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We show that every countable residually finite torsion group 
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residually finite simple. In particular we show the existence 
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finite simple, which answers a question of Olshanskii and Osin.
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1. Introduction

Let 𝒞 be a class of groups. A group G is said to be residually 𝒞 if the intersection of 
all normal subgroups N of G with G/N ∈ 𝒞 is the trivial group. It is a classical problem 
in group theory to determine the classes of groups 𝒞 for which a given group is residually 
𝒞 and a lot of research has been done in this direction, see e.g. [13]. A special instance of 
the latter was formulated in 1987 by Gromov [4] and became a notorious open problem 
in geometric group theory: Is every hyperbolic group residually finite, i.e. residually ℱ , 
where ℱ denotes the class of finite groups? In 2008 it was shown by Olshanskii and 
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Osin [12] that an affirmative answer to Gromov’s question would imply the existence 
of finitely generated infinite torsion groups that are residually ℱ𝒮, where ℱ𝒮 denotes 
the class of finite simple groups. It was therefore natural to ask the following, see [12, 
Problem 3.4].

Problem 1.1. Does there exist an infinite finitely generated torsion group that is residu
ally ℱ𝒮?

Despite of a variety of techniques that are known to produce infinite finitely generated 
residually finite torsion groups that range from amenable [3,5] and non-amenable branch 
groups [14,6] to groups with Kazhdan’s property (T) [1,2], and groups with positive first 
ℓ2-Betti number [11,8], there was no construction known so far that produces infinite 
finitely generated torsion groups that are residually ℱ𝒮. In fact there is a big obstruction 
for infinite finitely generated torsion groups to be residually ℱ𝒮. To make this more 
precise, let us write ℱ𝒮k to denote the subclass of ℱ𝒮 that consists of groups that 
do not contain a subgroup isomorphic to Alt(k). The following observation is an easy 
consequence of a result of Lubotzky and Segal [10, Theorem 16.4.2(i), page 394] and 
certainly well-known to the experts. However, we take the opportunity to state it here. 
A proof of it will be given below Proposition 3.9.

Proposition 1.2. Every finitely generated group G that is residually ℱ𝒮k for some k can 
be realized as a subdirect product of finitely many linear groups.

In particular, if such a group G is infinite, it admits an infinite finitely generated linear 
quotient, which is virtually torsion free. It therefore follows that the class of finitely 
generated groups that are residually ℱ𝒮k for some k does not contain an infinite torsion 
group. In view of this, it can be easily seen that an affirmative answer to Problem 1.1
implies the existence of a torsion group Γ that is a subdirect product in 

∏︁∞
i=1 Si, where 

Si ∈ ℱ𝒮 contains an isomorphic copy of Alt(i). We will show that such a group Γ
indeed exists and thereby answer Problem 1.1 affirmatively. In fact we will see that 
every countable residually finite torsion group embeds in a group Γ as above.

Theorem 1.3. Every countable residually finite torsion group embeds into a finitely gen
erated torsion group that is residually ℱ𝒮.

The proof of Theorem 1.3 is based on the following idea. Consider a group G and a 
sequence of G-sets (Ωi)i∈N that are represented by homomorphisms αi : G → Sym(Ωi). 
For each i let τi ∈ Sym(Ωi) be a permutation of Ωi. Then, under suitable assumptions 
on τi and αi, the subgroup Γ of 

∏︁
i∈N Sym(Ωi) that is generated by (τi)i∈N and the 

image of

α : G →
∏︂

i∈N
Sym(Ωi), g ↦→ (αi(g))i∈N
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will keep some of the properties of G, e.g. being torsion, while gaining some extra proper
ties, e.g. being residually ℱ𝒮. A related idea was recently applied in a work of Kionke and 
the author [7] in order to produce new examples of infinite finitely generated amenable 
simple groups.

Acknowledgments. This article arose from the author’s research stays at the Erwin 
Schrödinger International Institute for Mathematics and Physics in Vienna and the In
stitute of Mathematical Sciences (ICMAT) in Madrid. The author would like to thank 
these institutes for their financial and organizational support. The author is grateful to 
Goulnara Arzhantseva, Andrei Jaikin-Zapirain, Steffen Kionke, and Markus Steenbock 
for helpful discussions.

