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1 Introduction

All present evidence for dark matter (DM) is based exclusively on its gravitational interactions,
and the extent to which DM particles have non-gravitational interactions with known matter
is completely unknown [1]. Nevertheless, many models of DM assume that such interactions
exist and that they are sufficient to bring DM into equilibrium with the Standard Model
(SM) thermal bath in the very early universe, after which DM particles become Boltzmann
suppressed and freeze out. The interaction strength required for this process to reproduce
the observed DM abundance leads to testable predictions for laboratory experiments, which
have so far not been able to confirm the freeze-out picture.

In light of these null results, an alternative DM production mechanism has gained traction
in recent years, in which the non-gravitational interactions between DM and SM particles
are too weak to ever bring the different species into equilibrium. In this so-called freeze-in
mechanism [2–7], DM is gradually produced via “energy leakage” from the thermal bath of
SM particles. The couplings required to reproduce the observed DM abundance are then many
orders of magnitude smaller than for the freeze-out mechanism, complying with existing data
and offering promising targets for future experiments [8–15]. Over recent years, calculations of
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freeze-in production have reached a high level of sophistication, with automated tools [16, 17]
including thermal corrections and quantum effects [18–23].

The freeze-in mechanism, however, comes with two complications not present in the freeze-
out picture. The first is that, since no equilibrium state is ever reached, the final abundance
depends on the initial conditions, i.e., the abundance of DM particles before freeze-in becomes
efficient. In the literature, it is commonly assumed that this initial abundance is zero, although
various works have pointed out that DM production through gravitational effects [24–30] or
inflationary dynamics [31–36] may be non-negligible. The second is that in many models the
freeze-in abundance is directly sensitive to the details of reheating, i.e. to the temperature
when the universe first entered radiation domination [37–40]. This is in particular the case
for DM production via effective operators (induced by new physics above the reheating
temperature [41, 42]) and for DM particles with a mass above the reheating temperature.

These issues become particularly relevant in models with a low reheating temperature [43–
45], which have received considerable attention recently because they allow freeze-in with
comparably large couplings [46–50]. A common assumption in these models is that inflationary
reheating is followed by a second period of reheating, in which the universe deviates from
radiation domination and the entropy of the SM thermal bath is not conserved. The simplest
realization of this idea is to consider an out-of-equilibrium matter component that slowly
decays into relativistic SM particles after an early period of matter domination [8, 51–
53]. Alternative possibilities for the equation of state of the universe and the temperature
dependence of the energy transfer have been explored in several recent studies [54, 55].
However, these studies typically assume that the final DM abundance is determined exclusively
by the second period of reheating and that any earlier contributions can be neglected (see
however ref. [56] for a notable exception).

In the present work, we study this assumption in a general way by considering a scalar
field that undergoes a first-order phase transition in the early universe.1 Following inflationary
reheating, the scalar field sits at a false minimum with sizeable vacuum energy, from which
it transitions to the true minimum at some lower temperature. After the phase transition,
the oscillations of the scalar field around the true minimum decay into SM particles, leading
to a second period of reheating. This set-up comprises the case of early matter domination,
but also allows for the possibility that the scalar field dominates the energy density of the
universe before the phase transition, leading to a period of accelerated expansion. In this
case, it is possible that the SM temperature increases rapidly after the phase transition,
provided the scalar field oscillations decay sufficiently quickly.

We derive analytical approximations that describe the various stages of cosmological
evolution, which we validate against numerical solutions of the coupled system of Boltzmann
equations. We then determine the conditions that must be fulfilled in order for the final
abundance of DM to be determined primarily by the details of the phase transition and the
subsequent reheating and to be insensitive to the details of inflationary reheating. We refer
to this scenario as DM phase-in, both because DM production happens in several phases and
because the dominant contribution follows from a first-order phase transition.

1The impact of the electroweak phase transition on the freeze-in production of DM was previously explored
in refs. [57, 58]. Other studies have investigated the impact of a dark sector phase transition on the DM relic
abundance produced via the freeze-out [59, 60] and freeze-in [61–63] mechanisms.
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Another intriguing possibility is that the freeze-in contribution (from inflationary reheat-
ing) and the phase-in contribution (from the second period of reheating) are of comparable
magnitude. In this case, our set-up predicts that the two populations would have substantially
different temperatures, such that a mixture of warm and cold DM can be achieved from a
single particle species. We discuss possible implications for Lyman-alpha forest data and
the 21-cm signal [64–67].

The remainder of this work is structured as follows. In section 2, we discuss the general
set-up that we consider and define the different stages of cosmological evolution. In section 3,
we provide the relevant Boltzmann equations and present approximate analytical solutions,
which we compare with numerical results in section 4. In section 5, we finally determine
the regions of parameter space that correspond to DM phase-in, followed by a discussion of
possible implications for observations in section 6. Our conclusions are presented in section 7.
Appendix A provides additional details on our calculations.

2 General set-up

In this study, we consider a universe that — after inflation and the subsequent reheating —
is filled with four different energy components: a bath of relativistic SM particles, a bath
of relativistic dark sector particles, i.e. dark radiation (DR), a scalar field ϕ and a DM
species. We denote the corresponding energy densities by ρSM, ρDR, ρϕ and ρDM, respectively.
We do not consider the details of primordial reheating and simply start our discussion
at the reheating temperature TRH, i.e. the highest temperature at which the universe is
dominated by radiation.2

We assume that the reheating temperature is large enough that all SM particles are in
equilibrium with each other and can be described by a common temperature T , such that

ρSM = π2

30g⋆T 4 (2.1)

with g⋆ denoting the effective number of relativistic degrees of freedom. Likewise, the energy
density of dark radiation is given by

ρDR = π2

30gDRT 4
DR. (2.2)

We assume that the two radiation baths are extremely weakly coupled, such that their
temperatures can in principle be different: TDR ̸= T . The precise value of TDR plays however
no role in the subsequent discussion, so that we set TDR = T for simplicity. We furthermore
assume that gDR is small enough that the energy density of dark radiation only gives a
tiny contribution to the total energy density, i.e. that ρDR ≪ ρSM. For concreteness, we set
gDR = 2, as appropriate for example for a gauge field.

Nevertheless, the dark radiation plays an important role because it strongly couples to
the scalar field ϕ and gives rise to thermal corrections that create a temperature-dependent

2We emphasize that the maximal temperature Tmax of the universe can be higher than the temperature
TRH at which the universe first enters radiation domination [68]. However, it has been shown that in most
cases of interest, the freeze-in yield depends only on TRH and not on Tmax [39, 49, 69]. We will return to this
issue in section 3.3.
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effective potential V (ϕ, T ) and determine the evolution of the scalar field. Since we are
interested in describing the impact of a first-order phase transition on freeze-in in a general
manner, we do not specify the details of these interactions and the resulting potential, but
simply assume that the scalar field initially sits in a metastable vacuum of the scalar potential,
such that its energy density is constant and given by the latent heat

ρϕ = ∆V, (2.3)

where ∆V is the potential energy difference between the false and true minima. As the universe
cools down, the potential barrier separating the two minima decreases, and the scalar field can
transition to the true minimum through the nucleation, expansion and collision of bubbles.

