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Abstract

The field of evolutionary genomics studies the evolutionary mechanisms that lead
to the broad diversity of life on earth. Understanding these mechanisms not only
helps to disentangle the origin of life, but also has practical applications such as for
developing novel drugs, or tracking global pandemics. Phylogenetics and population
genetics are two major subfields of evolutionary biology. While phylogenetics focuses
on the evolutionary history between distinct species, population genetics studies the
evolutionary mechanisms within populations of a single species, or among closely
related species. In modern-day evolutionary genomics, analyses are typically per-
formed using molecular sequence data and rely upon mathematical models that are
implemented in scientific software tools.

Over the past decades, technological improvements have led to an avalanche of
molecular sequence data. The amount of available data increases at a higher pace
than the cost of compute power decreases, according to Moore’s law. Consequently,
data need to be selected systematically for analysis. In addition, analysis methods
need to be as fast as possible while maintaining analytical accuracy. Furthermore,
quantifying our confidence in these analytical findings becomes increasingly impor-
tant to prevent misleading conclusions based on potentially uncertain results.

In this thesis, I explore applications of machine learning and data science methods
to contribute towards conducting more systematic data selection and faster data
analyses, as well as towards better quantifying the inherent uncertainty of such
analyses.

My first contribution is a machine learning-based framework that predicts the diffi-
culty of phylogenetic analyses. Usually, phylogenetic trees that represent the hypo-
thetical evolutionary history among a set of distinct species are inferred via complex
mathematical models such as the Maximum Likelihood (ML) criterion. These infer-
ence procedures are time- and resource-intensive and rely on heuristic tree inference
algorithm implementations. Performing multiple independent inferences is often re-
quired to at least partially explore the vast search space of possible tree topologies.
Yet, these independent inferences do not necessarily converge to a single phylogeny
or even topologically highly similar trees. I initially present a novel quantification of
this behavior and validate that this quantification accurately represents the inher-
ent dataset difficulty under ML phylogenetic analyses. I further present a machine
learning model that can predict this difficulty with high accuracy while being sub-
stantially faster than even a single ML tree inference.
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My second contribution is a collaborative study of sequence simulation realism con-
ducted with Johanna Trost and Dimitri Hohler. In an extensive data analysis, we
assessed the degree of realism for sequence simulation in phylogenetics. These data
simulations rely on statistical models of evolution. A plethora of distinct models ex-
ists, comprising simple to highly complex models with numerous degrees of freedom.
We simulate data under increasingly complex evolutionary models via state-of-the
art sequence simulation software. Using two distinct machine learning-based classi-
fication methods, we demonstrate that, across all models, we can easily distinguish
empirical from simulated data with high accuracy. This indicates a lack of realism in
sequence simulation. We further conduct thorough analyses to explain why current
state-of-the art simulations fail to replicate empirical data.

My final contribution is a software tool for uncertainty estimation in dimensionality
reduction for population genetics data. High-dimensional genetic data often require
the application of dimensionality reduction techniques to identify patterns and facil-
itate their interpretation. While there exist numerous software tools for performing
dimensionality reduction, none of these tools deploy uncertainty estimation. With
Pandora, 1 present a novel framework that seamlessly integrates dimensionality re-
duction of population genetics data and the respective uncertainty estimation into
a single software tool. Pandora estimates the uncertainty based on a bootstrapping
approach and calculates three distinct notions of stability. Through comprehensive
evaluations on empirical and simulated data, I demonstrate the usage and utility of
Pandora for studies that rely on dimensionality reduction techniques.
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1. Introduction

1.1 Background and Motivation

All life on earth is fundamentally composed of only four molecules: adenine, cytosine,
guanine, and thymine. Linking billions of these molecules, the Deoxyribonucleic Acid
(DNA) encodes the instructions for the development, functioning, and reproduction
of all living organisms. This genetic “code of life” is the foundation for the incredible
diversity of life we observe, from bacteria to complex life forms such as ourselves.

A key role in shaping this diversity is evolution. Evolution is the change of heritable
characteristics over time as a result of mutation, genetic drift, gene flow, and natural
selection. Random mutations change the DNA, and random events can change the
genetic composition within a population. Organisms migrate between populations,
inducing an exchange of genetic material (gene flow). Finally, natural selection favors
organisms with traits that are more advantageous in a certain environment. Through
these processes, life on earth has evolved from simple single-celled organisms to the
vast array of complex life forms we observe today.

Fvolutionary genomics strives to understand the evolutionary processes leading to
this broad diversity. Studying evolution is not only relevant for disentangling the
origin of life [189], but can also help to track pandemics [76], or solve criminal
cases [119]. Phylogenetics and population genetics are two major subfields of evo-
lutionary biology. Phylogenetics studies the evolutionary history between a set of
distinct species. Population genetics focuses on the genetic composition and its
change over time between individuals of a single species or among closely related
species.

With the advent of modern DNA sequencing technology, researchers can obtain the
entire genetic material (genome) of an organism. Over the past decades, sequencing
techniques have become increasingly faster and cheaper, leading to an avalanche of
data that need to be analyzed. For instance, the number of sequences in GenBank, a
widely used public sequence database, still increases exponentially [127], and the cost



2 1. Introduction

of sequencing a human genome decreases faster than the computing cost according
to Moore’s law [128]. This discrepancy between available genomic data and compute
power does not only require a systematic analysis of these data, but also calls for
faster analysis methods.

With these vast amounts of data and numerous approaches to analyze these data, it
becomes increasingly important to quantify the confidence in findings to prevent po-
tentially misleading conclusions based on uncertain results. However, in modern-day
science, these data are analyzed using highly complex mathematical models, which
are typically implemented in scientific software tools. Quantifying the uncertainty
of findings, and integrating uncertainty estimations into software, constitutes a cru-
cial aspect of method development and software engineering. Yet, many analysis
methods and software tools still lack the capability to estimate uncertainty.

