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Uncovering Hidden Resonances in Non-Hermitian Systems
with Scattering Thresholds

Fridtjof Betz, Felix Binkowski, Jan David Fischbach, Nick Feldman, Lin Zschiedrich,
Carsten Rockstuhl, A. Femius Koenderink, and Sven Burger*

The points where diffraction orders emerge or vanish in the propagating
spectrum of periodic non-Hermitian systems are referred to as scattering
thresholds. Close to these branch points, resonances from different Riemann
sheets can tremendously impact the optical response. However, these
resonances are so far elusive for two reasons. First, their contribution to the
signal is partially obscured, and second, they are inaccessible for standard
computational methods. Here, the interplay of scattering thresholds with
resonances is explored and a multi-valued rational approximation is
introduced to access the hidden resonances. The theoretical and numerical
approach is used to analyze the resonances of a plasmonic line grating. This
work elegantly explains the occurrence of pronounced spectral features at
scattering thresholds applicable to many nanophotonic systems of
contemporary and future interest.
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1. Introduction

In the early years of the twentieth century,
Wood was intrigued by sudden changes
in the intensity of light diffracted from
a grating. He noticed that, under certain
conditions, a small change in the wave-
length could drop the intensity frommax-
imum to minimum.[1] Wood described
these features of the spectrum as the
most interesting problemhe had encoun-
tered so far and termed them anoma-
lies, since they could not be explained
by ordinary grating theory. A few years
later, in a note on this phenomenon,
Lord Rayleigh came to the conclusion
that anomalies were to be expected at the
scattering thresholds, that is, whenever
a higher diffraction order appears in the

propagating spectrum.[2] In 1941, Fano attributed another type
of Wood’s anomalies to surface plasmons, and thus established
a connection to resonances.[3] Eventually, in 1965, Hessel and
Oliner clearly distinguished two types of Wood’s anomalies:
square-root-type singularities at the scattering thresholds and
those that can be attributed to resonances.[4] Whereas the first
type of singularity arises from the square root’s double-valued
nature and its branch point at the scattering thresholds, reso-
nances, also referred to as quasinormal modes (QNMs) or leaky
modes, are solutions to the source free Maxwell’s equation char-
acterized by their nonzero imaginary parts modeling the dissi-
pation of energy over time. They commented that the derivative
of the square root results in an infinite slope, which they antici-
pated would boost resonance effects. Although each of these as-
pects is well established in nanophotonics, it is the combination
of resonances and diffraction that currently attracts interest and
has led to the development of metasurfaces withMie resonances,
plasmon resonances, and optical bound states in the continuum
(BICs).[5–11] In fact, it has been proposed to exploit BICs close to
a scattering threshold to maximize the sensitivity of refractive in-
dex sensing.[12]

Recently, a mathematical model for the entries of the scat-
tering matrix in the vicinity of scattering thresholds has been
presented.[13] Whereas the model accurately reproduces the
square root behavior, it does not include resonances. In contrast,
two established formalisms, known as QNM expansion[14–16] and
resonant state expansion,[17] respectively, have been put forward
to describe resonant behavior. However, their application to grat-
ing systems is known to be subtle. Indeed, for such formalisms,
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Figure 1. Outline of the approach following the panels in indicated order: The specular reflection spectrum R0(k) exhibits a branch point where the
z-component kz,1 of the first order reflection R1 transitions from purely imaginary (evanescent) to purely real (propagating). Samples of the the zero
order Fourier coefficient fj are evaluated at various real valued k in the vicinity of the branch point. The transformation, used to map the sampling points

kj to k̃j, locally provides a map of the Riemann surface. The AAA algorithm uses a subset I of the samples to construct a rational approximation in
barycentric form interpolating the fj with j ∈ I and approximating all other data points in a least square sense. The rational function provides an analytic

continuation of the data points to the full k̃-space and its poles correspond to resonances of the physical system. In the physical domain a branch cut
is introduced, that cuts the Riemann surface in two distinct sheets, each defined over the entire complex plane. We choose a branch cut parallel to the
negative imaginary axis, which in the example at hand approximately corresponds to the line Im