2. Extending actions of torsion groups

For the rest of this section we fix a torsion group G that acts on a set Ω. Let α : G →
Sym(Ω) denote the corresponding homomorphism. Let us moreover fix an element p ∈ Ω
and let Ω+ := Ω∪ {q} for some q / ∈ Ω. We are interested in the subgroup Γ of Sym(Ω+)
that is generated by α(G) and the transposition τ = (p, q).

Notation 2.1. Let F (X) denote the free group over a set X and let w = xi1 . . . xiℓ ∈ F (X)
be a reduced word of length ℓ ∈ N0. For each 0 ≤ k ≤ ℓ we write w[k] := xiℓ−k+1 . . . xiℓ

to denote the terminal subword of length k in w.

Let us now consider the free group F := F (G∪{τ}). To simplify the notation we will 
often interpret a word w ∈ F as an element of Γ, respectively G if w ∈ F (G), as long as 
no ambiguity is possible.

Definition 2.2. For each word w ∈ F of length ℓ ∈ N0 and each point ξ ∈ Ω+, we define 
the w-trace of ξ as the sequence

Trw(ξ) := (w[i] · ξ)ℓi=1.

Note that the w-trace of an element ξ does not necessarily contain ξ. Let us now fix 
a finite sequence g1, . . . , gk of elements in G. In what follows we will study traces for the 
words

vn,i = (g1 . . . gk)ng1 . . . gi

and

wn,i = (τg1 . . . τgk)nτg1 . . . τgi

in F , where n ∈ N0 and 0 ≤ i < k.
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Notation 2.3. Given a group H and an element h ∈ H, we write oH(h) ∈ N ∪ {∞} to 
denote the order of h in H.

Let us consider the element g := g1 . . . gk ∈ G and let N = oG(g).

Lemma 2.4. Let ξ ∈ Ω+ and let 0 ≤ i < k. Suppose that p is not contained in TrwN,i
(ξ). 

Then p is not contained in Trwn,i
(ξ) for every n ∈ N0.

Proof. If ξ = q, then p is clearly contained in TrwN,i
(ξ) so that there is nothing to show. 

Let us therefore assume that ξ ∈ Ω and that TrwN,i
(ξ) does not contain p. Since τ fixes 

every point in Ω \ {p}, it follows that TrvN,i
(ξ) does not contain p. Thus there is no 

non-trivial terminal subword u of (g1 . . . gk)Ng1 . . . gi that satisfies u(ξ) = p. Since

(g1 . . . gk)Ng1 . . . gi · ξ = g1 . . . gi · ξ,

it follows that TrvaN+r,i
(ξ) does not contain p for every a ∈ N0 and every r < k. Thus 

the same is true for waN+r,i, which proves the lemma. □
Lemma 2.5. The element p is contained in TrwN,i

(p) for every 0 ≤ i < k.

Proof. Suppose that p is not contained in TrwN,i
(p). Since τ fixes every point in Ω \ {p}, 

it follows that p is not contained in TrvN,i
(p). However, this is not possible since the word 

(gi+1 . . . gkg1 . . . gi)N , which represents the trivial element in G, is a non-trivial terminal 
subword of vN,i. □
Lemma 2.6. Let ξ ∈ Ω+ and let n ∈ N0. Suppose that Trwn,0(ξ) contains p. Then there 
are natural numbers m1,m2, j with 0 ≤ m1 < m2 < N(k + 1) and 0 ≤ j < k such that

wN(k+1),0 · ξ = wm1,j · p = wm2,j · p.

Proof. From Lemma 2.4 we know that TrwN,0(ξ) contains p. Thus there are integers 
n1 < N and i1 < k with

wN,0 · ξ = wn1,i1 · p

and therefore

w(k+1)N,0 · ξ = wkN+n1,i1 · p.

