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 A B S T R A C T

3D Gaussian Splatting (3DGS) has emerged as a powerful approach for 3D scene reconstruction using 3D 
Gaussians. However, neither the centers nor surfaces of the Gaussians are accurately aligned to the object 
surface, complicating their direct use in point cloud and mesh reconstruction. Additionally, 3DGS typically 
produces floater artifacts, increasing the number of Gaussians and storage requirements. To address these 
issues, we present FeatureGS, which incorporates an additional geometric loss term based on an eigenvalue-
derived 3D shape feature into the optimization process of 3DGS. The goal is to improve geometric accuracy 
and enhance properties of planar surfaces with reduced structural entropy in local 3D neighborhoods, typically 
given in man-made environments. We present four alternative formulations for the geometric loss term based 
on ‘planarity’ of Gaussians, as well as ‘planarity’, ‘omnivariance’, and ‘eigenentropy’ of Gaussian neighborhoods. 
On the small-scale DTU benchmark with man-made scenes, FeatureGS achieves a 20% improvement in 
geometric accuracy, suppresses floater artifacts by 90%, and reduces the number of Gaussians by 95%. 
FeatureGS proves to be a strong method for geometrically accurate, artifact-reduced and memory-efficient 
3D scene reconstruction, enabling the direct use of Gaussian centers for geometric representation.
1. Introduction

The creation of geometric 3D scene reconstructions has devel-
oped rapidly since the introduction of Neural Radiance Fields (NeRFs)
(Mildenhall et al., 2021). In NeRFs, a network implicitly describes the 
scene by estimating color and volume density for each position and 
direction. In contrast, 3D Gaussian Splatting (3DGS) offers new possi-
bilities for 3D scene and point cloud reconstruction as it represents the 
scene through 3D Gaussians. These are ellipsoid-like structures, charac-
terized by scaling, rotation, and color. During the optimization process, 
the 3D Gaussians are projected onto the image. To minimize the photo-
metric error between the rendered images and the training images, the 
Gaussians are refined and adapted. Unlike NeRFs, Gaussians in 3DGS 
explicitly represent the scene where geometric information is allegedly 
present. Nevertheless, the centers and surfaces of Gaussians do not 
directly represent the object surface, which makes their direct use for 
3D point cloud and mesh reconstruction impractical. In addition, the 
3DGS often leads to floater artifacts, which further increase the already 
high number of Gaussians and thus storage requirements.

In this work, we present FeatureGS, which incorporates four dif-
ferent formulations of an additional geometric loss term based on 
eigenvalue-derived 3D shape features into the optimization process 
of 3DGS. 3D shape features are widely used for tasks for semantic 
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interpretation and point cloud classification (Weinmann et al., 2015a, 
2017). Thereby the 3D covariance matrix (3D structure tensor (Jutzi 
and Gross, 2009)), derived from a point and its local neighborhood, 
is well-known to characterize such shape properties (Weinmann et al., 
2015a). The three eigenvalues, 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0, correspond to 
an orthogonal system of eigenvectors (𝜖1, 𝜖2, 𝜖3), which indicate the 
direction (rotation) of the three ellipsoid principal axes and correspond 
to the extent (scales) of the 3D ellipsoid along the principal axes. Based 
on the behavior of the eigenvalues 𝜆1, 𝜆2, and 𝜆3 structures can be 
described.

FeatureGS aims to improve geometric accuracy of Gaussians and 
enhance properties of planar surfaces with a reduced structural entropy 
in local 3D neighborhoods of Gaussians, to improve geometric consis-
tency and suppress noise in line with traditional filtering strategies for 
point clouds (Günen and Beşdok, 2021). Firstly, like previous flattening 
approaches (Guédon and Lepetit, 2024; Dai et al., 2024; Chen et al., 
2024a; Huang et al., 2024), FeatureGS aims to flatten 3D Gaussians 
by enhancing the ‘planarity’ of Gaussians as 3D feature, in order 
to achieve higher geometric accuracy of Gaussian centers. Secondly, 
real physical circumstances of point clouds can be described by inter-
pretable geometric features with a single value (Hillemann et al., 2019). 
To enhance the structural representation of the 3D Gaussian centers 
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in a neighborhood, particularly for man-made objects aligning with 
Manhattan-World-Assumption (Coughlan and Yuille, 1999, 2000), we 
leverage neighborhood-based 3D features derived from the 𝑘-nearest 
neighbors (kNN) of each Gaussian. By incorporating the 3D features 
either ‘planarity’, ‘omnivariance’, or ‘eigenentropy’ in the geometric 
loss, the characterization of local 3D structures with a predominance 
of planar surfaces with a structural entropy is reinforced.

In this contribution, we investigate whether the integration of dif-
ferent geometric loss terms of FeatureGS can enhance the 3D geo-
metric accuracy of Gaussian centers and suppress floater artifacts by 
reinforcing specific 3D shape properties of Gaussians and Gaussian 
neighborhoods. The evaluation focuses on the Chamfer cloud-to-cloud 
distance for geometrically 3D accuracy and artifact-reduction, and the 
total number of Gaussians required to represent the scene for memory 
efficiency. While our primary goal is to achieve precise geometric 
representation and efficient memory usage, we additionally report the 
rendering quality, measured by Peak Signal-to-Noise Ratio (PSNR), to 
ensure consistency in scene reconstruction. Experiments are conducted 
on 15 scenes from the DTU benchmark dataset.

We demonstrate that FeatureGS strikes a remarkable balance be-
tween geometric accuracy, floater artifact suppression, and memory 
efficiency by integrating 3D shape feature properties into the optimiza-
tion process of 3D Gaussian Splatting. It improves geometric accuracy 
by enforcing surface-aligned Gaussian distributions, enabling the Gaus-
sian centers to serve as a more precise geometric representation. In 
parallel, it drastically reduces the total number of Gaussians required 
to represent a scene at comparable rendering quality, resulting in 
artifact-reduced and memory-efficient reconstructions. All variants of 
FeatureGS additionally benefit from faster training. Overall, FeatureGS 
yields the following key outcomes:

• Up to 30% improvement in geometric accuracy on the DTU 
benchmark with man-made objects, measured via Chamfer dis-
tance.

• Enhanced surface alignment of Gaussians, enabling direct use of 
their centers as geometric representation.

• Suppression of floater artifacts by up to 90% on DTU and over 
55% on Tanks and Temples benchmark.

• Reduction of required Gaussians by up to 96%, leading to smaller 
model sizes and up to 24× compression, along with 20%–30% 
shorter training times compared to 3DGS.

In the following, we first discuss related work in Section 2, pro-
viding an overview of 3D feature extraction and novel view synthesis 
and 3D reconstruction techniques, as well as the use of Gaussian 
splats for 3D reconstruction. In Section 3, we present our method-
ology, FeatureGS, which integrates four alternative novel geometric 
loss formulations based on 3D shape features to enhance 3DGS. In 
Section 5 we introduce the experimental setup, including datasets, 
evaluation metrics, implementation details, and configurations for the 
photometric-geometric loss. In Sections 5 and 6, we present the results 
of our experiments on small-scale and large-scale benchmark datasets. 
While comparing FeatureGS to 3DGS and 2DGS with a focus on both 
quantitative and qualitative aspects. The derived results are discussed 
in Section 8, highlighting the advantages of FeatureGS concerning geo-
metric accuracy, artifact removal and memory efficiency. Additionally, 
Section 7 presents an ablation study that investigates the following 
aspects: hyperparameter tuning of the photometric-geometric loss term, 
and the combination into a multi-feature loss. Finally, in Section 9, 
the effectiveness of FeatureGS is outlined, and future directions for 
optimizations and practical applications are suggested.

2. Related work

In this section, we provide an overview of the different types of 
3D features in Section 2.1, which are essential for FeatureGS. Sub-
sequently, in Section 2.2, we present a brief overview of novel view 
synthesis and 3D reconstructions, followed by an introduction to 3D 
reconstructions with Gaussian splats.
2 
2.1. 3D features

Several types of 3D features exist for point cloud-based applications 
such as classification, registration, or calibration. Complex features, 
which cannot be interpreted directly include descriptors such as Shape 
Context 3D (SC3D) (Frome et al., 2004), Signature of Histogram of 
OrienTations (SHOT) (Tombari et al., 2010) or Fast Point Feature 
Histograms (FPFH) (Rusu et al., 2009). In contrast, interpretable fea-
tures (Weinmann et al., 2015c) are those that are directly interpretable, 
such as local 2D and 3D shape features. To describe the local structure 
around a 3D point, the spatial arrangement of other 3D points in the 
local neighborhood is often considered. Thereby the 3D covariance 
matrix, also known as the 3D structure tensor, is well-known and 
suitable for characterizing the shape properties of 3D data (Weinmann 
et al., 2015a). It is derived explicitly for each point from the point itself 
and its local neighbors. The three eigenvalues, 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0, 
correspond to an orthogonal system of eigenvectors (𝜖1, 𝜖2, 𝜖3), which 
indicate the direction (rotation) of the three ellipsoid principal axes 
and correspond to the extent (scales) of the 3D ellipsoid along the 
principal axes. Based on the behavior of the eigenvalues 𝜆1, 𝜆2, and 
𝜆3, linear (𝜆1 ≫ 𝜆2, 𝜆3), planar (𝜆1 ≈ 𝜆2 ≫ 𝜆3), and spherical (𝜆1 ≈
𝜆2 ≈ 𝜆3) structures can be described. The use of geometric 3D shape 
features has led to thousands of publications in various fields over the 
past few decades. They are especially used for the automatic semantic 
interpretation and classification (Weinmann et al., 2015a, 2017, 2020) 
of point clouds. But also for calibration (Hillemann et al., 2019) or 
registration (Bueno et al., 2018) of 3D point clouds.