Methods from machine learning and data science offer promising solutions to these
problems. The systematic statistical analysis of data, commonly known as data
science, allows for extracting meaningful insights, for instance, regarding uncertainty
of results. Machine learning models can process large amounts of data and can detect
previously unknown patterns. Across fields, researchers have successfully deployed
machine learning-based solutions to previously unsolved tasks. One of the most-
widely known examples in Bioinformatics is AlphaFold [86]. Entering the Critical
Assessment of Protein Structure Prediction (CASP) competition for 3D protein
structure prediction in 2020, AlphaFold outperformed all competing computational
methods by a large margin, and demonstrated prediction accuracy comparable to
experimentally determined structures [97].

The goal of this thesis is to explore potential applications of data science and machine
learning to problems in phylogenetics and population genetics. My focus lies on
systematic and fast phylogenetic analyses, as well as on uncertainty estimation for
population genetics.

1.2 Scientific Contribution

My main contributions in the context of this thesis are the open-source tools Pythia,
Pandora, and a thorough study of the realism of data simulations in phylogenetics.

Pythia is a machine learning-based framework that predicts the degree of difficulty
of phylogenetic analyses. The input for a phylogenetic analysis is a set of biological
sequences (for instance DNA sequences) representing multiple organisms, and the
result is a phylogenetic tree that represents their inferred hypothetical evolutionary
history. The input sequences are assembled into a data structure called Multiple
Sequence Alignment (MSA). For reasons, I will further detail in Chapter 2, inferring
a phylogenetic tree based on an MSA requires heuristic search algorithms. Conse-
quently, we typically infer multiple phylogenetic trees on the same MSA to obtain a
broad sampling of the vast space of possible tree topologies. On easy MSAs, multiple
tree inferences converge to highly similar tree topologies, indicating a clear signal
towards a certain evolutionary history. In contrast, difficult MSAs yield highly dis-
tinct, yet equally well-supported topologies. Accepting a single evolutionary history
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of species based on a difficult MSA is thus strongly discouraged. Inferring mul-
tiple phylogenetic trees, and performing post-analyses to determine the degree of
difficulty of an MSA, is time- and resource-intensive. In my work, I developed a
quantification of this behavior and demonstrated that this quantification accurately
represents the degree of phylogenetic inference difficulty for a given MSA. I addition-
ally developed Pythia, a machine learning model that predicts the difficulty based on
fast-to-compute features, before conducting any time-consuming phylogenetic analy-
ses. My first version of Pythia was published in the journal of Molecular Biology and
Evolution [66]. Since this initial publication in 2022, I introduced various changes
to improve the prediction performance as well as the runtime of Pythia. I recently
published these changes on the bioRxiv preprint server [65].

With Pandora, 1 developed a framework to estimate uncertainty of dimensionality
reduction performed on population genetics data. Population genetics data is high-
dimensional, with data typically comprising thousands of dimensions. To identify
patterns of similarity between individuals in these data, and to allow for visualiza-
tion and interpretation, dimensionality reduction techniques project the data into
a lower-dimensional space. While a plethora of tools exists for conducting this di-
mensionality reduction, there does not exist a tool for population genetics data that
can provide an uncertainty estimate. Yet, such an uncertainty estimate is impor-
tant to prevent overconfident conclusions in downstream analyses that are based
on dimensionality reduction results. My novel Pandora tool provides uncertainty
estimates for two frequently applied dimensionality reduction approaches based on
bootstrapping. I performed thorough analyses using empirical and simulated popu-
lation genetics data to demonstrate the usability and utility of Pandora in detecting
instability in dimensionality reduction. Pandora was published in the journal of
Bioinformatics Advances [68].

MSA simulation is an important tool in phylogenetics if a ground-truth phylogenetic
tree is required. MSA simulations rely on statistical models of evolution that aim to
model the process of biological sequence evolution (see Chapter. Ideally, simulated
MSAs mimic empirical MSAs as closely as possible. In a thorough study, Johanna
Trost, Dimitri Hohler, and I analyzed the degree of realism of sequence simulations
under a plethora of evolutionary models. We deployed two distinct types of machine
learning classification models to distinguish between simulated and empirical MSAs.
We demonstrated high prediction accuracy across all evolutionary models, indicating
low simulation realism. Additionally, we provided thorough analyses to explain why
current state-of-the art simulations fail to generate empirical-like MSAs. Our work
was published in the journal of Molecular Biology and Evolution [17§].

Maximum Likelihood (ML) is a popular phylogenetic tree inference method. Infer-
ring trees under ML requires heuristic search algorithms (see Chapter [2). These
heuristics internally rely on numerical optimization routines, and their convergence
is determined based on several numerical thresholds. I systematically analyzed the
impact of these thresholds on the log-likelihood and runtime of tree inferences in
three popular ML inference tools. I used two collections of MSAs (Data collection
1 and Data collection 2) to quantify the runtime and quality impact. For 1Q-
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TREE [121], T identified a threshold setting optimization that yields an inference
time speedup without impacting the quality of the inferred phylogenetic trees. I ob-
served a speedup of 1.34+0.4x on Data collection 1 and 1.34+0.9%x on Data collection
2. For RAXML-NG [96], I identified two such improved threshold settings with a
speedup of 1.9 £0.6x on Data collection 1 and 1.8 £1.1x on Data collection 2. Us-
ing Data collection 2, I further analyzed the impact of numerical thresholds on the
results and runtime of the RAXML-NG bootstrap procedure. With this bootstrap
procedure, RAXML-NG estimates the statistical confidence for the inner branches
of a given phylogenetic tree. Adjusting the settings for two numerical thresholds
in RAXML-NG results in an average speedup of 1.9 + 0.8x without influencing the
resulting confidence estimates. The results of this study are published in the journal
of Bioinformatics Advances [67]. Since I conducted parts of these analyses during
my Master’s thesis, I refrained from including this project in this thesis to provide
a clear separation between both theses.

