KIT | KIT-Bibliothek | Impressum | Datenschutz

Infilling of missing rainfall radar data with a memory-assisted deep learning approach

Meuer, Johannes ; Bouwer, Laurens M.; Kaspar, Frank; Lehmann, Roman 1; Karl, Wolfgang 1; Ludwig, Thomas; Kadow, Christopher
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Incomplete spatiotemporal meteorological observations can result in misinterpretations of the current climate state, uncertainties in early warning systems, or inaccuracies in nowcasting models and can thereby pose significant challenges in hydrology research or similar applications. Traditional statistical methods for infilling missing precipitation data demand substantial computational resources and fail over large areas with sparse data - like temporary outages of weather radars. Although recent machine learning advancements have shown promise in addressing missing meteorological or satellite observations, they typically focus on spatial aspects, overlooking the complex spatiotemporal variability characteristic of precipitation, especially during extreme events. We propose a deep convolutional neural network enhanced with a memory component to better account for temporal changes in precipitation fields. This approach can analyse arbitrary sequences from before and/or after the incomplete observation of interest. Our model is trained and evaluated on the hourly RADKLIM dataset, which features 1 km resolution precipitation data derived from combined radar and weather stations across Germany. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184632
Veröffentlicht am 08.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2025
Sprache Englisch
Identifikator ISSN: 1607-7938
KITopen-ID: 1000184632
Erschienen in Hydrology and Earth System Sciences
Verlag Copernicus Publications
Band 29
Heft 15
Seiten 3687–3701
Vorab online veröffentlicht am 12.08.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page