2.2. 3D reconstruction with Gaussian Splats

The pioneering research on Neural Radiance Fields (NeRFs)
(Mildenhall et al., 2021) builds the fundament for 3D reconstruc-
tions with Gaussian Splats, and builds upon Scene Representation 
Networks (Sitzmann et al., 2019), which represent the scene as a 
function of 3D coordinates within the scene. NeRFs extend this concept 
by estimating color values and densities for each 3D coordinate through 
6D camera positions and associating 2D images through the training 
of a multilayer perceptron (MLP). NeRF was followed by thousands 
of publications driving research and development of neural surface 
reconstructions, point cloud and mesh reconstruction (Oechsle et al., 
2021; Wang et al., 2021; Yariv et al., 2021; Li et al., 2023; Jäger 
and Jutzi, 2023) in various domains. However, NeRF describes the 
scene implicitly by estimating a color and volume density for each 
position and direction, which are also subject to a certain degree of 
uncertainty (Jäger et al., 2025).

In contrast 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) offers 
new possibilities for 3D scene reconstruction. With 3DGS a novel 
concept of 3D scene representation was elaborated, in which a scene 
is explicitly represented by a large set of 3D Gaussians. Each Gaussian 
is defined by its mean, covariance, opacity, and spherical harmonics 
for color definition. The covariance is parameterized using scaling and 
rotation. These 3D Gaussians are projected into 2D Gaussians to the 
2D image space, allowing high-quality real-time rendering. To optimize 
the scene, the Gaussians are initialized from a point cloud produced 
by Structure from Motion (SfM). The Gaussians’ parameters (means for 
the Gaussian centers, scaling, rotations, opacities, and color) are then 
refined during optimization to match the training images. More Gaus-
sians are added as needed to improve the scene representation. This 
optimization process leads to scenes with millions of small Gaussians 
that represent the 3D object geometry. Nevertheless, Gaussians do not 
take an ordered structure in general (Guédon and Lepetit, 2024), and 
the center or surface of a Gaussian does not directly align with the 
actual object surface. In addition, 3DGS often leads to floater artifacts, 
which further increase the high number of Gaussians and thus the 
storage requirements.
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Fig. 1. Methodology of FeatureGS: Geometric loss based on 3D shape features added to 3DGS (Kerbl et al., 2023). The features are derived from eigenvalues 
of the covariance matrix from individual Gaussians or the covariance matrix from Gaussians in a local neighborhood surrounding each Gaussian center. The 
geometric loss is combined with the photometric loss in 3DGS.
The concept of transforming 3D Gaussians into 2D ellipses or planar 
ellipse-like structures in order to achieve higher geometric accuracy is 
widely used in many approaches. SuGaR (Guédon and Lepetit, 2024) 
extracts meshes from 3DGS by introducing a regularization term that 
aligns Gaussians with the scene surface. Surfels (Dai et al., 2024) 
combines 3D Gaussian points’ optimization flexibility with the sur-
face alignment of surfels by flattening 3D Gaussians into 2D ellipses, 
setting the z-scale to zero. PGSR (Chen et al., 2024a) flattens Gaus-
sians into planes, using unbiased depth rendering to obtain precise 
depth information. 2DGS (Huang et al., 2024) follows a similar ap-
proach and collapses 3D volumes directly into 2D planar Gaussian 
disks for view-consistent geometry, using perspective-accurate splatting 
with ray-splat intersection and depth and normal consistency terms. 
MVG-Splatting (Li et al., 2024) improves 2DGS by optimizing normal 
calculation and using an adaptive densification method guided by 
depth maps. MIP-Splatting (Yu et al., 2024) introduces a 3D smoothing 
filter to constrain Gaussian sizes based on the input views’ sampling 
frequency, eliminating high-frequency artifacts.

In contrast to other works, FeatureGS utilizes geometric 3D shape 
features to enhance specific Gaussian and Gaussian neighborhood prop-
erties for geometrically accurate and artifact-reduced 3D reconstruc-
tion. The 3D features are embedded within the optimization process of 
3DGS through an additional geometric loss term in four alternative for-
mulations into a photometric-geometric loss term. On the one hand, like 
previous approaches (Guédon and Lepetit, 2024; Dai et al., 2024; Chen 
et al., 2024a; Huang et al., 2024), FeatureGS flattens 3D Gaussians. 
However, FeatureGS incorporates the 3D feature ‘planarity’ for that. On 
the other hand, FeatureGS can enhance properties of planar surfaces 
with reduced structural entropy by utilizing 3D features ‘planarity’, 
‘omnivariance’ and ‘eigenentropy’ in Gaussian neighborhoods.

3. Methodology

In this section, we describe FeatureGS (Fig.  1) with four alternative 
additional geometric loss formulations based on 3D shape features. 
These features are derived from the eigenvalues of the covariance 
matrix of the Gaussians and Gaussian neighborhoods, and provide 
insights into the spatial structure within both individual Gaussians 
and the Gaussians in a local neighborhood surrounding each Gaussian 
center. Our proposed geometric loss is combined with the photometric 
loss used in 3DGS to create a comprehensive photometric-geometric 
loss function.
3 
3.1. Photometric loss

The photometric loss term of 3DGS measures the similarity between 
rendered images and ground truth images using pixel-level comparison 
metrics. This loss includes both L1 loss and a Structural Similarity Index 
(SSIM) term to capture differences in luminance, contrast, and structure 
between the images. The photometric loss is given by the following loss 
function (Eq.  (1)). 

𝐿photometric = (1 − 𝜃)𝐿1 + 𝜃𝐿D-SSIM (1)

with 𝜃, 𝐿1-Norm of the per pixel color difference and 𝐿D-SSIM-Term
(Kerbl et al., 2023).

3.2. Geometric loss

We introduce four different novel additional geometric loss terms, 
based on the eigenvalue-derived 3D shape features to enhance specific 
properties (Fig.  2) of 3D Gaussian itself and Gaussian centers in a 
neighborhood. For the first approach, we aim to flatten Gaussians to 
achieve a high geometric accuracy of the Gaussian centers. This is 
done by incorporating the 3D shape feature ‘planarity’ from eigenvalues 
(scales) (Fig.  3(a)) of each Gaussian itself in the geometric loss term. For 
the second approach, we incorporate a neighborhood-based geometric 
loss term using the 3D shape features from covariance matrix (Fig.  3(b)) 
by the 𝑘-nearest neighbors (kNN) of each Gaussian center. To enhance 
a specific characterization of local 3D structures of man-made ob-
jects aligning with Manhattan-World-Assumption (Coughlan and Yuille, 
1999, 2000), we strengthen the predominance of planar surfaces, and 
a structural entropy. This is done through the Gaussian neighborhood 
3D shape features ‘planarity’, ‘omnivariance’, and ‘eigenentropy’.

3.2.1. Covariance matrix
Gaussian. 3DGS uses an explicit representation of the scene through 3D 
Gaussians. These ellipsoid-like structures are characterized by scaling, 
rotation, and color, including opacity. The scaling components can be 
interpreted analogously to the three eigenvalues 𝑠1 ≥ 𝑠2 ≥ 𝑠3 ≥ 0 and 
the rotation components to the eigenvectors (𝜖1, 𝜖2, 𝜖3) of the covariance 
matrix. By using the normalized eigenvalues (scales) of the Gaussian 
covariance matrix (Fig.  3(a)), we compute the 3D shape feature.
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Fig. 2. Additional geometric loss of FeatureGS, illustrated by a 3D feature from Gaussians and a 3D feature from Gaussian centers in a local neighborhood. For 
example, through the loss with planarity of Gaussians, the Gaussians become more planar, and through the loss with planarity, omnivariance, or eigenentropy in 
the Gaussian neighborhood, the alignment of the Gaussian centers in the neighborhood becomes more planar. All configurations have the effect that the Gaussians 
move closer to the object surface and are less randomly oriented. This enables the Gaussian centers to serve as a geometric representation of the surface.
Gaussian neighborhood. Given a point 𝑝0 in the 3D space, i.e., the center 
of a Gaussian, we define its 𝑘-nearest neighbors {𝑝1, 𝑝2,… , 𝑝𝑘}. The 
centroid 𝑝̄ (Eq.  (2)) of this neighborhood is computed as: 

𝑝̄ = 1
𝑘 + 1

𝑘
∑

𝑖=0
𝑝𝑖 (2)

The covariance matrix 𝐶 (Eq.  (3)) (Weinmann et al., 2015) for the 
neighborhood (Fig.  3(b)) is then: 

𝐶 = 1
𝑘 + 1

𝑘
∑

𝑖=0
(𝑝𝑖 − 𝑝̄)(𝑝𝑖 − 𝑝̄)𝑇 (3)

From 𝐶, eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 are derived, providing shape 
properties for the neighborhood.

3.2.2. Eigenvalue normalization
To ensure consistency, eigenvalues 𝑠1, 𝑠2, 𝑠3 from the Gaussian co-

variance matrix and 𝜆1, 𝜆2, 𝜆3 from the Gaussian neighborhood covari-
ance matrix are normalized by dividing by the sum of the eigenvalues 
for each case.