Over the course of my research for this thesis, I also contributed to several projects
that resulted in peer-reviewed publications, but have not been included here.

Based on my difficulty predictor Pythia, Togkousidis et al. [L75] developed a difficulty-
aware version of the ML tree inference tool RAXML-NG. Depending on the predicted
difficulty of the given input MSA, adaptive RAzML-NG executes a different tree in-
ference heuristic. These changes result in a substantial speedup while not affecting
the quality of the inferred tree.

Furthermore, I contributed to the development of the Educated Bootstrap Guesser
(EBG) [188], a machine learning-based framework that predicts bootstrap support
values on phylogenetic trees. Bootstrap support values measure the confidence of
individual inner branches in a phylogenetic tree. Typically, these support values are
computed using the Felsenstein Bootstrap approach [48], which relies on time- and
resource-intensive phylogenetic tree inferences. Instead, EBG predicts the support
based on fast-to-compute features and provides an accurate approximation of the
inner branch confidence values in phylogenetic trees.

Finally, I participated in a study on the evolutionary history of avian lineages by
analyzing the difficulty of vast amounts of MSAs using my Pythia prediction tool.
This study is published in Nature [170].

1.3 Structure and Overview

This thesis is structured as follows. In Chapter |2, I introduce the fundamental con-
cepts of phylogenetics, population genetics, and machine learning that are relevant
to this work. In Chapter [3| I describe Pythia, a machine learning-based difficulty
prediction framework for phylogenetics. In Chapter [4, I present the study on the
realism of phylogenetic sequence simulations, which I conducted in collaboration
with Johanna Trost and Dimitri Hohler. In Chapter 5, I describe Pandora, a tool
to estimate dimensionality reduction stability of genotype data. Finally, I conclude
and discuss future work in Chapter [6]



2. Fundamentals

2.1 Phylogenetics

Evolution is the gradual change of heritable characteristics from generation to gener-
ation. The driving forces of evolution are mutation, natural selection, gene flow, and
genetic drift. Evolution results in changes at the molecular and, as a consequence,
at the morphological level as well. In a speciation event, one species splits into two
new species that continue to evolve independently, whereas in an extinction event,
a species goes extinct. The field of Phylogenetics studies this evolutionary history
among a set of organisms or species, and the history is typically visualized as a tree
structure called phylogenetic tree or phylogeny for short. The inner nodes of this
tree represent putative speciation events and correspond to hypothetical common
ancestors. The leaves represent the (extant) organisms under study and are called
taxa. Branch lengths within a phylogenetic tree typically indicate the relative evolu-
tionary distance between two nodes. Figure 2.1]shows an example of a phylogenetic
tree of birds.

Phylogenetic trees are usually strictly binary, meaning that a speciation event always
splits a lineage into two sublineages. A lineage is a continuous line of descent tracing
the evolutionary path from a common ancestor to its descendants. Multifurcation
events, that is, a lineage splitting into more than two sublineages can be represented
via near-zero branch lengths.

Phylogenetic trees can be rooted or unrooted. In rooted phylogenetic trees, the
root node represents the most recent common ancestor of all organisms contained
in the phylogenetic tree. In contrast, unrooted phylogenetic trees only show the
hypothetical speciation history without identifying a common ancestor. In this
thesis, we focus on unrooted, binary trees.

Phylogenetic inference methods have been mainly developed for biological sequence
data. They are, however, also popular outside the context of biology, for example in
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Figure 2.1: Phylogenetic tree of birds based on Stiller et al. [170].

linguistics to infer the evolutionary history of natural languages [11]. In this thesis,
we focus on biological sequence data.

2.1.1 Biological Sequence Data

Phylogenetic trees are inferred using either phenotypic or genotypic data, or a com-
bination of both.

Phenotypic data consists of observable characteristics or traits of the organisms
under study. Typically, morphological traits are used for tree inference, for example,
the shape and size of leaves in plants, or the presence or absence of specific physical
features in animals. The phylogeny is then inferred based on the similarities of
these traits. Morphological traits can be obtained via manual extraction by experts.
More recent approaches using three-dimensional imaging techniques, such as micro-
computed tomography, can automate trait extraction and increase the number of
traits available for phylogenetic inference [45]. The resulting data is a matrix, where
each row represents one taxon and each column represents one trait. Traits can
be encoded as being present or absent (typically indicated as 1 and 0 respectively).
Alternatively, a trait can assume multiple values, if the trait captures, for example,
the color of a flower.

Genotypic data consist of genetic information, typically either|Deoxyribonucleic Acid
(DNA), [Ribonucleic Acid (RNA), or[Amino Acid (AA) sequences, or a combination
thereof. These sequences can be automatically extracted from a tissue sample using
next-generation sequencing (NGS) techniques [82]. The resulting data are sequences
of DNA, RNA, or AA characters. For DNA and RNA, these characters correspond
to the four nucleotides (A, C, G, and T/U), and 10 additional characters for partially
ambiguous data (W, S, M, K, R, Y, B, D, H, V). For example, the character W translates
to “either A or T”. For AA data the characters encode the 20 amino acids (A, R, N, D,
C,Q,EGHILKMFP ST WY, V), with two additional characters for partially
ambiguous AAs (B, Z). An additional character in either data type (typically N for
DNA and X for AA) encodes missing data. Data can be missing for technical reasons,
such as sequencing error.
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When comparing phenotypic or genomic traits, it is important to ensure that only
homologous traits are compared. Traits are homologous, if they have evolved from a
common ancestor. Note that similarity alone does not necessarily imply homology.
Genes or phenotypic traits can evolve independently multiple times (convergent evo-
lution). For example, echolocation evolved independently in whales and bats [132].