Now an inductive application of Lemma 2.5 provides us with integers n2, n3, . . . , nk+1 <

N and i2, i3, . . . , ik+1 < k such that
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wkN+n1,i1 · p = w(k−1)N+n1+n2,i2 · p
= w(k−2)N+n1+n2+n3,i3 · p
...

= wn1+...+nk+1,ik+1 · p.

Regarding this, the lemma follows from the pigeonhole principle applied to the sequence 
of indices i1, . . . , ik+1. □
Lemma 2.7. For every ξ ∈ Ω+ there is a natural number m ≤ N(k + 1) such that 
wm,0(ξ) = ξ.

Proof. Suppose first that p is not contained in TrwN,0(ξ). Then p is not contained in 
TrvN,0(ξ) and we obtain

wN,0 · ξ = (g1 . . . gk)N · ξ = ξ.

Suppose next that p is contained in TrwN,0(ξ). From Lemma 2.6 we know that there are 
natural numbers m1,m2, j with 0 ≤ m1 < m2 < N(k + 1) and 0 ≤ j < k such that

wN(k+1),0 · ξ = wm1,j · p = wm2,j · p.

In view of this, we see that wm2−m1,0 · ξ = ξ, where m2 −m1 ≤ (k + 1)N . □
3. Embedding torsion groups

In this section we will apply Lemma 2.7 in the case where the involved groups are 
finitely generated and residually finite. This will enable us to prove Theorem 1.3 from 
the introduction.

3.1. The finitely generated case

Let G, Γ, and Ω+ be as above. Suppose now that G is finitely generated and let X
be a finite generating set of G. In this case we can define the torsion growth function of 
G with respect to X as the function

TX
G : N → N, ℓ ↦→ max{ oG(g) | g ∈ BX

G (ℓ) },

where BX
G (ℓ) denotes the set of elements of G whose word length with respect to X is 

bounded above by ℓ. We consider the generating set X+ := α(X) ∪ {τ} of Γ.

Lemma 3.1. Let ℓ ∈ N, let γ ∈ BX+

Γ (ℓ), and let ξ ∈ Ω+. The size of the orbit ⟨γ⟩ · ξ is 
bounded above by TX

G (ℓ) · (ℓ + 1).
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Proof. Since the claim is trivial otherwise, we may assume that γ does not lie in Bα(X)
α(G) (ℓ). 

Thus, up to conjugation, we may assume that γ is represented by a word of the form

w = τg1τ . . . τgr,

where 
∑︁r

i=1 |gi|α(X) ≤ ℓ and therefore |g1 . . . gr|X ≤ ℓ. In this case we know from 
Lemma 2.7 that there is a natural number

m ≤ TG(ℓ)(r + 1) ≤ TG(ℓ)(ℓ + 1)

such that γm(ξ) = ξ. □
Note that Lemma 3.1 has the following immediate consequence.

Corollary 3.2. Every element γ ∈ Γ satisfies

γ(TX
G (|γ|X+ )·(|γ|X++1))! = 1,

where |γ|X+ denotes the word length of γ with respect to X+. In particular, Γ is a torsion 
group and TX+

Γ is bounded above by the function n ↦→ (TX
G (n) · (n + 1))!.

3.2. Families of actions

The crucial point of Corollary 3.2 is that the function

n ↦→ (TX
G (n) · (n + 1))!

depends neither on the action of Γ on Ω+ nor on the choice of the point p ∈ Ω. This 
allows us to apply Corollary 3.2 simultaneously to a family of G-actions. To do so, we 
consider a family (Ωi)i∈I of G-sets Ωi. Let αi : G → Sym(Ωi) denote the homomorphism 
corresponding to the action of G on Ωi. For each i ∈ I we fix an element pi ∈ Ωi and 
let (qi)i∈Ω be a family of pairwise different elements that do not lie in ∪i∈NΩi. Let 
Ω+

i := Ωi ∪ {qi} and let τi = (pi, qi) ∈ Sym(Ω+
i ). We consider the homomorphism

αI : G →
∏︂

i∈I 
Sym(Ω+

i ), g → (αi(g))i∈I

and the sequence τI := (τi)i∈I ∈ ∏︁
i∈I Sym(Ω+

i ). Let ΓI denote the subgroup of ∏︁
i∈I

Sym(Ω+
i ) that is generated by αI(G) and τI and let XI := αI(X) ∪ {τI}, which 

is a finite generating set of ΓI .

