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1. Introduction

Let C be a class of groups. A group G is said to be residually C if the intersection of
all normal subgroups N of G with G/N € C is the trivial group. It is a classical problem
in group theory to determine the classes of groups C for which a given group is residually
C and a lot of research has been done in this direction, see e.g. [13]. A special instance of
the latter was formulated in 1987 by Gromov [4] and became a notorious open problem
in geometric group theory: Is every hyperbolic group residually finite, i.e. residually F,
where F denotes the class of finite groups? In 2008 it was shown by Olshanskii and
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Osin [12] that an affirmative answer to Gromov’s question would imply the existence
of finitely generated infinite torsion groups that are residually FS, where FS denotes
the class of finite simple groups. It was therefore natural to ask the following, see [12,
Problem 3.4].

Problem 1.1. Does there exist an infinite finitely generated torsion group that is residu-
ally FS7

Despite of a variety of techniques that are known to produce infinite finitely generated
residually finite torsion groups that range from amenable [3,5] and non-amenable branch
groups [14,6] to groups with Kazhdan’s property (T) [1,2], and groups with positive first
¢2-Betti number [11,8], there was no construction known so far that produces infinite
finitely generated torsion groups that are residually FS. In fact there is a big obstruction
for infinite finitely generated torsion groups to be residually FS. To make this more
precise, let us write FSy to denote the subclass of FS that consists of groups that
do not contain a subgroup isomorphic to Alt(k). The following observation is an easy
consequence of a result of Lubotzky and Segal [10, Theorem 16.4.2(i), page 394] and
certainly well-known to the experts. However, we take the opportunity to state it here.
A proof of it will be given below Proposition 3.9.

Proposition 1.2. Fvery finitely generated group G that is residually FSy, for some k can
be realized as a subdirect product of finitely many linear groups.

In particular, if such a group G is infinite, it admits an infinite finitely generated linear
quotient, which is virtually torsion free. It therefore follows that the class of finitely
generated groups that are residually FSj, for some k does not contain an infinite torsion
group. In view of this, it can be easily seen that an affirmative answer to Problem 1.1
implies the existence of a torsion group I' that is a subdirect product in Hfil S;, where
S; € FS contains an isomorphic copy of Alt(i). We will show that such a group T
indeed exists and thereby answer Problem 1.1 affirmatively. In fact we will see that
every countable residually finite torsion group embeds in a group I as above.

Theorem 1.3. Every countable residually finite torsion group embeds into a finitely gen-
erated torsion group that is residually FS.

The proof of Theorem 1.3 is based on the following idea. Consider a group G and a
sequence of G-sets (£2;);en that are represented by homomorphisms «;: G — Sym(£;).
For each ¢ let 7; € Sym(£2;) be a permutation of ;. Then, under suitable assumptions
on 7; and «;, the subgroup I' of J],.r Sym(;) that is generated by (7;);eny and the
image of

a: G — H Sym(€%), g — (i(9))ien
€N
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will keep some of the properties of G, e.g. being torsion, while gaining some extra proper-
ties, e.g. being residually FS. A related idea was recently applied in a work of Kionke and
the author [7] in order to produce new examples of infinite finitely generated amenable
simple groups.

Acknowledgments. This article arose from the author’s research stays at the Erwin
Schrodinger International Institute for Mathematics and Physics in Vienna and the In-
stitute of Mathematical Sciences (ICMAT) in Madrid. The author would like to thank
these institutes for their financial and organizational support. The author is grateful to
Goulnara Arzhantseva, Andrei Jaikin-Zapirain, Steffen Kionke, and Markus Steenbock
for helpful discussions.

2. Extending actions of torsion groups

For the rest of this section we fix a torsion group G that acts on a set 2. Let a: G —
Sym(€2) denote the corresponding homomorphism. Let us moreover fix an element p € Q
and let Q" := QU {q} for some g ¢ Q. We are interested in the subgroup I' of Sym(Q")
that is generated by «(G) and the transposition 7 = (p, q).

Notation 2.1. Let F'(X) denote the free group over a set X and let w = z;, ... z;, € F(X)
be a reduced word of length ¢ € Ng. For each 0 < k < £ we write Wk
to denote the terminal subword of length £k in w.