The DM component is assumed to be very feebly coupled to both the SM and the
DR thermal baths and never enters into equilibrium with either of them. We also assume
that primordial reheating does not produce DM, such that ρDM(TRH) = 0. Subsequently,
DM particles are produced from the SM thermal bath via the freeze-in mechanism. We
do not specify the details of the production process, but simply assume that it proceeds
via a non-renormalisable operator of dimension 4 + n with n > 0. If the mass of the
DM particles is negligible compared to T , the production cross section can on dimensional
grounds be written as

⟨σv⟩ = T 2(n−1)

Λ2n
, (2.4)

where Λ is the energy scale at which the interaction is generated, see also ref. [37].
The Hubble rate is given by the Friedmann’s equation,

H = ȧ

a
=
√

8π

3M2
Pl
(ρSM + ρϕ + ρDR), (2.5)

where MPl = 1.22×1019 GeV is the Planck mass, a is the scale factor and ρtot = ρSM+ρϕ+ρDR.
The DM contribution ρDM to the dynamics of the expansion can be ignored, since its energy
density is very small in the early universe.

The subsequent evolution of the universe can be divided into several stages:

• Stage I: the universe is radiation dominated, such that H ∝ T 2 and the entropy of the
SM thermal bath is conserved (neglecting the tiny amount of DM production), such
that T ∝ a−1.

• Stage II: as the universe cools down, the vacuum energy of the scalar field will start
to dominate the energy density of the universe, leading to a period of accelerated
expansion, which will rapidly deplete and cool down the SM and DR thermal baths.
This in turn triggers the first-order phase transition of the scalar field to the true
minimum.3

3Note that we assume that the phase transition happens instantaneously and simultaneously across the
entire universe and therefore do not consider particle production or filtering processes related to the bubble
dynamics [70–79].
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The redshift corresponding to the transition from stage I to stage II, i.e. the beginning
of vacuum domination (VD), can be calculated from the condition ρϕ(aVD) ≈ ρSM(aVD) as

aVD ≈ aRHTRH

(
π2

30
g⋆

∆V

)1/4

. (2.6)

The temperature TPT of the phase transition can in principle be calculated from V (ϕ, T ),
but in our simplified approach we simply take it as a free parameter. The corresponding
redshift is given by

aPT ≈ aRH

(
TRH
TPT

)
. (2.7)

During the phase transition, the vacuum energy present in stage II is quickly converted into
oscillations of the scalar field around the true minimum. Moreover, the vacuum expectation
value of the scalar field gives mass to the DR particles, which rapidly decay or annihilate
into scalar field excitations (see refs. [80, 81] for concrete examples of this set-up). While the
scalar field still dominates the energy density of the universe, it no longer behaves like vacuum
energy, but instead has an energy density that decreases as the universe expands. Moreover,
the scalar field excitations can decay into SM particles with a characteristic timescale Γ,
which we assume to be constant for simplicity.4 This leads to the following stages of evolution:

• Stage III: the universe is dominated by the scalar field ϕ, which slowly decays into
SM particles. As a result, the entropy of the SM thermal bath is no longer conserved
and the temperature decreases more slowly than a−1. Eventually, the energy density
of the SM thermal bath becomes comparable to the energy density of the scalar field,
which then quickly becomes negligible.

• Stage IV: the universe once again enters into radiation domination and remains there
for the subsequent stages of cosmological evolution, such as Big Bang Nucleosynthesis.

In the literature, it is often assumed that the scalar field oscillations after a first-order
phase transition can be treated as coherent, i.e., they behave approximately like matter with
pressure pϕ = 0, which would lead to a period of early matter domination if the decay of the
scalar field is slow (see, for example, [82, 83]). However, given the highly inhomogeneous
state of the universe during bubble nucleation and collision, it is far from clear that this
assumption holds. We therefore allow for a general equation of state for the scalar field:

pϕ = ωρϕ (2.8)

with ω = 0 (ω = 1/3) corresponding to matter (radiation). The energy density of the scalar
field then scales as ρϕ ∝ a−3(1+ω) (as long as decays can be neglected) and the Hubble
rate as H ∝ a−3(1+ω)/2.

4We emphasize that it is plausible that decays of the scalar field only become relevant after the phase
transition, for example if the phase transition spontaneously breaks a discreet or continous symmetry that
stabilises the scalar field before the phase transition.
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As we will see below, stage III ends approximately when the Hubble rate is equal to
the decay rate Γ. This relation can be used to estimate the value of the scale factor when
the universe transitions to radiation domination:

aapprox
RD = aPT

(√
8π∆V/3
ΓMPl

) 2
3(1+ω)

. (2.9)

The temperature of the SM thermal bath at this point can be obtained from the relation
ρϕ(aRD) ≈ ρSM(aRD) as

T approx
RD =

( 45
4g⋆π3

)1/4√
ΓMPl. (2.10)

As shown in appendix A, these estimates can be refined further in order to obtain a better
approximation of the full numerical results. The resulting expressions are

aRD = aPT

(√
2π

3
(5− 3ω)

√
∆V

ΓMPl

) 2
3(1+ω)

, (2.11)

TRD =
( 45

g⋆π3

)1/4
√

ΓMPl
(5− 3ω) . (2.12)

We will use these more accurate expressions in the following.
The evolution of the energy densities as a function of scale factor is illustrated in figure 1.

To summarize, our set-up is described by the following parameters:

• TRH and ∆V describing the initial conditions, see eqs. (2.1) and (2.3);

• TPT and Γ characterising the transition from stage II to stage III (see eq. (2.7)) and
from stage III to stage IV (see eq. (2.11)), respectively;

• n describing the temperature dependence of DM production, see eq. (2.4);

• ω determining the equation of state of the scalar field oscillations, see eq. (2.8).

In order to calculate the DM abundance ΩDMh2, we also need to specify the new physics
scale Λ that enters in the DM production rate and the DM mass mDM that is needed to
convert from the number density to the energy density of a non-relativistic species. However,
as long as the DM mass is small compared to the relevant temperature scales, the relation is
quite simple: ΩDMh2 ∝ mDM/Λ2n. In particular, these parameters drop out when calculating
relative changes to the DM relic abundance.

3 Detailed evolution: analytical approximations

Having introduced the general features of the model that we consider, we now discuss in detail
the relevant Boltzmann equations for each stage of the evolution and provide approximate
analytical solutions.
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Figure 1. Sketch of the evolution of the energy densities of the scalar field (pink), SM radiation bath
(orange) and dark matter (purple) during the four stages introduced in section 2. For simplicity, the
dark radiation energy density is omitted. At the end of inflationary reheating (RH), the universe is
initially radiation dominated and DM is produced via UV freeze-in. A supercooled phase transition
(PT) takes place after a period of vacuum domination (VD). After the phase transition, the scalar
field behaves as a fluid with an equation of state parameter ω ≥ 0. The subsequent decay of the scalar
field leads to a second reheating of the SM particles and to an extra contribution to the DM number
density. This late production is referred to as phase-in. Finally, the universe is radiation dominated
(RD) again.

3.1 Stage I: post-inflationary radiation domination

In the first two stages of the evolution, the differential equations describing the energy
densities of the SM thermal bath and the scalar field are simply given by

dρϕ

da
= 0, (3.1)

dρSM
da

= −4
a

ρSM. (3.2)

In other words, the scalar energy density is constant, while the SM radiation energy densities
decreases proportional to a−4. An analogous equation holds for the DR energy density but
is not relevant for the further discussion.