Proposition 3.3. The torsion function TXI

ΓI
of ΓI with respect to XI satisfies

TXI

ΓI
(n) ≤ (TX

G (n) · (n + 1))!
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for every n ∈ N. In particular, ΓI is a torsion group.

Proof. The claim directly follows by applying Corollary 3.2 simultaneously to the actions 
of ΓI on Ω+

i , which are given by the canonical homomorphisms ΓI → Sym(Ω+
i ) for every 

i ∈ I. □
3.3. The residually finite case

Let us now assume that G is an infinite finitely generated residually finite torsion 
group. In this case we can choose a properly decreasing chain (Ni)i∈N of finite index nor
mal subgroups of G that satisfies ∩i∈NNi = 1. Let Ωi := G/Ni and let αi : G → Sym(Ωi)
denote the action of G that is given by left translation. Then, using the assumption that 
(Ni)i∈N is properly decreasing, we see that the homomorphism

α≥n : G →
∞ ∏︂

i≥n

Sym(Ωi), g → (αi(g))i≥n

is injective for every n ∈ N. As before, we fix an element pi ∈ Ωi for each i ∈ N

and a family (qi)i∈N of pairwise different elements that do not lie in ∪i∈NΩi. We write 
Ω+

i := Ωi ∪ {qi} and consider the elements τi = (pi, qi) ∈ Sym(Ω+
i ) and τ := (τi)i∈N ∈

∏︁∞
i=1 Sym(Ω+

i ). Let Γ ≤
∞ ∏︁
i≥n

Sym(Ω+
i ) denote the subgroup that is generated by α≥1(G)

and τ .

Lemma 3.4. Let Y be a finite set and let G ≤ Sym(Y ) be a subgroup that acts transitively 
on Y . Let Y + = Y ∪{z}, where z / ∈ Y . For every y ∈ Y the group Sym(Y +) is generated 
by G and the transposition (y, z).

Proof. Let H denote the subgroup of Sym(Y +) that is generated by G and (y, z). Since 
G acts transitively on Y it follows that every transposition of the form (x, z) with x ∈ Y

is a conjugate of (y, z) in H and therefore lies in H. By conjugating such a transposition 
(x, z) with a transposition (x′, z), where x′ / ∈ {x, z}, we obtain (x, z)(x′,z) = (x, x′) ∈
H. Now the proof follows from the well-known fact that Sym(Y +) is generated by all 
transpositions in Sym(Y +). □

Recall that a subgroup H of a product of groups P =
∏︁

i∈I Ki is called subdirect 
product if the canonical map H → Ki is surjective for every i ∈ I.

Corollary 3.5. The subgroup Γ of 
∏︁∞

i=1 Sym(Ω+
i ) is a subdirect product.

Proof. This is a direct consequence of Lemma 3.4 and the definition of Γ. □
Lemma 3.6. Let (ni)i∈N be a sequence of pairwise different natural numbers, let P :=∏︁∞

i=1 Sym(ni), and let H ≤ P be a finitely generated subdirect product. Let ι : H → P
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denote the inclusion map. For each k ∈ N let pr≥k : P → ∏︁∞
i=k Sym(ni) denote the 

canonical projection. There is a natural number m such that the image of the group 
K := H ∩∏︁∞

i=1 Alt(ni) under pr≥m ◦ι is a subdirect product in 
∏︁∞

i=m Alt(ni).

Proof. Let π :
∏︁∞

i=1 Sym(ni) → ∏︁∞
i=1 Sym(ni)ab ∼ = 

∏︁∞
i=1 F2 denote the abelianization. 