For the Gaussian covariance matrix (Eq.  (4)): 

𝑠′𝑖 =
𝑠𝑖

sum(𝐬)
for 𝑖 ∈ {1, 2, 3}, (4)

with 

sum(𝐬) =
3
∑

𝑖=1
𝑠𝑖. (5)

For the Gaussian neighborhood covariance matrix (Eq.  (6)): 

𝜆′𝑖 =
𝜆𝑖

sum(𝝀)
for 𝑖 ∈ {1, 2, 3}, (6)

with 

sum(𝝀) =
3
∑

𝑖=1
𝜆𝑖. (7)

The normalized eigenvalues 𝑠′1, 𝑠′2, 𝑠′3 and 𝜆′1, 𝜆′2, 𝜆′3 are then ordered 
in descending order:
𝑠′1 ≥ 𝑠′2 ≥ 𝑠′3 ≥ 0 and 𝜆′1 ≥ 𝜆′2 ≥ 𝜆′3 ≥ 0.

The normalized eigenvalues are then used for the final geometric 
3D feature computation.
4 
Fig. 3. a Representation of a single Gaussian ellipsoid with the three 
eigenvectors (𝝐𝟏, 𝝐𝟐, 𝝐𝟑) and the corresponding eigenvalues (𝑠1, 𝑠2, 𝑠3) in the 
three-dimensional coordinate system. b Representation of an ellipsoid from 
the neighborhood points represented by the Gaussian centers with the three 
eigenvectors (𝝐𝟏, 𝝐𝟐, 𝝐𝟑) and the corresponding eigenvalues (𝜆1, 𝜆2, 𝜆3) in the 
three-dimensional coordinate system.

3.2.3. Geometric loss with Gaussians
Gaussian planarity. Planarity (Weinmann et al., 2015) measures the 
extent to which a Gaussian resembles a planar structure. It is defined 
as:

PlanarityGauss =
𝑠′2 − 𝑠′3

𝑠′1
(8)

The Gaussian planarity loss (Eq.  (9)), preferring high planarity 
similar to other flattening approaches, is: 

𝐿Plan,Gauss =

(

1 −
𝑠′2 − 𝑠′3

𝑠′1

)

(9)

3.2.4. Geometric loss with Gaussian neighborhoods
To enhance the structural properties that 3D point clouds of man-

made objects exhibit, we incorporate a neighborhood-based geometric 
loss using the 𝑘-nearest neighbors (kNN) of each point. This approach 
allows for the calculation of spatial features in the local neighborhood 
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of each Gaussian. The strengthening of the characterization of planar 
surfaces with reduced structural entropy in local 3D neighborhoods is 
achieved by including a geometric neighborhood loss. For this pur-
pose, we consider the 3D features PlanaritykNN, OmnivariancekNN and 
EigenentropykNN in Gaussian neighborhoods of kNN from the nor-
malized eigenvalues 𝜆′1 ≥ 𝜆′2 ≥ 𝜆′3 ≥ 0, explained in more detail 
below.

Neighborhood planarity. Similar to the purpose of maintaining planarity 
of each Gaussian itself, we want to strengthen the properties of man-
made objects according to the Manhattan-World-Assumption (Cough-
lan and Yuille, 1999, 2000) and other (almost) planar surfaces, and 
suppress the spherical spread of the Gaussians in a neighborhood. 
Therefore, in addition to the planarity of the Gaussians, we use the 
planarity (Weinmann et al., 2015) in the neighborhood. This is defined 
as: 

PlanaritykNN =
𝜆′2 − 𝜆′3

𝜆′1
(10)

The neighborhood planarity loss (Eq.  (11)) is: 

𝐿Plan,kNN =

(

1 −
𝜆′2 − 𝜆′3

𝜆′1

)

(11)

Neighborhood omnivariance. The omnivariance indicates the volume of 
the neighborhood and expresses whether the respective points scatter 
locally in all directions. In previous work (Weinmann et al., 2015b), 
the omnivariance is indicated to be a highly relevant feature of point 
cloud classification. Omnivariance (Weinmann et al., 2015) and the 
neighborhood omnivariance loss (Eq.  (12)) is defined as: 

𝐿Omni,kNN = OmnivariancekNN = 3
√

𝜆′1𝜆
′
2𝜆

′
3 (12)

Minimizing the neighborhood omnivariance loss reduces the local 
scattering of the points.
Neighborhood eigenentropy. The eigenentropy quantifies the order/
disorder of the local structure of the neighborhood points by measuring 
the entropy within the local 3D neighborhood based on the normal-
ized eigenvalues. Additionally, it has shown to be an appropriate 3D 
feature for characterizing plane point cloud structures (Dittrich et al., 
2017). Eigenentropy (Weinmann et al., 2015) and the neighborhood 
eigenentropy loss (Eq.  (13)) is defined as: 

𝐿Eigen,kNN = EigenentropykNN = −
3
∑

𝑖=1
𝜆′𝑖 log(𝜆

′
𝑖) (13)

Minimizing the neighborhood eigenentropy loss favors a minimum 
disorder (Weinmann et al., 2017) and therefore low entropy of 3D 
points.

3.3. Combined photometric-geometric loss

Our four different final loss functions 𝐿 combine the conventional 
photometric loss 𝐿photometric of 3DGS with each one of four different 
geometric loss 𝐿geometric terms. This incorporates both the 3D shape 
properties of each Gaussian itself 𝐿geometric,Gaussian or the neighborhood 
features 𝐿geometric,kNN based on Gaussian centers. The photometric 
loss ensures the quality of pixel rendering by adjusting the Gaussians 
according to their projection onto the image plane, while the geomet-
ric loss term enhances specific properties of 3D structures. The total 
photometric-geometric loss 𝐿 (Eq.  (14)) is defined as: 
𝐿 = ℎphoto ⋅ 𝐿photometric + 𝐿geometric, (14)

with 
𝐿geometric ∈ {𝐿Plan,Gaussian, 𝐿Plan,kNN,

𝐿Omni,kNN, 𝐿Eigen,kNN}.
(15)

and the hyperparameter ℎphoto for balancing the weighting between the 
photometric and geometric components.
5 
4. Experiments

In this section, we present the experimental setup. We introduce the 
used datasets (Section 4.1), the evaluation metrics (Section 4.2), the set-
ted implementation details (Section 4.3), as well as the configurations 
for our photometric-geometric loss (Section 4.4).

4.1. Dataset

Small-scale dataset. For the evaluation of FeatureGS, we use the small-
scale DTU benchmark dataset (Jensen et al., 2014). The dataset consists 
of scenes featuring real objects, including either 49 or 64 RGB images, 
corresponding camera poses, and reference point clouds obtained from 
a structured-light scanner (SLS). We specifically focus on the same 12 
scenes as previous approaches (Dai et al., 2024; Chen et al., 2024a; 
Huang et al., 2024; Li et al., 2024).
Large-scale dataset. Additionally, we evaluate on the Tanks and Tem-
ples dataset (Knapitsch et al., 2017), which contains large-scale outdoor 
and indoor scenes with complex geometry and varied lighting condi-
tions in real-world environments. Reference point clouds are given, 
obtained from an industrial laser scanner. We specifically focus on the 
four outdoor scenes barn, caterpillar, ignatius and truck. All experi-
ments were performed using the automatic image resolution downscal-
ing applied by 3DGS in its default configuration, in order to match the 
memory constraints of the used GPU.

4.2. Metrics

To evaluate our method quantitatively and qualitatively, we report 
the 3D geometric accuracy, the number of Gaussians needed to repre-
sent the scene for memory efficiency and the rendering quality. For 3D 
evaluation we report the Chamfer cloud-to-cloud distance. To evaluate 
surface accuracy, we use the DTU evaluation procedure (Jensen et al., 
2014), which masks out points above 10 mm. In addition, we use the 
Chamfer cloud-to-cloud distance for all points to evaluate the presence 
of floater artifacts external to the object. Low Chamfer distance indi-
cates high accuracy and less artifacts. Gaussian storage requirements by 
the total numbers of Gaussian. We evaluate the 2D rendering quality of 
the images with the Peak Signal-to-Noise Ratio (PSNR) in dB, whereby 
a high PSNR is targeted. For the large-scale Tanks and Temples dataset, 
training time and model size are additionally tracked to evaluate the 
capability of FeatureGS for challenging, real-world environments.

4.3. Implementation details

3D Gaussian Splatting1 is processed according to the original im-
plementation, using default densification strategies and the default 
parameters with learning rates of 0.0025 for spherical harmonics fea-
tures, 0.05 for opacity adjustments, 0.005 for scaling operations and 
0.001 for rotation transformations, on a NVIDIA RTX3090 GPU.

2D Gaussian Splatting2 is processed according to the original imple-
mentation by using default parameters.

Firstly, we consider the same number of training iterations of 
15000, which are recommended from 3DGS. For a fair comparison, 
we consider the evaluation procedure by training with early stopping 
on each the same reached PSNR value. This should demonstrate that 
FeatureGS enables pushing down the total numbers of Gaussians rep-
resenting the scene, while achieving higher geometric accuracy and 
artifact-reduced rendering for the same photometric rendering quality.

1 https://github.com/graphdeco-inria/gaussian-splatting (last access 
07/21/2024).