To study the production of DM via the freeze-in mechanism, it is convenient to consider
the Boltzmann equation for the DM number density:

dnDM
da

= −3
a

nDM + ⟨σv⟩
aH

n2
SM, (3.3)

where nSM(T ) = ζ(3)
π2 gnT 3 is the number density of SM particles with gn denoting the relevant

degrees of freedom.5
5In a realistic model, only some of the SM particles will participate in the production of DM particles. As
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To obtain a simple analytical estimate for nDM, we can approximate the Hubble rate as
being determined solely by the energy density of the SM thermal bath

H ≈

√
4π3g∗
45

T 2
RH

MP l

(
aRH

a

)2
. (3.4)

In this case, the Boltzmann equation can be rewritten as

dnDM
da

= −3
a

nDM +

(
nRH
SM

)2
Λ2n

√
45

4π3g⋆

a
2(n+1)
RH
a2n+3 MPlT

2(n−2)
RH , (3.5)

where nRH
SM is the SM number density at reheating. Eq. (3.3) then yields

nI
DM(a) = n2

SM(TRH)
Λ2n

√
45M2

Pl
4π3g⋆

T
2(n−2)
RH
2n − 1 ×

[(
aRH

a

)3
−
(

aRH
a

)2(n+1)
]

, (3.6)

which for n ≥ 1 and a ≫ aRH can be approximated as

nI
DM(T ) =

(
ζ(3)gn

π2

)2√ 45
4π3g⋆

MPl
Λ2n

T 2n−1
RH

2n − 1 T 3 ∝ T 2n−1
RH T 3 MPl

Λ2n
. (3.7)

This is the well-known result for ultraviolet freeze-in: the comoving DM number density
nDMa3 is sensitive to TRH and becomes independent of T for T ≪ TRH. The total amount
of DM produced in stage I is obtained by evaluating nDM at T = TVD. Since in our set-up,
DM particles are only produced and never destroyed, this abundance will remain until the
present day. Its contribution to the total DM density at later times is simply given by a
dilution factor proportional to (aVD/a)3.

3.2 Stage II: vacuum domination and phase transition

The differential equations describing this stage are the same as for the previous one. However,
the Hubble rate is now dominated by the energy density of the scalar field, such that

H ≈
√

8π∆V

3M2
P l

(3.8)

which leads to a different scaling of the DM number density:

nII
DM(a) =

n2
SM,VD
Λ2nH

T
2(n−1)
VD
2n + 1 ×

[(
aVD

a

)3
−
(

aVD
a

)4+2n
]

. (3.9)

For a ≫ aVD this leads to

nII
DM(T ) ∝ T 2n+1

VD MPl T 3

Λ2n
√
∆V

∝ T 2n−1
VD MPl T 3

Λ2n
, (3.10)

where in the last step we have used that ρSM(TVD) = ∆V . It follows that for TVD ≪ TRH the
amount of DM produced during the second stage is negligible compared to the production
during stage I.
long as all relevant particles are relativistic, this changes the production rate only by a constant factor, which
can be absorbed into an appropriate redefinition of Λ.
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3.3 Stage III: reheating through scalar field decays

After the phase transition, the evolution of the scalar field and the SM thermal bath are
given by the Boltzmann equations

dρϕ

da
= −3(1 + ω)

a
ρϕ − Γ

aH
ρϕ , (3.11)

dρSM
da

= −4
a

ρSM + Γ
aH

ρϕ, (3.12)

which implicitly define the decay rate Γ. The energy injection term proportional to Γ
implies that the SM radiation energy density no longer evolves adiabatically, i.e. it no longer
decreases as ρSM ∝ a−4.

To obtain an approximate analytical solution, we make use of the fact that Γ < H during
stage III, such that we can neglect the second term on the right-hand side of eq. (3.11):

dρϕ

da
≈ −3(1 + ω)

a
ρϕ. (3.13)

Using furthermore that the energy density of the scalar field gives the dominant contribution
to the Hubble rate, we obtain

H ≈
√

8π∆V

3M2
Pl

(
aPT

a

)3(1+ω)/2
, (3.14)

which we can use to solve eq. (3.12) and obtain

ρIII
SM(a) = π2

30g∗

(
aPT

a

)4
T 4

PT + ΓMPl
(5− 3ω)

60
π2g∗

√
3∆V

8π

[(
a

aPT

)5/2−3ω/2
− 1

]
= π2

30g∗

(
aPT

a

)4
(

T 4
PT + T 4

Γ

[(
a

aPT

)5/2−3ω/2
− 1

])
(3.15)

where in the second line we have defined

T 4
Γ ≡ ΓMPl

(5− 3ω)
60

π2g⋆

√
3∆V

8π
(3.16)

to simplify notation. The first term in eq. (3.15) corresponds to the pre-existing SM energy
density, while the second term corresponds to the one produced through scalar field decays.

For a supercooled phase transition with ∆V ≫ ρPT
SM and a sufficiently slow scalar field

decay (such that aRD ≫ aPT) the second term dominates as a → aRD, such that we can
approximate

nSM(a) = ζ(3)
π2 gnT 3

Γ

(
a

aPT

)−9(1+ω)
8

. (3.17)

Using this expression for nSM(a), the additional contribution to the DM freeze-in from
stage III is found to be

nIII
DM(a) = T 4+2n

Γ

(
ζ(3)gn

Λnπ2

)2√ 2
3π∆V

MPl
4− n(ω + 1)

[(
aPT

a

)(ω+1)3n/4
−
(

aPT
a

)3
]

(3.18)
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for n ̸= 4/(ω +1). In the following, we will focus on n < 4/(ω +1), such that the first term in
the final bracket dominates for a ≫ aPT. Re-substituting TΓ from eq. (3.16) and evaluating
the resulting expression at aRD as given in eq. (2.11) yields

nIII
DM(aRD) =

30ζ(3)2g2n
π7g⋆[4− n(1 + ω)]

( 45
π3g⋆

)n/2 MPl (MPlΓ)1+n

(5− 3w)(1+n)Λ2n
∝ T

2(1+n)
RD MPl

Λ2n
(3.19)

with TRD given in eq. (2.12). Interestingly, we find that the final result is independent of the
temperature of the phase transition and the initial energy density of the scalar field. This
finding generalises the known result that for an early period of matter domination (ω = 0)
freeze-in is UV-insensitive for n < 4 [8, 38, 69].

3.4 Stage IV: return to radiation domination

DM production during stage IV can be calculated in complete analogy to stage I. Since
the universe is now once again in a period of radiation domination, freeze-in production is
UV-dominated, i.e. sensitive to TRD. We find for a ≫ aRD:

nIV
DM(a) ≈

n2
SM,RD
Λ2n

√
45M2

Pl
4π3g∗

T
2(n−2)
RD
2n − 1

(
aRD

a

)3
∝ T 2n−1

RD T 3 MPl
Λ2n

. (3.20)

We will see that the late contributions from stages III and IV can constitute a significant
part of the final DM abundance even if aRD is orders of magnitude larger than aRH.

3.5 Combining all contributions

From the previous results, the total DM density at late times i.e a ≫ aRD is given by

ntot
DM(a) = nI

DM(aVD)
(

aVD
a

)3
+ nII

DM(aPT)
(

aPT
a

)3
+ nIII

DM(aRD)
(

aRD
a

)3
+ nIV

DM(a). (3.21)

Since the entropy of the SM thermal bath is conserved in stages II and IV, it follows that
aVD/aPT = TPT/TVD and aRD/a = T/TRD. However, during stage III the total entropy
S of the SM changes by a factor

D = SRD
SPT

=
(

TRDaRD
TPTaPT

)3
=
( 90
8π3g⋆

)3/4 (2ΓMPl
5− 3ω

)3
2−

2
1+ω

(8π∆V

3

) 1
1+ω

T−3
PT . (3.22)

Using this dilution factor, we can rewrite the total number density as a function of tem-
perature as

ntot
DM(T ) = 1

D

[
nI

DM(aVD)
(

T

TVD

)3
+ nII

DM(aPT)
(

T

TPT

)3
]
+ nIII

DM(aRD)
(

T

TRD

)3
+ nIV

DM(T ).