= xiZ—k+1 - Ty,

Let us now consider the free group F := F(G U {7}). To simplify the notation we will
often interpret a word w € F' as an element of T, respectively G if w € F(G), as long as
no ambiguity is possible.

Definition 2.2. For each word w € F of length £ € Ny and each point £ € QF, we define
the w-trace of £ as the sequence

Try,(€) == (wp - )iy

Note that the w-trace of an element £ does not necessarily contain £. Let us now fix
a finite sequence g, ..., g of elements in G. In what follows we will study traces for the
words

Uni = (91---9x)"91--- i
and

Wni = (Tg1...TGK)"TG1...TG;

in F, where n € Ng and 0 <i < k.
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Notation 2.3. Given a group H and an element h € H, we write og(h) € N U {oo} to
denote the order of h in H.

Let us consider the element g := g7 ...gx € G and let N = og(g).

Lemma 2.4. Let £ € QF and let 0 < i < k. Suppose that p is not contained in Tr,, ,(§).
Then p is not contained in Try, ,(§) for every n € Ny.

Proof. If { = ¢, then p is clearly contained in Try, ,(£) so that there is nothing to show.
Let us therefore assume that £ € 2 and that Tr,, ,(£) does not contain p. Since 7 fixes
every point in Q\ {p}, it follows that Tr,, (§) does not contain p. Thus there is no
non-trivial terminal subword u of (g1 ...gx)N g1 ...g: that satisfies u(¢) = p. Since

(g1...gk)Ng1~~~gz"5291~~~9i'§7

it follows that Try, ., ,(£) does not contain p for every a € Ng and every r < k. Thus
the same is true for w,n 4, which proves the lemma. O

Lemma 2.5. The element p is contained in Tr,, . (p) for every 0 <i < k.

Proof. Suppose that p is not contained in Tty , (p). Since 7 fixes every point in Q\ {p},
it follows that p is not contained in Tr, , (p). However, this is not possible since the word
(gix1.--9r91 ---9:)", which represents the trivial element in G, is a non-trivial terminal

subword of vy ;. O

Lemma 2.6. Let £ € Q1 and let n € Ng. Suppose that Try,, ,(§) contains p. Then there
are natural numbers my,ma,j with 0 <my < mg < N(k+1) and 0 < j < k such that

WN(k+1),0 * & = Winy,j - D = Wiy, - P-

Proof. From Lemma 2.4 we know that Try, ,({) contains p. Thus there are integers
n1 < N and i; < k with

WN,o &= Wny iy P
and therefore
Wk 1)N,0 - § = WkN+ny iy * D-

Now an inductive application of Lemma 2.5 provides us with integers no, ns, ..., ngr1 <
N and 49,13, ...,1k+1 < k such that
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wk?NJr’rLl,il p= w(k—l)N+n1+n2,i2 P

= w(k*Q)N+n1+n2+n3,i3 - p

= Wny+...4ngp1,i641 °P-

Regarding this, the lemma follows from the pigeonhole principle applied to the sequence
of indices i1,...,ik+1. O

Lemma 2.7. For every £ € Q7 there is a natural number m < N(k + 1) such that
Wi 0(§) = &.

Proof. Suppose first that p is not contained in Try, ,(£). Then p is not contained in
Tryy o (§) and we obtain

wyo-E=(g1...qp) - E=E

Suppose next that p is contained in Try ,(§). From Lemma 2.6 we know that there are
natural numbers my,ma,j with 0 < mj < mg < N(k+ 1) and 0 < j < k such that

WN (k+1),0 =Wy P = Wing 5 P

In view of this, we see that Wy, —m, 0 - & =&, where mg —my < (k+1)N. O
3. Embedding torsion groups

In this section we will apply Lemma 2.7 in the case where the involved groups are
finitely generated and residually finite. This will enable us to prove Theorem 1.3 from
the introduction.

3.1. The finitely generated case

Let G, T, and QF be as above. Suppose now that G is finitely generated and let X
be a finite generating set of G. In this case we can define the torsion growth function of
G with respect to X as the function

T&: N =N, £ max{oa(g) | g € BE(0) },

where B (¢) denotes the set of elements of G whose word length with respect to X is
bounded above by £. We consider the generating set X := a(X) U {7} of .

