL/ROCm (for GPUs). Between
nodes, the mesh is partitioned and communication between ghost
and copy cells is done with MPI. Asynchronous communication
then hides communication behind computation.

In the Bayesian inverse problem considered (see section 4.2), the
results of the forward model depend on several volumetric material
parameters, e.g. Lamé parameters 𝜆 and 𝜇 or plastic cohesion 𝑐 ,
encoded in the parameter vector 𝜃 . When the UQ sampler requires
a forward model evaluation for a parameter 𝜃 , a small wrapper
script prepares input files for SeisSol. Parallel execution of SeisSol
is then triggered. SeisSol produces artificial seismograms, which
we compare to real-world recordings in order to form the Bayesian
posterior eq. (15).

The wrapper code acts as an UM-Bridge server, making SeisSol
easily accessible to the UQ code. Integrating UQ andmodel in such a

www.seissol.org

PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland M. Kruse, Z. Niu, S. Wolf, M. Lykkegaard, M. Bader, A.-A. Gabriel, L. Seelinger

way retains full flexibility w.r.t. model complexity (e.g. scattering at
material interfaces or at the free surface), while cleanly separating
it from the complexity of the UQ workflow.

4.2 2019 Ridgecrest, CA, earthquake scenarios
Modern measuring techniques enhance the quality and quantity
of data available for characterizing earthquake dynamic rupture
processes and include strong-motion and broadband seismometers,
high-rate Global Navigation Satellite System (GNSS) instruments
and space geodetic datasets [e.g., 18, 23].

However, while non-linear inversions of earthquake data for
dynamic parameters to construct physically consistent earthquake
models have been conducted [16, 19, 40, 44], the immense compu-
tational cost of each forward model restricted these to simplified
model setups and inversions for on-fault parameters only. MLDA
addresses the above limitations, drastically reducing the required
number of full-complexity, high-resolution forward simulations.

As a demonstrator scenario, we examine linked dynamic rup-
ture simulations of the 2019𝑀𝑊 6.4 Searles Valley foreshock and
the𝑀𝑊 7.1 Ridgecrest mainshock [50]. This earthquake sequence
involves the rupture of a complex fault system comprising four
major non-planar segments. To capture off-fault rock deformation,
we embed the rupturing faults in elasto-plastic materials using a
Drucker-Prager yield criterion [57]. The yielding strength 𝜏𝑐 is de-
fined by two spatially varying material parameters, plastic cohesion
𝑐 and friction angle 𝜙 , as

𝜏𝑐 = 𝑐 cos(𝜙) − 𝜎𝑚 sin(𝜙), (13)

where 𝜎𝑚 = 𝜎𝑘𝑘/3 is the mean of the stress tensor trace 𝜎𝑖 𝑗 . These
plastic parameters strongly influence earthquake dynamic rupture
processes and ground shaking. Following [50], we define spatially
varying rock elastic moduli and prestress fields by combining a 3D
community velocity model CVM-S4.26 [32] and a 2D community
stress model representing the regional state of stress in the Southern
California upper crust [58]. We also assume spatially varying plastic
cohesion 𝑐0 (𝑥,𝑦, 𝑧) as proportional to the shear modulus of the 3D
velocity model. The plastic cohesion is 𝑐 = 𝛾𝑐0 (𝑥,𝑦, 𝑧), where 𝛾 is a
scaling factor to be inverted for using MLDA. The friction angle 𝜙
is held constant across the domain, for simplicity.

Under the above assumptions, the parameter vector is𝜃 = (𝛾, 𝜙)𝑇
∈ R2. Observational data for the inverse problem consists of three-
dimensional displacement time series recorded at 10 GNSS stations
near the fault system [35]. Each station provides surface displace-
ment vectors 𝛿𝑖 (𝑡), with 𝑖 representing east-west, north-south or
up-down direction, at a sampling rate of 1 Hz. In total, we obtain ob-
servations 𝑑obs ∈ R𝑞 , where 𝑞 = 3×10×𝑛𝑡 , and 𝑛𝑡 is the number of
discrete points in the time series of each displacement component.

We aim to approximate the posterior distribution 𝜋 (𝜃 |𝑑obs). We
employ a uniform prior for all parameters, with the componentwise
bounds defining a feasible rectangle Ωprior within the parameter
space. Furthermore, we assume that our data corresponds to the
output of our forward model 𝐺 (𝜃), perturbed by zero-centered
Gaussian noise:

𝑑obs = 𝐺 (𝜃) + 𝜂, 𝜂 ∼ N(0,𝐶), 𝐶 = 𝜎2
𝑑
𝐼 , (14)

2 1 0 1 2
1

1

0

1

2

2

2 1 0 1 2
1

1

0

1

2

2

2 1 0 1 2
1

1

0

1

2

2

Figure 5: Hierarchy of “banana”-shaped posterior densities.

where 𝜎2
𝑑
is a scalar constant and 𝐼 ∈ R𝑞×𝑞 denotes the identity

matrix. In total, we define the Bayesian posterior

𝜋 (𝜃 |𝑑obs) =


1
𝑍
exp

(
− 1
2
| |𝑑obs −𝐺 (𝜃) | |2

𝐶−1

)
, if 𝜃 ∈ Ωprior,

0, else,
(15)

where we have used the matrix-weighted norm | | · | |2
𝐶−1

= ⟨·,𝐶−1·⟩.
The normalization constant 𝑍 only depends on the data and the
chosen prior intervals.

5 RESULTS
5.1 Artificial Test Case
We first present results for prefetching MLDA based on an artificial
hierarchy of 2D posterior densities. We define “banana“-shaped
densities, which can be obtained from a simple transformation of a
Gaussian density [28]. Based on a precision coefficient 𝑐𝑖 , we write
for the parameters 𝜃1, 𝜃2 ∈ R of the 𝑖-th member of the density
hierarchy

𝜋𝑖 (𝜃1, 𝜃2) ∝ exp
[
− 1

2𝑐𝑖
(
20(𝜃21 − 2𝜃2)

2 + 2(𝜃2 − 1
4)

4)2] . (16)

We construct a hierarchy of models with precision parameters
𝑐𝑖 = {0.1, 0.3, 1.0}, which is depicted in fig. 5. Since evaluation of
these densities is practically instantaneous, we introduce artificial
sleep times 𝑡𝑖 = {0.001𝑠, 3𝑠, 10𝑠} to emulate the workload of more
realistic posterior evaluations. The compute time on the coarsest
level is still negligible, mimicking a fast surrogate model.