Note that K is the kernel of π ◦ ι. Since H is finitely generated, its image in 
∏︁∞

i=1 F2

is finite and thus K has finite index, say k, in H. Since there are only finitely many 
alternating groups that admit proper subgroups of index at most k, it follows that the 
canonical map K → Alt(ni) is surjective for almost every i. Thus the lemma follows if 
m is chosen big enough. □

We are now ready to prove the main result.

Theorem 3.7. Every countable residually finite torsion group G embeds into a finitely 
generated torsion group that is residually in the class ℱ𝒮.

Proof. From [15, Theorem B] we know that every countable residually finite torsion 
group embeds into a finitely generated residually finite torsion group. On the other 
hand, it is shown in [9, Theorem 1.1] that every finitely generated, residually finite 
torsion group embeds into a finitely generated, residually finite perfect torsion group. 
Regarding this, we can assume that G is perfect. Let (Ni)i∈N be a strictly decreasing 
sequence of finite index normal subgroups of G with ∩i∈NNi = {1} and let Ωi = G/Ni. 
From Corollary 3.5 we know that G embeds in a finitely generated subdirect product Γ
in 

∏︁∞
i=1 Sym(ni), where ni = |Ωi|+1. In this case Lemma 3.6 provides us with a number 

m ∈ N such that the projection image of K := Γ ∩ ∏︁∞
i=1 Alt(ni) in 

∏︁∞
i=m Sym(ni) is 

a subdirect product of 
∏︁∞

i=m Alt(ni). Since G is perfect we have G ≤ K. Moreover the 
restriction of the projection 

∏︁∞
i=1 Sym(ni) → ∏︁∞

i=m Sym(ni) to G is injective since the 
sequence (Ni)i∈N was chosen to be decreasing. Thus G embeds into the image of K
in 

∏︁∞
i=m Alt(ni). Since the latter is a finitely generated torsion group and a subdirect 

product of 
∏︁∞

i=m Alt(ni), this completes the proof. □
We conclude this article with a proof of Proposition 1.2, which we deduce from the 

following result of Lubotzky and Segal, see [10, Theorem 16.4.2(i), page 394]. To formu
late the latter, we write ℒd to denote the class of all groups that admit a d-dimensional 
faithful representation, i.e. embed into GLd(K) for some field K.

Theorem 3.8. Every finitely generated group G that is residually in ℒd for some d ∈ N

can be realized as a subdirect product of finitely many linear groups.

Recall that we write ℱ𝒮k to denote the class of finite simple groups that do not 
contain a subgroup isomorphic to Alt(k).
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Proposition 3.9. Every finitely generated group G that is residually in ℱ𝒮k for some k
can be realized as a subdirect product of finitely many linear groups.

Proof. Let k ≥ 5 be a natural number. According to [10, Proposition 16.4.4, page 346], 
there is a number ℓ ∈ N such that every finite simple group of classical Lie type ∗Xℓ

contains a subgroup isomorphic to SLk(Fq)/N , where N is a subgroup of the center of 
SLk(Fq). Let ι : Alt(k) → SLk(Fq) denote the standard embedding and let π : SLk(Fq) →
SLk(Fq)/N be the quotient map. Since Alt(k) is a non-abelian simple group, it follows 
that ι(Alt(k)) ∩N = {1} and hence that π ◦ ι(Alt(k)) is a subgroup of SLk(Fq)/N that 
is isomorphic to Alt(k). In particular we see that every finite simple group of classical 
Lie type ∗Xℓ contains a subgroup that is isomorphic to Alt(k). On the other hand, we 
know from [10, Proposition 16.4.6, page 347] that there is some n ∈ N such that every 
simple group Q of (not necessarily classical) Lie type ∗Xℓ is contained in SLn(Fq) for 
some field Fq. As a consequence, we see that Q lies in ℒn. By combining the latter with 
the fact that the Lie rank of the exceptional Lie types is bounded above by 8, we deduce 
that ℱ𝒮k ⊆ ℒmax(n,8). Thus we can apply Theorem 3.8 to deduce that G is a subdirect 
product of finitely many linear groups. □
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