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3D Gaussian Splatting (3DGS) has emerged as a powerful approach for 3D scene reconstruction using 3D
Gaussians. However, neither the centers nor surfaces of the Gaussians are accurately aligned to the object
surface, complicating their direct use in point cloud and mesh reconstruction. Additionally, 3DGS typically
produces floater artifacts, increasing the number of Gaussians and storage requirements. To address these
issues, we present FeatureGS, which incorporates an additional geometric loss term based on an eigenvalue-
derived 3D shape feature into the optimization process of 3DGS. The goal is to improve geometric accuracy
and enhance properties of planar surfaces with reduced structural entropy in local 3D neighborhoods, typically
given in man-made environments. We present four alternative formulations for the geometric loss term based
on ‘planarity’ of Gaussians, as well as ‘planarity’, ‘omnivariance’, and ‘eigenentropy’ of Gaussian neighborhoods.
On the small-scale DTU benchmark with man-made scenes, FeatureGS achieves a 20% improvement in
geometric accuracy, suppresses floater artifacts by 90%, and reduces the number of Gaussians by 95%.
FeatureGS proves to be a strong method for geometrically accurate, artifact-reduced and memory-efficient
3D scene reconstruction, enabling the direct use of Gaussian centers for geometric representation.

1. Introduction interpretation and point cloud classification (Weinmann et al., 2015a,

2017). Thereby the 3D covariance matrix (3D structure tensor (Jutzi

The creation of geometric 3D scene reconstructions has devel-
oped rapidly since the introduction of Neural Radiance Fields (NeRFs)
(Mildenhall et al., 2021). In NeRFs, a network implicitly describes the
scene by estimating color and volume density for each position and
direction. In contrast, 3D Gaussian Splatting (3DGS) offers new possi-
bilities for 3D scene and point cloud reconstruction as it represents the
scene through 3D Gaussians. These are ellipsoid-like structures, charac-
terized by scaling, rotation, and color. During the optimization process,
the 3D Gaussians are projected onto the image. To minimize the photo-
metric error between the rendered images and the training images, the
Gaussians are refined and adapted. Unlike NeRFs, Gaussians in 3DGS
explicitly represent the scene where geometric information is allegedly
present. Nevertheless, the centers and surfaces of Gaussians do not
directly represent the object surface, which makes their direct use for
3D point cloud and mesh reconstruction impractical. In addition, the
3DGS often leads to floater artifacts, which further increase the already
high number of Gaussians and thus storage requirements.

In this work, we present FeatureGS, which incorporates four dif-
ferent formulations of an additional geometric loss term based on
eigenvalue-derived 3D shape features into the optimization process
of 3DGS. 3D shape features are widely used for tasks for semantic
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and Gross, 2009)), derived from a point and its local neighborhood,
is well-known to characterize such shape properties (Weinmann et al.,
2015a). The three eigenvalues, 4, > A, > 43 > 0, correspond to
an orthogonal system of eigenvectors (e, e,,e3), which indicate the
direction (rotation) of the three ellipsoid principal axes and correspond
to the extent (scales) of the 3D ellipsoid along the principal axes. Based
on the behavior of the eigenvalues A, 4,, and A; structures can be
described.

FeatureGS aims to improve geometric accuracy of Gaussians and
enhance properties of planar surfaces with a reduced structural entropy
in local 3D neighborhoods of Gaussians, to improve geometric consis-
tency and suppress noise in line with traditional filtering strategies for
point clouds (Giinen and Besdok, 2021). Firstly, like previous flattening
approaches (Guédon and Lepetit, 2024; Dai et al., 2024; Chen et al.,
2024a; Huang et al., 2024), FeatureGS aims to flatten 3D Gaussians
by enhancing the ‘planarity’ of Gaussians as 3D feature, in order
to achieve higher geometric accuracy of Gaussian centers. Secondly,
real physical circumstances of point clouds can be described by inter-
pretable geometric features with a single value (Hillemann et al., 2019).
To enhance the structural representation of the 3D Gaussian centers
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in a neighborhood, particularly for man-made objects aligning with
Manhattan-World-Assumption (Coughlan and Yuille, 1999, 2000), we
leverage neighborhood-based 3D features derived from the k-nearest
neighbors (kNN) of each Gaussian. By incorporating the 3D features
either ‘planarity’, ‘omnivariance’, or ‘eigenentropy’ in the geometric
loss, the characterization of local 3D structures with a predominance
of planar surfaces with a structural entropy is reinforced.

In this contribution, we investigate whether the integration of dif-
ferent geometric loss terms of FeatureGS can enhance the 3D geo-
metric accuracy of Gaussian centers and suppress floater artifacts by
reinforcing specific 3D shape properties of Gaussians and Gaussian
neighborhoods. The evaluation focuses on the Chamfer cloud-to-cloud
distance for geometrically 3D accuracy and artifact-reduction, and the
total number of Gaussians required to represent the scene for memory
efficiency. While our primary goal is to achieve precise geometric
representation and efficient memory usage, we additionally report the
rendering quality, measured by Peak Signal-to-Noise Ratio (PSNR), to
ensure consistency in scene reconstruction. Experiments are conducted
on 15 scenes from the DTU benchmark dataset.

We demonstrate that FeatureGS strikes a remarkable balance be-
tween geometric accuracy, floater artifact suppression, and memory
efficiency by integrating 3D shape feature properties into the optimiza-
tion process of 3D Gaussian Splatting. It improves geometric accuracy
by enforcing surface-aligned Gaussian distributions, enabling the Gaus-
sian centers to serve as a more precise geometric representation. In
parallel, it drastically reduces the total number of Gaussians required
to represent a scene at comparable rendering quality, resulting in
artifact-reduced and memory-efficient reconstructions. All variants of
FeatureGS additionally benefit from faster training. Overall, FeatureGS
yields the following key outcomes:

+ Up to 30% improvement in geometric accuracy on the DTU
benchmark with man-made objects, measured via Chamfer dis-
tance.

+ Enhanced surface alignment of Gaussians, enabling direct use of
their centers as geometric representation.

* Suppression of floater artifacts by up to 90% on DTU and over
55% on Tanks and Temples benchmark.

» Reduction of required Gaussians by up to 96%, leading to smaller
model sizes and up to 24x compression, along with 20%-30%
shorter training times compared to 3DGS.

In the following, we first discuss related work in Section 2, pro-
viding an overview of 3D feature extraction and novel view synthesis
and 3D reconstruction techniques, as well as the use of Gaussian
splats for 3D reconstruction. In Section 3, we present our method-
ology, FeatureGS, which integrates four alternative novel geometric
loss formulations based on 3D shape features to enhance 3DGS. In
Section 5 we introduce the experimental setup, including datasets,
evaluation metrics, implementation details, and configurations for the
photometric-geometric loss. In Sections 5 and 6, we present the results
of our experiments on small-scale and large-scale benchmark datasets.
While comparing FeatureGS to 3DGS and 2DGS with a focus on both
quantitative and qualitative aspects. The derived results are discussed
in Section 8, highlighting the advantages of FeatureGS concerning geo-
metric accuracy, artifact removal and memory efficiency. Additionally,
Section 7 presents an ablation study that investigates the following
aspects: hyperparameter tuning of the photometric-geometric loss term,
and the combination into a multi-feature loss. Finally, in Section 9,
the effectiveness of FeatureGS is outlined, and future directions for
optimizations and practical applications are suggested.

2. Related work

In this section, we provide an overview of the different types of
3D features in Section 2.1, which are essential for FeatureGS. Sub-
sequently, in Section 2.2, we present a brief overview of novel view
synthesis and 3D reconstructions, followed by an introduction to 3D
reconstructions with Gaussian splats.
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2.1. 3D features

Several types of 3D features exist for point cloud-based applications
such as classification, registration, or calibration. Complex features,
which cannot be interpreted directly include descriptors such as Shape
Context 3D (SC3D) (Frome et al., 2004), Signature of Histogram of
OrienTations (SHOT) (Tombari et al.,, 2010) or Fast Point Feature
Histograms (FPFH) (Rusu et al., 2009). In contrast, interpretable fea-
tures (Weinmann et al., 2015c) are those that are directly interpretable,
such as local 2D and 3D shape features. To describe the local structure
around a 3D point, the spatial arrangement of other 3D points in the
local neighborhood is often considered. Thereby the 3D covariance
matrix, also known as the 3D structure tensor, is well-known and
suitable for characterizing the shape properties of 3D data (Weinmann
et al., 2015a). It is derived explicitly for each point from the point itself
and its local neighbors. The three eigenvalues, 4, > 4, > A3 > 0,
correspond to an orthogonal system of eigenvectors (¢, ¢,, €3), which
indicate the direction (rotation) of the three ellipsoid principal axes
and correspond to the extent (scales) of the 3D ellipsoid along the
principal axes. Based on the behavior of the eigenvalues 4,, 4,, and
A3, linear (4; > A,, 43), planar (4; ~ A, > 13), and spherical (4, »~
Ay & A3) structures can be described. The use of geometric 3D shape
features has led to thousands of publications in various fields over the
past few decades. They are especially used for the automatic semantic
interpretation and classification (Weinmann et al., 2015a, 2017, 2020)
of point clouds. But also for calibration (Hillemann et al., 2019) or
registration (Bueno et al., 2018) of 3D point clouds.