Before evaluating the parallel efficiency of the prefetching algo-
rithm, we demonstrate the potential usefulness of MLDA compared
to vanilla Metropolis-Hastings (MH) MCMC [36], based on our test
hierarchy. To this end, we directly draw samples from the fine-level
distribution with the MH-MCMC algorithm. We utilize a simple
random walk proposal, 𝑞(·|𝜃) = N(𝜃, 𝐼). Furthermore, we generate
an equal number of samples with the MLDA algorithm, using 30
samples for level-one subchains and three samples for level two.
On level one, we employ the same proposal as for the MH-MCMC
algorithm. For both approaches, we generate four chains consisting
of 1000 samples each.

Verifying that our MLDA implementation delivers the expected
statistical efficiency, we compare the autocorrelation functions
(ACF), effective samples sizes (ESS) and rank-normalized 𝑅 sta-
tistics [54] of the two obtained sample sets, exemplarily for 𝜃1
(fig. 6). For the MH-MCMC algorithm, samples are highly corre-
lated, up to a lag of ∼ 40 samples. The autocorrelation is reduced
by a factor of more than 10 for the samples obtained with MLDA.
Similarly, we observe that the ESS is about a factor 10 higher for

Scalable Bayesian Inference of Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland

0 20 40 60 80 100
Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

1

0 20 40 60 80 100
Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

1

0 1000 2000 3000 4000
Number of Samples

0

300

600

900

1200

ES
S

1

MH-MCMC
MLDA

0 200 400 600 800 1000
Number of Samples

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R(
1)

MH-MCMC
MLDA

Figure 6: ACFs for MH-MCMC (top-left) and MLDA samples (top-
right). ESS (bottom-left) and 𝑅̂ (bottom-right) comparison for both
algorithms.

the MLDA samples. Lastly, the 𝑅 converges to one much faster for
MLDA, indicating very short burn-in times. When implemented
efficiently, this means that the utilization of a hierarchy of models
can significantly reduce burn-in times and increase the number of
effective samples for statistical estimation.

Parallel speed-up. Moving on, we discuss results regarding the
core contribution of this work, parallelization through prefetching.
We conduct MLDA runs as described above, with parallelization
through prefetching for a varying number of up to 10 parallel
threads. To assess parallel efficiency, we inspect the overall speed-
up in run times, which is simply given as the ratio of the execution
time without pre-fetching, 𝑡1, and that for 𝑁th parallel threads, 𝑡𝑁th ,

𝑆th (𝑁th) = 𝑡1/𝑡𝑁th . (17)

This quantity implicitly includes system latency. As the dummy
model benchmarks have been run on a single CPU, we do not
expect latency to be relevant. For large-scale computations, on the
other hand, latencies in the prefetching algorithm are negligible
compared to the run times of single forward model evaluations.

Figure 7 summarizes the speed-up results. In the artificial prob-
lem, parallelization through prefetching yields an overall speed-up
of about 2.5–3 in the tested range of threads. However, the speed-up
reaches a plateau rather quickly, so that we anticipate a single-digit
number of threads to be sensible in many cases.

Lastly, we point out that the current implementation of par-
allelized MLDA leaves some room for improvement. Specifically,
ongoing simulation runs are not aborted when they become ob-
solete through an MCMC decision. Moreover, we employ a rather
simplistic acceptance predictor for future states, which does not

1 2 4 6 8 10
Nth

1.0

1.5

2.0

2.5

3.0

S t
h

Figure 7: Runtime speed-ups for prefetching-based parallelization
of MLDA with the banana posterior hierarchy.

take into account the random draws for the realization of the actual
Markov Chain.

Optimal parallelization strategy. To assess the usefulness of pre-
fetching, we need to compare it to the obvious competing paral-
lelization approach for MCMC, namely running parallel chains.
Generating parallel chains is an embarrassingly parallel task, but
also exhibits diminishing returns: Burn-in has to be performed for
every single chain, implying that an increasing amount of samples
has to be discarded when more parallel chains are run. To formalize
this, suppose we intend to generate𝑀eff usable samples of a poste-
rior distribution (not to be confused with the ESS presented above).
From the total number of samples generated, we have to deduct
𝑀burn burn-in samples for every chain. Let 𝜈 =

𝑀eff
𝑀burn

further be the
ratio of effective samples to burn-in samples. Given such a fixed
ratio 𝜈 , the speed-up through 𝑁ch parallel chains is

𝑆ch (𝑁ch) =
𝑁ch

1 + 𝑁ch−1
𝜈+1

. (18)

Regarding the sampling procedure from the banana hierarchy, we
choose for our assessment𝑀burn = 7 and𝑀eff = {50, 100, 200, 400}.
We point out here that we do not rely on a quantitative assessment
of the 𝑅 statistics for the determination of 𝑀burn. The statistic is
not reliable quantitatively in the low sample and low chain regime
[1]. We rather make the optimistic estimate that the chains reach
stationarity after initial decorrelation, which is supported by the
behavior of the traces themselves.

The resulting speed-ups for up to 32 parallel chains are presented
in fig. 8 (left). Clearly, parallelization performance deteriorates
when burn-in becomes significant compared to the overall number
of samples that are computed per chain. This is also apparent from
equation (18). For 𝜈 ≫ 𝑁ch, we can expect (nearly) perfect speed-
up. As we approach 𝜈 ∼ O(1), however, we can observe that also
𝑆ch ∼ O(1), regardless of the number of chains employed.

For the case 𝑀eff = 50, we compare the performance gain of
parallel chains with that of prefetching. Specifically, we consider
two computations with different amounts of resources 𝑁𝑖,1, 𝑁𝑖,2,
𝑖 ∈ {th, ch}, and the respective difference Δ𝑁𝑖 = 𝑁𝑖,1 − 𝑁𝑖,2. The
unit of the resources is either the number of parallel chains or the
number of threads for prefetching. Note that these two quantities
are comparable, as they both denote multiples of the computational
resources required for a posterior evaluation. For both simulations,

PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland M. Kruse, Z. Niu, S. Wolf, M. Lykkegaard, M. Bader, A.-A. Gabriel, L. Seelinger

12 4 8 16 32
Nch

1

5

10

15

20

S c
h

Meff = 400
Meff = 200
Meff = 100
Meff = 50

1 2 4 6 8 10
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RS

Parallel chains
Prefetching

Figure 8: Left: Speed-up through employment of parallel chains,
for different values of𝑀eff and𝑀burn = 7. Right: Speed-up rates of
parallel chains vs. prefetching, for𝑀eff = 50.

we compare speed-ups 𝑆𝑖,1/2 as Δ𝑆𝑖 = 𝑆𝑖,1 − 𝑆𝑖,2. Finally, we de-
fine the relative speed-up as RS𝑖 = Δ𝑆𝑖/Δ𝑁𝑖 . The corresponding
results are depicted in fig. 8 (right). While speed-up rates for par-
allel chains are generally higher than those for prefetching, both
exhibit diminishing returns. As a result, we have to find an optimal,
problem-dependent balance between the two.