(
k̃
)
+ Re

(
k̃
)
= 0. We refer to poles as hidden resonances

when they do not reside on the Riemann sheet that contains the real axis, as their influence on the spectrum is substantially concealed by the branch
point.

it has been pointed out that algorithms identify a plethora of ad-
ditional resonances without a direct physical interpretation, but
that account for the discontinuity of the derivative at the scat-
tering threshold.[18,19] These numerical resonances, as explicitly
stated in ref. [18], discretize an integral. With an arbitrary black-
box solver for Maxwell’s equation at hand, distinguishing physi-
cal resonances from those representing the branch cut is a non-
trivial task. An alternative approach that explicitly evaluates reso-
nances in the vicinity of scattering thresholds describes the opti-
cal response as a function of a wave vector component instead of
frequency.[20,21] The corresponding transformed space does not
contain branch points.
In this work, we use such a transformed space to access the rel-

evant resonances on different Riemann sheets of periodic non-
Hermitian systems and reconstruct the optical response across
several scattering thresholds with a multi-valued rational approx-
imation. The results enable an instructive interpretation of the in-
teraction between resonances and square-root-type singularities.
Using the example of a plasmonic line grating, upon changing a
design parameter, we observe resonances vanish behind a branch
point, and others appear in the spectrum that had been hidden
previously. In this way, a distinctive feature seemingly unrelated

to resonances is accurately described with inherent properties of
the system.

2. Multi-Valued Rational Approximation

The AAA algorithm[22] has proven to be an efficient method to re-
construct optical response functions with rational functions r(k),
k ∈ ℂ.[23] An outline of the approach introduced here is provided
in Figure 1. We are interested in the response of a periodic sys-
tem as a function of the incident light wave number k. We ex-
pect sudden drops in intensity due to Wood’s anomalies, that
is, resonance effects and square-root-type singularities, as well
as their interactions. The spectrum in the last panel of Figure 1
shows two pronounced dips. The broad minimum at lower wave
numbers corresponds to a plasmon resonance of the system. At
higher wave numbers, there is a sharp feature with a discontinu-
ous derivative. This feature at the point labeled kb,1 corresponds to
the appearance of the first-order reflectionR1. A rational function
r(k) can approximate the plasmon resonance with a single pole,
but not the second feature. As an alternative to the wave number
k, the z-component of the wave vector can be used to parame-
terize the response.[20] In this transformed representation, the
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specular reflection can be fully approximated with a low-order
rational function. Subsequently, r(k) is obtained by a coordi-
nate transformation.
Given a structure periodic in x and y, the z-component kz of

the diffracted light wave vector is constrained by the condition

kz =
√

k2 − |||k∥ +G|||2 (1)

where G is a reciprocal lattice vector and k∥ the components of
the wave vector parallel to the periodic structure. Each diffraction
order corresponds to a specificG and will contribute to the propa-
gating spectrum if the term inside the square root is positive. For

k2 − |||k∥ +G|||2 < 0 the normal component kz is purely imaginary,
which results in an evanescent diffraction order. Please refer to
the first panel of Figure 1, which illustrates the emergence of the
first diffraction order of a line grating. We are interested in the
branch points kb,n with n ∈  ⊂ ℤ that mark the emergence of
new diffraction orders in the propagating spectrum. They are so-
lutions of kb,n −

|||k∥ +G||| = 0. Using N = | | of these solutions,
we define the coordinate transform

k̃ = 1
N

∑
n∈

√
k2 − k2b,n (2)

This transformation asymptotically approximates k and shows lo-
cally, around its branch points kb,n, the square root behavior of kz.
The choice of the transformation is not unique. The requirement
is a map of the full Riemann surface near the branch points. Al-
ternatives could be a sum over different reciprocal lattice vectors
G in Equation (1) and a Schwarz–Christoffel mapping.[24]