Due to their descriptive nature, the number of traits for morphological data is orders
of magnitudes smaller than the number of genotypic data characters. Therefore,
modern phylogenetics typically relies on genotypic data. However, morphological
data is still relevant, for example when studying the evolutionary history of fossils
for which genotype data cannot be extracted.

2.1.2 Multiple Sequence Alignment

The input data for a phylogenetic inference is a set of homologous sequences repre-
senting the organisms under study. Most modern phylogenetics methods rely on a
concept called |[Multiple Sequence Alignment (MSA). An MSA is a data matrix where
each row corresponds to a taxon, and each column (site) corresponds to one trait.
For morphological data, the result of data collection already is an MSA, that is, a
fully aligned set of sequences, since each trait is recorded for each taxon. This is,
however, not the case for genotypic data. Homologous sequences of genotypic data
are generally not of the same length. Over the course of time, genomic sequences
evolve as a result of substitution, insertion, or deletion events (see Figure. These
changes of individual nucleotides result in genotype changes in individual organisms.
Insertion and deletion (indel) events necessarily change the sequence length. Thus,
before conducting any similarity analysis, we need to identify homologous characters
and therefore align the sequences to each other. Computing an MSA thus requires
inserting gap characters (typically denoted as -) such that non-gap characters that
share a common evolutionary history are aligned to each other. The resulting MSA
is a data matrix

1 2 M
81 81 . .. S}w
1 2
S S ... S
S=|72 ™ 2| e N x M, (2.1)
1 2 M
Sy SN ... SN

where N is the number of taxa, M the number of sites, and sf denotes the j-th
character of the i-th aligned taxon. Thus, the value of s/ can be either a character
of the respective data type (DNA, RNA, AA), a character denoting missing data,
or the gap character.

Figure [2.3| shows an exemplary MSA with four taxa and nine sites. As visualized
in Figure [2.3] multiple sites can exhibit the same character composition, that is,
the same site pattern. Hence, in addition to the number of sites, we often also
characterize an MSA by the number of unique site patterns it comprises. The
exemplary MSA in Figure|2.3| contains 7 patterns, since sites 3 and 5 have the same
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Figure 2.2: Visualization of DNA evolution events over time. Note that indel events
can affect multiple subsequent nucleotides at once.

pattern GAAC, and sites 6 and 9 have the same pattern CG-C. We refer to sites that
have the same character across all taxa as invariant sites. Site 1 in Figure [2.3is a
fully conserved, invariant site.

Site 1. 2/3 4 5:r6_ 7 8:r9_ l
Taxoni A AGA G CC = C
Taxon2 A'AA-AGCTG
Tond AGATAI-TA -
Twond A A C - ci_c_ic —i_c_}

Figure 2.3: Exemplary DNA MSA with four taxa and nine sites. This MSA contains
one invariant site (site 1). Sites 3 and 5 (GAAC), and sites 6 and 9 (CG-C) have the
same pattern, resulting in 7 unique patterns.

Computing an MSA for a given set of taxa, for example, under the sum-of-pairs
(SP) score, was shown to be N'P-hard [87]. Therefore, tools for MSA inference
rely on heuristic approaches [38, 188, 163]. Explaining the technical details of MSA
algorithms is beyond the scope of this thesis, since we solely rely on pre-aligned data

obtained from MSA databases (see Section 2.1.2.1).

Note that the properties of the MSA, such as the number of patterns and taxa,
impact the subsequent phylogenetic analysis [166]. MSAs with a high phylogenetic
signal are expected to be easier to analyze under the NP-hard ML criterion, since
the space of potential trees can be explored more systematically due to the higher
information content. Consequently, multiple, independently inferred trees on such
an MSA are expected to be highly similar in terms of their topology. In general,
the phylogenetic signal for MSAs with few taxa and either many or longer genes, or
entire genomes, is stronger than in MSAs with many taxa and fewer and/or shorter
genes [166].
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2.1.2.1 MSA Databases

Different MSA heuristics potentially result in different MSAs for the same set of
sequences [39]. Thus, researchers typically publish the MSA alongside their studies.
A popular database for sharing MSAs is TreeBASE [137]. In this thesis, we use
a snapshot of approximately 10000 MSAs that we obtained from TreeBASE in
January 2022, including DNA, AA, and morphological data. This data collection
comprises MSAs that have been analyzed in the context of published phylogenetic
studies. It thus provides a representative collection of typical phylogenetic analyses.

We also use DNA and AA MSAs obtained from the RAXML Grove database [79].
The publicly available RAxML Grove database contains phylogenetic trees based
on fully anonymized MSAs that were analyzed using the RAXML-NG [96] and
RAxML [167] web-servers. Note that we do not make the MSAs publicly available,
as they have not necessarily been published (or were not intended for publication) by
the user of the web-servers (yet). These fully anonymized MSAs are thus only avail-
able internally within our research group. Note that for our work, we rely solely on
summary statistics, such as the number of sites or taxa, of these anonymous MSAs.
These summary statistics preserve the anonymity of the underlying data, as they

do not allow for any reverse-engineering of the biological content of the respective
MSAs.

Both, the TreeBASE data, and the RAxML Grove data contain diverse MSAs with-
out a specific focus on the type of underlying taxa or traits.

The majority of MSAs in our TreeBASE data collection, as well as in RAxML
Grove, are DNA MSAs. To increase the set of AA MSAs, we also use on the
HOGENOM database [136] in this thesis. The HOGENOM database consists of
sequences obtained from whole-genome data of Bacteria, Archaea, and Eukarya,
and thus also comprises a diverse sample of empirical genomic data.

