KIT | KIT-Bibliothek | Impressum | Datenschutz

Ultra‐High‐Throughput Nanoliter‐Scale Liquid‐Liquid Extractions and Reaction Mixture Purification

Iwohn, Michelle J. 1; Wiedmann, Janne J. 1; Levkin, Pavel A. ORCID iD icon 1,2
1 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)
2 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)

Abstract:

Miniaturizing chemical processes to the nanoliter scale is essential for reducing costs, increasing throughput, and enabling massively parallel experimentation with tens of thousands of samples. However, purification at this scale remains a major issue. Conventional methods like liquid-liquid extraction (LLE) are not applicable at nanoliter volumes without expensive and complex instrumentation, and even then, not at such extreme throughput. The droplet microarray (DMA) platform enables high-throughput synthesis in nanoliter droplets confined to hydrophilic spots on a superhydrophobic surface. Yet, purification of compounds at this small scale and high throughput remains challenging. Here, a novel approach is presented for parallel purification of thousands of microliter- to nanoliter-sized droplets via LLE. The method exploits the ability of hydrophilic spots to retain aqueous droplets under both air and organic solvents. By immersing the entire DMA into an organic solvent, all droplets simultaneously contact the organic phase, enabling rapid, parallel, single-step extraction across the entire array. This process eliminates the need for individual pipetting or complex phase separation equipment, making it scalable, cost-effective, and compatible with miniaturized, ultra-high-throughput workflows down to 15 nL volume and up to tens of thousands of parallel extractions.


Verlagsausgabe §
DOI: 10.5445/IR/1000184694
Veröffentlicht am 09.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische und Chemische Systeme (IBCS)
Institut für Organische Chemie (IOC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 2196-7350
KITopen-ID: 1000184694
Erschienen in Advanced Materials Interfaces
Verlag John Wiley and Sons
Band 12
Heft 19
Seiten e00465
Vorab online veröffentlicht am 22.08.2025
Nachgewiesen in Scopus
Web of Science
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page