(3.23)
As discussed above, the contribution from stage II can be neglected for TVD ≪ TRH. The
contributions from stage III and stage IV are both found to be proportional to T 2n−1

RD , i.e.
we can write

nIII
DM(aRD)

(
T

TRD

)3
= κnIV

DM(T ) (3.24)
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with
κ = 4(2n − 1)

3(4− n(1 + ω))

(5− 3w

2

)n/2
(3.25)

depending only on n and ω. For n = 1 and 0 ≤ ω ≤ 1/3, we find κ around 0.7, while for
n > 1 it becomes close to unity.

The total DM abundance can therefore be written as

ntot
DM(T ) ≈

(
ζ(3)g⋆

π2

)2√ 45
4π3gn

T 3MPl
Λ2n

[
T 2n−1

RH
D

+ (1 + κ)T 2n−1
RD

]
. (3.26)

In the following, we will refer to the first term in the square bracket as the freeze-in contribution
to the DM density, and to the second term as the phase-in contribution. From this result,
the present-day abundance of DM can be calculated using entropy conservation:

ΩDMh2 = mDM ntot
DM(Tend)

s(Tend)
s0

ρc,0/h2 , (3.27)

where h = H0/(100 km s−1Mpc−1 ≈ 0.68, s(T ) denotes the SM entropy density, s0 its present-
day value and ρc,0 the critical density of the present universe. The temperature Tend should
be sufficiently smaller than TRD but is otherwise arbitrary.

3.6 Instantaneous scalar decays

In the discussion above we have assumed that the scalar field decays slowly, i.e. that imme-
diately after the phase transition Γ ≪ H. However, it is also conceivable that Γ is so large
that the scalar field oscillations decay immediately after the phase transition. In this case, all
of the energy stored in the scalar field is rapidly transferred to the SM thermal bath, such
that aPT = aRD and stage III is absent. For a strongly supercooled phase transition, the
temperature at the beginning of stage IV is then given by ρSM(TRD) = ∆V and hence

T inst
RD =

(30∆V

π2g⋆

)1/4
(3.28)

independent of Γ and ω. Using this expression for TRD, the DM density produced during
stage IV is again given by eq. (3.20).

We can write the total DM abundance produced in this case in the same form as eq. (3.26)
with κ replaced by κinst = 0 and D replaced by

Dinst =
(

T inst
RD

TPT

)3

. (3.29)

4 Detailed evolution: comparison with numerical results

At first sight, some of the approximations made in the previous section may seem rather
crude. However, in this section, we demonstrate that the resulting analytical expressions
provide an accurate estimate of both the overall evolution of the system and the final DM
abundance calculated numerically.
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The numerical results correspond to the full solution of the following system of equations:

dρϕ

da
= −3(1 + ω)

a
ρϕ − Γ

aH
ρϕ, (4.1)

dρSM
da

= −4
a

ρSM + Γ
aH

ρϕ, (4.2)

dnDM
da

= −3
a

nDM + ⟨σv⟩
aH

n2
SM. (4.3)

The Hubble rate H includes all contributions as defined in eq. (2.5). Unlike the analytical
approach, the numerical solver does not differentiate between stage I and II, nor between stage
III and IV. We only make the distinction between before and after the phase transition: for
a < aPT, the scalar field behaves as a constant vacuum energy component (with ω = −1 and
Γ = 0), while for a > aPT, it decays like a matter- or radiation-like fluid (with 0 ≤ ω ≤ 1/3
and Γ ̸= 0). To precisely determine the scale factor aPT corresponding to the phase transition
temperature, we track the evolution of DR until TRD = TPT. The transition from before
to after the phase transition is defined by requiring continuity

ρafter
ϕ (aPT) = ρbefore

ϕ (aPT) + ρbefore
DR (aPT), (4.4)

ρafter
SM (aPT) = ρbefore

SM (aPT) , (4.5)
nafter

DM (aPT) = nbefore
DM (aPT) . (4.6)

In the first line, we added the energy density of the dark radiation to that of the scalar field,
since in our set-up we assume that these particles become heavy due to the non-zero VEV
of ϕ and decay rapidly into scalar field excitations.

We solve the system of equations numerically up to a pre-specified scale factor aend shortly
after the reestablishment of radiation domination. For a > aend, the SM entropy density
scales as (aend/a)3. However, since late-time DM production is not completely negligible, we
include an analytical correction term. The DM number density today is then given by:

ntoday
DM (a) = s0

sSM(aend)
(
nDM(aend) + nlate

DM

)
, (4.7)

where s0 and sSM(aend) refer respectively to the SM entropy density today and after the
decay of the scalar. The late-time contribution to ntoday

DM is given by the analytical solution for
freeze-in production during radiation domination (see the discussion of stage I and IV above):

nlate
DM =

n2
SM,end
Λ2n

√
45M2

Pl
4π3g∗

T
2(n−2)
end
2n − 1

(
1−

(
mDM
Tend

)2n−1
)

. (4.8)

The last term captures the kinematic suppression of DM production for T < mDM.
Once we include the analytical correction term for the late-time contribution to the

DM density, the precise value of the endpoint aend becomes irrelevant, provided that aend
is large enough to fully capture the transition to radiation domination, yet small enough
to ensure that Tend > mDM. In practice, we set aend = 3max(aRD, aPT) with aRD given in
eq. (2.11), noting that the case aRD < aPT simply means that the scalar field starts decaying
immediately after the phase transition, such that aPT is the relevant scale for the transition

– 12 –



J
H
E
P
0
7
(
2
0
2
5
)
1
9
5

100 101 102 103 104

a

10−7

10−3

101

105

109

1013

1017

ρ
(G

eV
4
)

ρφ
ρ
SM

nDM ·m
DM

Ωnum
DM h

2 = 0.120 Ωana
DMh

2 = 0.124

a
P

T

a
R

D

a
R

H

a
V

D

Numerical

Analytical

Adiabatic

100 101 102 103 104

a

10−2

100

102

104

106

n
D

M

a
P

T

a
R

D

a
R

H

a
V

D

nDM

nI
DM

nII
DM

nIII
DM

nIV
DM

Figure 2. Comparison of the analytical solutions presented in section 3 with the full numerical results
for freeze-in proceeding through a 5-dimensional operator (n = 1) and assuming that the decaying
scalar field behaves as matter (ω = 0). As an example benchmark point, we consider mDM = 1MeV,
TRH = 3 · 103 GeV, TPT = 300GeV, ∆V = 1013 GeV4, Γ = 10−14 GeV and Λ = 1.88 · 1013 GeV. The
suppression scale Λ has been chosen such that the correct relic density of DM is produced. Left:
evolution of the energy densities of the scalar field and the SM radiation bath as well as the number
density of DM as a function of the scale factor before and after the phase transition. Ωnum

DM h2 and
Ωana

DMh2 correspond respectively to the relic density computed from the numerical and analytical results.
Right: the analytical results (dashed lines) for the produced DM number density as a function of the
scale factor in each of the four stages compared to the full numerical result (solid line).

to radiation domination. We then use eqs. (4.7) and (3.27) to determine the relic density
today. In the following, we will denote the numerical result as Ωnum

DM h2 in order to distinguish
it from the analytical approximation Ωana

DMh2.
We compare the analytical and numerical results for a chosen benchmark point in figure 2.