2.1.3 Phylogenetic Tree Inference

Over the course of the last decades, researchers have developed a plethora of tree
inference methods that mostly rely on MSAs. While alignment-free methods are
generally simpler, they have been shown to be less accurate than MSA-based ap-
proaches [78]. MSA-based methods can be divided into two categories: distance-
based methods and character-based methods. Distance-based methods directly rely
on the assumption that higher sequences similarities indicate a closer evolutionary
relationship between the respective taxa. Implementations of distance methods, such
as Neighbor-Joining [150] or UPGMA [164] infer a phylogenetic tree using pairwise
distances between the sequences in the MSA. In contrast, character-based methods
score trees for a given MSA under an explicit optimality criterion. For example, the
Maximum Parsimony (MP) method [44, 52] scores trees by counting mutations, and
the Maximum Likelihood (ML) method [47] deploys a statistical model of sequence
evolution to compute the likelihood of observing a tree given an MSA. Finding the
globally optimal tree under such a criterion requires scoring of all possible unrooted
binary tree topologies. Such an exhaustive tree search is computationally infeasible
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due to the large number of possible tree topologies. Given a set of N > 3 taxa, the
number of possible unrooted trees is [T.52i — 5 [49].

Many popular character-based tree inference methods, including ML and MP, were
shown to be N'P-hard [31, 55]. Therefore, their implementation relies on heuristic
search strategies. Such heuristics typically initiate the tree search on a set of one or
multiple candidate trees obtained, for example, via distance-based methods, which
are then further optimized under the character-based criterion, until a convergence
criterion is reached. However, these heuristics are not guaranteed to find the globally
optimal solution and different optimization strategies can lead to different (locally
optimal) solutions. In this thesis, we use ML and MP methods for tree inference
and rely on the respective heuristics implemented in RAXML-NG [96]. In the fol-
lowing sections, we explain both criteria (ML and MP), and the respective heuristic
implementations in RAXML-NG in greater detail.

2.1.3.1 Maximum Parsimony

With the Maximum Parsimony (MP) method [44, [52], the goal is to find the phy-
logenetic tree that explains the MSA S with the least number of mutations. For
a given topology, the parsimony score can be computed in O(N - M) operations
using dynamic programming. The MP method computes the parsimony score for
each site separately, relying on the assumption that sites evolve independent of each
other. The overall parsimony score for a given topology and the respective MSA S
is the sum over all per-site scores. Using Fitch’s algorithm [52], we can compute
the per-site score as follows. We initially place a virtual root in the tree. Note that
this is only a technical requirement, and the placement of the root does not change
the parsimony score. We then traverse the tree bottom-up from the tips to the
root. The tip states are the observable data and correspond to the states of the taxa
represented by their sequences in the underlying MSA. The inner states of the tree
are unknown. In each step of the parsimony score computation, we assign a set of
potential characters to these inner states. To determine the state of an inner node
I;, we first compute the intersection of its two descendant character sets [ and r. An
empty intersection indicates a mutation event, as there is no consensus between the
two descendants. In this case, we increment the parsimony score by 1 and assign
the union of [ and r to the inner state I; (I; = [ Ur). If the intersection is non-
empty, there exists a possible ancestral state that can explain this subtree rooted at
I; without any mutation. Hence, we do not need to increment the parsimony score.
In this case, we set the inner state [; to the intersection of [ and r (I; =1 Nr).

The following example visualizes the parsimony score computation using an exem-
plary tree topology for a single site in a DNA MSA. We place the virtual root Iy
into the branch connecting I, with I3 and traverse the tree bottom up. The initial
parsimony score is 0.
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12/11\13 score = 0
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The first step is to compute the set of inner states for the inner node I5. The
intersection of its child nodes G and C is empty. Thus, we assign the state of I,
as the union of the descendant states Iy = {C} U {G} = {C,G} and increment the
parsimony score by 1.

I score = 1

L ={clu{c}

- {c.0} &
VAR VAR
G C A G

Analogously, we set I3 = AUG = {A,G} and increment the parsimony score by 1 to
account for this mutation event, thus obtaining a total score of 2.

score = 2

I
N
I5:AUG

b ={C,6} = {A,G)

/SN
G ¢ A G

The final step is to determine the inner state of the virtual root ;. We first compute
the intersection of its descendants Iy and Iy as I; N I, = {C,G} N {A,G} = {G}.
We notice that the intersection is non-empty, and set I3 = {G}. The non-empty
intersection indicates that there exists a possible assignment for I; that explains the
data in [, and I3 without any mutation (the nucleotide G in this case). Hence, we
do not need to increase the parsimony score.
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Since we have reached the virtual root, the computation of the parsimony score
terminates, and we determined the overall parsimony score for this example tree
topology as 2. Using the inner states we computed in the tree, we can also recon-
struct the ancestral states using a top-down approach. As this is not relevant for
merely computing the parsimony score of a given tree, we do not further explain
this procedure and refer the interested reader to the original description of Fitch’s
algorithm [52].

While scoring a tree under the MP criterion is simple and fast, generating the most-
parsimonious tree (that is, the tree with the least mutations) is not. As stated
above, enumerating each possible topology and computing its score is computation-
ally infeasible due to the vast number of potential tree topologies. The MP problem
was shown to be NP-hard [55] and exploring the space of possible tree topologies
under the MP criterion requires heuristic algorithms that rely on tree topology op-
timization strategies (see Section [2.1.3.3). Such heuristics are comparatively fast
due to the relatively simple model of parsimonious evolution, they are, however,
less accurate than other methods with more complex (statistical) models of evolu-
tion [130]. For example, MP cannot account for multiple unobserved substations
along a single branch (for example, T — C — G). Additionally, MP is prone to
long-branch attraction (LBA) [15]. LBA is an estimation bias induced by rapidly
evolving lineages, resulting in long branches. These lineages are inferred as being
closely related because of their similarly high evolutionary rates.

2.1.3.2 Maximum Likelihood

The [Maximum Likelihood (ML) method relies on a statistical model of evolution
and strives to find the most likely tree among all possible trees under such a model.
Thus, ML is an optimization problem that optimizes the likelihood L(0|S) for a set
of parameters 0 given the data S. This corresponds to the probability of observing
S given the parameters 0

L(8]S) = P(S0). (2.2)

In ML-based phylogenetic inference, the parameter set @ = (T, b, M, ¢) comprises
the tree topology T, the corresponding branch lengths b, and the substitution model
M with additional parameters ¢.