2 https://github.com/hbb1/2d-gaussian-splatting (last access 04/29/2025).

https://github.com/graphdeco-inria/gaussian-splatting
https://github.com/hbb1/2d-gaussian-splatting
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Fig. 4. Geometric accuracy during training process on the DTU scan40 for different loss types. Chamfer cloud-to-cloud distances ↓ in mm for points ≤10 mm 
and all points (floater artifacts).
4.4. Loss configurations

The photometric loss for the optimization is given by the loss 
function in Eq.  (1) with 𝜃 = 0.2 by default (Kerbl et al., 2023).

For the final different photometric-geometric loss formulations
(Eq.  (14)) of FeatureGS the weighting with ℎphoto = 0.05 is chosen. This 
is based on hyperparameter tuning (Fig.  12) in Section 7.1, to create 
a proper balance between rendering quality and geometric accuracy, 
approximately where the reached PSNR remains the same but the 
Chamfer cloud-to-cloud distance increases.

As the 3D distribution of the Gaussians and hence their centers 
changes through the optimization, we decide on a fixed number of 
kNN = 50 (Weinmann et al., 2017) as representative 𝑘-nearest neigh-
bors. Through the variable distribution and density of the points during 
the training process, we aim to achieve an effect similar to multi-
scale (Brodu and Lague, 2012) neighborhoods, which have proven to 
be robust in point cloud classification tasks.

5. Results: Small-scale data

The following sections show qualitative (Section 5.1) and quanti-
tative (Section 5.2) results of FeatureGS in comparison to 3DGS and 
2DGS. We distinguish between the training with a fixed number of 
training iterations in Section 5.1.2 and a fixed achievable rendering 
quality in Section 5.1.3, represented by an early stopping of the PSNR. 
This should demonstrate the performance of FeatureGS in terms of 
geometric accuracy, floater artifact-reduction, memory efficiency, and 
yet strong rendering quality, based on the two criteria.

5.1. Quantitative results

5.1.1. Training process
Over the training process of 15000 iterations, the original photo-

metric loss of 3DGS and the photometric-geometric loss of FeatureGS 
demonstrate distinct behaviors in terms of geometric accuracy, pres-
ence of floater artifacts, number of Gaussians representing the scene, 
and rendering quality.

It is observed that the Chamfer cloud-to-cloud distance (Fig.  4) for 
3DGS continuously increases for all points during training process. For 
instance, in the case of scene40, the distance rises to approximately 
50 mm. In contrast, for all geometric FeatureGS losses, the distance 
remains consistently low throughout the training process. Only a slight 
increase is present, which is due to the fact that the initial point cloud 
6 
from SfM nonetheless has the highest accuracy and FeatureGS also re-
constructs points that are not in the (incomplete) reference point cloud. 
For scan40, this distance stabilizes at around 4–5 mm. This indicates 
that, unlike FeatureGS, the 3DGS training process incorporates a signif-
icant number of points (see Fig.  5) with higher geometric inaccuracies. 
Regarding the geometric surface accuracy, measured by masking out 
points with errors over 10 mm, the distance for 3DGS initially increases 
to approximately 1.9 mm, then decreases and stabilizes at a constant 
value. For scan40, the distance starts at approximately 1.2 mm, peaks 
at 1.9 mm, and eventually stabilizes at 1.7 mm. Conversely, the dis-
tance for FeatureGS increases less at the start of training and then 
decreases further as training progresses. For scan40, it decreases from 
approximately 1.3 mm to 1.0 mm.

With regard to rendering quality (Fig.  6), as measured by PSNR 
(and SSIM), the original photometric loss of 3DGS significantly out-
performs the combined photometric-geometric loss of FeatureGS. For 
3DGS, the PSNR continuously increases and appears to converge after 
approximately 14000 training iterations. In contrast, for all FeatureGS 
loss functions, the PSNR initially increases rapidly but saturates at a 
noticeably lower value after about 10000 iterations. The behavior of 
SSIM follows a similar trend.

5.1.2. Fixed training iterations
The following quantitative results for the fixed number of training 

iterations of 15000 provide the geometric accuracy by Chamfer cloud-
to-cloud distance, the number of resulting Gaussians, and the rendering 
quality reported by the PSNR.
Geometric accuracy. For the geometric accuracy of the surface points 
(Table  1), which are located at a distance of 10 mm from the reference 
point cloud 𝐿Plan,Gauss and 𝐿Eigen,kNN yield often the best and second 
best highest geometric accuracies. 𝐿Plan,kNN and 𝐿Omni,kNN achieve a 
mixed result, but show good performance in some scenes such as 
scan24, scan37. Nevertheless, the differences between all geometric-
radiometric FeatureGS configurations are mostly marginal and stable 
across all scans (see e.g. scan55 with Chamfer distances from 0.967 
to 0.971 mm). This is also reflected in the mean geometric accuracy. 
Compared to 2DGS (1.331 mm) and 3DGS (1.609 mm), FeatureGS 
achieves the highest geometric accuracy with a mean Chamfer distance 
between 1.310 and 1.315 mm.

Floater artifacts due to presumably incorrectly reconstructed Gaus-
sians external to the actual object, where smaller values mean less 
disturbing artifacts, are illustrated by Table  2. Regarding the reduction 



M. Jäger et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 17 (2025) 100100 
Fig. 5. Numbers of Gaussians during training process on the DTU scan40 for different loss types.
Fig. 6. Rendering quality during training process on the DTU scan40 for different loss types. Peak Signal-to-Noise Ratio (PSNR) ↑ in dB and SSIM ↑.
of floater artifacts, 𝐿Plan, Gaussian and 𝐿Eigen,kNN prove to be particularly 
effective. 𝐿Plan,Gauss often achieves the best results and shows a strong 
ability to minimize floater artifacts, especially for scans such as scan40 
(4.816 mm) and scan55 (4.782 mm). On average, 𝐿Plan,Gauss performs 
best with 10.593 mm, followed by 𝐿Plan,kNN with 10.793 mm. Overall, 
there is a significant improvement in all FeatureGS configurations com-
pared to 3DGS, both in terms of surface accuracy and floater reduction. 
FeatureGS reduces the mean Chamfer distance for surface accuracy by 
around 0.3 mm (approx. 20% improvement). In particular, compared to 
3DGS (116.587 mm) and 2DGS (95.359 mm), FeatureGS reduces floater 
artifacts by over 90%.
Number of Gaussians. Table  3 shows the number of Gaussians gen-
erated by 3DGS and the different loss configurations of FeatureGS. 
The mean values indicate that all the FeatureGS configurations reduce 
the number of Gaussians by around 440000 Gaussians on average, 
which corresponds to a reduction of around 95%. 2DGS, while more 
efficient than 3DGS, produces nearly eight times more Gaussians than 
FeatureGS. FeatureGS increases the number of initial points by only 
around 7%. The relative differences between the FeatureGS configura-
tions are only minor. All FeatureGS configurations deliver a consistently 
clear reduction compared to 3DGS.
7 
Rendering quality. While FeatureGS is significantly more memory ef-
ficient (fewer Gaussians, less storage required), has less floater arti-
facts and delivers geometrically more accurate results, there are draw-
backs in rendering quality (Table  4). On average, the mean PSNR 
values appear lower with a decrease in rendering quality of approx-
imately 3.3 dB. The differences between the different FeatureGS loss 
formulations are minimal (less than 0.1 dB).