Lemma 3.1. Let £ € N, let v € Béﬁ (0), and let £ € QF. The size of the orbit () - £ is
bounded above by T (£) - (€ +1).



6 E. Schesler / Advances in Mathematics 479 (2025) 110441

Proof. Since the claim is trivial otherwise, we may assume that « does not lie in Bz(%()) (0).
Thus, up to conjugation, we may assume that - is represented by a word of the form

w=Tg1T...TGr,

where Y7 |gila(x) < ¢ and therefore [g;...g-|x < ¢. In this case we know from
Lemma 2.7 that there is a natural number

m < Tg(O)(r+1) <Ta()(0+1)
such that y™(§) =¢. O
Note that Lemma 3.1 has the following immediate consequence.

Corollary 3.2. Every element v € I satisfies

,V(Tc);((l’v\x+)'(\“/|x++1))! =1,

where |y|x+ denotes the word length of v with respect to X . In particular, T is a torsion
group and TX " is bounded above by the function n — (TX (n) - (n+ 1))!.

3.2. Families of actions

The crucial point of Corollary 3.2 is that the function
n (TF (n) - (n+1))!

depends neither on the action of I' on QT nor on the choice of the point p € Q. This
allows us to apply Corollary 3.2 simultaneously to a family of G-actions. To do so, we
consider a family (€;);er of G-sets ;. Let a;: G — Sym(£;) denote the homomorphism
corresponding to the action of G on ;. For each i € I we fix an element p; € ; and
let (g;)icq be a family of pairwise different elements that do not lie in U;en€2;. Let
Qf =0 U{q} and let 7; = (ps, ¢;) € Sym(]). We consider the homomorphism

ar: G— H Sym(Qf)y 9 — (@i(9))ier
i€l

and the sequence 77 := (7;)ic; € [L;c; Sym(Q). Let I'; denote the subgroup of

[T Sym(€2) that is generated by ar(G) and 77 and let X; := a7(X) U {7}, which
iel
is a finite generating set of I's.

Proposition 3.3. The torsion function Tél of 'y with respect to Xy satisfies

T, (n) < (T (n) - (n +1))!
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for every n € N. In particular, T'1 is a torsion group.

Proof. The claim directly follows by applying Corollary 3.2 simultaneously to the actions
of I'7 on Q, which are given by the canonical homomorphisms I'; — Sym(Q;") for every
iel. O

3.8. The residually finite case

Let us now assume that G is an infinite finitely generated residually finite torsion
group. In this case we can choose a properly decreasing chain (N;);cn of finite index nor-
mal subgroups of G that satisfies N;enV; = 1. Let Q; := G/N; and let a;: G — Sym();)
denote the action of G that is given by left translation. Then, using the assumption that
(N;)sen is properly decreasing, we see that the homomorphism

osn: G — H Sym (%), g — (@i(g))izn

i>n

is injective for every n € N. As before, we fix an element p; € ; for each i € N
and a family (¢;);en of pairwise different elements that do not lie in U;en$;. We write
Qf == Q; U{q¢} and consider the elements 7; = (p;, ¢;) € Sym(2}) and 7 := (7i)ien €

o0
[T, Sym(Q;). Let T' < [] Sym(£2;) denote the subgroup that is generated by a>1(G)
i>n

and 7.

Lemma 3.4. Let Y be a finite set and let G < Sym(Y') be a subgroup that acts transitively
onY. Let YT =Y U{z}, where 2 ¢ Y. For everyy € Y the group Sym(Y T) is generated
by G and the transposition (y, z).

Proof. Let H denote the subgroup of Sym(Y ™) that is generated by G and (y, z). Since
G acts transitively on Y it follows that every transposition of the form (z,z) with z € Y
is a conjugate of (y, z) in H and therefore lies in H. By conjugating such a transposition
(z,2) with a transposition (', z), where 2/ ¢ {z, 2}, we obtain (z,2)*"*) = (z,2/) €
H. Now the proof follows from the well-known fact that Sym(Y ™) is generated by all
transpositions in Sym(Y ™). 0O

Recall that a subgroup H of a product of groups P = [],.; K; is called subdirect
product if the canonical map H — K; is surjective for every i € I.