2.2. 3D reconstruction with Gaussian Splats

The pioneering research on Neural Radiance Fields (NeRFs)
(Mildenhall et al., 2021) builds the fundament for 3D reconstruc-
tions with Gaussian Splats, and builds upon Scene Representation
Networks (Sitzmann et al.,, 2019), which represent the scene as a
function of 3D coordinates within the scene. NeRFs extend this concept
by estimating color values and densities for each 3D coordinate through
6D camera positions and associating 2D images through the training
of a multilayer perceptron (MLP). NeRF was followed by thousands
of publications driving research and development of neural surface
reconstructions, point cloud and mesh reconstruction (Oechsle et al.,
2021; Wang et al.,, 2021; Yariv et al.,, 2021; Li et al., 2023; Jager
and Jutzi, 2023) in various domains. However, NeRF describes the
scene implicitly by estimating a color and volume density for each
position and direction, which are also subject to a certain degree of
uncertainty (Jéger et al., 2025).

In contrast 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) offers
new possibilities for 3D scene reconstruction. With 3DGS a novel
concept of 3D scene representation was elaborated, in which a scene
is explicitly represented by a large set of 3D Gaussians. Each Gaussian
is defined by its mean, covariance, opacity, and spherical harmonics
for color definition. The covariance is parameterized using scaling and
rotation. These 3D Gaussians are projected into 2D Gaussians to the
2D image space, allowing high-quality real-time rendering. To optimize
the scene, the Gaussians are initialized from a point cloud produced
by Structure from Motion (SfM). The Gaussians’ parameters (means for
the Gaussian centers, scaling, rotations, opacities, and color) are then
refined during optimization to match the training images. More Gaus-
sians are added as needed to improve the scene representation. This
optimization process leads to scenes with millions of small Gaussians
that represent the 3D object geometry. Nevertheless, Gaussians do not
take an ordered structure in general (Guédon and Lepetit, 2024), and
the center or surface of a Gaussian does not directly align with the
actual object surface. In addition, 3DGS often leads to floater artifacts,
which further increase the high number of Gaussians and thus the
storage requirements.
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Fig. 1. Methodology of FeatureGS: Geometric loss based on 3D shape features added to 3DGS (Kerbl et al., 2023). The features are derived from eigenvalues
of the covariance matrix from individual Gaussians or the covariance matrix from Gaussians in a local neighborhood surrounding each Gaussian center. The

geometric loss is combined with the photometric loss in 3DGS.

The concept of transforming 3D Gaussians into 2D ellipses or planar
ellipse-like structures in order to achieve higher geometric accuracy is
widely used in many approaches. SuGaR (Guédon and Lepetit, 2024)
extracts meshes from 3DGS by introducing a regularization term that
aligns Gaussians with the scene surface. Surfels (Dai et al., 2024)
combines 3D Gaussian points’ optimization flexibility with the sur-
face alignment of surfels by flattening 3D Gaussians into 2D ellipses,
setting the z-scale to zero. PGSR (Chen et al., 2024a) flattens Gaus-
sians into planes, using unbiased depth rendering to obtain precise
depth information. 2DGS (Huang et al., 2024) follows a similar ap-
proach and collapses 3D volumes directly into 2D planar Gaussian
disks for view-consistent geometry, using perspective-accurate splatting
with ray-splat intersection and depth and normal consistency terms.
MVG-Splatting (Li et al., 2024) improves 2DGS by optimizing normal
calculation and using an adaptive densification method guided by
depth maps. MIP-Splatting (Yu et al., 2024) introduces a 3D smoothing
filter to constrain Gaussian sizes based on the input views’ sampling
frequency, eliminating high-frequency artifacts.

In contrast to other works, FeatureGS utilizes geometric 3D shape
features to enhance specific Gaussian and Gaussian neighborhood prop-
erties for geometrically accurate and artifact-reduced 3D reconstruc-
tion. The 3D features are embedded within the optimization process of
3DGS through an additional geometric loss term in four alternative for-
mulations into a photometric-geometric loss term. On the one hand, like
previous approaches (Guédon and Lepetit, 2024; Dai et al., 2024; Chen
et al., 2024a; Huang et al., 2024), FeatureGS flattens 3D Gaussians.
However, FeatureGS incorporates the 3D feature ‘planarity’ for that. On
the other hand, FeatureGS can enhance properties of planar surfaces
with reduced structural entropy by utilizing 3D features ‘planarity’,
‘omnivariance’ and ‘eigenentropy’ in Gaussian neighborhoods.

3. Methodology

In this section, we describe FeatureGS (Fig. 1) with four alternative
additional geometric loss formulations based on 3D shape features.
These features are derived from the eigenvalues of the covariance
matrix of the Gaussians and Gaussian neighborhoods, and provide
insights into the spatial structure within both individual Gaussians
and the Gaussians in a local neighborhood surrounding each Gaussian
center. Our proposed geometric loss is combined with the photometric
loss used in 3DGS to create a comprehensive photometric-geometric
loss function.

3.1. Photometric loss

The photometric loss term of 3DGS measures the similarity between
rendered images and ground truth images using pixel-level comparison
metrics. This loss includes both L1 loss and a Structural Similarity Index
(SSIM) term to capture differences in luminance, contrast, and structure
between the images. The photometric loss is given by the following loss
function (Eq. (1)).

Lphotometric =1 -0)L; +0Lpssiv @

with 0, L,-Norm of the per pixel color difference and Lp ggp-Term
(Kerbl et al., 2023).

3.2. Geometric loss

We introduce four different novel additional geometric loss terms,
based on the eigenvalue-derived 3D shape features to enhance specific
properties (Fig. 2) of 3D Gaussian itself and Gaussian centers in a
neighborhood. For the first approach, we aim to flatten Gaussians to
achieve a high geometric accuracy of the Gaussian centers. This is
done by incorporating the 3D shape feature ‘planarity’ from eigenvalues
(scales) (Fig. 3(a)) of each Gaussian itself in the geometric loss term. For
the second approach, we incorporate a neighborhood-based geometric
loss term using the 3D shape features from covariance matrix (Fig. 3(b))
by the k-nearest neighbors (kNN) of each Gaussian center. To enhance
a specific characterization of local 3D structures of man-made ob-
jects aligning with Manhattan-World-Assumption (Coughlan and Yuille,
1999, 2000), we strengthen the predominance of planar surfaces, and
a structural entropy. This is done through the Gaussian neighborhood
3D shape features ‘planarity’, ‘omnivariance’, and ‘eigenentropy’.

3.2.1. Covariance matrix

Gaussian. 3DGS uses an explicit representation of the scene through 3D
Gaussians. These ellipsoid-like structures are characterized by scaling,
rotation, and color, including opacity. The scaling components can be
interpreted analogously to the three eigenvalues s; > s, > s3 > 0 and
the rotation components to the eigenvectors (e, ¢,, €3) of the covariance
matrix. By using the normalized eigenvalues (scales) of the Gaussian
covariance matrix (Fig. 3(a)), we compute the 3D shape feature.
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Fig. 2. Additional geometric loss of FeatureGS, illustrated by a 3D feature from Gaussians and a 3D feature from Gaussian centers in a local neighborhood. For
example, through the loss with planarity of Gaussians, the Gaussians become more planar, and through the loss with planarity, omnivariance, or eigenentropy in
the Gaussian neighborhood, the alignment of the Gaussian centers in the neighborhood becomes more planar. All configurations have the effect that the Gaussians
move closer to the object surface and are less randomly oriented. This enables the Gaussian centers to serve as a geometric representation of the surface.

Gaussian neighborhood. Given a point p,, in the 3D space, i.e., the center

of a Gaussian, we define its k-nearest neighbors {p,,p,....,p,}. The
centroid p (Eq. (2)) of this neighborhood is computed as:

2

k+1 Z” i &)

The covarlance matrix C (Eq. (3)) (Weinmann et al., 2015) for the
neighborhood (Fig. 3(b)) is then:

c= k+12("' P -p" 3)

From C, elgenvalues Ay = A, = A3 are derived, providing shape
properties for the neighborhood.

3.2.2. Eigenvalue normalization

To ensure consistency, eigenvalues s, s,, s; from the Gaussian co-
variance matrix and A, 4,, 4; from the Gaussian neighborhood covari-
ance matrix are normalized by dividing by the sum of the eigenvalues
for each case.

For the Gaussian covariance matrix (Eq. (4)):

sl=—1_ for ie{1,2.3}. (4)
' sum(s)
with
3
sum(s) = z S;. 5)
i=1
For the Gaussian neighborhood covariance matrix (Eq. (6)):
A
! _ i .
= @ for i € {1,2,3}, (6)
with
sum(4) = Z A %)

s! s and /1’ AL, Al are then ordered

The normahzed eigenvalues s/, s/, 2 A3

in descending order:
! ! ! ! ! !
sp2s,25,20 and 1] 24,2 4;2>0.