To simplify the following explanation of ML based phylogenetic inference, we will
focus on DNA data with four states corresponding to the four nucleotides A, C, G, and
T. The principle translates directly to all other data types presented in Section |2.1.1
using the respective character set.
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Phylogenetic Likelihood Computation

The ML method is not a generative method. That means it does not propose
parameters, but rather evaluates a given set of parameters @ via the phylogenetic
likelihood. Thus, in addition to the MSA, we require a candidate tree topology (a
starting tree) including branch lengths, and a set of model parameters to compute
the respective likelihood. As shown in Equation , we compute the phylogenetic
likelihood L(0|S) as the probability P(S]0) of observing S given the current values
of parameters in 8. To simplify this computation, in phylogenetics, we assume that
sites evolve independently. We can hence reformulate the phylogenetic likelihood as

L(0]S) = HP (5:10), (2.3)

where s; denotes the i-th column in the MSA. The per-site probabilities P(s;|0) can
become very small, and potentially induce numerical issues. To prevent underflow,
we compute the logarithm of the likelihood instead:

log (L(6]S)) Zlog (s:10)) (2.4)

To simplify the following explanation of the per-site likelihood calculation L(8|s;)
for site 7, we consider the following exemplary tree topology for a single site in a

DNA MSA:

A
"\
G G
ARAT
G C A G
We compute the likelihood for this site as the product of the transition probabilities

from parent to child nodes and the probability of observing nucleotide A at the root
of the tree.

L(9|5@') = P(Sife) =Ty - PA%G<b1> : Pcac(b2) : PG%C<b3)
- Pussa(bs) - Poosa(bs) - Pasa(be)- (2.5)

The transition probabilities P;_,; and the prior probability 7, are given by the proba-
bilistic model of sequence evolution M. We will provide more details on the model of
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evolution below. The branch lengths b; are proportional to the relative evolutionary
time between the respective nodes, with t; = r - b; where r denotes the evolutionary
rate (see below).

In contrast to this example, in phylogenetics, we typically only know the states of
the terminal nodes (the taxa) as the inner states are unknown:

I
VN
I I3
A
G C A G

Consequently, when computing the per-site likelihood, we need to account for all
possible combinations of inner, ancestral states and the per-site likelihood compu-
tation changes to

LO]s;)) =Y > > mr, - Priosp,(b1) - Pryse(b2) - Pryose(bs)

Iy I I3
P, (b4) ’ PI3—>A(b5> ’ P13—>G(b6)7 (26)

with 1,15, I3 € {A,C,G,T}. So essentially, we sum over the probabilities for all
possible combinations of ancestral states I, I, and I;.

This computation can be efficiently implemented using the Felsenstein Pruning al-
gorithm [46]. Similar to the MP problem, ML is N'P-hard [31] and phylogenetic
inference tools implementing the ML method rely on heuristic parameter optimiza-
tion strategies (see Section [2.1.3.3).

Model of Evolution

The probabilistic model of sequence evolution plays a crucial role in the likelihood
computation. We model sequence evolution as a continuous-time Markov chain,
where the current state depends only on the previous state. Each possible charac-
ter of the respective data type corresponds to one state in the Markov chain, and
state transitions correspond to character substitutions. This substitution process is
modelled as a matrix @, where @);_,; denotes the instantaneous rate of substitution
from state ¢ to state j. The rate @);_,; of remaining in state ¢ is obtained by the
constraint that all rows in @ must sum to 0. To obtain the transition probability,
we need to generalize @ for any time ¢ > 0. This is modelled via the transition
probability matrix

P(t) = e, (2.7)
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where P;_,;(t) is the probability of transitioning from state ¢ to state j in time
t. Based on P, we can model multiple substitutions along a single branch over
time t; 4 t5 using the Chapman—Kolmogorov equation as a sum over all possible
intermediate states between ¢ and j

Pi(ti +t2) = Z Pk (th) Pessj(t2). (2.8)
k

When inferring unrooted phylogenetic trees, we assume time-reversibility. This
means that the probability of starting in state ¢ and evolving into state j over
time t is identical to the probability of starting in state j and evolving into state
1 over time t. Consequently, the choice of the root of a tree is arbitrary, as we do
not assume a direction of ancestral relationships. Non-reversible models can be used
to determine the root of an unrooted tree, as the likelihood under such a model is
affected by the root placement [18].

For time-reversible models, we obtain the (symmetric) rate matrix Q as

Q = R - diag(II), (2.9)

where I denotes the equilibrium frequencies and R the substitution rates between
states. The equilibrium frequencies are the prior probabilities of observing each
state. For DNA data, IT = (m,, m¢, g, mr) where m, denotes the prior probability of
observing the nucleotide A.

The most general time-reversible DNA evolution model is the |General Time Re-

(GTR) model [173] with 10 parameters

R = II = (WA77TC77TG77TT)- (210)

a
B

0 € C
Given the constraints that Y, m; = 1, and using relative rates, the GTR model has
eight free parameters.

Other, simpler models can be derived from the GTR model by restricting the param-
eters. For example, the HK'Y model [70] allows for distinct equilibrium frequencies,
but only emulates two types of nucleotide substitutions: transitions (A <> G, T <>
C) and transversions ({A,G} <> {T,C}). The simplest model of DNA evolution, the
Jukes-Cantor (JC) model [85], restricts the rate matrix to a single rate parameter for
all substitutions and defines the equilibrium frequencies as my, = 7¢ = ¢ = mr = 1/4.