5.1.3. Fixed rendering quality
The quantitative results for the fixed PSNR using early stopping 

demonstrate the geometric accuracy due to the Chamfer cloud-to-cloud 
distance and the number of Gaussians required for this. The compar-
ison of 3DGS and the FeatureGS configurations with identical PSNR 
serves to evaluate different aspects of the methods under comparable 
rendering qualities. This ensures that differences in other metrics such 
as geometric accuracy, number of Gaussians or floater artifacts are not 
influenced by a varying of the rendering quality.
Geometric accuracy. FeatureGS consistently outperforms 3DGS in ge-
ometric accuracy of surface points (Table  5) for the same rendering 
quality, with an average improvement of about 30%, with a mean 
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Table 1
Surface accuracy. Geometric accuracy comparison on the DTU dataset with Chamfer cloud-to-cloud distances ↓
in mm for points ≤10 mm from the reference, according to the DTU evaluation script. Best results are highlighted 
as 1st, 2nd, and 3rd. Mean scores are listed at the bottom. The training incorporates 15000 iterations.
 Methods 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 scan24 1.702 1.229 1.421 1.438 1.434 1.432  
 scan37 1.782 1.525 1.324 1.309 1.317 1.360  
 scan40 1.625 0.955 1.002 1.002 0.989 1.001  
 scan55 1.361 0.746 0.969 0.968 0.967 0.971  
 scan63 2.061 2.023 1.483 1.449 1.462 1.481  
 scan65 1.708 1.441 1.518 1.526 1.506 1.513  
 scan69 1.671 1.276 1.299 1.316 1.312 1.314  
 scan83 2.285 2.024 1.428 1.425 1.417 1.412  
 scan97 1.855 1.759 1.689 1.684 1.695 1.689  
 scan105 1.778 1.508 1.172 1.168 1.163 1.180  
 scan106 1.514 0.758 0.936 0.939 0.948 0.950  
 scan110 1.486 1.356 1.819 1.821 1.800 1.808  
 scan114 1.549 0.941 0.966 0.952 0.960 0.945  
 scan118 1.291 0.681 0.875 0.854 0.873 0.866  
 scan122 1.289 0.743 0.992 1.000 0.991 0.990  
 Mean 1.609 1.331 1.313 1.310 1.311 1.315  
Table 2
Floater artifacts. Geometric accuracy comparison on the DTU dataset with Chamfer cloud-to-cloud distances↓
in mm are reported for all points to focus on floaters external to the point cloud. Best results are highlighted as 
1st, 2nd, and 3rd. Mean scores are listed at the bottom. The training incorporates 15000 iterations.
 Methods 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 scan24 50.850 45.800 8.909 9.378 21.158 12.469  
 scan37 53.919 65.792 9.575 8.312 9.435 9.045  
 scan40 43.597 65.314 4.915 5.174 4.816 5.267  
 scan55 58.004 69.473 5.050 5.990 4.782 5.059  
 scan63 279.172 172.740 19.130 24.350 20.405 22.034  
 scan65 179.180 170.143 17.916 15.357 19.246 18.741  
 scan69 121.251 112.102 10.110 9.653 9.708 9.770  
 scan83 178.645 141.350 24.628 21.874 22.426 21.545  
 scan97 111.836 65.862 13.099 12.033 11.333 9.755  
 scan105 132.986 68.334 8.221 8.159 8.260 8.480  
 scan106 88.501 80.452 3.272 3.459 3.058 3.211  
 scan110 164.030 120.396 17.160 14.134 17.584 18.517  
 scan114 173.681 135.634 5.850 6.773 6.138 6.002  
 scan118 83.070 85.573 6.977 6.374 7.005 7.087  
 scan122 124.686 101.461 9.332 9.755 9.265 9.369  
 Mean 116.587 95.359 10.593 10.793 12.212 11.721  
Table 3
Number of Gaussians on the DTU dataset. We report the total number of Gaussians ↓ resulting from the four 
alternative loss formulations of FeatureGS, compared to 3DGS, 2DGS, and the number of SfM points used for 
initialization. Mean scores are listed at the bottom. Best results (lowest total number) concerning memory are 
highlighted as 1st, 2nd, and 3rd. The training incorporates 15000 iterations.
 Methods 3DGS 2DGS FeatureGS Initial SfM 
 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN  
 scan24 673276 318556 20105 20423 20485 20440 15479  
 scan37 766722 390183 29431 29111 29247 29291 24857  
 scan40 831896 351751 40425 40404 40445 40429 39158  
 scan55 739171 327276 34760 34774 34738 34780 33506  
 scan63 249496 145388 13343 13461 13610 13509 10869  
 scan65 347906 158023 14231 14154 14213 14216 13203  
 scan69 304854 164466 15931 15911 15906 15911 15264  
 scan83 216765 119774 11982 11921 12054 11913 10652  
 scan97 595899 252064 22699 22717 22579 22436 20467  
 scan105 250257 131301 26102 26154 26111 26210 25291  
 scan106 269773 114440 33701 33707 33696 33705 33523  
 scan110 227484 93552 11822 11768 11835 11838 11382  
 scan114 361373 140436 26208 26248 26226 26199 25761  
 scan118 357583 156268 27964 27948 27973 27967 27650  
 scan122 318226 145922 21427 21423 21417 21417 20975  
 Mean 462699 189427 24275 24277 24302 24291 22771  
8 
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Table 4
Rendering quality comparison on the DTU dataset. We report the PSNR ↑ in dB. Mean scores are listed at the 
bottom. Best results are highlighted as 1st, 2nd, and 3rd. The training incorporates 15000 iterations.
 Methods 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 scan24 35.16 32.03 29.86 29.90 29.98 29.93  
 scan37 29.98 28.51 26.32 26.35 26.39 26.36  
 scan40 34.59 31.76 28.48 28.52 28.56 28.45  
 scan55 34.08 31.87 29.48 29.55 29.50 29.56  
 scan63 37.35 35.43 32.65 32.66 32.74 32.81  
 scan65 35.19 31.78 30.35 30.35 30.36 30.35  
 scan69 33.50 30.91 28.33 28.57 28.54 28.53  
 scan83 34.08 31.12 32.69 32.82 32.84 31.85  
 scan97 32.57 30.99 30.03 30.06 30.12 30.01  
 scan105 36.70 34.41 34.68 34.64 34.51 34.59  
 scan106 37.48 36.17 36.01 36.09 36.06 36.03  
 scan110 31.81 30.19 29.94 29.96 29.92 29.94  
 scan114 34.78 32.55 32.73 32.55 32.70 32.64  
 scan118 36.71 35.08 34.81 34.85 34.82 34.83  
 scan122 36.06 34.83 34.15 34.17 34.15 34.17  
 Mean 34.67 32.51 31.37 31.40 31.41 31.34  
Table 5
Surface accuracy. Geometric accuracy comparison on the DTU dataset with 
Chamfer cloud-to-cloud distances ↓ in mm for surface points ≤10 mm from the 
reference, according to the DTU evaluation script. Best results are highlighted 
as 1st, 2nd, and 3rd. Mean scores are listed at the bottom. The training 
incorporates iterations until early stopping at same PSNR.
 Methods 3DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 scan24 2.026 1.424 1.463 1.475 1.446  
 scan37 1.847 1.297 1.313 1.278 1.280  
 scan40 1.758 0.954 0.948 0.952 0.951  
 scan55 1.672 0.935 0.918 0.944 0.914  
 scan63 2.155 1.530 1.534 1.504 1.500  
 scan65 2.095 1.589 1.576 1.581 1.582  
 scan69 1.916 1.288 1.271 1.290 1.271  
 scan83 2.211 1.438 1.489 1.507 1.509  
 scan97 1.912 1.680 1.699 1.704 1.704  
 scan105 1.769 1.264 1.332 1.293 1.280  
 scan106 1.574 1.095 1.104 1.104 1.100  
 scan110 1.902 1.866 1.854 1.831 1.853  
 scan114 1.453 1.010 1.015 1.008 1.022  
 scan118 1.503 1.064 1.063 1.053 1.063  
 scan122 1.604 1.060 1.070 1.060 1.051  
 Mean 1.826 1.300 1.310 1.306 1.302  

geometric accuracy of 1.826 mm for 3DGS to 1.300 to 1.310 mm 
for FeatureGS. The different loss formulations of FeatureGS show only 
minimally different results with differences of less than 1 percent.

FeatureGS heavily reduces floater artifacts (Table  6) at the same ren-
dering quality by an average of 90% compared to 3DGS. This is shown 
in the mean Chamfer Distance, which is reduced from 93.690 mm for 
3DGS to 10.620–10.771 mm for FeatureGS. Overall, the photometric-
geometric loss formulations with 𝐿Plan,kNN and 𝐿Omni,kNN result in the 
lowest amount of floater artifacts.
Number of Gaussians. In addition, the number of Gaussians (Table  7) 
is reduced by FeatureGS while maintaining the same rendering quality 
compared to 3DGS. FeatureGS drastically reduces the number of Gaus-
sians by around 90% from an average of 249986 Gaussians to between 
26380 and 26389 Gaussians. This leads to a lower memory require-
ment. Within FeatureGS, the variants show equivalent compression of 
the number of Gaussians.

5.2. Qualitative results

Similar to the quantitative results, FeatureGS yields promising re-
sults in terms of geometric accuracy of the 3D point clouds as well as 
9 
Table 6
Floater artifacts. Geometric accuracy comparison on the DTU dataset with 
Chamfer cloud-to-cloud distances ↓ in mm are reported for all points to focus 
on floaters external to the point cloud. Best results are highlighted as 1st, 
2nd, and 3rd. Mean scores are listed at the bottom. The training incorporates 
iterations until early stopping at same PSNR.
 Methods 3DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 scan24 32.241 11.835 8.441 14.137 9.151  
 scan37 72.622 9.451 11.153 8.361 8.852  
 scan40 19.356 4.796 5.475 5.191 5.751  
 scan55 36.010 5.233 4.872 4.727 5.199  
 scan63 200.478 20.862 19.600 20.744 22.942  
 scan65 163.601 17.775 18.103 15.096 17.191  
 scan69 61.014 9.524 9.5613 9.736 9.561  
 scan83 139.395 22.819 22.671 21.552 23.454  
 scan97 70.390 11.543 12.408 12.085 11.960  
 scan105 80.220 8.102 8.037 8.067 8.172  
 scan106 32.873 3.228 3.021 3.031 3.206  
 scan110 111.052 16.205 15.742 16.463 16.771  
 scan114 57.211 6.006 5.732 6.078 5.409  
 scan118 58.760 5.199 5.172 4.870 4.814  
 scan122 270.132 8.983 9.504 9.155 8.688  
 Mean 93.690 10.771 10.633 10.620 10.741  

rendering quality by removing floater artifacts. Through all geometric 
loss terms of FeatureGS, consistently accurate and floater artifact-
reduced results are generated across all 15 scenes, compared to 3DGS. 
All results are shown for the exact same PSNR values by early stopping, 
thus the same rendering quality.
Geometric accuracy. The geometric accuracy of Gaussian centers on 
DTU dataset, evaluated using the Chamfer cloud-to-cloud distance (Fig. 
7), highlights the superior performance of FeatureGS compared to 
3DGS. For the FeatureGS, the configurations that yielded the highest 
surface accuracy for the respective scenes are visualized. It is important 
to note that the reference point clouds are incomplete, which leads 
to high values on all object edges. On the one hand, it shows that 
the accuracy of the surface points is higher for FeatureGS, achieving 
submillimeter accuracy. Furthermore, the surface points appear less 
noisy. On the other hand, the drastic reduction in floater artifacts is 
striking, whereby floater artifacts prevent the reconstruction of the 
geometry via direct extraction of the Gaussian centers. While 3DGS 
leads to a lot of floater artifacts in all scenes, the scenes with FeatureGS 
are almost artifact-free.