The normalized eigenvalues are then used for the final geometric
3D feature computation.

z z
€2Vs2
€3Vs3 €1Vs1
Y
X X
(a) (b)

Fig. 3. a Representation of a single Gaussian ellipsoid with the three
eigenvectors (e, €,,€;) and the corresponding eigenvalues (s,,s,,s;) in the
three-dimensional coordinate system. b Representation of an ellipsoid from
the neighborhood points represented by the Gaussian centers with the three
eigenvectors (eq,€,,€;) and the corresponding eigenvalues (4, 4,,4;) in the
three-dimensional coordinate system.

3.2.3. Geometric loss with Gaussians

Gaussian planarity. Planarity (Weinmann et al., 2015) measures the
extent to which a Gaussian resembles a planar structure. It is defined
as:

st — s

Planarityg, s = —,3 ®

1
The Gaussian planarity loss (Eq. (9)), preferring high planarity
similar to other flattening approaches, is:

sy =5
LPlan,Gauss =({1- S - €)]
1

3.2.4. Geometric loss with Gaussian neighborhoods

To enhance the structural properties that 3D point clouds of man-
made objects exhibit, we incorporate a neighborhood-based geometric
loss using the k-nearest neighbors (kNN) of each point. This approach
allows for the calculation of spatial features in the local neighborhood
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of each Gaussian. The strengthening of the characterization of planar
surfaces with reduced structural entropy in local 3D neighborhoods is
achieved by including a geometric neighborhood loss. For this pur-
pose, we consider the 3D features Planarity,y, Omnivariance,yy and
Eigenentropy,yy in Gaussian neighborhoods of kNN from the nor-
malized eigenvalues 2| > A, > 1] > 0, explained in more detail
below.

Neighborhood planarity. Similar to the purpose of maintaining planarity
of each Gaussian itself, we want to strengthen the properties of man-
made objects according to the Manhattan-World-Assumption (Cough-
lan and Yuille, 1999, 2000) and other (almost) planar surfaces, and
suppress the spherical spread of the Gaussians in a neighborhood.
Therefore, in addition to the planarity of the Gaussians, we use the
planarity (Weinmann et al., 2015) in the neighborhood. This is defined
as:

M=
Planarity,yy = — 7 3 10$)
The neighborho:)d planarity loss (Eq. (11)) is:
A=A
Lpjan,nn = (1 - 2/1, 3) an
1

Neighborhood omnivariance. The omnivariance indicates the volume of
the neighborhood and expresses whether the respective points scatter
locally in all directions. In previous work (Weinmann et al., 2015b),
the omnivariance is indicated to be a highly relevant feature of point
cloud classification. Omnivariance (Weinmann et al., 2015) and the
neighborhood omnivariance loss (Eq. (12)) is defined as:

Lomnixny = Omnivariancey = /4; 4,4, 12)

Minimizing the neighborhood omnivariance loss reduces the local
scattering of the points.

Neighborhood eigenentropy. The eigenentropy quantifies the order/
disorder of the local structure of the neighborhood points by measuring
the entropy within the local 3D neighborhood based on the normal-
ized eigenvalues. Additionally, it has shown to be an appropriate 3D
feature for characterizing plane point cloud structures (Dittrich et al.,
2017). Eigenentropy (Weinmann et al., 2015) and the neighborhood
eigenentropy loss (Eq. (13)) is defined as:

3
Lgigen xnn = Eigenentropyyy = — Z A;log(A)) 13)

i=1

Minimizing the neighborhood eigenentropy loss favors a minimum
disorder (Weinmann et al., 2017) and therefore low entropy of 3D
points.

3.3. Combined photometric-geometric loss

Our four different final loss functions L combine the conventional
photometric 10ss Lppoometric 0f 3DGS with each one of four different
geometric 10ss Lgeomerric terms. This incorporates both the 3D shape
properties of each Gaussian itself Lgeometric,Gaussian T the neighborhood
features Lgeometricknny Dased on Gaussian centers. The photometric
loss ensures the quality of pixel rendering by adjusting the Gaussians
according to their projection onto the image plane, while the geomet-
ric loss term enhances specific properties of 3D structures. The total
photometric-geometric loss L (Eq. (14)) is defined as:

L= hphoto : Lphotornetric + Lgeometric’ a4
with
Lgeometric € {LPlan,Gaussian’ LPlan,kNN’ (15)

Lomni,kNN> LEigen kNN -

and the hyperparameter A, for balancing the weighting between the
photometric and geometric components.
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4. Experiments

In this section, we present the experimental setup. We introduce the
used datasets (Section 4.1), the evaluation metrics (Section 4.2), the set-
ted implementation details (Section 4.3), as well as the configurations
for our photometric-geometric loss (Section 4.4).

4.1. Dataset

Small-scale dataset. For the evaluation of FeatureGS, we use the small-
scale DTU benchmark dataset (Jensen et al., 2014). The dataset consists
of scenes featuring real objects, including either 49 or 64 RGB images,
corresponding camera poses, and reference point clouds obtained from
a structured-light scanner (SLS). We specifically focus on the same 12
scenes as previous approaches (Dai et al.,, 2024; Chen et al., 2024a;
Huang et al., 2024; Li et al., 2024).

Large-scale dataset. Additionally, we evaluate on the Tanks and Tem-
ples dataset (Knapitsch et al., 2017), which contains large-scale outdoor
and indoor scenes with complex geometry and varied lighting condi-
tions in real-world environments. Reference point clouds are given,
obtained from an industrial laser scanner. We specifically focus on the
four outdoor scenes barn, caterpillar, ignatius and truck. All experi-
ments were performed using the automatic image resolution downscal-
ing applied by 3DGS in its default configuration, in order to match the
memory constraints of the used GPU.

4.2. Metrics

To evaluate our method quantitatively and qualitatively, we report
the 3D geometric accuracy, the number of Gaussians needed to repre-
sent the scene for memory efficiency and the rendering quality. For 3D
evaluation we report the Chamfer cloud-to-cloud distance. To evaluate
surface accuracy, we use the DTU evaluation procedure (Jensen et al.,
2014), which masks out points above 10 mm. In addition, we use the
Chamfer cloud-to-cloud distance for all points to evaluate the presence
of floater artifacts external to the object. Low Chamfer distance indi-
cates high accuracy and less artifacts. Gaussian storage requirements by
the total numbers of Gaussian. We evaluate the 2D rendering quality of
the images with the Peak Signal-to-Noise Ratio (PSNR) in dB, whereby
a high PSNR is targeted. For the large-scale Tanks and Temples dataset,
training time and model size are additionally tracked to evaluate the
capability of FeatureGS for challenging, real-world environments.

4.3. Implementation details

3D Gaussian Splatting' is processed according to the original im-
plementation, using default densification strategies and the default
parameters with learning rates of 0.0025 for spherical harmonics fea-
tures, 0.05 for opacity adjustments, 0.005 for scaling operations and
0.001 for rotation transformations, on a NVIDIA RTX3090 GPU.

2D Gaussian Splatting? is processed according to the original imple-
mentation by using default parameters.

Firstly, we consider the same number of training iterations of
15000, which are recommended from 3DGS. For a fair comparison,
we consider the evaluation procedure by training with early stopping
on each the same reached PSNR value. This should demonstrate that
FeatureGS enables pushing down the total numbers of Gaussians rep-
resenting the scene, while achieving higher geometric accuracy and
artifact-reduced rendering for the same photometric rendering quality.

1 https://github.com/graphdeco-inria/gaussian-splatting (last
07/21/2024).
2 https://github.com/hbb1/2d-gaussian-splatting (last access 04/29/2025).

access
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and all points (floater artifacts).

4.4. Loss configurations

The photometric loss for the optimization is given by the loss
function in Eq. (1) with 8 = 0.2 by default (Kerbl et al., 2023).

For the final different photometric-geometric loss formulations
(Eq. (14)) of FeatureGS the weighting with hphoto = 0.05 is chosen. This
is based on hyperparameter tuning (Fig. 12) in Section 7.1, to create
a proper balance between rendering quality and geometric accuracy,
approximately where the reached PSNR remains the same but the
Chamfer cloud-to-cloud distance increases.

As the 3D distribution of the Gaussians and hence their centers
changes through the optimization, we decide on a fixed number of
kNN = 50 (Weinmann et al., 2017) as representative k-nearest neigh-
bors. Through the variable distribution and density of the points during
the training process, we aim to achieve an effect similar to multi-
scale (Brodu and Lague, 2012) neighborhoods, which have proven to
be robust in point cloud classification tasks.

5. Results: Small-scale data

The following sections show qualitative (Section 5.1) and quanti-
tative (Section 5.2) results of FeatureGS in comparison to 3DGS and
2DGS. We distinguish between the training with a fixed number of
training iterations in Section 5.1.2 and a fixed achievable rendering
quality in Section 5.1.3, represented by an early stopping of the PSNR.
This should demonstrate the performance of FeatureGS in terms of
geometric accuracy, floater artifact-reduction, memory efficiency, and
yet strong rendering quality, based on the two criteria.