To quantify the interplay between 𝑁ch and 𝑁th, we consider the
problem of optimal resource allocation for our artificial problem,
under constraints that resemble realistic scenarios. Assume that
our posterior evaluation requires one generic unit of computational
resources. This might correspond to use-cases where posterior eval-
uations are obtained from software that is not parallelized or whose
parallelization does not scale well. We further consider the scenario
that these evaluations are expensive, e.g. for large simulations of
physical systems. Thus, we anticipate to obtain only relatively small
numbers of samples, and again choose 𝑀eff = {50, 100, 200, 400}.
Further suppose that these samples have to be obtained under se-
vere time constraints, while a large number of resources 𝑁tot is
available. This might indeed be a typical case for rapid prototyping
and risk assessment in R&D projects. For our exposition, we choose
𝑁tot = {16, 32, 64, 128}. Under these constraints, we intend to find
the optimal combination of resources that minimizes evaluation
time for the desired sample numbers. Formally, we compute

𝑁 ∗ch, 𝑁
∗
th = argmax

𝑁ch,𝑁th∈N+
𝑆ch (𝑁ch)𝑆th (𝑁th), and 𝑁ch𝑁th = 𝑁tot .

(19)
This is a simple combinatorial optimization problem, whose results
are depicted in fig. 9 for the chosen combinations of𝑀eff and 𝑁tot.

The illustrations confirm our qualitative assessment on the in-
terplay of 𝑁ch and 𝑁th. For relatively large sample numbers𝑀eff,
parallel chains are more efficient, although prefetching with a low
number of threads might still yield some performance gain. On the
other hand, prefetching is particularly effective for low 𝑀eff, when
burn-in becomes significant more quickly. In this case, up to eight
threads can be employed.

To conclude our discussion, we comment on the projected speed-
ups 𝑆tot = 𝑆ch𝑆th for different combinations of resource distribution.
Even if prefetching appears to be a favorable choice according to the
solution of the above optimization problem, the simpler approach
of parallel chains might still be a better option if performance gains
are only marginal. Therefore, we evaluate 𝑆tot for the case𝑀eff = 50

16 32 64 128
Ntot

50
10

0
20

0
40

0
M

ef
f

8 8 8 16

8 16 16 16

16 16 32 32

16 32 32 64

16 32 64 128
Ntot

50
10

0
20

0
40

0
M

ef
f

2 4 8 8

2 2 4 8

1 2 2 4

1 1 2 2

Figure 9: Optimal distribution of resources for different combina-
tions of𝑀eff and𝑁tot. Left: Optimal number of parallel chains. Right:
Optimal number of threads for prefetching.

2 4 8 16 32 64 128
Nch

1

2

4

8

N
th

Figure 10: Projected Speed-up for different combinations of 𝑁ch
and 𝑁th, for+ 𝑀eff = 50. Sizes of the bubbles indicate the speed-up
value.

and varying 𝑁tot, for all possible resource combinations 𝑁ch, 𝑁th.
These speed-ups are visualized in the bubble plot 10.

The results indicate that, for given 𝑀eff, the performance gain
through prefetching is highly dependent on the total amount of
available resources𝑀tot. If only few resources are available, only
few parallel chains can be spawned, whose parallel efficiency is
favorable compared to prefetching. In addition, we note that the
projected speed-up in this scenario is relatively independent of
the chosen resource combination. This is quite different for large
𝑁tot. We observe that for 𝑁tot = 128, prefetching with up to eight
threads is clearly preferable to assigning all resources to parallel
chains. Indeed, the potential performance gain through prefetching
is almost 100%.

We conclude that prefetching is a viable approach for strong-
scaling scenarios, i.e. when high computational resources are em-
ployed to compute a limited number of samples in a short time.

5.2 Large-Scale Seismology Application
As a real-world use-case, we apply our parallelizedMLDA algorithm
to the Bayesian inverse problem described in section 4.2, for the
parameters 𝜃 = (𝛾, 𝜙) ∈ R2. The approach employs a hierarchy of
three models with increasing complexity. At the coarsest level, we

Scalable Bayesian Inference of Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 11: Left: Surrogate model estimated probability density of
the plastic cohesion 𝛾 and the internal friction angle 𝜙 . Red dots
represent training points; Right: Accepted samples and density esti-
mates from the finest MLDA hierarchy level.

utilize a surrogate model based on GP regression, trained with data
(both pretraining and online) obtained from the next higher level
in the model hierarchy. This second, as well as the third and finest
level, use full SeisSol simulations on computational meshes with
≈4 million tetrahedral elements. The polynomial order of the basis
functions is set to three on the second level, and four on the third
level, resulting in roughly double the runtime for the latter. In most
cases, the modeled ground motions of the second level differ by less
than 5% from those of the third level in the matrix-weighted norm
defined in equation (15). However, the additional accuracy gained
by using higher polynomial order is crucial to resolve whether the
mainshock can be triggered by the foreshock in the 2019 Ridgecrest
earthquake sequences [50]. Subchain lengths are set to 30 and
two for level one and two, respectively. All following results have
been obtained using the Frontera supercomputer [48]. The machine
employs two Intel Xeon Platinum 8280 (Cascade Lake) processors
per node, together offering 56 cores and operating at 2.7 GHz. The
wall times for each evaluation on the 1st, 2nd, and 3rd levels are,
respectively, <1 s, ∼10 CPU hours and ∼20 CPU hours. The total
number of available compute nodes is 8368.

The results from the inversion procedure are depicted in fig. 11
(bottom). These include 440 fine-level samples, obtained from two
independent chains, together with the density estimate for the two-
dimensional posterior. To get these 440 accepted models in MLDA
chains, the total numbers of evaluations from the 1st, 2nd, and 3rd
levels are, respectively, 16135, 1112 and 525. Our main finding is that
the plastic cohesion coefficient 𝛾 has a near-uniform probability
distribution in its parameter space, while the friction coefficient 𝜙
shows a clear tendency towards higher values. We also observe a
slight negative correlation between the two parameters. The GP
surrogate posterior density approximation (fig. 11, top) is in good
agreement with the fine-level samples, indicating that the surrogate
and coarser SeisSol simulations provide a reasonable approximation
of the posterior.

We mention at this point that the employed model hierarchy
has been chosen carefully, but nevertheless to a certain extent
ad hoc. MLDA relies on the “similarity” or “overlap” between the
distributions on different levels. This is impossible to quantify in
advance for complex simulation models. However, MLDA gives

0 5 10 15 20
time (s)

0.2

0.1

0.0

ew
 (m

)

CCCC: EW

0 5 10 15 20
time (s)

0.05

0.00

0.05

ew
 (m

)

P580: EW

0 5 10 15 20
time (s)

0.050

0.025

0.000

0.025

0.050

ew
 (m

)

P594: EW

Figure 12: Comparison between simulations (blue solid curves) and
the observed displacement data 𝛿 in the east-west (EW) direction
(black dashed curves) from three (CCCC, P580, P594) of the ten GNSS
stations.

statistical guarantees for fine-level samples, as long as the fine-level
model resembles the desired, “true” posterior. Therefore, our choice
of model hierarchy, while not guaranteed to be optimal, can be
justified a-posteriori through the good decorrelation and mixing
behavior of the resulting Markov chains.