FeatureGS prioritizes surface accuracy and reduces floater artifacts 
by enhancing properties of planar surfaces with low structural entropy 
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Fig. 7. Geometric accuracy comparison on the DTU dataset with Chamfer cloud-to-cloud distances ↓ for the same PSNR. Color values are cropped at 10 mm 
distance.
instead of increasing point density. As a consequence, the resulting 
point clouds remain relatively sparse. In low-textured regions, similar 
to the behavior observed in 3DGS and 2DGS, a smaller number of larger 
Gaussians is sufficient to achieve accurate photometric representation, 
as demonstrated in DTU scenes 24, 37, 63, 97, 110, and 118 (Fig.  7). 
10 
This leads to the appearance of gaps in homogeneous areas, as shown 
in Fig.  8.

Rendering quality. The rendering quality (Fig.  9) shown by the ren-
dered test images also underlines the overall strong performance of 
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Fig. 8. Illustration of gaps in the point clouds from Gaussian centers at low-textured, homogeneous areas using 3DGS, 2DGS and FeatureGS. Compared to the 
reference point cloud and GT image for DTU scene scan118.
Table 7
Number of Gaussians on the DTU dataset. We report the total number of 
Gaussians ↓ resulting from the four alternative loss formulations of FeatureGS, 
compared to 3DGS and the number of SfM points used for initialization. Mean 
scores are listed at the bottom. Best results (lowest total number) concerning 
memory are highlighted as 1st, 2nd, and 3rd. The training incorporates 
iterations until early stopping at same PSNR.
 Methods 3DGS FeatureGS Initial SfM 
 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eig,kNN  
 scan24 333870 20491 20100 20553 20155 15479  
 scan37 527713 29199 29596 29371 28972 24857  
 scan40 537082 40353 40406 40446 40466 39158  
 scan55 470449 34788 34744 34742 34769 33506  
 scan63 113493 13346 13323 13183 13155 10869  
 scan65 151776 14213 14176 14187 14179 13203  
 scan69 147690 15893 15908 15905 15908 15264  
 scan83 132898 11926 12044 11892 12046 10652  
 scan97 303676 22454 22824 22732 22712 20467  
 scan105 184679 26166 26158 26149 26178 25291  
 scan106 125419 33730 33719 33724 33731 33523  
 scan110 140378 11819 11802 11811 11824 11382  
 scan114 190674 26247 26232 26255 26228 25761  
 scan118 165017 27927 27926 27910 27902 27650  
 scan122 172589 21427 21432 21436 21407 20975  
 Mean 249986 26389 26385 26380 26387 22771  

FeatureGS compared to 3DGS. The results on the FeatureGS configura-
tions that yielded the highest floater reduction for the respective scenes 
are shown. It is evident that the geometric loss terms of FeatureGS 
significantly reduce the floater artifacts while maintaining the same 
quantitative rendering quality. Large dark floater artifacts disappear in 
hardly all scenes. In addition, the scenes appear smoother, which can 
be seen, e.g., in the subsoil of objects. Since the PSNR values are the 
same, the high PSNR value is supposedly due to the focus being on 
rendering the object itself and not overfitting the entire scene, which 
causes the creation of floater artifacts. It can also be seen that the 
floaters that were visible in the figures of the geometric accuracies (Fig. 
7) are actually also clearly present in the synthetically rendered results. 
Therefore, they cannot only be removed by filtering the Gaussians with 
e.g. very small opacity values. In addition, FeatureGS also removes 
artifacts which merge with the object surface and leads to a kind of 
smoothing effect, such as in scan55 or scan69.

6. Results: Large-scale data

The following sections show qualitative (Section 6.1) and quanti-
tative (Section 6.2) results of FeatureGS in comparison to 3DGS and 
2DGS.

6.1. Quantitative results

The results across the key metrics, geometric accuracy, floater re-
duction, number of Gaussians, model size, rendering quality, as well as 
training time, are presented in Tables  9–13.

A clear advantage of FeatureGS lies in the substantial suppression of 
floater artifacts (Table  9). While 3DGS and 2DGS exhibit high average 
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Table 8
Surface accuracy. Geometric accuracy comparison on the Tanks and Temples 
dataset with Chamfer cloud-to-cloud distances ↓ in m for points ≤0.1m 
from the reference, according to the DTU evaluation script. Best results are 
highlighted as 1st, 2nd, and 3rd. Mean scores are listed at the bottom. The 
training incorporates 15000 iterations.
 Scene 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 barn 0.0276 0.0226 0.0256 0.0256 0.0257 0.0256  
 caterpillar 0.0161 0.0135 0.0231 0.0233 0.0235 0.0232  
 ignatius 0.0129 0.0104 0.0139 0.0138 0.0139 0.0139  
 truck 0.0137 0.0106 0.0168 0.0169 0.0168 0.0168  
 Mean 0.070 0.014 0.079 0.080 0.080 0.080  

floater distances of 16.17m and 17.61m respectively, all FeatureGS 
formulations reduce floater artifacts by over 55%. The distances for 
FeatureGS range from 7.28m to 7.32m across variants, with the best 
result achieved by 𝐿Plan,kNN, while even the least effective FeatureGS 
variant performs better than 3DGS and 2DGS.

FeatureGS leads to a drastic reduction in the number of Gaussians 
(Table  10). While 3DGS and 2DGS require on average 2.05 million and 
1.26 million Gaussians respectively, FeatureGS reduces this to as few as 
84,880, depending on the loss variant. This corresponds to a reduction 
of  96% compared to 3DGS and  93% compared to 2DGS, leading to a 
more memory-efficient model representation. This reduction is directly 
reflected in the model size (Table  11). While 3DGS and 2DGS models 
average around 485MB and 304MB respectively, FeatureGS produces 
compact models of  20.00MB, depending on the loss variant. This 
corresponds to a compression factor of up to 24× compared to 3DGS 
and 15× compared to 2DGS, resulting in a substantially more compact 
representation.

Despite this reduction, FeatureGS maintains competitive rendering 
quality on the large-scale data (Table  12). The mean PSNR of all 
FeatureGS variants ranges from 23.50 dB to 23.67 dB, closely matching 
2DGS (23.00 dB) and staying within  1 dB of 3DGS (24.56 dB). In terms 
of surface accuracy (Table  8), FeatureGS variants show higher Chamfer 
distances (0.079–0.080 m) compared to 2DGS (0.014m) and 3DGS 
(0.070m), which reflects a slight degradation in geometric precision 
for the large-scale data with diverse object types.

Nonetheless, FeatureGS demonstrates efficient training performance 
compared to both 3DGS and 2DGS (Table  13). While 3DGS requires 
on average 12.77 min and 2DGS 17.03 min, all FeatureGS loss formu-
lations complete training in less time for the same 15000 iterations, 
with mean durations between 9.12 and 10.67 min. The fastest vari-
ant, 𝐿Plan,Gauss, benefits from directly operating on features derived 
from Gaussian eigenvalues without neighborhood queries. The kNN-
based variants remain efficient due to accelerated implementations via 
PyTorch3D.3

3 https://github.com/facebookresearch/pytorch3d (last accessed:
08/02/2024).

https://github.com/facebookresearch/pytorch3d
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Fig. 9. Rendering quality comparison on the DTU dataset for the same PSNR.
6.2. Qualitative results

The geometric accuracy of Gaussian centers on Tanks and Temples 
dataset, evaluated using the Chamfer cloud-to-cloud distance (Fig.  10), 
show that 3DGS generates a dense set of Gaussians, where the object 
12 
structure is barely discernible from the distribution of Gaussian centers. 
The Gaussians form a broad layer around the object surface, extending 
both in front of and behind it. In contrast, 2DGS produces a denser point 
cloud with higher accuracy and significantly fewer Gaussians, whose 
centers lie close to the surface.