5.1. Quantitative results

5.1.1. Training process

Over the training process of 15000 iterations, the original photo-
metric loss of 3DGS and the photometric-geometric loss of FeatureGS
demonstrate distinct behaviors in terms of geometric accuracy, pres-
ence of floater artifacts, number of Gaussians representing the scene,
and rendering quality.

It is observed that the Chamfer cloud-to-cloud distance (Fig. 4) for
3DGS continuously increases for all points during training process. For
instance, in the case of scene40, the distance rises to approximately
50 mm. In contrast, for all geometric FeatureGS losses, the distance
remains consistently low throughout the training process. Only a slight
increase is present, which is due to the fact that the initial point cloud

from SfM nonetheless has the highest accuracy and FeatureGS also re-
constructs points that are not in the (incomplete) reference point cloud.
For scan40, this distance stabilizes at around 4-5 mm. This indicates
that, unlike FeatureGS, the 3DGS training process incorporates a signif-
icant number of points (see Fig. 5) with higher geometric inaccuracies.
Regarding the geometric surface accuracy, measured by masking out
points with errors over 10 mm, the distance for 3DGS initially increases
to approximately 1.9 mm, then decreases and stabilizes at a constant
value. For scan40, the distance starts at approximately 1.2 mm, peaks
at 1.9 mm, and eventually stabilizes at 1.7 mm. Conversely, the dis-
tance for FeatureGS increases less at the start of training and then
decreases further as training progresses. For scan40, it decreases from
approximately 1.3 mm to 1.0 mm.

With regard to rendering quality (Fig. 6), as measured by PSNR
(and SSIM), the original photometric loss of 3DGS significantly out-
performs the combined photometric-geometric loss of FeatureGS. For
3DGS, the PSNR continuously increases and appears to converge after
approximately 14 000 training iterations. In contrast, for all FeatureGS
loss functions, the PSNR initially increases rapidly but saturates at a
noticeably lower value after about 10000 iterations. The behavior of
SSIM follows a similar trend.

5.1.2. Fixed training iterations

The following quantitative results for the fixed number of training
iterations of 15000 provide the geometric accuracy by Chamfer cloud-
to-cloud distance, the number of resulting Gaussians, and the rendering
quality reported by the PSNR.

Geometric accuracy. For the geometric accuracy of the surface points
(Table 1), which are located at a distance of 10 mm from the reference
point cloud Lpjan Gauss @0d Lgjgenknn Yield often the best and second
best highest geometric accuracies. Lpjanny @0d Lompiknn achieve a
mixed result, but show good performance in some scenes such as
scan24, scan37. Nevertheless, the differences between all geometric-
radiometric FeatureGS configurations are mostly marginal and stable
across all scans (see e.g. scan55 with Chamfer distances from 0.967
to 0.971 mm). This is also reflected in the mean geometric accuracy.
Compared to 2DGS (1.331 mm) and 3DGS (1.609 mm), FeatureGS
achieves the highest geometric accuracy with a mean Chamfer distance
between 1.310 and 1.315 mm.

Floater artifacts due to presumably incorrectly reconstructed Gaus-
sians external to the actual object, where smaller values mean less
disturbing artifacts, are illustrated by Table 2. Regarding the reduction



M. Jager et al.

ISPRS Open Journal of Photogrammetry and Remote Sensing 17 (2025) 100100

L — 140600
1.0

&
8 40400 %
208 g
R= =
2 40200-2
% 0.6 S
O 3DGS g
o 0.4 —a—  FeatureGS (Planarity, Gaussian) 40000 &2
_g’ —4— FeatureGS (Planarity, kNN) S
g —o— FeatureGS (Omnivariance, kNN) 2
Z. —*— FeatureGS (Eigenentropy, kNN)  1398(() g
0.2 é

00 0 2500 5000 7500 10000 12500 39600

Iteration

Fig. 5. Numbers of Gaussians during training process on the DTU scan40 for different loss types.

1.0
. B T e Suind
e
34 0.8
32
230 0.6
g p=
& 28 A
g 0.4
26
3DGS
24 —a— FeatureGS (Planarity, Gaussian) 0.2
—— FeatureGS (Planarity, KNN) -
22 —— FeatureGS (Omnivariance, kKNN)
—»— FeatureGS (Eigenentropy, kNN)
20 0 2500 5000 7500 10000 12500 15000 0.0
Iteration

Fig. 6. Rendering quality during training process on the DTU scan40 for different loss types. Peak Signal-to-Noise Ratio (PSNR) 1 in dB and SSIM 1.

of floater artifacts, Lpjan, Gaussian @14 Lgjgen,knn Prove to be particularly
effective. Lpjap gauss Often achieves the best results and shows a strong
ability to minimize floater artifacts, especially for scans such as scan40
(4.816 mm) and scan55 (4.782 mm). On average, Lpjan Gauss PErforms
best with 10.593 mm, followed by Lpy,p iy With 10.793 mm. Overall,
there is a significant improvement in all FeatureGS configurations com-
pared to 3DGS, both in terms of surface accuracy and floater reduction.
FeatureGS reduces the mean Chamfer distance for surface accuracy by
around 0.3 mm (approx. 20% improvement). In particular, compared to
3DGS (116.587 mm) and 2DGS (95.359 mm), FeatureGS reduces floater
artifacts by over 90%.

Number of Gaussians. Table 3 shows the number of Gaussians gen-
erated by 3DGS and the different loss configurations of FeatureGS.
The mean values indicate that all the FeatureGS configurations reduce
the number of Gaussians by around 440000 Gaussians on average,
which corresponds to a reduction of around 95%. 2DGS, while more
efficient than 3DGS, produces nearly eight times more Gaussians than
FeatureGS. FeatureGS increases the number of initial points by only
around 7%. The relative differences between the FeatureGS configura-
tions are only minor. All FeatureGS configurations deliver a consistently
clear reduction compared to 3DGS.

Rendering quality. While FeatureGS is significantly more memory ef-
ficient (fewer Gaussians, less storage required), has less floater arti-
facts and delivers geometrically more accurate results, there are draw-
backs in rendering quality (Table 4). On average, the mean PSNR
values appear lower with a decrease in rendering quality of approx-
imately 3.3 dB. The differences between the different FeatureGS loss
formulations are minimal (less than 0.1 dB).

5.1.3. Fixed rendering quality

The quantitative results for the fixed PSNR using early stopping
demonstrate the geometric accuracy due to the Chamfer cloud-to-cloud
distance and the number of Gaussians required for this. The compar-
ison of 3DGS and the FeatureGS configurations with identical PSNR
serves to evaluate different aspects of the methods under comparable
rendering qualities. This ensures that differences in other metrics such
as geometric accuracy, number of Gaussians or floater artifacts are not
influenced by a varying of the rendering quality.

Geometric accuracy. FeatureGS consistently outperforms 3DGS in ge-
ometric accuracy of surface points (Table 5) for the same rendering
quality, with an average improvement of about 30%, with a mean
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Table 1
Surface accuracy. Geometric accuracy comparison on the DTU dataset with Chamfer cloud-to-cloud distances |
in mm for points <10 mm from the reference, according to the DTU evaluation script. Best results are highlighted

as 1st, , and “1¢. Mean scores are listed at the bottom. The training incorporates 15000 iterations.
Methods 3DGS 2DGS FeatureGS
Lpian,Gauss Lpan xnn Lomninn Lgigeninn
scan24 1.702 1.229 1.421 1.438 1.434 1.432
scan37 1.782 1.525 1.324 1.309 1.317 1.360
scan40 1.625 0.955 1.002 1.002 0.989 1.001
scan55 1.361 0.746 0.969 0.968 0.967 0.971
scan63 2.061 2.023 1.483 1.449 1.462 1.481
scan65 1.708 1.441 1.518 1.526 1.506 1.513
scan69 1.671 1.276 1.299 1.316 1.312 1.314
scan83 2.285 2.024 1.428 1.425 1.417 1.412
scan97 1.855 1.759 1.689 1.684 1.695 1.689
scan105 1.778 1.508 1.172 1.168 1.163 1.180
scan106 1.514 0.758 0.936 0.939 0.948 0.950
scanl110 1.486 1.356 1.819 1.821 1.800 1.808
scanl14 1.549 0.941 0.966 0.952 0.960 0.945
scanl18 1.291 0.681 0.875 0.854 0.873 0.866
scan122 1.289 0.743 0.992 1.000 0.991 0.990
Mean 1.609 1.331 1.310 1.315
Table 2

Floater artifacts. Geometric accuracy comparison on the DTU dataset with Chamfer cloud-to-cloud distances|
in mm are reported for all points to focus on floaters external to the point cloud. Best results are highlighted as

Ist, , and . Mean scores are listed at the bottom. The training incorporates 15000 iterations.