The most basic model of AA evolution is the Poisson model, with equal AA substi-
tution rates and equal equilibrium frequencies (m; = 1/20). In analogy to the GTR
model, the GTR20 model is the most flexible model of AA evolution, with 208 free
parameters (189 for the relative AA substitution rates and 19 free parameters for
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estimating the 20 equilibrium frequencies). Such a parameter-rich model can lead
to unstable parameter estimates, especially if the MSA S has few sites and taxa.
Thus, for AA data, it is common to use pre-computed substitution matrices that
have been derived from large empirical data collections, such as the WAG [186] or
the LG model [103]. The LG model is expected to better represent evolution than
the WAG model, as it was derived from a larger and more diverse set of AA MSAs
and is based on a more refined rate inference technique.

Over the past decades, a plethora of distinct evolutionary models, both for DNA
and for AA data, have been proposed. For a comprehensive overview of commonly
used models in phylogenetics, we refer the interested reader to the documentation

of the popular phylogenetic inference toolkit IQ—TREEE [121].

The models discussed so far assume a constant rate r of evolution along the entire
MSA. This, however, is not true for most empirical data. Different MSA sites
experience distinct evolutionary pressure, for instance, due to their structure or
functionality [193]. We refer to this phenomenon as among site rate heterogeneity.
The most fundamental method to account for rate heterogeneity is to assume that a
certain proportion of sites is constant or invariant over evolutionary time, meaning
that all taxa have the same character at this particular site. The proportion of
invariant sites is typically estimated based on the MSA S. Throughout this thesis,
when referring to a substitution model that estimates this proportion of invariant
sites, we add the suffix ‘41’ to the model’s name. For example, we refer to the
GTR model with an additional free parameter for the proportion of invariant sites
as GTR+I.

This simple model of rate heterogeneity only distinguishes between conserved and
evolving sites. A more elaborate method models the rate of evolution as a statis-
tical distribution, typically via a I" distribution [192]. The I' distribution has two
parameters, a shape parameter o > 0 and a scale parameter > 0. To reduce the
complexity, both parameters are set to the same value § := a [194]. The degree of
rate heterogeneity is inversely related to the shape parameter . For high rate het-
erogeneity (a < 1), the I' distribution is left-skewed, meaning that most sites evolve
relatively slow with a few substitution hotspots having high evolutionary rates. For
low rate heterogeneity (a > 10), the I distribution is bell-shaped around a mean of
1, and only a few sites evolve at a faster or slower pace. The scale parameter « is
estimated based on the MSA S. Figure[2.4] shows the probability density functions
of T" distributions for three different « values.

In practice, the continuous I' distribution is approximated using a discrete distribu-
tion with K rate categories. The per-site likelihood is then computed as the average
of the per-rate likelihoods over the respective site

1 K
Lr(0]s;) = e > L(6|s;, 1), (2.11)
u=1

! http://www.iqtree.org/doc/Substitution-Models
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Figure 2.4: Probability density function of the I' distribution for different scale
parameters o with § := «. The x-axis shows the evolutionary rate, and the y-axis
is proportional to the number of sites with that evolutionary rate.

where r, denotes the evolutionary rate for the u-th category.

The computational time and space complexity of the likelihood computation in-
creases linearly with the number of discrete categories used to approximate the
continuous I distribution. As a tradeoff between accuracy and computational over-
head, following the suggestion by Yang [192], typically a default of K := 4 categories
is used. If not stated otherwise, throughout this thesis, we use this default setting of
four discrete rates for all models using a I' distribution to model rate heterogeneity.
We denote the respective model with a suffix ‘+G’ (for example, GTR+G).

Evolutionary pressure and hence heterogeneity does not only affect the per-site
rate of evolution within a gene, but also impacts the individual substitution rates
Qi—; [105]. General substitution matrices, such as the GTR or the WAG mod-
els, fail to capture such patterns. Inferring a distinct model per site in the MSA
is statistically infeasible due to the large number of parameters. Instead, mizture
models estimate site-dependent substitution rates using a set of K distinct substi-
tution models My, ..., My with corresponding distinct rate matrices Q1, ..., Qxk.
These individual models can reflect different site categories, for example, coding
sites (sites encoding a gene) or buried sites (sites located in the interior of the three-
dimensional protein structure) [105]. The assignment of individual sites to these
categories is typically unknown or only known with some uncertainty. Therefore,
the per-site likelihood under a mixture model is computed as the weighted average
over the per-site likelihood under each separate model:

K
Lar(Ols) = L (.6, Mg, 6a0)ls0) = 52 3w L (7,6, My 6)lsi).— (212)

u=1

The weight w, is the a priori probability of the respective substitution model M,
and quantifies the probability of site s; having evolved under the substitution model
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M,,. Mixture models are typically based on empirical data collections. For example,
for the AA C60 mixture model, Le et al. [104] determined 60 distinct equilibrium
frequency profiles and their respective weights from over 1000 high-quality empirical
AA MSAs using an expectation—maximization algorithm. The more recent UDM
models [153] provide up to 256 distinct equilibrium frequency profiles based on over
2000 AA MSAs obtained from the HOGENOM [136] and HSSP [152] databases.

When collecting data for phylogenetic analyses, we often concatenate multiple genes
into a single MSA. Similar to differences in per-site evolutionary rates, genes evolve
at different rates as they underlay different evolutionary pressures. To account
for these differences at a larger scale, we can organize such MSAs into multiple
partitions (typically by genes) and estimate a distinct set of model parameters for
each partition independently. We refer to such MSAs as partitioned MSAs.

2.1.3.3 Parameter Optimization

As stated above, both the MP method, and the ML method are not generative
methods and only evaluate candidate parameters. Implementing these criteria for
tree inference thus relies on optimization routines to improve upon a given candidate
tree topology and, under ML, branch lengths and substitution model parameters.
In the following paragraphs, we outline different parameter optimization strategies
for topology, branch length, and model parameter optimization.