The left panel shows the evolution of the energy densities of the SM radiation bath and the
scalar field, as well as the number density of DM particles (multiplied with the DM mass
to obtain the unit of an energy density), and demonstrates good agreement between the
numerical and analytical curves. Furthermore, to emphasize the difference between phase-in
and the standard freeze-in scenario, we show also the case of adiabatic evolution in dashed
lines. In this case, we ignore the entropy injection from the scalar field decay, such that
ρSM ∝ a−4 during all stages and nDM ∝ a−3 after the production of the initial abundance
during stage I. The contributions to DM production in each stage are detailed in the right
panel of figure 2. Both plots show that the number density of DM is enhanced because of
the decay of the scalar (production in stages III and IV). The values of DM relic density
obtained from the numerical and the analytical solutions are also presented in the right
panel and show very good agreement.

The DM abundance and whether it is dominated by freeze-in or phase-in depends on
the interplay of multiple parameters: the temperature after inflationary reheating TRH, the
properties of the scalar field and its potential — characterized by TPT, ∆V , Γ and ω — as
well as the dimension of the non-renormalizable interaction between SM and DM, encoded in
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Figure 3. The upper left panel corresponds to the same benchmark point as in figure 2, with ω = 0
and n = 1. In each of the other panels we show the impact of varying individual parameters. The
value fPI represents the fraction of DM relic density produced through phase-in. Note that in the
bottom-right panel both the value of n and the value of Λ are modified, with the latter being fixed
by the relic density requirement. The benchmark values are: mDM = 1MeV, TRH = 3 · 103 GeV,
TPT = 300GeV, ∆V = 1013 GeV4, Γ = 10−14 GeV and Λ = 1.88 · 1013 GeV.
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the parameter n. In figure 3, we show the effect of varying individual parameters starting
from the same benchmark point as in figure 2. For this set of figures TRH is kept constant.
In each case, the total abundance of DM relics, ΩDMh2, and the fraction of DM originating
from phase-in, fPI, are calculated. The latter is defined as:

fPI =
ΩDM,PIh

2

ΩDMh2 , (4.9)

where ΩDM,PI is obtained by considering only the contributions to DM production after the
phase transition (stages III and IV).

The top-left panel of figure 3 is identical to figure 2. In this case, phase-in accounts
for 76% of the final DM abundance. In the top-right panel we consider the case of slower
decays of the scalar field. While this increases the overall abundance of DM relative to the
benchmark point, the relative contribution from phase-in remains almost constant. Indeed,
in the next section we will show that our analytical approximation predicts that for n = 1
and ω = 0 the phase-in fraction is independent of Γ.

The two panels in the middle row of figure 3 illustrate that more strongly supercooled
phase transitions, i.e. a smaller TPT or higher values for the latent heat ∆V , lead to more
dilution of the initial DM abundance and an enhancement of the phased-in contributions.
The two panels in the bottom row show that phase-in is more difficult to achieve if the
equation of state of the decaying scalar field has ω > 0, or if the interaction operator is
of higher dimension (n > 1).

Overall, we find that phase-in is most efficient when the decaying scalar field behaves
like matter ω = 0, for lower dimensions of the interaction and for strongly supercooled phase
transitions. In the following section we will quantify these findings more systematically.

5 Conditions for dark matter phase-in

In this section, we study how the fractional phase-in contribution fPI defined in eq. (4.9)
depends on the various model parameters. While the total amount of DM produced depends
on the temperature scale when freeze-in is most efficient, the phase-in fraction is almost
completely independent of TRH (except for the implicit temperature dependence of the
effective degrees of freedom g∗). For the purpose of this section, we will therefore fix the
reheating temperature to TRH = 1TeV. Moreover, fPI is also independent of Λ and mDM.

The phase-in fraction can on dimensional grounds depend on the various model parameters
only through dimensionless ratios. Keeping in mind that the vacuum energy ∆V and the
temperature at the beginning of vacuum domination TVD are related via ρSM(TVD) = ∆V ,
we choose the following three combinations:

ξVD ≡ TRH
TVD

, ξPT ≡ TVD
TPT

, γ ≡ Γ

√
3M2

Pl
8π∆V

. (5.1)

The temperature ratio ξVD quantifies how long the universe spends in radiation domination
after inflationary reheating and before the onset of vacuum domination. The temperature
ratio ξPT characterises the amount of supercooling of the phase transition, i.e. the duration
of vacuum domination. During this period of accelerated expansion, the scale factor grows
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Figure 4. Fraction fPI of DM produced via phase-in as a function of the dimensionless temperature
ratios ξVD = TRH

TVD
and ξPT = TVD

TPT
for interactions via a dimension-5 operator (n = 1) and assuming

that the scalar field behaves like matter after the phase transition (ω = 0). The dimensionless decay
rate is γ = Γ

H(aPT) = 0.1, corresponding to a slow decay of the scalar field.

approximately by log ξPT e-folds. The dimensionless decay constant γ determines how quickly
the universe returns to radiation domination after the phase transition. Although in our
setup ξVD,PT ≥ 1, the dimensionless decay constant can take values both greater than unity
(corresponding to instantaneous reheating) or smaller than unity (slow reheating).

In figure 4, we show the dependence of fPI on ξVD and ξPT by numerically solving the
system of Boltzmann equations (4.1)–(4.3). We consider a case in which the scalar field
behaves like matter after the phase transition (ω = 0), the DM production proceeds via
a 5-dimensional operator (n = 1), and the scalar decay rate is smaller than the Hubble
expansion rate at the moment of the phase transition (γ = 0.1, slow reheating). We observe
that more supercooling (larger values of ξPT) correspond to a larger fraction of the phase-in
fraction, while a delayed onset of vacuum domination (larger values of ξVD) reduces the
phase-in contribution.

We can understand these findings using the analytical estimates obtained in section 3.
As shown in eq. (3.26), the total DM abundance is determined by two separate contributions:
the freeze-in contribution produced immediately after inflationary reheating (stage I) and
phase-in contribution produced at the end of the second reheating period (stage III and IV).
The former is enhanced by the larger temperature but suppressed by the dilution factor D

defined in eq. (3.22), so it is a priori unclear which contribution dominates.
Let us define the ratio of the two contributions

r = ΩDM,PI
ΩDM,FI

(5.2)

such that fPI = r/(1 + r). The requirement that the DM abundance is dominated by the
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phase-in contribution (fPI > 0.5) then translates to r > 1. From eq. (3.26), we infer

r = D(1 + κ)
(

TRD
TRH

)2n−1
(5.3)

for the case of slow reheating, i.e. Γ < H(aPT). In terms of the dimensionful quantities (i.e.
neglecting dimensionless numerical factors of order unity) we obtain

r ≈ T 1−2n
RH T−3

PT (MPlΓ)1+n− 2
1+ω ∆V

1
1+ω g

−(n+1)/2
⋆ . (5.4)

Clearly, the condition r > 1 becomes easier to satisfy if the phase transition is more strongly
supercooled, i.e. if TPT is as small and ∆V as large as possible. For constant supercooling,
ξPT = const, the phase transition should happen as early as possible, i.e. shortly after
inflationary reheating.