Methods 3DGS 2DGS FeatureGS
LPlan,Gauss LPlan,kNN LOmni,kNN LEigen,kNN

scan24 50.850 45.800 8.909 9.378 21.158 12.469
scan37 53.919 65.792 9.575 8.312 9.435 9.045
scan40 43.597 65.314 4.915 5.174 4.816 5.267
scan55 58.004 69.473 5.050 5.990 4.782 5.059
scan63 279.172 172.740 19.130 24.350 20.405 22.034
scan65 179.180 170.143 17.916 15.357 19.246 18.741
scan69 121.251 112.102 10.110 9.653 9.708 9.770
scan83 178.645 141.350 24.628 21.874 22.426 21.545
scan97 111.836 65.862 13.099 12.033 11.333 9.755
scan105 132.986 68.334 8.221 8.159 8.260 8.480
scan106 88.501 80.452 3.272 3.459 3.058 3.211
scanl10 164.030 120.396 17.160 14.134 17.584 18.517
scanl14 173.681 135.634 5.850 6.773 6.138 6.002
scanl18 83.070 85.573 6.977 6.374 7.005 7.087
scan122 124.686 101.461 9.332 9.755 9.265 9.369
Mean 116.587 95.359 10.593 12.212

Table 3

Number of Gaussians on the DTU dataset. We report the total number of Gaussians | resulting from the four
alternative loss formulations of FeatureGS, compared to 3DGS, 2DGS, and the number of SfM points used for
initialization. Mean scores are listed at the bottom. Best results (lowest total number) concerning memory are

highlighted as 1st, , and 1. The training incorporates 15000 iterations.
Methods 3DGS 2DGS FeatureGS Initial SfM
Lpjan,Gauss Lpjanonn Lomni Lgigen,knn
scan24 673276 318556 20105 20423 20485 20440 15479
scan37 766722 390183 29431 29111 29247 29291 24857
scan40 831896 351751 40425 40 404 40 445 40429 39158
scan55 739171 327276 34760 34774 34738 34780 33506
scan63 249 496 145388 13343 13461 13610 13509 10869
scan65 347 906 158023 14231 14154 14213 14216 13203
scan69 304854 164466 15931 15911 15906 15911 15264
scan83 216765 119774 11982 11921 12054 11913 10652
scan97 595899 252064 22699 22717 22579 22436 20467
scanl05 250257 131301 26102 26154 26111 26210 25291
scan106 269773 114440 33701 33707 33696 33705 33523
scan110 227484 93552 11822 11768 11835 11838 11382
scanl14 361373 140436 26208 26248 26226 26199 25761
scanl18 357583 156 268 27964 27948 27973 27967 27650
scan122 318226 145922 21427 21423 21417 21417 20975
Mean 462 699 189427 24275 24302 22771
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Rendering quality comparison on the DTU dataset. We report the PSNR 1 in dB. Mean scores are listed at the

bottom. Best results are highlighted as 1st, , and <. The training incorporates 15000 iterations.
Methods 3DGS 2DGS FeatureGS
Lpian,auss Lpian xnn Lomni,knn Lgigennn

scan24 35.16 32.03 29.86 29.90 29.98 29.93
scan37 29.98 28.51 26.32 26.35 26.39 26.36
scan40 34.59 31.76 28.48 28.52 28.56 28.45
scan55 34.08 31.87 29.48 29.55 29.50 29.56
scan63 37.35 35.43 32.65 32.66 32.74 32.81
scan65 35.19 31.78 30.35 30.35 30.36 30.35
scan69 33.50 30.91 28.33 28.57 28.54 28.53
scan83 34.08 31.12 32.69 32.82 32.84 31.85
scan97 32.57 30.99 30.03 30.06 30.12 30.01
scan105 36.70 34.41 34.68 34.64 34.51 34.59
scan106 37.48 36.17 36.01 36.09 36.06 36.03
scanl110 31.81 30.19 29.94 29.96 29.92 29.94
scanl14 34.78 32.55 32.73 32.55 32.70 32.64
scanl18 36.71 35.08 34.81 34.85 34.82 34.83
scanl22 36.06 34.83 34.15 34.17 34.15 34.17
Mean 34.67 31.37 31.40 31.34

Table 5

Surface accuracy. Geometric accuracy comparison on the DTU dataset with
Chamfer cloud-to-cloud distances | in mm for surface points <10 mm from the
reference, according to the DTU evaluation script. Best results are highlighted

Table 6

Floater artifacts. Geometric accuracy comparison on the DTU dataset with
Chamfer cloud-to-cloud distances | in mm are reported for all points to focus
on floaters external to the point cloud. Best results are highlighted as 1st,

as 1st, , and . Mean scores are listed at the bottom. The training , and . Mean scores are listed at the bottom. The training incorporates

incorporates iterations until early stopping at same PSNR. iterations until early stopping at same PSNR.
Methods 3DGS FeatureGS Methods 3DGS FeatureGS

LPlan,Gauss LPlan,kNN LOmni,kNN LEigen,kNN LPlan,GauSs LPlan,kNN LOmni,kNN LEigen,kNN

scan24 2.026 1.424 1.463 1.475 1.446 scan24 32.241 11.835 8.441 14.137 9.151
scan37 1.847 1.297 1.313 1.278 1.280 scan37 72.622 9.451 11.153 8.361 8.852
scan40 1.758 0.954 0.948 0.952 0.951 scan40 19.356 4.796 5.475 5.191 5.751
scan55 1.672 0.935 0.918 0.944 0.914 scan55 36.010 5.233 4.872 4.727 5.199
scan63 2.155 1.530 1.534 1.504 1.500 scan63 200.478 20.862 19.600 20.744 22.942
scan65 2.095 1.589 1.576 1.581 1.582 scan65 163.601 17.775 18.103 15.096 17.191
scan69 1.916 1.288 1.271 1.290 1.271 scan69 61.014 9.524 9.5613 9.736 9.561
scan83 2.211 1.438 1.489 1.507 1.509 scan83 139.395 22.819 22.671 21.552 23.454
scan97 1.912 1.680 1.699 1.704 1.704 scan97 70.390 11.543 12.408 12.085 11.960
scan105 1.769 1.264 1.332 1.293 1.280 scan105 80.220 8.102 8.037 8.067 8.172
scan106 1.574 1.095 1.104 1.104 1.100 scan106 32.873 3.228 3.021 3.031 3.206
scan110 1.902 1.866 1.854 1.831 1.853 scan110 111.052 16.205 15.742 16.463 16.771
scanl14 1.453 1.010 1.015 1.008 1.022 scanl14 57.211 6.006 5.732 6.078 5.409
scanl18 1.503 1.064 1.063 1.053 1.063 scanl18 58.760 5.199 5.172 4.870 4.814
scan122 1.604 1.060 1.070 1.060 1.051 scan122 270.132 8.983 9.504 9.155 8.688
Mean 1.826 1.300 1.310 Mean 93.690 10.771 10.620

geometric accuracy of 1.826 mm for 3DGS to 1.300 to 1.310 mm
for FeatureGS. The different loss formulations of FeatureGS show only
minimally different results with differences of less than 1 percent.

FeatureGS heavily reduces floater artifacts (Table 6) at the same ren-
dering quality by an average of 90% compared to 3DGS. This is shown
in the mean Chamfer Distance, which is reduced from 93.690 mm for
3DGS to 10.620-10.771 mm for FeatureGS. Overall, the photometric-
geometric loss formulations with Lpj,, xny @and Lomni vy result in the
lowest amount of floater artifacts.

Number of Gaussians. In addition, the number of Gaussians (Table 7)
is reduced by FeatureGS while maintaining the same rendering quality
compared to 3DGS. FeatureGS drastically reduces the number of Gaus-
sians by around 90% from an average of 249 986 Gaussians to between
26 380 and 26 389 Gaussians. This leads to a lower memory require-
ment. Within FeatureGS, the variants show equivalent compression of
the number of Gaussians.

5.2. Qualitative results

Similar to the quantitative results, FeatureGS yields promising re-
sults in terms of geometric accuracy of the 3D point clouds as well as

rendering quality by removing floater artifacts. Through all geometric
loss terms of FeatureGS, consistently accurate and floater artifact-
reduced results are generated across all 15 scenes, compared to 3DGS.
All results are shown for the exact same PSNR values by early stopping,
thus the same rendering quality.

Geometric accuracy. The geometric accuracy of Gaussian centers on
DTU dataset, evaluated using the Chamfer cloud-to-cloud distance (Fig.
7), highlights the superior performance of FeatureGS compared to
3DGS. For the FeatureGS, the configurations that yielded the highest
surface accuracy for the respective scenes are visualized. It is important
to note that the reference point clouds are incomplete, which leads
to high values on all object edges. On the one hand, it shows that
the accuracy of the surface points is higher for FeatureGS, achieving
submillimeter accuracy. Furthermore, the surface points appear less
noisy. On the other hand, the drastic reduction in floater artifacts is
striking, whereby floater artifacts prevent the reconstruction of the
geometry via direct extraction of the Gaussian centers. While 3DGS
leads to a lot of floater artifacts in all scenes, the scenes with FeatureGS
are almost artifact-free.

