KIT | KIT-Bibliothek | Impressum | Datenschutz

Prediction of Hazardous Gaseous Emissions from a Gasoline Engine during Cold Starts Using Machine Learning Methods

Mangipudi, Manoj 1; Denev, Jordan A. ORCID iD icon 1; Bockhorn, Henning 2; Trimis, Dimosthenis 2; Koch, Thomas 3; Debus, Charlotte 1; Götz, Markus ORCID iD icon 1; Zirwes, Thorsten ORCID iD icon; Hagen, Fabian P. ORCID iD icon 2; Tofighian, Hesam 1,2; Wagner, Uwe ORCID iD icon 1,3; Braun, Samuel 1,3; Lanzer, Theodor 1,3; Knapp, Sebastian M. ORCID iD icon 3
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Engler-Bunte-Institut (EBI), Karlsruher Institut für Technologie (KIT)
3 Institut für Kolbenmaschinen (IFKM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Internal combustion engines generate higher exhaust emissions of hazardous gases during the initial minutes after engine start. Experimental data from a state-of-the-art turbo-charged 3-cylinder, 999 cc gasoline engine are used to predict cold start emissions using two Machine Learning (ML) models: a Multilayer Perceptron (MLP) which is a fully connected neural network and an Encoder-Decoder Recurrent Neural Network (ED-RNN). Engine parameters and various temperatures are used as input for the models and NOx (Nitrogen Oxides), CO (Carbon monoxide) and unburned hydrocarbon (UHC) emissions are predicted. The dataset includes time series recordings from the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC) and four Real Diving Emissions (RDE) cycles at ambient and initial engine temperatures ranging from -20 °C to +23 °C. In total, 21 cases are considered, consisting of eight different ambient temperatures and five distinct driving cycles. Each case consists of a sequence of 2500 samples taken at 5 Hz. The training process utilized seven input variables and three output variables (emissions). Two validation scenarios were defined. ... mehr


Originalveröffentlichung
DOI: 10.4271/2025-01-0321
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Engler-Bunte-Institut (EBI)
Institut für Kolbenmaschinen (IFKM)
Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0148-7191
KITopen-ID: 1000184579
HGF-Programm 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Weitere HGF-Programme 38.03.04 (POF IV, LK 01) Technical Fuel Assessment
46.21.04 (POF IV, LK 01) HAICU
Erschienen in SAE Technical Paper Series
Veranstaltung Stuttgart International Symposium Automotive and Engine Technology (ISSYM 2025), Stuttgart, Deutschland, 02.07.2025 – 03.07.2025
Verlag SAE International
Seiten 2025-01-0321
Serie SAE Technical Paper Series
Vorab online veröffentlicht am 02.07.2025
Schlagwörter emission of hazardous gases, cold engine start, machine learning, encoder-decoder
Nachgewiesen in Dimensions
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page