A surprising implication of eq. (5.4) is that for n > 1 or ω > 0 the stage-I contribution
is suppressed by making Γ as large as possible, i.e. by reheating the SM thermal bath as
quickly as possible after the phase transition. Extending the period of scalar field domination
(stage III) actually suppresses the contribution from stages III and IV relative to the one
from stage I. For n = 1 and ω = 0, eq. (5.4) becomes independent of Γ, i.e. the length of
stage III is inconsequential for the relative importance of the two contributions.

This conclusion holds in particular for the case of an early period of matter domination,
which is recovered if we set ω = 0 and assume that there is no period of vacuum domination,
i.e. that aVD = aPT or ∆V = π2g⋆T 4

PT/30. In this case, we obtain

rEMD = TPTT 1−2n
RH (MPlΓ)−1+n g

−(n−1)/2
⋆ , (5.5)

such that rEMD > 1 can never be satisfied for n ≥ 1 since TRH > TPT ≳
√

MPlΓ. We
conclude that for freeze-in production of DM via non-renormalisable interactions, a period
of early matter domination is insufficient to suppress the freeze-in contribution relative to
the phase-in contribution. In other words, while such a period does dilute the pre-existing
abundance, it also suppresses phase-in production by the same amount. To enhance the latter
contribution relative to the former, it is necessary to have a supercooled phase transition
with ∆V > π2g⋆T 4

PT/30.
For the case of instantaneous reheating, i.e. Γ > H(aPT), we find

rinst = Dinst
(

TRD
T inst

RH

)2n−1

, (5.6)

which corresponds to

rinst ≈ T−2n+1
RH T−3

PT∆V
n+1
2 g

−(n+1)/2
⋆

(
8π
3

)1+n
2 − 1

1+ω . (5.7)

As expected, this expression is always independent of Γ and ω and agrees with eq. (5.4)
for n = 1, ω = 0. The final numerical factor has been included to ensure that eqs. (5.4)
and (5.7) match for Γ = H(aPT). In fact, we can combine the two inequalities in a more
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economical form and smoothly interpolate between the late reheating and instantaneous
reheating case by writing

rcomb ≈ T−2n+1
RH T−3

PT∆V
n+1
2 g

−(n+1)/2
⋆

(√
∆V

MPlΓ +
√

3
8π

) 2
1+w−1−n

, (5.8)

which reproduces eqs. (5.4) and (5.7) in the limit γ ≪ 1 and γ ≫ 1, respectively. In terms
of the dimensionless ratios defined in eq. (5.1) we find

rcomb ≈ ξ3PT ξ1−2n
VD

(
π2

30

)n+1
2
[√

3
8π

(
1 + 1

γ

)]−n−1+ 2
1+ω

. (5.9)

In figure 5, we show the values of ξVD and ξPT that correspond to the boundary between
freeze-in and phase-in, i.e. fPI = 0.5. The parameter region above and to the left of a given
curve corresponds to DM production dominated by phase-in, while freeze-in provides the
main contribution below and to the right. In the two columns, we consider different equations
of state for the scalar field: a matter-like behaviour (ω = 0) and an intermediate behavior
between radiation and matter (ω = 0.2). In the two rows, we consider DM production via
5- and 6-dimensional operators corresponding respectively to n = 1 and n = 2. Curves
of different colors correspond to different values of the dimensionless decay rate γ defined
in eq. (5.1). Finally, we compare the analytical approximation in eq. (5.9), represented
by dash-dotted lines, with the detailed numerical solutions of the Boltzmann equations
represented by solid lines.

In the top-left panel (ω = 0 and n = 1), all the analytical curves coincide. The numerical
results, on the other hand, show a mild dependence on the decay rate, which indicates
that the cancellation of γ (or equivalently of Γ) in the analytical expressions is due to the
approximations made in the derivation, see the discussion following eq. (5.4). Nonetheless,
the results show that phase-in is dominant in nearly all of the parameter space considered. In
particular, even for large values of ξVD up to 20, phase-in constitutes the main contribution
to the DM abundance, provided that ξPT ≳ 3, i.e. that the phase transition is preceded
by more than one e-fold of vacuum domination.

In the top-right panel (ω = 0.2 and n = 1), we observe a more pronounced dependence
of the phase-in condition on the decay rate γ. This is because for ω > 0, the energy density
of the scalar field decreases more rapidly than for ω = 0, such that the dilution effect (and
hence the relevance of the phase-in contribution) is suppressed for slower decays (smaller
γ). For the case of instantaneous reheating (γ = 10), the result does not depend on ω and
therefore agrees with the corresponding curve in the top-left panel. We also note that for
small values of ξVD, the analytical curves begin to deviate from the numerical results. This
difference can be explained by the fact that the simplifying assumptions used in the derivation
break when stages I and II becomes too short.

The two panels in the bottom row, where n = 2, show that a dominant phase-in
contribution is more difficult to achieve if the cross section of DM production depends more
strongly on the temperature of the SM bath. Compared to the case with n = 1, much larger
values of ξPT, i.e. much stronger supercooling, are needed for the phase-in condition to be
satisfied. The intuitive explanation is that the stronger temperature dependence enhances

– 18 –



J
H
E
P
0
7
(
2
0
2
5
)
1
9
5

1 5 10 15 20

ξVD

1

5

10

15

20
ξ P

T

phase−in dominates

freeze−in dominates

ω = 0, n = 1

γ = 10.0

γ = 1.0

γ = 0.1

γ = 0.01

γ = 0.001

Numerical

Approx. analytical

1 5 10 15 20

ξVD

1

5

10

15

20

ξ P
T

ω = 0.2, n = 1

γ = 10.0

γ = 1.0

γ = 0.1

γ = 0.01

γ = 0.001

Numerical

Approx. analytical

1 5 10 15 20

ξVD

1

5

10

15

20

ξ P
T

ω = 0, n = 2

γ = 10.0

γ = 1.0

γ = 0.1

γ = 0.01

γ = 0.001

Numerical

Approx. analytical

1 5 10 15 20

ξVD

1

5

10

15

20

ξ P
T

ω = 0.2, n = 2

γ = 10.0

γ = 1.0

γ = 0.1

γ = 0.01

γ = 0.001

Numerical

Approx. analytical

Figure 5. Illustration of the phase-in condition for several scenarios described by different combinations
of values of ω and n in each panel, and for different values of γ = Γ

H(aPT) , associated to different colors.
The phase-in condition corresponds to a phase-in fraction fPI = 0.5 and marks the boundary between
the region of parameter space where the DM production is dominated by the freeze-in contribution
coming from stages I and II (below and to the right of each line) and the region of the parameter
space where the phase-in contribution produced in stages III and IV dominates (above and to the left
of each line). Solid line corresponds to the phase-in condition extracted from the numerical solution
of the Boltzmann equations; the dash-dotted line corresponds to the condition analytically estimated
in eq. (5.9)).

the freeze-in contribution compared to that of phase-in, since the former takes places at
much higher temperatures. This enhancement becomes larger with increasing ξVD but can be
compensated by a larger amount of dilution, corresponding to larger ξPT. Moreover, to avoid
a further decrease of the temperature of the SM thermal bath after the phase transition, the
scalar field should decay as quickly as possible after the phase transition, in particular for
ω = 0.2, as considered in bottom-right panel. Nevertheless, even in this case, phase-in can be
dominant for sufficiently large values of ξPT and γ and sufficiently small values of ξVD.