FeatureGS prioritizes surface accuracy and reduces floater artifacts
by enhancing properties of planar surfaces with low structural entropy
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Fig. 7. Geometric accuracy comparison on the DTU dataset with Chamfer cloud-to-cloud distances | for the same PSNR. Color values are cropped at 10 mm

distance.

instead of increasing point density. As a consequence, the resulting
point clouds remain relatively sparse. In low-textured regions, similar
to the behavior observed in 3DGS and 2DGS, a smaller number of larger
Gaussians is sufficient to achieve accurate photometric representation,
as demonstrated in DTU scenes 24, 37, 63, 97, 110, and 118 (Fig. 7).

10

This leads to the appearance of gaps in homogeneous areas, as shown
in Fig. 8.

Rendering quality. The rendering quality (Fig. 9) shown by the ren-
dered test images also underlines the overall strong performance of
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(d) reference (e) GT image

Fig. 8. Illustration of gaps in the point clouds from Gaussian centers at low-textured, homogeneous areas using 3DGS, 2DGS and FeatureGS. Compared to the

reference point cloud and GT image for DTU scene scan118.

Table 7

Number of Gaussians on the DTU dataset. We report the total number of
Gaussians | resulting from the four alternative loss formulations of FeatureGS,
compared to 3DGS and the number of SfM points used for initialization. Mean
scores are listed at the bottom. Best results (lowest total number) concerning
memory are highlighted as 1st, , and . The training incorporates
iterations until early stopping at same PSNR.

Methods  3DGS FeatureGS Initial SfM
Lpjan,Gauss Lpjanjnn Lomnixnn LEig,kNN
scan24 333870 20491 20100 20553 20155 15479
scan37 527713 29199 29596 29371 28972 24857
scan40 537082 40353 40406 40446 40466 39158
scan55 470 449 34788 34744 34742 34769 33506
scan63 113493 13346 13323 13183 13155 10869
scan65 151776 14213 14176 14187 14179 13203
scan69 147 690 15893 15908 15905 15908 15264
scan83 132898 11926 12044 11892 12046 10652
scan97 303676 22454 22824 22732 22712 20467
scan105 184679 26166 26158 26149 26178 25291
scan106 125419 33730 33719 33724 33731 33523
scan110 140378 11819 11802 11811 11824 11382
scanl14 190674 26247 26232 26 255 26228 25761
scanl18 165017 27927 27926 27910 27902 27 650
scan122 172589 21427 21432 21436 21407 20975
Mean 249986 26 389 26 380 22771

FeatureGS compared to 3DGS. The results on the FeatureGS configura-
tions that yielded the highest floater reduction for the respective scenes
are shown. It is evident that the geometric loss terms of FeatureGS
significantly reduce the floater artifacts while maintaining the same
quantitative rendering quality. Large dark floater artifacts disappear in
hardly all scenes. In addition, the scenes appear smoother, which can
be seen, e.g., in the subsoil of objects. Since the PSNR values are the
same, the high PSNR value is supposedly due to the focus being on
rendering the object itself and not overfitting the entire scene, which
causes the creation of floater artifacts. It can also be seen that the
floaters that were visible in the figures of the geometric accuracies (Fig.
7) are actually also clearly present in the synthetically rendered results.
Therefore, they cannot only be removed by filtering the Gaussians with
e.g. very small opacity values. In addition, FeatureGS also removes
artifacts which merge with the object surface and leads to a kind of
smoothing effect, such as in scan55 or scan69.

6. Results: Large-scale data

The following sections show qualitative (Section 6.1) and quanti-
tative (Section 6.2) results of FeatureGS in comparison to 3DGS and
2DGS.

6.1. Quantitative results

The results across the key metrics, geometric accuracy, floater re-
duction, number of Gaussians, model size, rendering quality, as well as
training time, are presented in Tables 9-13.

A clear advantage of FeatureGS lies in the substantial suppression of
floater artifacts (Table 9). While 3DGS and 2DGS exhibit high average
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Table 8

Surface accuracy. Geometric accuracy comparison on the Tanks and Temples
dataset with Chamfer cloud-to-cloud distances | in m for points <0.1m
from the reference, according to the DTU evaluation script. Best results are
highlighted as 1st, , and . Mean scores are listed at the bottom. The
training incorporates 15000 iterations.

Scene 3DGS 2DGS FeatureGS

LpanGauss ~ Lptaninn Lomniknn  Leigenann
barn 0.0276 0.0226 0.0256 0.0256 0.0257 0.0256
caterpillar  0.0161 0.0135  0.0231 0.0233 0.0235 0.0232
ignatius 0.0129  0.0104  0.0139 0.0138 0.0139 0.0139
truck 0.0137 0.0106 0.0168 0.0169 0.0168 0.0168
Mean 0.014 0.080 0.080 0.080

floater distances of 16.17m and 17.61 m respectively, all FeatureGS
formulations reduce floater artifacts by over 55%. The distances for
FeatureGS range from 7.28m to 7.32m across variants, with the best
result achieved by Lpjap ny, While even the least effective FeatureGS
variant performs better than 3DGS and 2DGS.

FeatureGS leads to a drastic reduction in the number of Gaussians
(Table 10). While 3DGS and 2DGS require on average 2.05 million and
1.26 million Gaussians respectively, FeatureGS reduces this to as few as
84,880, depending on the loss variant. This corresponds to a reduction
of 96% compared to 3DGS and 93% compared to 2DGS, leading to a
more memory-efficient model representation. This reduction is directly
reflected in the model size (Table 11). While 3DGS and 2DGS models
average around 485 MB and 304 MB respectively, FeatureGS produces
compact models of 20.00MB, depending on the loss variant. This
corresponds to a compression factor of up to 24x compared to 3DGS
and 15x compared to 2DGS, resulting in a substantially more compact
representation.

Despite this reduction, FeatureGS maintains competitive rendering
quality on the large-scale data (Table 12). The mean PSNR of all
FeatureGS variants ranges from 23.50 dB to 23.67 dB, closely matching
2DGS (23.00 dB) and staying within 1 dB of 3DGS (24.56 dB). In terms
of surface accuracy (Table 8), FeatureGS variants show higher Chamfer
distances (0.079-0.080 m) compared to 2DGS (0.014m) and 3DGS
(0.070m), which reflects a slight degradation in geometric precision
for the large-scale data with diverse object types.

Nonetheless, FeatureGS demonstrates efficient training performance
compared to both 3DGS and 2DGS (Table 13). While 3DGS requires
on average 12.77 min and 2DGS 17.03 min, all FeatureGS loss formu-
lations complete training in less time for the same 15000 iterations,
with mean durations between 9.12 and 10.67 min. The fastest vari-
ant, Lpj,, Gauss» Denefits from directly operating on features derived
from Gaussian eigenvalues without neighborhood queries. The kNN-
based variants remain efficient due to accelerated implementations via
PyTorch3D.?

3 https://github.com/facebookresearch/pytorch3d (last accessed:
08/02/2024).
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Fig. 9. Rendering quality comparison on the DTU dataset for the same PSNR.

6.2. Qualitative results

The geometric accuracy of Gaussian centers on Tanks and Temples
dataset, evaluated using the Chamfer cloud-to-cloud distance (Fig. 10),
show that 3DGS generates a dense set of Gaussians, where the object

12

structure is barely discernible from the distribution of Gaussian centers.
The Gaussians form a broad layer around the object surface, extending
both in front of and behind it. In contrast, 2DGS produces a denser point
cloud with higher accuracy and significantly fewer Gaussians, whose
centers lie close to the surface.
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Table 9

Floater artifacts. Geometric accuracy comparison on the Tanks and Temples
dataset with Chamfer cloud-to-cloud distances| in m are reported for all points
to focus on floaters external to the point cloud. Best results are highlighted

as 1st, , and . Mean scores are listed at the bottom. The training
incorporates 15000 iterations.
Scene 3DGS 2DGS FeatureGS
LPIan,Gauss LPlan,kNN LOmni,kNN LEigen,kNN
barn 8.44 11.04 5.33 5.33 5.32 5.32
caterpillar 20.91 22.62 8.02 8.04 8.06 8.05
ignatius 16.28 16.51 8.06 8.00 7.99 8.03
truck 19.04 18.27 7.83 7.73 7.83 7.86
Mean 16.17 17.61 7.28 7.32
Table 10

Number of Gaussians on the Tanks and Temples dataset. We report the total
number of Gaussians | of FeatureGS, compared to 3DGS, 2DGS. Best results
are highlighted as 1st, , and . Mean scores are listed at the bottom. The
training incorporates 15000 iterations.