We then assess the posterior predictive performance of the in-
ferred parameter set by running fine-level forward simulations for
all MCMC samples. We compare the resulting displacement in the
east-west direction to the observational data at three GNSS stations,
as shown in fig. 12. We observe that the posterior predictive en-
semble reproduces the data reasonably well at the first two GNSS
stations, with the prediction intervals encompassing the observa-
tions. However, the third station (P594) shows a slight discrepancy
between the predictive ensemble and the data. We attribute this
offset to the simplistic parametrization in our inverse problem,
which cannot fully capture all complexities in the high-dimensional
data. Nevertheless, the inferred parametrization provides reason-
able predictions, including confidence intervals, for the Ridgecrest
model.

After discussing the inference results, we now evaluate the per-
formance of our MLDA sampler in the context of the geophysics
application. As for the artificial setup, we present the ESS, ACF, and
𝑅 statistic of the obtained samples in fig. 13. The results indicate
that employing the MLDA algorithm yields similar improvement
as for our previous experiment.

Optimal parallelization strategy. Lastly, we assess prefetching for
the inversion, compared to other means of parallelization. The pro-
cedure is analogous to the analysis of the artificial model hierarchy
in section 5.1. We introduce, however, an additional degree of free-
dom, namely the speed-up 𝑆sim (𝑁sim) of single model evaluations

PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland M. Kruse, Z. Niu, S. Wolf, M. Lykkegaard, M. Bader, A.-A. Gabriel, L. Seelinger

0 20 40 60 80 100
Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

0 100 200 300 400
Number of Samples

0

50

100

150

200

ES
S

0 50 100 150 200
Number of Samples

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R

Figure 13: ACF, ESS, and 𝑅̂ for MLDA run on the Ridgecrest model.

16 32 64 128 256 512
nodes

16

32

64

128

256

512

sp
ee

d-
up

perfect scaling
SeisSol model

1 2 4 8 16 32
chains

1

2

4

8

16

32

sp
ee

d-
up

perfect scaling
MLDA chains

1 2 4
threads

1

2

4

sp
ee

d-
up

perfect scaling
MLDA threads

Figure 14: Strong scaling for the Ridgecrest model in SeisSol (left),
increasing number of MLDA chains (middle), and increasing number
of threads used within an MLDA chain (right).

when parallelized on 𝑁sim processing units:

𝑆sim (𝑁sim) = 𝑡1/𝑡𝑁sim . (20)

In this concrete setting, processing units correspond to compute
nodes. Importantly, 𝑆sim is a gross quantity incorporating runtime
speed-ups across all levels, weighted by the number of evaluations
on each level. Thus, it is specific to the MLDA run configuration. It
further implies that we utilize the same number of nodes for the
parallelization on levels two and three (surrogate model evaluations
are run in serial). The speed-ups for the conductedMLDA run, along
with the speed-ups for parallel chains and prefetching threads, are
depicted in fig. 14.

We can now formulate an optimization problem for the allocation
of computational resources, similar to equation (19),

𝑁 ∗sim, 𝑁
∗
ch, 𝑁

∗
th = argmax

𝑁sim,𝑁ch,𝑁th∈N+
𝑆sim (𝑁sim)𝑆ch (𝑁ch)𝑆th (𝑁th),

and 𝑁sim𝑁ch𝑁th = 𝑁tot . (21)

We investigate the distribution of resources for𝑀burn = 7,𝑀eff =

{50, 100, 200, 400}, and 𝑁tot = {256, 512, 1024, 2048, 4096, 8192}. The
maximum amount of available resources corresponds to almost the
entire Frontera compute cluster. The results in fig. 15 show that, in
contrast to the artificial problem above, prefetching is not as advan-
tageous here. Only for low sample numbers and high computational
resources, activating prefetching is optimal. We attribute this to
two aspects: (1) Although SeisSol is not run in its optimal resource
regime, it scales very well onto significant portions of large HPC
clusters, leaving little room for parallelization on the UQ side. In
particular, prefetching is favorable if the forward model is not well
parallelizable, and a large portion of the resources dedicated to a
model evaluation can be assigned to either prefetching threads or
parallel chains. This is clearly not the case here. (2) The GP sur-
rogate proves extremely effective, leading to highly uncorrelated
MLDA samples. This implies that only a very short burn-in phase is

256 512 1024 2048 4096 8192
Ntot

50
10

0
20

0
40

0
M

ef
f

4 4 4 4 4 8

4 4 8 8 8 8

8 8 16 16 16 16

16 16 16 32 32 32

256 512 1024 2048 4096 8192
Ntot

50
10

0
20

0
40

0
M

ef
f

1 1 1 1 2 2

1 1 1 1 1 2

1 1 1 1 1 1

1 1 1 1 1 1

256 512 1024 2048 4096 8192
Ntot

50
10

0
20

0
40

0
M

ef
f

64 128 256 512 512 512

64 128 128 256 512 512

32 64 64 128 256 512

16 32 64 64 128 256

Figure 15: Optimal distribution of resources for different combi-
nations of 𝑀eff and 𝑁tot. Left: Optimal number of parallel chains.
Middle: Optimal number of threads for prefetching. Right: Optimal
number of nodes for running a single SeisSol simulation.

4 8 16 32 64 128
Nch

1

2

4

N
th

Ntot = 8192

Nsim = 64
Nsim = 128
Nsim = 256
Nsim = 512

Figure 16: Projected Speed-up for different combinations of 𝑁ch,
𝑁th and 𝑁sim, for 𝑀eff = 50, and 𝑁tot = 8192. Sizes of the bubble
indicate the speed-up value, colors indicate different values of 𝑁sim.

necessary, making parallel chains unusually favorable compared to
prefetching. We conclude that, although the application has greatly
benefited from MLDA and our computational pipeline, it is not an
ideal use-case for prefetching.

This is also confirmed by our assessment of the projected speed-
ups for 𝑀eff = 50 and 𝑁tot = 8192, visualized in fig. 16. Although
this is a scenario that favors prefetching (small sample size, large
amount of resources), we again observe that heavy parallelization
of SeiSol is favored. Distribution of additional resources onto pre-
fetching threads does not yield advantages over parallel chains. In
this scenario, parallel chains should be employed, as their imple-
mentation is unarguably simpler.

6 CONCLUSIONS AND PERSPECTIVES
In this work, we have presented a novel parallelization strategy for
the MLDA algorithm via fully asynchronous prefetching. We have
introduced the necessary theoretical foundations for prefetching
in a multilevel setting. In addition, we have presented a modular
computational pipeline that makes our workflow suitable for large-
scale applications. We have further introduced the utilization of GP
surrogates into the computational model hierarchy.