In general, figure 5 confirms our conclusion from section 4, namely that the full numerical
results can be quite accurately reproduced with our analytical approximations. These findings
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justify a posteriori the various simplifications and imply that the analytical condition in
eq. (5.9) provides a useful guidance to estimate the relevance of the phase-in contribution and
to determine the most interesting regions of parameter space. Nevertheless, the agreement is
clearly not perfect, highlighting the importance of solving the system of Boltzmann equations
numerically when a higher level of precision is needed.

6 Phenomenological implications

6.1 Decaying axion-like particles and nano-Hertz gravitational waves

As we have seen in the previous section, dark matter phase-in requires a strongly supercooled
phase transition and prefers a quick reheating of the thermal bath after the end of the
phase transition. As a result, the dark matter abundance becomes directly sensitive to
the temperature TRD, that encodes the decay rate of the scalar Γ, or, in the instantaneous
reheating limit, its energy density before the phase transition ∆V . Since a strongly-cooled first-
order phase transition is expected to give rise to a strong gravitational wave background, this
temperature can potentially be measured. Indeed, the peak frequency fpeak of the stochastic
gravitational wave spectrum is expected to be directly proportional to the temperature of
the SM thermal bath after the phase transition [80]:

fpeak = 1mHz
(

TRD
1TeV

)(
β/H

10

)
D−1/3, (6.1)

where β/H characterises the speed of the phase transition and a value β/H ∼ 10 is typical
for phase transitions with strong supercooling and large gravitational wave production.

Let us for concreteness consider the case of an axion-like particle (ALP) coupled to
photons via the interaction term

Lint =
gaγ

4 aF µνFµν . (6.2)

Since the effective coupling gaγ has mass dimension −1, the interaction is non-renormalisable,
and freeze-in production of ALPs is UV dominated. Indeed, it was shown in ref. [84] that the
cross section for ALP production via the Primakoff process is independent of temperature,
corresponding to eq. (2.4) with n = 1.6 For ordinary freeze-in, the resulting would-be
abundance of ALPs is found to be [87]

Ω̃ah2 = 5× 10−7
(

ma

1MeV

)(
TRH

10MeV

)(
gaγ

10−12GeV−1

)2
. (6.3)

However, for the couplings and masses chosen in the estimate above, the ALPs actually do
not survive until the present day, instead, they decay with a lifetime of approximately

τa ≈ 1011 s
(

gaγ

10−12GeV−1

)−2 ( ma

1MeV

)−3
. (6.4)

The example values of ma, TRH and gaγ in the above equations have been chosen to
satisfy all current experimental constraints [87]. However, the effect of ALPs with such masses

6See refs. [85, 86] for recent refinements in the calculation of the freeze-in production of ALPs.
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and couplings on the CMB spectral shape can potentially be observed by the proposed PIXIE
mission [88]. Measuring both µ and y distortions would make it possible to infer both τa

and Ω̃ah2 [89], so that ma and gaγ can be inferred if TRH is known.
Determining TRH from cosmological data is generally challenging. However, if ALPs are

produced predominantly through the phase-in mechanism, TRH in eq. (6.3) is replaced by the
temperature TRD after the phase transition. This temperature may be directly measurable if
the phase transition at the same time generates an observable gravitational wave signal. In
the example above, the interesting temperature range is TRD ∼ 10–100MeV, corresponding to
gravitational wave frequencies fpeak ∼ 10–100 nHz, i.e. in the range probed by pulsar timing
arrays. A combination of these measurements with future measurements of CMB spectral
distortions may hence reveal ALPs produced via the phase-in mechanism.

6.2 Sterile neutrinos as a mixture of warm and cold dark matter

So far, we have only discussed the DM number density, assuming that the kinetic energy
redshifts fast enough to be irrelevant for structure formation. For ordinary freeze-in production
of DM, this is typically a good approximation for mDM ≳ 15 keV [66]. For smaller masses,
the free-streaming of DM particles can have an observable effect on small-scale structure
formation, which can be probed in particular with measurements of the Lyman-α forest.

Since DM particles produced via freeze-in do not in general follow a thermal distribu-
tion [90], a detailed study of these constraints requires solving the Boltzmann equation at the
phase-space level in order to predict the linear matter power spectrum P(k), which requires
model-specific calculations of the relevant cross sections. Nevertheless, for a first estimate,
we can assume that DM particles produced directly from the thermal bath at temperatures
much larger than the DM mass will inherit a kinetic energy comparable to the temperature
of the thermal bath, such that the phase space distribution will approximately resemble a
thermal distribution with temperature comparable to the one of the SM thermal bath.

In the case of phase-in production of DM, however, the situation becomes more interesting.
The DM particles produced before the phase transition (at temperatures close to TRH) will
initially have similar kinetic energies as the SM bath particles. However, the entropy injected
into the SM thermal bath after the phase transition increases the temperature of the latter
relative to the former. Once the universe has returned to radiation domination after the
phase transition, the typical kinetic energy of the DM particles will be of the order of T/D1/3

with the dilution factor D defined in eq. (3.22). As a result, the Lyman-α forest bound on
the warm dark matter mass is relaxed by a factor D1/3, and it becomes possible to have
cold dark matter even for sub-keV masses.

The phase-in contribution, on the other hand, will yield DM particles with much larger
kinetic energy, comparable to T , such that the phase space distribution becomes bimodal.
Effectively, dark matter behaves like a mixture of warm and cold dark matter, even though it
comprises a single particle species, because production happens at two different points in the
evolution of the universe. Such a mixture leads to a characteristic step-like feature in the
transfer function T (k) = (P(k)/Pcdm(k))1/2, where Pcdm denotes the linear matter power
spectrum of cold dark matter. The position of the step is determined by the warm dark matter
mass, while the height of the step is determined by the fraction of warm dark matter fwdm [91].
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Let us for concreteness consider a sterile neutrino N produced from interactions of SM
fermions f via a vector mediator that is heavy compared to the reheating temperature TRH.
The effective interaction can then be written as

Lint =
1
Λ2 N̄γµNf̄γµf, (6.5)

corresponding to UV-dominated freeze-in with n = 2. Setting for example mN = 1keV, the
phase-in contribution would correspond to warm dark matter. For D ≳ 5000, the freeze-in
contribution, on the other hand, is indistinguishable from cold dark matter. Such a dilution
can be achieved for example for TPT = 200GeV, ∆V = 1014GeV4, Γ = 10−14GeV and ω = 0.

With these parameters fixed, the value of fwdm depends exclusively on TRH (assuming
that Λ is adjusted in such a way that the total abundance of sterile neutrinos matches the
observed value). Numerically, we find

fwdm ≈ 1

1 +
(

TRH
1850GeV

)3 (6.6)

To satisfy the observational upper bound fwdm < 0.25 for mN = 1keV [92], we thus require
TRH ≳ 2.7TeV.

7 Conclusions

The freeze-in mechanism offers an attractive alternative to the WIMP paradigm by extending
the relevant parameter space of dark matter (DM) models to smaller couplings. It however
introduces a new complication, namely the sensitivity of the predicted DM abundance to
initial conditions. This sensitivity is particularly severe in the case of UV-dominated freeze-
in via non-renormalisable interactions, for which most of DM is produced at the highest
temperatures of the Standard Model (SM) thermal bath. As a result, predictions depend
on the reheating temperature TRH as well as on the details of inflationary reheating, which
are difficult to constrain observationally.