Scene 3DGS 2DGS FeatureGS
LpjanGauss ~ Lptaninw Lomniknn  Ligeninn
barn 941 645 550030 78868 78870 78836 78915
caterpillar 1244008 732518 100626 100703 100637 100624
ignatius 3255203 2080397 96258 96155 96103 96199
truck 2753361 1660639 63800 63792 64023 63913
Mean 2048554 1258396 84880 84913
Table 11

Model size in MB on the Tanks and Temples dataset. We report the mean model
size | of FeatureGS, compared to 3DGS, 2DGS. Best results are highlighted

as 1lst, , and . Mean scores are listed at the bottom. The training
incorporates 15000 iterations.

Scene 3DGS 2DGS FeatureGS

LPlan,Gauss LPlan,kNN LOmni,kNN LEigen,kNN

barn 222 180 18.6 18.6 18.6 18.6
caterpillar 293 173 23.7 23.8 23.8 23.7
ignatius 769 474 22.7 22.7 22.7 22.7
truck 655 388 15.0 15.0 15.1 15.1
Mean 484.75 303.75 20.00

Table 12

Rendering quality comparison on the Tanks and Temples dataset. We report
the PSNR 1 in dB. Best results are highlighted as 1st, , and . Mean
scores are listed at the bottom. The training incorporates 15000 iterations.

Scene 3DGS 2DGS FeatureGS
LPlan,Gauss LPlan,kNN L()mni,kNN LEigen,kNN
barn 25.89 24.70 25.45 25.47 25.28 25.45
caterpillar 2411 22.50 23.91 23.87 23.66 23.80
ignatius 22.92 20.11 21.43 21.55 21.46 21.11
truck 25.31 24.70 23.70 23.79 23.78 23.65
Mean 24.56 23.00 23.55 23.50
Table 13

Training time comparison on the Tanks and Temples dataset. We report the

minutes for 15000 iterations. Best results are highlighted as 1st, , and
Mean scores are listed at the bottom.
Scene 3DGS 2DGS FeatureGS
LPlan,Gauss LPlan,kNN LOmni,kNN LEigen,kNN
barn 1124 1517  9.73 10.34 10.39 10.31
caterpillar 10.89 15.78 9.53 11.30 11.30 11.28
ignatius 14.77 19.00 8.41 10.63 10.66 10.64
truck 14.17 18.17 8.79 10.26 10.31 10.11
Mean 12.77 17.03 9.12 10.67
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FeatureGS yields a clearly defined and precise object structure
with high surface accuracy; most points lie directly on the surface,
with few positioned in front of or behind the reference. The point
cloud remains relatively sparse, and FeatureGS exhibits limitations in
scenes with strong linear structures, such as scene caterpillar, where
2DGS better reconstructs thin structures. For most man-made or planar
environments, such as facades or grounds, FeatureGS demonstrates a
qualitative better geometric accuracy on the object surface. Comparing
the rendered images (Fig. 11) of 3DGS and FeatureGS, 3DGS better
represents backgrounds with vegetation, such as trees. Nevertheless,
FeatureGS strengthen man-made planar object parts, and successfully
reduces the floater artifacts. Aside from this, visual differences are
minimal, as the tanks and temples datasets provide extensive image
coverage, resulting in negligible floaters.

Additionally, Section 7 presents an ablation study that investi-
gates the following aspects: hyperparameter tuning of the photometric-
geometric loss term, and the combination into a multi-feature loss.

7. Ablation study

This Section 7 presents an ablation study that investigates the
following aspects: hyperparameter tuning of the photometric-geometric
loss term (Section 7.1) and the combination into a multi-feature loss
(Section 7.2).

7.1. Geometric loss

For the final different photometric-geometric loss formulations of
FeatureGS the weighting based on hyperparameter Ay, is necessary
to create a proper balance between rendering quality and geometric
accuracy.

The Chamfer cloud-to-cloud distance and PSNR for varying weights
of the photometric loss hphqy, i presented in Fig. 12. As hypg, in-
creases, the Chamfer distance over all points increases (from 2.047 mm
at Apporo = 0.01 to 14.993 mm at Aypg, = 0.10), indicating a decrease
in geometric accuracy. The Chamfer distance for points within 10 mm
slightly increase from 0.968 to 1.060 mm. The PSNR shows an im-
provement from 26.898 to 28.681 dB. That suggest that lower values
for hppere improve geometric accuracy, while higher values enhance
image quality at the cost of increased Chamfer distance and less ac-
curate geometry. Therefore, the weight should be optimized according
to the specific application of FeatureGS. Alternatively, achieving a
higher PSNR with high geometric accuracy may require more training
iterations.

7.2. Combined geometric loss

All four proposed geometric loss formulations of FeatureGS share a
common goal: encouraging Gaussians to better align with the underly-
ing surface. Although they rely on different 3D shape features, their
effects are largely consistent and differ only marginally (Section 5).
While the loss using ‘planarity’ of Gaussians improves surface accu-
racy and the ‘omnivariance’ loss of Gaussian neighborhoods reduces
floater artifacts on the DTU dataset, both losses target similar geometric
properties. We investigate whether combining (Eq. (16)) them can
meaningfully leverage their strengths to improve overall performance,
with

L= hphoto : Lphotometric + LPlan,Gaussian + LOmni,kNN (16)

and the hyperparameter /.

Table 14 reports the results on several DTU scenes. The ablation
study shows that the combined loss yields complementary results across
the metrics. The combined loss reduces floater artifacts and the num-
ber of Gaussians but does not further improve the surface accuracy,
while the PSNR remains high and comparable to the best single-loss
configurations.
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Fig. 10. Geometric accuracy comparison on the Tanks and Temples dataset with Chamfer cloud-to-cloud distances |.

The training incorporates 15000 iterations.
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Color values are cropped at 0.25 m distance.
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Fig. 11. Rendering quality comparison of 3DGS and FeatureGS on the Tanks and Temples dataset, as well as ground truth (GT) images in original resolution.

8. Discussion

The evaluation of FeatureGS demonstrates its advantages in terms
of geometric accuracy, reduction of floater artifacts, and memory ef-
ficiency. Although these improvements coincide with a moderate re-
duction in rendering quality, the results illustrate that FeatureGS is
particularly suitable for diverse applications, especially those involving
scenes dominated by man-made structures.

14

On the small-scale DTU dataset, using a fixed number of 15000
training iterations, FeatureGS yields substantial improvements in ge-
ometric reconstruction accuracy, reducing the mean Chamfer cloud-
to-cloud distance by approximately 20% compared to 3DGS. Among
the tested variants, the loss formulations LpjanGauss @nd Lgigen,knn
consistently result in the highest geometric accuracy. However, dif-
ferences among the four FeatureGS loss configurations remain rela-
tively small and stable across the diverse scenes, suggesting that the
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Fig. 12. Chamfer cloud-to-cloud Distances, PSNR and Number of Gaussians at different weighting configurations of the photometric-geometric loss term with

varying hpporo-

Table 14

Multi-feature loss. Comparison on DTU FeatureGS with a combination of two alternative loss formulations
Lpjan,Gauss @0d Lomniwy- The table shows geometric accuracy on surface accuracy and floater artifacts with
Chamfer cloud-to-cloud distances| in mm, PSNR in dB, and number of Gaussians.

scanl05 scan106 scanl10 scanl14 scanl18
Surface Lopjan,Gauss 1.172 0.936 1.819 0.966 0.875
Lomniknn 1.163 0.948 1.800 0.960 0.873
Combined 1.223 0.937 1.883 0.955 0.911
Floater Lpjan Gauss 8.221 3.272 17.160 5.850 6.977
Lomniknn 8.260 3.058 17.584 6.138 7.005
Combined 4.129 3.024 9.544 4.383 3.747
PSNR Lpjan,Gauss 34.68 36.01 29.94 32.73 34.81
Lomni kN 34.51 36.06 29.92 32.70 34.82
Combined 32.41 35.46 29.74 32.42 34.48
Gaussians Lpan,Gauss 26102 33701 11822 26208 27 964
L omni kN 26111 33696 11835 26226 27973
Combined 25334 33647 11649 26077 27784

method exhibits robust performance irrespective of scene complex-
ity considering man-made objects. In addition to improved accuracy,
FeatureGS achieves a considerable reduction in floater artifacts, sup-
pressing them by approximately 90% relative to 3DGS. The formulation
with Lpj,, gauss Shows the strongest effect in reducing these artifacts.
Furthermore, FeatureGS leads to a drastic decrease in the number of
Gaussians, averaging a reduction of 95%. This contributes to a clearly
higher memory efficiency, enhancing the suitability of FeatureGS for
large-scale reconstruction scenarios. However, these gains are accom-
panied by a moderate decrease in rendering quality, with an average
PSNR drop of around 3.3 dB. To address the inherent trade-off between
geometric accuracy and photometric rendering quality, the weighting
of the loss hyperparameter can be adjusted according to the intended
application. When controlling rendering quality through early stop-
ping to match the PSNR values between the loss variants, FeatureGS
continues to show improvements in geometric accuracy, reducing the
mean Chamfer distance by approximately 0.5 mm (x~30%) relative to
3DGS. Floater artifact suppression remains effective at around 90%
across all loss formulations, and the number of Gaussians is still reduced
by approximately 90%. This demonstrates that FeatureGS preserves its
geometric accuracy, floater reduction and memory advantages for the
same photometric performance. The qualitative results further confirm
these trends. Across all evaluated scenes, FeatureGS consistently im-
proves the geometric surface accuracy of reconstructed point clouds,
while effectively removing non-surface floaters. These artifacts are
likewise absent from the rendered images. Since PSNR is held con-
stant in this setting, we suggest that the geometric losses encourage
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the model to allocate representational capacity toward surface-aligned
geometry, rather than overfitting the background with unstructured
floater artifacts.