To assess the viability of the method, we have compared pre-
fetching to the parallel simulation of multiple chains for an example
problem. Our findings indicate that prefetching can be a valuable
resource for scenarios where the strong scaling behavior of the

Scalable Bayesian Inference of Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland

sampling procedure is relevant. This is typically the case for ex-
pensive computational models, large computational resources, but
limited time-to-result.

Beyond the example use-case, we have applied our parallelized
prefetching algorithm to a large-scale problem in geoscience. Al-
though the parametrization considered is quite simplistic, it demon-
strates the viability for Bayesian inference involving large-scale
simulations.

While prefetching does not seem to yield significant perfor-
mance improvements in this particular case, we anticipate it to
be valuable in scenarios where the forward model is not as well
parallelized as SeisSol. It therefore is a promising addition for the
solution of statistical inverse problems in realistic scenarios. Our
generic computational pipeline facilitates this transfer, allowing for
incorporation of a wide range of computational models.

We point out here that alternative methods of parallel MCMC
methods are available, such as multi-proposal MH [6], population-
based MCMC [27], and bias removal through couplings [26]. The
key difference is that prefetching in itself is not a parallel algorithm,
but a technical approach to parallelizing an otherwise sequential
algorithm like MLDA. In general, prefetching is applicable for other
sequential (portions of) MCMC algorithms, but we deem it partic-
ularly useful in the multilevel context, where computation times
vary significantly across the model hierarchy. MLDA has some
potential overlap with other MCMC algorithms. For instance, tem-
pering for the generation of a model sequence in population-based
MCMC can also be applied for the construction of a model hierar-
chy in MLDA. Assessing which algorithm works “better” is highly
problem-specific, and beyond the scope of this work.

The performance assessment of parallelized MLDA in this work
has solely focussed on the optimal speed-up of execution, given
a fixed amount of resources. We have deliberately foregone the
investigation of computational cost, e.g. the optimization of CPU
hours. Prefetching always entails a “waste” of resources, meaning
that it should not be employed when overall computational cost
is the significant metric. An interesting point for future work is
the interplay of speed-up and cost, which could establish a sort of
Pareto optimality, as show-cased in [29].

We further intend to explore the employed MLDA model hier-
archy more systematically for SeisSol applications. While such an
assessment can only be done numerically, different model configu-
rations, an alternative number of levels, and/or different sub-chain
lengths might yield a further improvement in sampling efficiency.
Improvements could further be obtained through technical adjust-
ments in the model hierarchy. Coarser level simulations might be
sufficiently accurate with single-precision floating point arithmetics.
Heterogenous distribution of computational resources among the
levels could also speed up overall runtimes. Lastly, an additional
benefit could be obtained through adaptive error modeling, as pro-
posed in [34]. This approach improves similarity among levels in a
quantifiable metric during the sampling procedure.

In addition, we intend to apply the presentedmethods to a higher-
dimensional parametrization of the geophysics model, as the cur-
rent approach appears to be too simplistic to resolve all features
in the observational data. MLDA and MCMC methods have some
inherent limitations regarding scalability in higher dimensions, but
they are independent of our computational setup and parallelization

strategy. In practice, this amounts to a higher number of posterior
evaluations for an efficient exploration of the parameter space.

ACKNOWLEDGMENTS
This work has been funded by the Innovation Study ScalaMIDA,
which has received funding through the Inno4scale project, which is
funded by the European High Performance Computing Joint Under-
taking (JU) under Grant Agreement No 101118139. The JU receives
support from the European Union’s Horizon Europe Programme.

M.K. acknowledges additional support by the state of Baden-
Württemberg through bwHPC. Z.N. and A.-A.G. acknowledge addi-
tional support from the National Science Foundation and TACC’s
LCCF-CSA (grant numbers OAC-2139536, OAC-2311208, EAR -
2225286, EAR-2121568), from the European Union’s Horizon 2020
research and innovation programme (Marie-Skłodowska-Curie grant
agreement number 955515, SPIN ITN), fromHorizon Europe (ChEESE-
2P, grant number 101093038, DT-GEO, grant number 101058129,
Geo-INQUIRE, grant number 101058518), and the National Aero-
nautics and Space Administration (80NSSC20K0495). Additional
computing resources were provided by the Institute of Geophysics
of LMU Munich [37].

We thank Robert Scheichl (Heidelberg University, Germany)
for fruitful discussions about prefetching and MLDA, Sebastian
Krumscheid (KIT, Germany) for his insights onMCMC convergence
and diagnostics, and Ian Wang (TACC) for his tremendous HPC
Frontera support.

REFERENCES
[1] Steve Brooks (Ed.). 2011. Handbook for Markov chain Monte Carlo (Boca Raton).

Taylor & Francis.
[2] Gregory Abram, Alice Gabriel, Francesca Samsel, Nico Schliwa, Yinzhi Wang,

and Sean Cunningham. 2019. Conversing Faults: The 2019 Ridgecrest Earthquake.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC23). Texas Advanced Computing Center,
University of Texas; University of California, San Diego; Ludwig-Maxmilians-
Universität München. https://sc23.supercomputing.org/proceedings/sci_viz/sci_
viz_pages/svs102.html

[3] Elaine Angelino, Eddie Kohler, Amos Waterland, Margo Seltzer, and Ryan P.
Adams. 2014. Accelerating MCMC via parallel predictive prefetching. In Proceed-
ings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (Quebec
City, Quebec, Canada) (UAI’14). AUAI Press, Arlington, Virginia, USA, 22–31.

[4] Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. 2019.
Solving inverse problems using data-driven models. Acta Numerica 28 (2019),
1–174. https://doi.org/10.1017/S0962492919000059

[5] A. E Brockwell. 2006. Parallel Markov chain Monte Carlo Simulation by Pre-
Fetching. Journal of Computational and Graphical Statistics 15, 1 (2006), 246–261.
https://doi.org/10.1198/106186006X100579

[6] Ben Calderhead. 2014. A general construction for parallelizing Metropolis-
Hastings algorithms. Proceedings of the National Academy of Sciences of the
United States of America 111, 49 (Dec. 2014), 17408–17413. https://doi.org/10.
1073/pnas.1408184111

[7] J. Christen and Colin Fox. 2005. Markov chain Monte Carlo Using an Approxi-
mation. Journal of Computational and Graphical Statistics 14 (12 2005), 795–810.
https://doi.org/10.1198/106186005X76983

[8] Tiangang Cui, Kody J.H. Law, and Youssef M. Marzouk. 2016. Dimension-
independent likelihood-informed MCMC. J. Comput. Phys. 304 (2016), 109 –
137. https://doi.org/10.1016/j.jcp.2015.10.008