The square roots in the definition of the complex variable k̃
render it a multi-valued function of k and the same holds true
for the function rk̃(k) = r

(
k̃(k)

)
. Defining branch cuts parallel to

the negative imaginary axis, we term singularities which are not
located on the Riemann sheet containing the real axis hidden res-
onances. The need to define a branch cut is illustrated in the last
two panels of Figure 1. The black line across the k̃-plane in the
fifth panel defines the branch cut in the sixth panel, which cuts
the Riemann surface in two sheets both defined over the entire
k-plane. Approaching the cut from different sides results in dif-
ferent function values. A rational function of k̃ can have poles
on any Riemann sheet, and therefore, introducing a branch cut
hides information. Unlike ref. [25], where resonances are eval-
uated directly on a four-sheeted Riemann surface, we solve the
resonance problem here in a transformed space using the AAA
algorithm.[22] As indicated in the fourth panel of Figure 1, the
algorithm takesM sampling points and greedily adds terms to a
rational approximation r

(
k̃
)
of the optical response functionR

(
k̃
)

R
(
k̃
)
≈ r

(
k̃
)
=

∑
j∈I

wjRj

k̃ − k̃j

/∑
j∈I

wj

k̃ − k̃j
(3)

By definition, the barycentric form in Equation (3) interpolates
the function values Rj = R

(
k̃j
)
at the subset of sampling points

k̃j with j ∈ I ⊂ { 1,… ,M}. In each iteration, the weights wj un-

Figure 2. The specular reflection spectrum R0(k) across the three branch
points kb,1 = 0.5 kb,2, kb,2 = 1.074 × 107m−1 and kb,3 = 1.5 kb,2. The gold
grating, sketched in the circular inset, is illuminated by a TM-polarized
plane wave at an incidence angle of Θ = 30◦. a) The approximated spec-
trum together with reference points, a decomposition into six modal con-
tributions and the residual contribution, which remains after subtracting
the modal contributions from the full spectrum. b) Resonances of the
system: six resonances (blue crosses) are found at identical positions
with and without the coordinate transformation k̃. In the single-valued
approach (top), additional resonances cluster at wave numbers close to
the branch points. Conversely, themulti-valued approach (bottom) reveals
three additional resonances. The labels of the resonances within the circle
refer to Figure 3.

der the constraint
∑

j∈I |wj|2 = 1 are chosen tominimize the error|||r(k̃i) − R
(
k̃i
)|||2 at samples k̃i with i ∉ I.

The resulting poles can be identified with the resonances of
the physical system[23] and are mapped back to the 2N Riemann
sheets introduced with k̃. This back transformation is crucial
to interpret their impact on the physical response near branch
points, and therefore we use the term multi-valued approach.

3. Application

We investigate the interaction between resonances and scattering
thresholds using the example of the line grating sketched in the
inset of Figure 2a that supports pronounced grating anomalies
and is immersed in a medium with refractive index n = 1.3.[19] A
Drude-Lorentz model specifies the relative permittivity of gold
𝜀(𝜔) = 𝜀0 − 𝜀0𝜔

2
p(𝜔

2 + i𝜔𝛾)−1, with the vacuum permittivity 𝜀0

and the plasma frequency 𝜔p = 1.26 × 1016 rad s−1, the damping
factor 𝛾 = 0.0112𝜔p, and the angular frequency 𝜔 = ck that is re-
lated to the wave number k through the speed of light c. Working
in the optical regime, we can equate the permeability 𝜇(𝜔) = 𝜇0
with that in the vacuum. The grating period p, which defines the
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1D lattice vectorG = 2𝜋n∕pwith n ∈ ℤ, is 600 nm, and the depth
of the rectangular grooves is 350 nm. The width w of 51 nmmax-
imizes the interaction between the square-root-type singularity
and resonances at the angle of incidence Θ = 30◦. For the defini-
tion of the angle, we refer to the first panel of Figure 1.
Samples of the optical response at real-valued frequencies are

the only prerequisites for the proposed method. Here, we rely on
the finite element method (FEM) and its implementation in the
JCMsuite software package[26] to solve the second-order Maxwell
equation