The evaluation on the heterogeneous large-scale Tanks and Tem-
ples benchmark reveals both the strengths and the limitations of Fea-
tureGS. The dataset comprises a diverse range of scenes, including
structured, man-made environments with planar geometries (e.g., fa-
cades, grounds), as well as unstructured regions with natural vege-
tation and volumetric elements. For these man-made environments,
FeatureGS provides a geometrically accurate but sparse representa-
tion. Similar to 2DGS, which regularization can potentially lead to
over-smoothing (Huang et al., 2024) in some regions. In structured
regions, FeatureGS yields high geometric accuracy and coherent re-
constructions. The employed geometric loss terms effectively promote
surface-aligned and compact Gaussian representations, which are well-
suited to the underlying scene characteristics. In contrast, performance
degrades in vegetative areas. Facades and ground in man-made envi-
ronments can be geometrically distinguished from vegetation due to
their structural divergence (Weinmann et al.,, 2013). Since the geo-
metric loss, which favors compact, surface-aligned Gaussians and thus
emphasizes planar structures, FeatureGS struggles in scenes where the
spherical arrangement of Gaussians is highly irregular or volumetric, as
is typical for vegetation. Despite these challenges, FeatureGS maintains
a consistent advantage in the suppression of floater artifacts across
all scene types. While methods such as PGSR struggles with floating
points (Chen et al., 2024a) in some scenes, which is also the case for
2DGS and especially 3DGS as the results show.
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Limitations and Trade-offs. While FeatureGS demonstrates strong
performance across multiple benchmarks and offers clear advantages
in terms of geometric accuracy, memory efficiency, and floater arti-
fact removal, several challenges remain. Rendering quality: A central
limitation of FeatureGS lies in its reduced rendering quality when
training budgets are constrained. On the DTU benchmark, FeatureGS
achieves a maximum PSNR of 31.41 dB (Loppixnn), compared to
34.67 dB for 3DGS. This performance gap of more than 3 dB high-
lights the cost of incorporating geometric structure. A similar drop
is observed for 2DGS (32.51 dB), suggesting that additional regular-
ization and 3D shape feature-based supervision inherently trades off
rendering fidelity. However, using early stopping with fixed PSNR
values, FeatureGS achieves a 30% improvement in geometric accuracy
and reduces memory usage by 90% relative to 3DGS. These results
highlight a fundamental trade-off between photometric quality and
geometric accuracy when optimizing under fixed number of training
iterations. Scene diversity: While FeatureGS performs robustly in man-
made scenes characterized by structured geometry and planar surfaces,
its performance degrades in vegetative or highly unstructured regions.
In such environments, which are present in the Tanks and Temples
benchmark, the assumptions underlying the geometric loss, particularly
the preference for planar, surface-aligned Gaussians, become less effec-
tive. The resulting reconstructions exhibit reduced fidelity in irregular,
non-man-made areas, indicating a limitation in generalizing to scenes
that deviate from the structural priors embedded in the geometric
loss design. Geometric coverage: The results show that, similar to 3DGS
and also 2DGS, which densification strategy favors texture-rich over
geometry-rich areas (Huang et al., 2024), FeatureGS produces visible
gaps in low-textured regions (e.g., DTU scenes 24, 37, 63, 97, 110,
118; Fig. 8). This sparsity is primarily due to the use of relatively
few but large Gaussians in homogeneous areas. While this suffices for
accurate photometric rendering, it leads to incomplete surface cover-
age when using Gaussian centers as geometric representation and is
further reinforced in FeatureGS by the high reduction of the required
number of Gaussians. To increase spatial density, one option is to adopt
the original 3DGS densification strategy, which enhances Gaussian
splitting in low-texture regions typically represented by few larger
Gaussians. Alternatively, mesh extraction methods such as Marching
Cubes (Lorensen and Cline, 1998), as used in previous work (Guédon
and Lepetit, 2024; Chen et al., 2024a; Huang et al., 2024), can pro-
vide a different geometric surface representation compared to point
clouds, e.g., via TSDF fields (Curless and Levoy, 1996) derived from
depth maps. Memory efficiency: FeatureGS achieves substantial memory
efficiency across both small and large-scale datasets. On the Tanks and
Temples benchmark, for instance, it reduces the average model size
from 484.75 MB (3DGS) and 303.75 MB (2DGS) to as little as 20.00 MB,
corresponding to a compression factor exceeding 24x relative to 3DGS.
This positions FeatureGS alongside recent compact representations such
as LightGaussian (Fan et al., 2024), which reports a compression to
22 MB. However, FeatureGS does not match the extreme compression
achieved by HAC (Chen et al., 2024b), which reduces models to as little
as 8.10 MB in selected scenes. However, FeatureGS does not primarily
aim for maximal compression, but rather balances memory efficiency
with geometric accuracy and robustness to floater artifacts. Loss variant:
Across both datasets, it remains challenging to identify a universally
superior loss formulation among the four FeatureGS variants. On the
DTU dataset, where scenes predominantly consist of planar, man-made
structures, specific insights emerge: the loss based on ‘planarity’ of
Gaussians yields the highest geometric accuracy, ‘omnivariance’ of
Gaussian neighborhoods most effectively suppresses floater artifacts.
Nevertheless, all four variants share similar structural objectives: en-
couraging Gaussians to represent planar surfaces and reduce structural
entropy in local 3D neighborhoods. Consequently, observed differ-
ences in reconstruction accuracy, rendering quality, training time, and
memory usage remain minor, and the combination of multiple loss
terms (Section 7.2) does not yield consistent gains. Addressing different
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scene types and their characteristics, the numerical differences remain
small in the performance of the four loss formulations between the
scenes, e.g., in the diverse DTU dataset. All scenes vary in material
properties and texturness. In general, each geometric loss consistently
moves Gaussians closer to the object surface and reduces their random
orientation, an effect that appears largely independent of scene-specific
properties. Consequently, no consistent pattern emerges that would
allow for reliably predicting which loss function performs better for
a given scene type (e.g., on reflective surfaces) or for recommending
a specific application scenario for each loss function. From a train-
ing time perspective, the variant (Lppy gayss) from Gaussian itself is
consistently the fastest, as it avoids neighborhood computations when
using Gaussian neighborhoods with Lpian ionns Lomniinn @A Lgigen knn-
Overall, all variants are substantially faster than both 3DGS and 2DGS,
primarily due to the reduced number of required Gaussians. And given
the marginal performance differences, all four loss configurations are
considered roughly equivalent.

9. Conclusion

FeatureGS extends 3D Gaussian Splatting by integrating 3D shape
feature properties into the optimization process with additional geo-
metric loss terms. It achieves consistent improvements in geometric
accuracy, floater artifact suppression, and memory efficiency. While
these gains are accompanied by a moderate decrease in rendering
quality, the results highlight FeatureGS as a compact and geometry-
aware method for geometrically accurate and floater artifact-reduced
scene reconstruction.

Geometric accuracy. For man-made environments of the DTU
dataset, FeatureGS improves the geometric accuracy by reducing the
mean Chamfer distance by up to 30% relative to 3DGS under matched
PSNR (early stopping) and up to 20% using a fixed number of training
iterations. Across all four loss configurations, ‘planarity’ from Gaussians
performs the best, while differences between variants remain small,
indicating stable performance across scenes with man-made structures.
Floater artifacts. FeatureGS suppresses non-surface floater artifacts by
around 90% on DTU and by over 55% on Tanks and Temples compared
to 3DGS, both quantitatively and qualitatively. These improvements
persist across all loss variants and even when rendering quality is held
constant, showing that the losses effectively promote surface-aligned
Gaussians. Number of Gaussians. FeatureGS reduces the number of
Gaussians by up to 95% on DTU and by up to 96% on Tanks and
Temples compared to 3DGS. This leads to smaller model sizes, down to
20 MB on Tanks and Temples dataset, a 24x reduction relative to 3DGS.
The reduced number of Gaussians also leads to improved training
efficiency across all FeatureGS variants, which achieve training times
approximately 20%-30% lower than 3DGS. Notably, the ‘planarity’
from Gaussian itself avoids computationally expensive neighborhood
queries and achieves the highest relative speedup by 30%.

Overall, FeatureGS achieves structurally consistent representations,
with improved geometric accuracy, and reduced floater artifacts and
number of required Gaussians. While performance declines in unstruc-
tured, volumetric ares, e.g., vegetative scenes, the method is particu-
larly well-suited for efficient and geometrically accurate reconstruction
of structured, planar surfaces in man-made environments.
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