M. Jäger et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 17 (2025) 100100 
Table 9
Floater artifacts. Geometric accuracy comparison on the Tanks and Temples 
dataset with Chamfer cloud-to-cloud distances↓ in m are reported for all points 
to focus on floaters external to the point cloud. Best results are highlighted 
as 1st, 2nd, and 3rd. Mean scores are listed at the bottom. The training 
incorporates 15000 iterations.
 Scene 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 barn 8.44 11.04 5.33 5.33 5.32 5.32  
 caterpillar 20.91 22.62 8.02 8.04 8.06 8.05  
 ignatius 16.28 16.51 8.06 8.00 7.99 8.03  
 truck 19.04 18.27 7.83 7.73 7.83 7.86  
 Mean 16.17 17.61 7.31 7.28 7.30 7.32  

Table 10
Number of Gaussians on the Tanks and Temples dataset. We report the total 
number of Gaussians ↓ of FeatureGS, compared to 3DGS, 2DGS. Best results 
are highlighted as 1st, 2nd, and 3rd. Mean scores are listed at the bottom. The 
training incorporates 15000 iterations.
 Scene 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 barn 941  645 550030 78868 78870 78836 78915  
 caterpillar 1 244008 732518 100626 100703 100637 100624  
 ignatius 3 255203 2080397 96258 96155 96103 96199  
 truck 2 753361 1660639 63800 63792 64023 63913  
 Mean 2048554 1258396 84888 84880 84900 84913  

Table 11
Model size in MB on the Tanks and Temples dataset. We report the mean model 
size ↓ of FeatureGS, compared to 3DGS, 2DGS. Best results are highlighted 
as 1st, 2nd, and 3rd. Mean scores are listed at the bottom. The training 
incorporates 15000 iterations.
 Scene 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 barn 222 180 18.6 18.6 18.6 18.6  
 caterpillar 293 173 23.7 23.8 23.8 23.7  
 ignatius 769 474 22.7 22.7 22.7 22.7  
 truck 655 388 15.0 15.0 15.1 15.1  
 Mean 484.75 303.75 20.00 20.03 20.05 20.05  

Table 12
Rendering quality comparison on the Tanks and Temples dataset. We report 
the PSNR ↑ in dB. Best results are highlighted as 1st, 2nd, and 3rd. Mean 
scores are listed at the bottom. The training incorporates 15000 iterations.
 Scene 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 barn 25.89 24.70 25.45 25.47 25.28 25.45  
 caterpillar 24.11 22.50 23.91 23.87 23.66 23.80  
 ignatius 22.92 20.11 21.43 21.55 21.46 21.11  
 truck 25.31 24.70 23.70 23.79 23.78 23.65  
 Mean 24.56 23.00 23.62 23.67 23.55 23.50  

Table 13
Training time comparison on the Tanks and Temples dataset. We report the 
minutes for 15000 iterations. Best results are highlighted as 1st, 2nd, and 3rd. 
Mean scores are listed at the bottom.
 Scene 3DGS 2DGS FeatureGS

 𝐿Plan,Gauss 𝐿Plan,kNN 𝐿Omni,kNN 𝐿Eigen,kNN 
 barn 11.24 15.17 9.73 10.34 10.39 10.31  
 caterpillar 10.89 15.78 9.53 11.30 11.30 11.28  
 ignatius 14.77 19.00 8.41 10.63 10.66 10.64  
 truck 14.17 18.17 8.79 10.26 10.31 10.11  
 Mean 12.77 17.03 9.12 10.63 10.67 10.59  
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FeatureGS yields a clearly defined and precise object structure 
with high surface accuracy; most points lie directly on the surface, 
with few positioned in front of or behind the reference. The point 
cloud remains relatively sparse, and FeatureGS exhibits limitations in 
scenes with strong linear structures, such as scene caterpillar, where 
2DGS better reconstructs thin structures. For most man-made or planar 
environments, such as facades or grounds, FeatureGS demonstrates a 
qualitative better geometric accuracy on the object surface. Comparing 
the rendered images (Fig.  11) of 3DGS and FeatureGS, 3DGS better 
represents backgrounds with vegetation, such as trees. Nevertheless, 
FeatureGS strengthen man-made planar object parts, and successfully 
reduces the floater artifacts. Aside from this, visual differences are 
minimal, as the tanks and temples datasets provide extensive image 
coverage, resulting in negligible floaters.

Additionally, Section 7 presents an ablation study that investi-
gates the following aspects: hyperparameter tuning of the photometric-
geometric loss term, and the combination into a multi-feature loss.

7. Ablation study

This Section 7 presents an ablation study that investigates the 
following aspects: hyperparameter tuning of the photometric-geometric 
loss term (Section 7.1) and the combination into a multi-feature loss 
(Section 7.2).

7.1. Geometric loss

For the final different photometric-geometric loss formulations of 
FeatureGS the weighting based on hyperparameter ℎphoto is necessary 
to create a proper balance between rendering quality and geometric 
accuracy.

The Chamfer cloud-to-cloud distance and PSNR for varying weights 
of the photometric loss ℎphoto is presented in Fig.  12. As ℎphoto in-
creases, the Chamfer distance over all points increases (from 2.047 mm 
at ℎphoto = 0.01 to 14.993 mm at ℎphoto = 0.10), indicating a decrease 
in geometric accuracy. The Chamfer distance for points within 10 mm 
slightly increase from 0.968 to 1.060 mm. The PSNR shows an im-
provement from 26.898 to 28.681 dB. That suggest that lower values 
for ℎphoto improve geometric accuracy, while higher values enhance 
image quality at the cost of increased Chamfer distance and less ac-
curate geometry. Therefore, the weight should be optimized according 
to the specific application of FeatureGS. Alternatively, achieving a 
higher PSNR with high geometric accuracy may require more training 
iterations.

7.2. Combined geometric loss

All four proposed geometric loss formulations of FeatureGS share a 
common goal: encouraging Gaussians to better align with the underly-
ing surface. Although they rely on different 3D shape features, their 
effects are largely consistent and differ only marginally (Section 5). 
While the loss using ‘planarity’ of Gaussians improves surface accu-
racy and the ‘omnivariance’ loss of Gaussian neighborhoods reduces 
floater artifacts on the DTU dataset, both losses target similar geometric 
properties. We investigate whether combining (Eq.  (16)) them can 
meaningfully leverage their strengths to improve overall performance, 
with 
𝐿 = ℎphoto ⋅ 𝐿photometric + 𝐿Plan,Gaussian + 𝐿Omni,kNN (16)

and the hyperparameter ℎphoto.
Table  14 reports the results on several DTU scenes. The ablation 

study shows that the combined loss yields complementary results across 
the metrics. The combined loss reduces floater artifacts and the num-
ber of Gaussians but does not further improve the surface accuracy, 
while the PSNR remains high and comparable to the best single-loss 
configurations.
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Fig. 10. Geometric accuracy comparison on the Tanks and Temples dataset with Chamfer cloud-to-cloud distances ↓. Color values are cropped at 0.25m distance. 
The training incorporates 15000 iterations.
Fig. 11. Rendering quality comparison of 3DGS and FeatureGS on the Tanks and Temples dataset, as well as ground truth (GT) images in original resolution.
8. Discussion

The evaluation of FeatureGS demonstrates its advantages in terms 
of geometric accuracy, reduction of floater artifacts, and memory ef-
ficiency. Although these improvements coincide with a moderate re-
duction in rendering quality, the results illustrate that FeatureGS is 
particularly suitable for diverse applications, especially those involving 
scenes dominated by man-made structures.
14 
On the small-scale DTU dataset, using a fixed number of 15000 
training iterations, FeatureGS yields substantial improvements in ge-
ometric reconstruction accuracy, reducing the mean Chamfer cloud-
to-cloud distance by approximately 20% compared to 3DGS. Among 
the tested variants, the loss formulations 𝐿Plan,Gauss and 𝐿Eigen,kNN
consistently result in the highest geometric accuracy. However, dif-
ferences among the four FeatureGS loss configurations remain rela-
tively small and stable across the diverse scenes, suggesting that the 
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Fig. 12. Chamfer cloud-to-cloud Distances, PSNR and Number of Gaussians at different weighting configurations of the photometric-geometric loss term with 
varying ℎphoto.
Table 14
Multi-feature loss. Comparison on DTU FeatureGS with a combination of two alternative loss formulations 
𝐿Plan,Gauss and 𝐿Omni,kNN. The table shows geometric accuracy on surface accuracy and floater artifacts with 
Chamfer cloud-to-cloud distances↓ in mm, PSNR in dB, and number of Gaussians.
 scan105 scan106 scan110 scan114 scan118 
 Surface 𝐿Plan,Gauss 1.172 0.936 1.819 0.966 0.875  
 𝐿Omni,kNN 1.163 0.948 1.800 0.960 0.873  
 Combined 1.223 0.937 1.883 0.955 0.911  
 Floater 𝐿Plan,Gauss 8.221 3.272 17.160 5.850 6.977  
 𝐿Omni,kNN 8.260 3.058 17.584 6.138 7.005  
 Combined 4.129 3.024 9.544 4.383 3.747  
 PSNR 𝐿Plan,Gauss 34.68 36.01 29.94 32.73 34.81  
 𝐿Omni,kNN 34.51 36.06 29.92 32.70 34.82  
 Combined 32.41 35.46 29.74 32.42 34.48  
 Gaussians 𝐿Plan,Gauss 26102 33701 11822 26208 27964  
 𝐿Omni,kNN 26111 33696 11835 26226 27973  
 Combined 25334 33647 11649 26077 27784  
method exhibits robust performance irrespective of scene complex-
ity considering man-made objects. In addition to improved accuracy, 
FeatureGS achieves a considerable reduction in floater artifacts, sup-
pressing them by approximately 90% relative to 3DGS. The formulation 
with 𝐿Plan,Gauss shows the strongest effect in reducing these artifacts. 
Furthermore, FeatureGS leads to a drastic decrease in the number of 
Gaussians, averaging a reduction of 95%. This contributes to a clearly 
higher memory efficiency, enhancing the suitability of FeatureGS for 
large-scale reconstruction scenarios. However, these gains are accom-
panied by a moderate decrease in rendering quality, with an average 
PSNR drop of around 3.3 dB. To address the inherent trade-off between 
geometric accuracy and photometric rendering quality, the weighting 
of the loss hyperparameter can be adjusted according to the intended 
application. When controlling rendering quality through early stop-
ping to match the PSNR values between the loss variants, FeatureGS 
continues to show improvements in geometric accuracy, reducing the 
mean Chamfer distance by approximately 0.5 mm (≈30%) relative to 
3DGS. Floater artifact suppression remains effective at around 90% 
across all loss formulations, and the number of Gaussians is still reduced 
by approximately 90%. This demonstrates that FeatureGS preserves its 
geometric accuracy, floater reduction and memory advantages for the 
same photometric performance. The qualitative results further confirm 
these trends. Across all evaluated scenes, FeatureGS consistently im-
proves the geometric surface accuracy of reconstructed point clouds, 
while effectively removing non-surface floaters. These artifacts are 
likewise absent from the rendered images. Since PSNR is held con-
stant in this setting, we suggest that the geometric losses encourage 
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the model to allocate representational capacity toward surface-aligned 
geometry, rather than overfitting the background with unstructured 
floater artifacts.