Corollary 3.5. The subgroup I' of [[5=, Sym(Q;) is a subdirect product.
Proof. This is a direct consequence of Lemma 3.4 and the definition of I". O

Lemma 3.6. Let (n;);en be a sequence of pairwise different natural numbers, let P :=
[1:2, Sym(n;), and let H < P be a finitely generated subdirect product. Let .: H — P
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denote the inclusion map. For each k € N let prs,: P — [1:2, Sym(n;) denote the
canonical projection. There is a natural number m such that the image of the group
K := HN[[Z, Alt(n;) under prs,, o is a subdirect product in [[;=, Alt(n;).

Proof. Let m: [];2, Sym(n;) — [[:2, Sym(n;)*® = [[;2, F2 denote the abelianization.
Note that K is the kernel of m o . Since H is finitely generated, its image in [];-, Fo
is finite and thus K has finite index, say k, in H. Since there are only finitely many
alternating groups that admit proper subgroups of index at most k, it follows that the
canonical map K — Alt(n;) is surjective for almost every i. Thus the lemma follows if
m is chosen big enough. O

We are now ready to prove the main result.

Theorem 3.7. Every countable residually finite torsion group G embeds into a finitely
generated torsion group that is residually in the class FS.

Proof. From [15, Theorem B] we know that every countable residually finite torsion
group embeds into a finitely generated residually finite torsion group. On the other
hand, it is shown in [9, Theorem 1.1] that every finitely generated, residually finite
torsion group embeds into a finitely generated, residually finite perfect torsion group.
Regarding this, we can assume that G is perfect. Let (N;);eny be a strictly decreasing
sequence of finite index normal subgroups of G with N;enN; = {1} and let Q; = G/N;.
From Corollary 3.5 we know that G embeds in a finitely generated subdirect product I"
in [T;2, Sym(n;), where n; = |[€;|+ 1. In this case Lemma 3.6 provides us with a number
m € N such that the projection image of K := I' N [[;2, Alt(n;) in [];2, Sym(n;) is
a subdirect product of ;2 ~Alt(n;). Since G is perfect we have G < K. Moreover the
restriction of the projection [[;-; Sym(n;) — [];=,, Sym(n;) to G is injective since the
sequence (IV;);en was chosen to be decreasing. Thus G embeds into the image of K
in Hfim Alt(n;). Since the latter is a finitely generated torsion group and a subdirect
product of ]2~ Alt(n;), this completes the proof. O

We conclude this article with a proof of Proposition 1.2, which we deduce from the
following result of Lubotzky and Segal, see [10, Theorem 16.4.2(i), page 394]. To formu-
late the latter, we write L4 to denote the class of all groups that admit a d-dimensional
faithful representation, i.e. embed into GL4(K) for some field K.

Theorem 3.8. Every finitely generated group G that is residually in L4 for some d € N
can be realized as a subdirect product of finitely many linear groups.

Recall that we write FSj to denote the class of finite simple groups that do not
contain a subgroup isomorphic to Alt(k).
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Proposition 3.9. Every finitely generated group G that is residually in FSy for some k
can be realized as a subdirect product of finitely many linear groups.

Proof. Let k > 5 be a natural number. According to [10, Proposition 16.4.4, page 346],
there is a number ¢ € N such that every finite simple group of classical Lie type * X,
contains a subgroup isomorphic to SLi(F,)/N, where N is a subgroup of the center of
SLi(Fy). Let ¢: Alt(k) — SLi(F,) denote the standard embedding and let 7: SLy(Fy) —
SLx(Fg4)/N be the quotient map. Since Alt(k) is a non-abelian simple group, it follows
that «(Alt(k)) N N = {1} and hence that 7 o ¢(Alt(k)) is a subgroup of SL;(F,)/N that
is isomorphic to Alt(k). In particular we see that every finite simple group of classical
Lie type * X, contains a subgroup that is isomorphic to Alt(k). On the other hand, we
know from [10, Proposition 16.4.6, page 347] that there is some n € N such that every
simple group @ of (not necessarily classical) Lie type *X, is contained in SL,(F,) for
some field F,. As a consequence, we see that @ lies in £,,. By combining the latter with
the fact that the Lie rank of the exceptional Lie types is bounded above by 8, we deduce
that FSk C Liax(n,g)- Thus we can apply Theorem 3.8 to deduce that G' is a subdirect
product of finitely many linear groups. 0O
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