[9] Josep de la Puente, Michael Dumbser, Martin Käser, and Heiner Igel. 2008. Dis-
continuous Galerkin Methods for Wave Propagation in Poroelastic Media. GEO-
PHYSICS 73, 5 (Sept. 2008), T77–T97. https://doi.org/10.1190/1.2965027

[10] Josep de la Puente, Martin Käser, Michael Dumbser, and Heiner Igel. 2007. An
Arbitrary High-Order Discontinuous Galerkin Method for Elastic Waves on
Unstructured Meshes - IV. Anisotropy. Geophysical Journal International 169, 3
(June 2007), 1210–1228. https://doi.org/10.1111/j.1365-246X.2007.03381.x

[11] Tim Dodwell, Chris Ketelsen, Robert Scheichl, and Aretha Teckentrup. 2019.
Multilevel Markov Chain Monte Carlo. SIAM Rev. 61 (01 2019), 509–545. https:
//doi.org/10.1137/19M126966X

https://sc23.supercomputing.org/proceedings/sci_viz/sci_viz_pages/svs102.html
https://sc23.supercomputing.org/proceedings/sci_viz/sci_viz_pages/svs102.html
https://doi.org/10.1017/S0962492919000059
https://doi.org/10.1198/106186006X100579
https://doi.org/10.1073/pnas.1408184111
https://doi.org/10.1073/pnas.1408184111
https://doi.org/10.1198/106186005X76983
https://doi.org/10.1016/j.jcp.2015.10.008
https://doi.org/10.1190/1.2965027
https://doi.org/10.1111/j.1365-246X.2007.03381.x
https://doi.org/10.1137/19M126966X
https://doi.org/10.1137/19M126966X

PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland M. Kruse, Z. Niu, S. Wolf, M. Lykkegaard, M. Bader, A.-A. Gabriel, L. Seelinger

[12] Ravil Dorozhinskii and Michael Bader. 2021. SeisSol on Distributed Multi-GPU
Systems: CUDA Code Generation for the Modal Discontinuous Galerkin Method.
In The International Conference on High Performance Computing in Asia-Pacific
Region (HPC Asia 2021). Association for Computing Machinery, New York, NY,
USA, 69–82. https://doi.org/10.1145/3432261.3436753

[13] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. 1987.
Hybrid Monte Carlo. Physics Letters B 195, 2 (1987), 216 – 222. https://doi.org/
10.1016/0370-2693(87)91197-X

[14] Michael Dumbser and Martin Käser. 2006. An Arbitrary High-Order Discon-
tinuous Galerkin Method for Elastic Waves on Unstructured Meshes - II. The
Three-Dimensional Isotropic Case. Geophysical Journal International 167, 1 (Oct.
2006), 319–336. https://doi.org/10.1111/j.1365-246X.2006.03120.x

[15] Michael Dumbser, Martin Käser, and Eleuterio F. Toro. 2007. An Arbitrary High-
Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes
– V. Local Time Stepping and p-Adaptivity. Geophysical Journal International
171, 2 (2007), 695–717. https://doi.org/10.1111/j.1365-246X.2007.03427.x

[16] Eiichi Fukuyama and Takeshi Mikumo. 1993. Dynamic rupture analysis: Inversion
for the source process of the 1990 Izu-Oshima, Japan, earthquake (M= 6.5). Journal
of Geophysical Research: Solid Earth 98 (1993).

[17] Alice-Agnes Gabriel, Dmitry I. Garagash, Kadek H. Palgunadi, and P. Martin Mai.
2024. Fault size–dependent fracture energy explains multiscale seismicity and
cascading earthquakes. Science 385 (2024).

[18] Alice-Agnes Gabriel, Thomas Ulrich, Mathilde Marchandon, James Biemiller,
and John Rekoske. 2023. 3D Dynamic Rupture Modeling of the 6 February
2023, Kahramanmaraş, Turkey M w 7.8 and 7.7 Earthquake Doublet Using Early
Observations. The Seismic Record 3, 4 (2023), 342–356.

[19] F. Gallovič, L. Valentová, J.-P. Ampuero, and A.-A. Gabriel. 2019. Bayesian
Dynamic Finite-Fault Inversion: 2. Application to the 2016 Mw 6.2 Amatrice,
Italy, Earthquake. Journal of Geophysical Research: Solid Earth 124 (2019).

[20] Omar Ghattas and Karen Willcox. 2021. Learning physics-based models from
data: perspectives from inverse problems and model reduction. Acta Numerica
30 (2021), 445–554. https://doi.org/10.1017/S0962492921000064

[21] Michael B. Giles. 2008. Multilevel Monte Carlo Path Simulation. Oper. Res. 56, 3
(May 2008), 607–617. https://doi.org/10.1287/opre.1070.0496

[22] W. K Hastings. 1970. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika 57, 1 (1970), 97–109.

[23] J. N. Hayek, M. Marchandon, D. Li, L. Pousse-Beltran, J. Hollingsworth, T.
Li, and A.-A. Gabriel. 2024. Non-Typical Supershear Rupture: Fault Het-
erogeneity and Segmentation Govern Unilateral Supershear and Cascading
Multi-Fault Rupture in the 2021 7.4 Maduo Earthquake. Geophysical Research
Letters 51, 20 (2024), e2024GL110128. https://doi.org/10.1029/2024GL110128
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2024GL110128
e2024GL110128 2024GL110128.

[24] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A. Gabriel, C. Pelties, A.
Bode, W. Barth, X. Liao, K. Vaidyanathan, M. Smelyanskiy, and P. Dubey.
2014. Petascale High Order Dynamic Rupture Earthquake Simulations on Het-
erogeneous Supercomputers. In SC14: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 3–14.
https://doi.org/10.1109/SC.2014.6

[25] Matthew D. Homan and Andrew Gelman. 2014. The No-U-turn sampler: adap-
tively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1
(Jan 2014), 1593–1623.

[26] Pierre E. Jacob, John O’Leary, and Yves F. Atchadé. 2020. Unbiased Markov Chain
Monte Carlo Methods with Couplings. Journal of the Royal Statistical Society
Series B: Statistical Methodology 82, 3 (July 2020), 543–600. https://doi.org/10.
1111/rssb.12336

[27] Ajay Jasra, David A. Stephens, and Christopher C. Holmes. 2007. On population-
based simulation for static inference. Statistics and Computing 17, 3 (Aug. 2007),
263–279. https://doi.org/10.1007/s11222-007-9028-9

[28] Jari Kaipio and Erkki Somersalo. 2005. Statistical and computational inverse
problems. Applied mathematical sciences, Vol. 160. Springer.