∇ × 𝜇−1∇ × E − 𝜔2𝜖E = i𝜔J (4)

with the electric current density J and the electric field strength E.
With plane wave illumination, the upward directed Fourier spec-
trum of E yields the specular reflection R0, which is the absolute
value squared of the zero-order coefficient.
The condition kb,n − ||kb,nsinΘ + 2𝜋n∕p|| = 0 for the scattering

thresholds kb,n follows from Equation (1). Figure 2a shows the
specular reflection R0(k) − 1 in a range that spans the three scat-
tering thresholds kb,1, kb,2, and kb,3, as obtained by a usual driven
diffraction calculation. In addition, themodal contributions of six
dominant resonances in the spectrum are displayed. This modal
expansion of R0, which is quadratic in the electric field, is based
on the residues of the Fourier coefficient and evaluations of its
rational approximation at the complex conjugated resonance fre-
quencies following.[27] Subtracting the sum of the six modal con-
tributions from the full spectrum gives the residual contribution
that exhibits the square-root-type Wood’s anomalies.
Using Equation (2) to incorporate the three relevant branch

points into the rational approximation, the AAA algorithm re-
quires 80 support points to reduce the relative error of the re-
constructed spectrum with respect to the reference points below
10−6, which is close to the accuracy of the FEM simulations.With-
out the coordinate transformation, the error is three orders of
magnitude larger. For details on the sampling strategy and the
convergence, we refer to the associated data publication.[28]

The lower part of Figure 2b shows the resonances kn of a ra-
tional approximation without coordinate transformation. In this
case, the algorithm clusters many additional resonances along
characteristic lines close to the scattering thresholds. The contri-
butions of these resonances approximate integrals along branch
cuts, as discussed in ref. [18] and give rise to the discontinuities
in the derivative. We will show that the feature at kb,1 that partic-
ularly catches the eye is the result of two hidden resonances on
different Riemann sheets.
The lower section of Figure 2b shows resonances kp,m derived

from the poles of the rational approximation r
(
k̃
)
that results

from an application of the AAA algorithm in the transformed
space. Given the poles k̃p,m of r

(
k̃
)
and the single-valued defini-

tion of the square root with a branch cut parallel to the negative
imaginary axis, the resonances marked with green crosses do not
solve the radical equation

k̃p,m = 1
N

N∑
n=1

√
k2p,m − k2b,n (5)

that follows from Equation (2). These hidden resonances do not
appear on the sheet that contains the physical signal, but they do

Figure 3. Resonances passing a branch point. a) The three resonances
closest to the 50 support points (black dots) are displayed as a function
of the groove width w, which is varied in steps of 1 nm from w1 = 42 nm
to w5 = 60 nm. The resonances inside the green boxes are not directly
connected to the real axis above them, i.e., they are hidden resonances.
b) Specular reflection spectra corresponding to the labeled subset of reso-
nances. c) The magnetic field patterns corresponding to the three relevant
resonances at selected widths.

impact the response. It should be noted that the pole above the
real axis enters the physical sheet at kb,1 with a negative imagi-
nary part if a parameter is changed accordingly. For a better un-
derstanding of hidden resonances, we will study in the following
how the two resonances near the branch point kb,1 labeled b and
c behave if the width of the grooves w is varied.
The trajectories of three resonances labeled a, b, and c when