The evaluation on the heterogeneous large-scale Tanks and Tem-
ples benchmark reveals both the strengths and the limitations of Fea-
tureGS. The dataset comprises a diverse range of scenes, including 
structured, man-made environments with planar geometries (e.g., fa-
cades, grounds), as well as unstructured regions with natural vege-
tation and volumetric elements. For these man-made environments, 
FeatureGS provides a geometrically accurate but sparse representa-
tion. Similar to 2DGS, which regularization can potentially lead to 
over-smoothing (Huang et al., 2024) in some regions. In structured 
regions, FeatureGS yields high geometric accuracy and coherent re-
constructions. The employed geometric loss terms effectively promote 
surface-aligned and compact Gaussian representations, which are well-
suited to the underlying scene characteristics. In contrast, performance 
degrades in vegetative areas. Facades and ground in man-made envi-
ronments can be geometrically distinguished from vegetation due to 
their structural divergence (Weinmann et al., 2013). Since the geo-
metric loss, which favors compact, surface-aligned Gaussians and thus 
emphasizes planar structures, FeatureGS struggles in scenes where the 
spherical arrangement of Gaussians is highly irregular or volumetric, as 
is typical for vegetation. Despite these challenges, FeatureGS maintains 
a consistent advantage in the suppression of floater artifacts across 
all scene types. While methods such as PGSR struggles with floating 
points (Chen et al., 2024a) in some scenes, which is also the case for 
2DGS and especially 3DGS as the results show.
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Limitations and Trade-offs. While FeatureGS demonstrates strong 
performance across multiple benchmarks and offers clear advantages 
in terms of geometric accuracy, memory efficiency, and floater arti-
fact removal, several challenges remain. Rendering quality: A central 
limitation of FeatureGS lies in its reduced rendering quality when 
training budgets are constrained. On the DTU benchmark, FeatureGS 
achieves a maximum PSNR of 31.41 dB (𝐿Omni,kNN), compared to 
34.67 dB for 3DGS. This performance gap of more than 3 dB high-
lights the cost of incorporating geometric structure. A similar drop 
is observed for 2DGS (32.51 dB), suggesting that additional regular-
ization and 3D shape feature-based supervision inherently trades off 
rendering fidelity. However, using early stopping with fixed PSNR 
values, FeatureGS achieves a 30% improvement in geometric accuracy 
and reduces memory usage by 90% relative to 3DGS. These results 
highlight a fundamental trade-off between photometric quality and 
geometric accuracy when optimizing under fixed number of training 
iterations. Scene diversity: While FeatureGS performs robustly in man-
made scenes characterized by structured geometry and planar surfaces, 
its performance degrades in vegetative or highly unstructured regions. 
In such environments, which are present in the Tanks and Temples 
benchmark, the assumptions underlying the geometric loss, particularly 
the preference for planar, surface-aligned Gaussians, become less effec-
tive. The resulting reconstructions exhibit reduced fidelity in irregular, 
non-man-made areas, indicating a limitation in generalizing to scenes 
that deviate from the structural priors embedded in the geometric 
loss design. Geometric coverage: The results show that, similar to 3DGS 
and also 2DGS, which densification strategy favors texture-rich over 
geometry-rich areas (Huang et al., 2024), FeatureGS produces visible 
gaps in low-textured regions (e.g., DTU scenes 24, 37, 63, 97, 110, 
118; Fig.  8). This sparsity is primarily due to the use of relatively 
few but large Gaussians in homogeneous areas. While this suffices for 
accurate photometric rendering, it leads to incomplete surface cover-
age when using Gaussian centers as geometric representation and is 
further reinforced in FeatureGS by the high reduction of the required 
number of Gaussians. To increase spatial density, one option is to adopt 
the original 3DGS densification strategy, which enhances Gaussian 
splitting in low-texture regions typically represented by few larger 
Gaussians. Alternatively, mesh extraction methods such as Marching 
Cubes (Lorensen and Cline, 1998), as used in previous work (Guédon 
and Lepetit, 2024; Chen et al., 2024a; Huang et al., 2024), can pro-
vide a different geometric surface representation compared to point 
clouds, e.g., via TSDF fields (Curless and Levoy, 1996) derived from 
depth maps. Memory efficiency: FeatureGS achieves substantial memory 
efficiency across both small and large-scale datasets. On the Tanks and 
Temples benchmark, for instance, it reduces the average model size 
from 484.75MB (3DGS) and 303.75MB (2DGS) to as little as 20.00MB, 
corresponding to a compression factor exceeding 24× relative to 3DGS. 
This positions FeatureGS alongside recent compact representations such 
as LightGaussian (Fan et al., 2024), which reports a compression to 
22MB. However, FeatureGS does not match the extreme compression 
achieved by HAC (Chen et al., 2024b), which reduces models to as little 
as 8.10MB in selected scenes. However, FeatureGS does not primarily 
aim for maximal compression, but rather balances memory efficiency 
with geometric accuracy and robustness to floater artifacts. Loss variant:
Across both datasets, it remains challenging to identify a universally 
superior loss formulation among the four FeatureGS variants. On the 
DTU dataset, where scenes predominantly consist of planar, man-made 
structures, specific insights emerge: the loss based on ‘planarity’ of 
Gaussians yields the highest geometric accuracy, ‘omnivariance’ of 
Gaussian neighborhoods most effectively suppresses floater artifacts. 
Nevertheless, all four variants share similar structural objectives: en-
couraging Gaussians to represent planar surfaces and reduce structural 
entropy in local 3D neighborhoods. Consequently, observed differ-
ences in reconstruction accuracy, rendering quality, training time, and 
memory usage remain minor, and the combination of multiple loss 
terms (Section 7.2) does not yield consistent gains. Addressing different 
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scene types and their characteristics, the numerical differences remain 
small in the performance of the four loss formulations between the 
scenes, e.g., in the diverse DTU dataset. All scenes vary in material 
properties and texturness. In general, each geometric loss consistently 
moves Gaussians closer to the object surface and reduces their random 
orientation, an effect that appears largely independent of scene-specific 
properties. Consequently, no consistent pattern emerges that would 
allow for reliably predicting which loss function performs better for 
a given scene type (e.g., on reflective surfaces) or for recommending 
a specific application scenario for each loss function. From a train-
ing time perspective, the variant (𝐿Plan,Gauss) from Gaussian itself is 
consistently the fastest, as it avoids neighborhood computations when 
using Gaussian neighborhoods with 𝐿Plan,kNN, 𝐿Omni,kNN and 𝐿Eigen,kNN. 
Overall, all variants are substantially faster than both 3DGS and 2DGS, 
primarily due to the reduced number of required Gaussians. And given 
the marginal performance differences, all four loss configurations are 
considered roughly equivalent.

9. Conclusion

FeatureGS extends 3D Gaussian Splatting by integrating 3D shape 
feature properties into the optimization process with additional geo-
metric loss terms. It achieves consistent improvements in geometric 
accuracy, floater artifact suppression, and memory efficiency. While 
these gains are accompanied by a moderate decrease in rendering 
quality, the results highlight FeatureGS as a compact and geometry-
aware method for geometrically accurate and floater artifact-reduced 
scene reconstruction.

Geometric accuracy. For man-made environments of the DTU 
dataset, FeatureGS improves the geometric accuracy by reducing the 
mean Chamfer distance by up to 30% relative to 3DGS under matched 
PSNR (early stopping) and up to 20% using a fixed number of training 
iterations. Across all four loss configurations, ‘planarity’ from Gaussians 
performs the best, while differences between variants remain small, 
indicating stable performance across scenes with man-made structures.
Floater artifacts. FeatureGS suppresses non-surface floater artifacts by 
around 90% on DTU and by over 55% on Tanks and Temples compared 
to 3DGS, both quantitatively and qualitatively. These improvements 
persist across all loss variants and even when rendering quality is held 
constant, showing that the losses effectively promote surface-aligned 
Gaussians. Number of Gaussians. FeatureGS reduces the number of 
Gaussians by up to 95% on DTU and by up to 96% on Tanks and 
Temples compared to 3DGS. This leads to smaller model sizes, down to 
20MB on Tanks and Temples dataset, a 24× reduction relative to 3DGS. 
The reduced number of Gaussians also leads to improved training 
efficiency across all FeatureGS variants, which achieve training times 
approximately 20%–30% lower than 3DGS. Notably, the ‘planarity’ 
from Gaussian itself avoids computationally expensive neighborhood 
queries and achieves the highest relative speedup by 30%.

Overall, FeatureGS achieves structurally consistent representations, 
with improved geometric accuracy, and reduced floater artifacts and 
number of required Gaussians. While performance declines in unstruc-
tured, volumetric ares, e.g., vegetative scenes, the method is particu-
larly well-suited for efficient and geometrically accurate reconstruction 
of structured, planar surfaces in man-made environments.
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