[29] Tzanio Kolev, Paul Fischer, Misun Min, Jack Dongarra, Jed Brown, Veselin Dobrev,
TimWarburton, Stanimire Tomov, Mark S Shephard, Ahmad Abdelfattah, Valeria
Barra, Natalie Beams, Jean-Sylvain Camier, Noel Chalmers, Yohann Dudouit,
Ali Karakus, Ian Karlin, Stefan Kerkemeier, Yu-Hsiang Lan, David Medina, Elia
Merzari, Aleksandr Obabko, Will Pazner, Thilina Rathnayake, Cameron W Smith,
Lukas Spies, Kasia Swirydowicz, Jeremy Thompson, Ananias Tomboulides, and
Vladimir Tomov. 2021. Efficient exascale discretizations: High-order finite element
methods. The International Journal of High Performance Computing Applications
35, 6 (Nov. 2021), 527–552. https://doi.org/10.1177/10943420211020803 Publisher:
SAGE Publications Ltd STM.

[30] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel, Lauren S.
Abrahams, Eric M. Dunham, and Michael Bader. 2021. 3D Acoustic-Elastic
Coupling with Gravity: The Dynamics of the 2018 Palu, Sulawesi Earthquake
and Tsunami. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’21). Association for Computing
Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3458817.3476173

[31] Maximilian Kruse, Zihua Niu, Sebastian Wolf, Mikkel Lykkegaard, Michael Bader,
Alice-Agnes Gabriel, and Linus Seelinger. 2024. Scalable Bayesian Inference of
Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance.
https://doi.org/10.5281/zenodo.14315615

[32] En-Jui Lee, Po Chen, Thomas H Jordan, Phillip B Maechling, Marine AM De-
nolle, and Gregory C Beroza. 2014. Full-3-D tomography for crustal structure in
southern California based on the scattering-integral and the adjoint-wavefield
methods. Journal of Geophysical Research: Solid Earth 119, 8 (2014), 6421–6451.

[33] Baoshan Liang, Jingye Tan, Luke Lozenski, David A. Hormuth, Thomas E. Yan-
keelov, Umberto Villa, and Danial Faghihi. 2023. Bayesian inference of tissue
heterogeneity for individualized prediction of glioma growth. IEEE Transactions
on Medical Imaging 42, 10 (2023), 2865–2875. https://doi.org/10.1109/TMI.2023.
3267349 Publisher: IEEE.

[34] M. B. Lykkegaard, T. J. Dodwell, C. Fox, G. Mingas, and R. Scheichl.
2023. Multilevel Delayed Acceptance MCMC. SIAM/ASA Journal on Uncer-
tainty Quantification 11, 1 (2023), 1–30. https://doi.org/10.1137/22M1476770
arXiv:https://doi.org/10.1137/22M1476770

[35] Diego Melgar, Timothy I Melbourne, Brendan W Crowell, Jianghui Geng, Walter
Szeliga, Craig Scrivner, Marcelo Santillan, and Dara E Goldberg. 2020. Real-
time high-rate GNSS displacements: Performance demonstration during the 2019
Ridgecrest, California, earthquakes. Seismological Research Letters 91, 4 (2020),
1943–1951.

[36] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. 1953. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics 21, 6 (1953), 1087–1092. https:
//doi.org/10.1063/1.1699114

[37] Jens Oeser, Hans-Peter Bunge, and Marcus Mohr. 2006. Cluster Design in the
Earth Sciences Tethys. In High Performance Computing and Communications,
Michael Gerndt and Dieter Kranzlmüller (Eds.). Springer Berlin Heidelberg.

[38] Christian Pelties, Josep de la Puente, Jean-Paul Ampuero, Gilbert B. Brietzke,
and Martin Käser. 2012. Three-Dimensional Dynamic Rupture Simulation with a
High-Order Discontinuous GalerkinMethod onUnstructured TetrahedralMeshes.
Journal of Geophysical Research: Solid Earth 117, B2 (2012), 1–15. https://doi.org/
10.1029/2011JB008857

[39] C. Pelties, A.-A. Gabriel, and J.-P. Ampuero. 2014. Verification of an ADER-DG
Method for Complex Dynamic Rupture Problems. Geoscientific Model Develop-
ment 7, 3 (May 2014), 847–866. https://doi.org/10.5194/gmd-7-847-2014

[40] S. Peyrat and K. B. Olsen. 2004. Nonlinear dynamic rupture inversion of the 2000
Western Tottori, Japan, earthquake. Geophysical Research Letters 31 (2004).

[41] Simone Puel, Eldar Khattatov, Umberto Villa, Dunyu Liu, Omar Ghattas, and
Thorsten W. Becker. 2022. A mixed, unified forward/inverse framework for earth-
quake problems: fault implementation and coseismic slip estimate. Geophysical
Journal International 230, 2 (2022), 733–758. https://doi.org/10.1093/gji/ggac050
Oxford University Press.

[42] Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian processes
for machine learning. MIT Press.

[43] Zachary E Ross, Benjamín Idini, Zhe Jia, Oliver L Stephenson, Minyan Zhong, Xin
Wang, Zhongwen Zhan, Mark Simons, Eric J Fielding, Sang-Ho Yun, et al. 2019.
Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake
sequence. Science 366, 6463 (2019), 346–351.

[44] Nico Schliwa, Alice-Agnes Gabriel, Jan Premus, and František Gallovič. 2024.
The linked complexity of coseismic and postseismic faulting revealed by seismo-
geodetic dynamic inversion of the 2004 Parkfield earthquake. Journal of Geo-
physical Research: Solid Earth 129 (2024), e2024JB029410. https://doi.org/10.1029/
2024JB029410

[45] Linus Seelinger, Vivian Cheng-Seelinger, Andrew Davis, Matthew Parno, and
Anne Reinarz. 2023. UM-Bridge: Uncertainty quantification and modeling bridge.
Journal of Open Source Software 8, 83 (2023), 4748. https://doi.org/10.21105/joss.
04748

[46] Linus Seelinger, Anne Reinarz, Mikkel B. Lykkegaard, Robert Akers, Amal M.A.
Alghamdi, David Aristoff, Wolfgang Bangerth, Jean Bénézech, Matteo Diez, Kurt
Frey, John D. Jakeman, Jakob S. Jørgensen, Ki-Tae Kim, Benjamin M. Kent, Massi-
miliano Martinelli, Matthew Parno, Riccardo Pellegrini, Noemi Petra, Nicolai A.B.
Riis, Katherine Rosenfeld, Andrea Serani, Lorenzo Tamellini, Umberto Villa, Tim J.
Dodwell, and Robert Scheichl. 2025. Democratizing uncertainty quantification.
J. Comput. Phys. 521 (2025), 113542. https://doi.org/10.1016/j.jcp.2024.113542

[47] Linus Seelinger, Anne Reinarz, Leonhard Rannabauer, Michael Bader, Peter Bas-
tian, and Robert Scheichl. 2021. High Performance Uncertainty Quantifica-
tion with Parallelized Multilevel Markov Chain Monte Carlo. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC21) (SC ’21). Association for Computing Machinery.
https://doi.org/10.1145/3458817.3476150