varying w are presented in Figure 3a. The hidden resonances
that require both Riemann sheets to solve Equation (5) are high-
lighted with green boxes. A comparison with the spectra at se-
lected widths shown in Figure 3b reveals that when w is in-
creased, the spectral feature linked to the resonance c approaches
the branch point and is eventually replaced by the broader spec-
tral feature of b, which had previously been hidden. Hence, in-
stead of using a large number of numerical resonances to repre-
sent the branch cut, few resonances fully explain the physical re-
sponse. In the current scenario, only two resonances are needed.
A special case arises for the widthw3, as both b3 and c3 are hidden
resonances, and the signal is highly asymmetric, with one flank
steeper than the other. Although the first derivative of the phys-
ical response is highly discontinuous, Figure 3c shows that the
field patterns of the resonances continuously vary as w changes.
This observation emphasizes that Figure 3b does not show the
signal of a single pole crossing the branch point but rather two
distinct resonances.
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Figure 4. Multi-valued specular reflection. a) The contributions of the res-
onances b3 and c3 explain the shape of the specular reflection (black line)
at the respective sides of the branch point. b) The Riemann surface of
the double-valued specular reflection. The positions of the resonances are
projected to the complex plane in the bottom part of the graph. The colors
refer to the argument of k − kb,1 that ranges from −2𝜋 to 2𝜋 to uniquely
define every point of the double-valued function.

We conclude the investigation of resonances in the vicinity of
branch points with a picture visualizing their effect on the opti-
cal response measured along the real axis. We have observed in
Figure 3 that the resonances b and c are responsible for the asym-
metric shape of the spectral feature. This finding is confirmed in
Figure 4a. At smaller wave numbers, the flank of the feature fol-
lows the resonance contribution of c even though the resonance
itself is shifted to higher wave numbers, where the shape of the
feature can be explained with the contribution of b. The complete
Riemann surface of the specular reflection in Figure 4b, with
colors visualizing the phase 𝜑 = arg(k − kb,1), explains why the
peak at the point bmainly influences the spectrum at wave num-
bers larger than kb,1, even though Re(b) < kb,1. Since the angles of
the physical signal are −𝜋 and zero, the position b with 𝜑 > 𝜋∕2
hardly affects the signal in 𝜑 = −𝜋, where the resonance at c con-
tributes dominantly.

4. Conclusion

We demonstrated that multi-valued rational approximations ac-
curately describe resonances near scattering thresholds. The re-
sulting low-ordermodel explains the characteristic sharp features
with resonances on different Riemann sheets. We show how
these hidden resonances can strongly enhance sharp features in
the scattering response. The model accurately describes the dis-
continuity of the first derivative of the optical response function.

Therefore, it is possible to reconstruct complex spectra with dif-
ferent types of singularity, as presented in Figure 2a, with a single
rational approximation.
The proposed method is particularly easy to implement, as

it only requires samples of the optical response at real-valued
frequencies that can be collected numerically or experimentally.
Suitable numerical methods are, among others, the rigorous
coupled wave analysis (RCWA), the boundary element method
(BEM), and, as in the example at hand, the finite elementmethod
(FEM).
We envision a wide use of our method in a variety of fields,

including optics and electromagnetism, as well as acoustics. En-
gineering of response functions by hybridization of square-root-
type singularities and resonances is a very common motif in the
design of plasmonic and dielectric structures for wavefront con-
trol, fluorescence control, sensing, and nonlinear optics. In the
plasmonic domain this includes, for instance, the field of sur-
face lattice resonances, i.e., high quality collective plasmon reso-
nances in periodic metal nanoparticle lattices that have been de-
veloped for fluorescence control, surface enhanced Raman scat-
tering and lasing.[10,29,30] In the field of dielectric metasurfaces
and photonic crystals there is a strong interest in Fano resonances
and quasi-bound states in the continuum,[31,32] in which Mie
resonances,[33] square-root-type singularities and guided mode
resonances interplay. These structures are pursued for their high
quality factors and strong local field confinement, with demon-
strated applications in IR spectroscopy,[34] nonlinear optics and
high harmonic generation,[35,36] and nonlocal metasurfaces for
wavefront control.[37] Our method provides an efficient and intu-
itive approach to attribute the response of these systems to just
a few resonant contributions, including hidden resonances. An
interesting prospect is to track these resonances to enable opti-
mization schemes based on their positions,[38] even when they
are partially obscured by the branch point.
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