In this work, we investigated the sensitivity of DM freeze-in to the dynamics of the
early Universe in a general set-up that includes a cosmological first-order phase transition.
We showed that in this setting DM production via non-renormalisable interactions is not
always dominated by the highest temperatures of the SM thermal bath, but instead may be
governed by the period immediately after the phase transition, during which the scalar field
transfers its energy density to the SM thermal bath. We refer to this alternative production
regime as DM phase-in.

Concretely, we considered a radiation-dominated post-inflationary universe, characterized
by the reheating scale TRH, and assumed that DM is produced from the radiation bath via
a non-renormalizable operator of dimension 4 + n. As the SM temperature decreases, a
scalar field trapped in a metastable vacuum becomes the largest energy component, leading
to a period of vacuum domination. This sets the stage for a supercooled first-order phase
transition, after which the scalar fluctuations decay and inject energy into the SM bath. If this
secondary reheating dilutes the previously produced DM abundance enough, a second period
of DM production can give a relevant or even leading contribution to the final DM abundance.
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We derived a system of coupled Boltzmann equations that describe the evolution of
the energy and number densities of the different components of the universe (SM particles,
scalar field, dark radiation and DM), and solved them both numerically and (with some
approximations) analytically. We found that the final abundance of DM can be split into two
separate contributions: (i) the freeze-in contribution produced immediately below TRH, and
(ii) the phased-in contribution generated after the phase transition. The former contribution
depends on the details of the phase transition and the subsequent dilution, such as the amount
of vacuum energy ∆V , and the equation of state ω and the decay rate Γ of the scalar field after
the phase transition. The amount of DM produced via phase-in, on the other hand, is sensitive
almost exclusively to the temperature TRD when the universe returns to radiation domination.

Using the approximate solutions, we derived a simple analytical condition in terms of
the model parameters that can be used to determine whether DM production is dominated
by freeze-in or phase-in, see eq. (5.8). We validated this condition against the full numerical
solution to verify that it applies both to the case of instantaneous reheating after the phase
transition and to slow decays of the scalar field. Furthermore, our findings are applicable for
different equations of state of the scalar field after the phase transition.

We conclude that phase-in can be easily achieved in different scenarios even with relatively
small amounts of supercooling. Our detailed results are shown in figure 5. We find that the
relative phase-in contribution is enhanced for more strongly supercooled phase transitions
and for earlier onsets of vacuum domination. Crucially, a period of vacuum domination is
essential for the phase-in mechanism to work: an early period of matter domination followed
by reheating of the SM thermal bath via scalar field decays is not enough to suppress the
relative contribution of the pre-existing DM relics for any value of n ≥ 1 (i.e. any type
of UV-dominated freeze-in).

In fact, for n > 1 or ω > 0, the phase-in contribution is suppressed relative to the
early freeze-in production if the scalar field decays only slowly after the phase transition. In
other words, the relevance of phase-in is maximized for the case of instantaneous reheating
after the phase transition. For n = 1 and ω = 0, on the other hand, the phase-in condition
becomes independent of Γ, i.e. the duration of matter domination after the phase transition
is irrelevant for the relative importance of phase-in.

Our results provide an important new perspective on the UV sensitivity of freeze-in
scenarios with low reheating temperature. Provided the conditions determined in our analysis
are met, the presence of a supercooled first-order phase transition makes it possible to disregard
the details of inflationary reheating and calculate the final DM abundance in terms of the
temperature TRD of the SM thermal bath after the phase transition. Apart from its conceptual
simplicity, this set-up also opens up exciting observational possibilities. If the DM relics are
to a large extent generated through phase-in, the resulting DM abundance is directly related
to the peak frequency of the GW signals associated with the supercooled phase transition.

Furthermore, the phase-in scenario makes interesting predictions even in cases where
its contribution does not dominate the final abundance. Since the production of DM takes
place at two different times separated by a large amount of entropy injection, the final DM
distribution can become a mixture of warm and cold DM. Our set-up therefore provides
additional motivation to constrain the warm DM fraction fWDM, which is an important target
for ongoing and future cosmological missions, such as DESI and EUCLID.
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In the present work, we focused on the case where the mass of the DM particle is negligible
compared to all relevant temperature scales, such that the DM production has a power-law
dependence on the temperature of the SM thermal bath. Several recent studies explored
the alternative case where the DM mass is larger than the reheating temperature, such that
freeze-in production becomes Boltzmann-suppressed and depends exponentially on the SM
temperature [46–49]. In this case, freeze-in may happen at substantially larger couplings and
therefore within the reach of laboratory experiments. An exciting direction for future work
will be to also explore “phase-in at larger couplings”, i.e. to determine whether a supercooled
first-order phase transition may sufficiently dilute the pre-existing DM abundance in order
for the phase-in contribution to become relevant. In this case, it may be possible to correlate
gravitational wave signals and cosmological data with results from laboratory experiments in
order to pin down the properties of DM and constrain the evolution of the early universe.
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A Better estimates for the end of stage III

Naively, considering the condition H ≈ Γ to determine the end of stage III seems like a
reasonable approximation. Although this allows for a rough estimate, it is not sufficient, as
the final DM abundance is sensitive to TRD in two ways: through sSM(aRD) and nDM(aRD).
We find a better approximation of the numerical results for the relic density when we define
aRD as the moment of reestablishment of radiation domination, i.e. by setting the condition
ρIII
SM(aRD) = ρIII

ϕ (aRD).
For this purpose, we use analytical estimates for the evolution of ρSM and ρϕ. As

explained in section 3.3, we neglect the backreaction of the decay on the scalar field energy
density (eq. (3.13)) and its evolution can be approximated as

ρIII
ϕ (a) = ∆V

(
aPT

a

)3(1+ω)
. (A.1)

At late times aPT ≪ a, eq. (3.15) becomes dominated by the second reheating :

ρIII
SM(a) = π2

30g∗T
4
Γ

(
aPT

a

) 3
2 (ω+1)

. (A.2)

Equating the previous two expressions gives the result we have used in our computations:

aRD = aPT

(√
2π

3
(5− 3ω)

√
∆V

ΓϕMpl

) 2
3(1+ω)

, (A.3)

with the corresponding temperature at RD

TRD =
( 45

g⋆π3

)1/4
√

ΓϕMpl
(5− 3ω) . (A.4)
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Figure 6. We show the results for the same benchmark point as in figure 2, but using the approximated
expressions aapprox

RD and T approx
RD . The green vertical line at aapprox

RD corresponds to the condition Γ ≈ H ,
while aRD correspond to ρIII

SM(aRD) = ρIII
ϕ (aRD). Using aapprox

RD underestimates the SM temperature at
late times, leading to a bigger relic density prediction than from the numerical solution as well as
from the improved expressions (see figure 2).

Although the expressions above differ from the approximated definitions in eq. (2.11)
and eq. (2.12) only by O(1) factors, taking the simpler approximation overestimates the final
relic density by around 35% for the chosen benchmark point (see figure 6). To conclude,
we note that T approx

RD /TRD =
√
(5− 3ω)/2, i.e. the two results differ only by a factor

√
2 for

ω = 1/3 and
√
5/2 for ω = 0. For the scale factor the corresponding ratio is given by:

aapprox
RD
aRD

=
( 2
5− 3ω

) 2
3(1+ω)

=


(
2
5

)2/3
, ω = 0

1√
2 , ω = 1/3.

(A.5)
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