[48] Dan Stanzione, John West, R. Todd Evans, Tommy Minyard, Omar Ghattas,
and Dhabaleswar K. Panda. 2020-07-26. Frontera: The Evolution of Leadership
Computing at the National Science Foundation. In Practice and Experience in
Advanced Research Computing 2020: Catch the Wave (New York, NY, USA) (PEARC
’20). Association for Computing Machinery, 106–111. https://doi.org/10.1145/
3311790.3396656

https://doi.org/10.1145/3432261.3436753
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1111/j.1365-246X.2006.03120.x
https://doi.org/10.1111/j.1365-246X.2007.03427.x
https://doi.org/10.1017/S0962492921000064
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1029/2024GL110128
https://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2024GL110128
https://doi.org/10.1109/SC.2014.6
https://doi.org/10.1111/rssb.12336
https://doi.org/10.1111/rssb.12336
https://doi.org/10.1007/s11222-007-9028-9
https://doi.org/10.1177/10943420211020803
https://doi.org/10.1145/3458817.3476173
https://doi.org/10.5281/zenodo.14315615
https://doi.org/10.1109/TMI.2023.3267349
https://doi.org/10.1109/TMI.2023.3267349
https://doi.org/10.1137/22M1476770
https://arxiv.org/abs/https://doi.org/10.1137/22M1476770
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1029/2011JB008857
https://doi.org/10.1029/2011JB008857
https://doi.org/10.5194/gmd-7-847-2014
https://doi.org/10.1093/gji/ggac050
https://doi.org/10.1029/2024JB029410
https://doi.org/10.1029/2024JB029410
https://doi.org/10.21105/joss.04748
https://doi.org/10.21105/joss.04748
https://doi.org/10.1016/j.jcp.2024.113542
https://doi.org/10.1145/3458817.3476150
https://doi.org/10.1145/3311790.3396656
https://doi.org/10.1145/3311790.3396656

Scalable Bayesian Inference of Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance PASC ’25, June 16–18, 2025, Brugg-Windisch, Switzerland

[49] Ingvar Strid. 2010. Efficient parallelisation of Metropolis–Hastings algorithms
using a prefetching approach. Computational Statistics & Data Analysis 54, 11
(2010), 2814–2835. https://doi.org/10.1016/j.csda.2009.11.019 The Fifth Special
Issue on Computational Econometrics.

[50] Taufiq Taufiqurrahman, Alice-Agnes Gabriel, Duo Li, Thomas Ulrich, Bo Li,
Sara Carena, Alessandro Verdecchia, and František Gallovič. 2023. Dynamics,
interactions and delays of the 2019 Ridgecrest rupture sequence. Nature 618,
7964 (2023), 308–315.

[51] Carsten Uphoff and Michael Bader. 2016. Generating High Performance Matrix
Kernels for Earthquake Simulations with Viscoelastic Attenuation. In 2016 Inter-
national Conference on High Performance Computing Simulation (HPCS). 908–916.
https://doi.org/10.1109/HPCSim.2016.7568431

[52] Carsten Uphoff and Michael Bader. 2020. Yet Another Tensor Toolbox for Discon-
tinuous Galerkin Methods and Other Applications. ACM Trans. Math. Software
46, 4 (Oct. 2020), 34:1–34:40. https://doi.org/10.1145/3406835

[53] Carsten Uphoff, Sebastian Rettenberger, Michael Bader, Elizabeth H. Madden,
Thomas Ulrich, Stephanie Wollherr, and Alice-Agnes Gabriel. 2017. Extreme
Scale Multi-physics Simulations of the Tsunamigenic 2004 Sumatra Megathrust
Earthquake. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’17). ACM, New York, NY, USA,
21:1–21:16. https://doi.org/10.1145/3126908.3126948

[54] Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian
Bürkner. [n. d.]. Rank-Normalization, Folding, and Localization: An Improved

R^ for Assessing Convergence of MCMC (with Discussion). Bayesian Analysis
16, 2 ([n. d.]), 667–718. https://doi.org/10.1214/20-BA1221

[55] Sebastian Wolf, Alice-Agnes Gabriel, and Michael Bader. 2020. Optimiza-
tion and Local Time Stepping of an ADER-DG Scheme for Fully Anisotropic
Wave Propagation in Complex Geometries. In Computational Science – ICCS
2020 (Lecture Notes in Computer Science), Valeria V. Krzhizhanovskaya, Gábor
Závodszky, Michael H. Lees, Jack J. Dongarra, Peter M. A. Sloot, Sérgio Bris-
sos, and João Teixeira (Eds.). Springer International Publishing, Cham, 32–45.
https://doi.org/10.1007/978-3-030-50420-5_3

[56] Sebastian Wolf, Martin Galis, Carsten Uphoff, Alice-Agnes Gabriel, Peter Moczo,
David Gregor, and Michael Bader. 2022. An Efficient ADER-DG Local Time
Stepping Scheme for 3D HPC Simulation of Seismic Waves in Poroelastic Media.
J. Comput. Phys. 455 (April 2022), 1–29. https://doi.org/10.1016/j.jcp.2021.110886

[57] Stephanie Wollherr, Alice-Agnes Gabriel, and Carsten Uphoff. 2018. Off-Fault
Plasticity in Three-Dimensional Dynamic Rupture Simulations Using a Modal
Discontinuous Galerkin Method on Unstructured Meshes: Implementation, Veri-
fication and Application. Geophysical Journal International 214, 3 (Sept. 2018),
1556–1584. https://doi.org/10.1093/gji/ggy213

[58] Wenzheng Yang and Egill Hauksson. 2013. The tectonic crustal stress field and
style of faulting along the Pacific North America Plate boundary in Southern
California. Geophysical Journal International 194, 1 (2013), 100–117.

Received 12 September 2024; revised 15 March 2025; accepted 15 April 2025

https://doi.org/10.1016/j.csda.2009.11.019
https://doi.org/10.1109/HPCSim.2016.7568431
https://doi.org/10.1145/3406835
https://doi.org/10.1145/3126908.3126948
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1007/978-3-030-50420-5_3
https://doi.org/10.1016/j.jcp.2021.110886
https://doi.org/10.1093/gji/ggy213

	Abstract
	1 Introduction
	2 Asynchronous prefetching MLDA
	3 Scaling MLDA for HPC Simulators via UM-Bridge
	4 Application: Bayesian Inference in Seismology
	4.1 Modeling Earthquakes in SeisSol
	4.2 2019 Ridgecrest, CA, earthquake scenarios

	5 Results
	5.1 Artificial Test Case
	5.2 Large-Scale Seismology Application

	6 Conclusions and Perspectives
	Acknowledgments
	References