Topology Optimization

The tree topology can be optimized by rearranging a given candidate topology.
The most common strategies are [Nearest Neighbor Interchange (NNI), [Subtree|
Pruning and Regrafting (SPR), and [Tree Bisection and Reconnection (TBR) (Fig-
ure [194]. The main difference between these three methods is their complexity
in terms of the number of potential rearrangement moves and, consequently, their
ability to explore the space of possible tree topologies. The most complex approach
is TBR, with SPR being a subset of TBR, and NNI being a subset of SPR.

Each inner branch of a binary, unrooted tree connects four subtrees. Note that a
subtree can also be a terminal node. With the NNI strategy, these four subtrees are
detached and rearranged, resulting in two possible alternative topologies. For a tree
with NV taxa, the number of possible NNI moves is in O(N). Figure[2.5(a)| visualizes
one possible NNI move for a tree with four taxa. The SPR strategy detaches a single
subtree from the tree (pruning) and re-attaches (regrafts) it to another branch in
the tree. The number of possible SPR moves for a tree with N taxa is in O(N?), as
there are O(N) possible subtrees to prune and O(N) possible regrafting positions in
the tree. Figure 2.5(b) visualizes one possible SPR move for a five-taxon tree. The
computationally most costly strategy is TBR. TBR generates candidate topologies
by removing a single inner branch from the tree and reconnecting each possible pair
of branches in the two subtrees. The number of possible moves is in O(N?3) as
there are O(N) possible inner branches to remove, and O(N) possible branches for
reconnection in each of the two subtrees. Figure [2.5(c) visualizes one possible TBR
move for a tree with eight taxa.
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Figure 2.5: Schematic explanation of topology optimization strategies.

Choosing the best topology optimization strategy constitutes a trade-off between
efficiency in terms of runtime, and efficiency in terms of sampling the tree space
of potential alternative topologies. While NNI moves are computationally cheap,
getting stuck in a local optimum is more likely than with the computationally more
costly TBR strategy due to the lower number of neighboring topologies that can be
generated, and thus, a less exhaustive sampling of the tree space.

Branch Length and Model Parameter Optimization

Branch lengths and substitution model parameters can be iteratively optimized us-
ing standard gradient-based numerical routines. The goal is to find a parameter (
that maximizes the likelihood L((). To find extreme values of this function, we need
to find roots of the derivative, meaning we need to find ¢ such that L'(¢) = 0. The
Newton-Raphson method is frequently used for branch length optimization, Brent’s
algorithm [24] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [53] are
commonly used to determine optimal substitution model parameters. The equilib-
rium frequencies can be obtained by either counting the respective frequencies in the
MSA S, or a similar numerical optimization approach as for the substitution rates.

2.1.3.4 RAxML-NG

Different tree inference tools implement distinct combinations of optimization strate-
gies to find the best-known ML or MP tree. That is, the tree with the highest score
according to the respective criterion. Over the course of the past decades, numer-
ous tools have been developed. Popular examples for ML tree inference include
RAxML [167], its successor RAXML-NG [96], IQ-TREE [121], or FastTree [142].
Further improving upon existing heuristics, both in terms of finding a better best-
known tree, and improving upon the runtimes, is the subject of ongoing research.
In this thesis, we use RAXML-NG for both, MP, and ML tree inference. In this
section, we briefly explain the respective RAXML-NG heuristics. The explanations
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are based on Kozlov et al. [96], Stamatakis et al. [169], and Stamatakis and Kozlov
[168].

Maximum Parsimony

To infer a tree under the MP criterion, RAXML-NG generates a tree using random-
1zed stepwise sequence addition. First, RAXML-NG selects three taxa ti,ts,t3 at
random from the set of N > 3 taxa and builds the corresponding single possible
unrooted, binary tree topology. It then chooses another taxon t; from the remaining
set of N —3 taxa uniformly at random and inserts it into every possible branch in the
existing topology. Each placement is scored under the MP criterion, and finally ¢; is
inserted into the branch with the best parsimony score. This procedure is repeated
until all taxa have been placed into the tree.

Maximum Likelihood

RAxXML-NG implements a greedy hill-climbing procedure to find the best-known
ML tree. This means that only optimization steps improving the likelihood are
being accepted. The ML tree inference is initialized using candidate tree topologies
(starting trees) containing all taxa of the input MSA. These starting trees can either
be random trees, meaning that the taxa are randomly combined into an unrooted,
binary topology, or they can be generated using the MP-based randomized stepwise
sequence addition as outlined above. By default, a single RAXML-NG tree inference
run uses 10 random and 10 MP starting trees and yields 20 ML trees. However, both,
the total number of generated trees, and the number of random and MP starting
trees can be adjusted by the user. RAXML-NG optimizes the tree topology using
SPR moves. To alleviate the computational complexity of SPR moves, RAXML-NG
only regrafts branches up to a given maximum radius around the pruning position.
This radius is automatically determined during the first round of SPR topology
optimization moves, or can be defined by the user. Branch lengths are optimized
using the Newton-Raphson method, and the BFGS and Brent’s method are deployed
for optimizing the substitution model parameters, the equilibrium frequencies, and
the o shape parameter of the I' distribution.

2.1.4 Comparing Phylogenetic Trees

Due to the heuristic nature of MP and ML tree inference approaches, we usually
infer multiple phylogenies for the same MSA using distinct starting points for each
inference. Before drawing conclusions about the underlying evolutionary process
of the data, we need to compare the inferred trees and identify conclusive results.
We typically compare trees using topological distance metrics and filter results for
conclusive trees using statistical significance tests that compare the likelihoods of
the inferred trees. With both, distance metrics and statistical tests, it is important
to note that we can only compare trees comprising the same set of taxa.
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2.1.4.1 Distance Metrics

A plethora of metrics exists to compute the topological distance between phyloge-
netic trees. One of the most commonly used metrics is the|Robinson-Foulds Distance|
(RF-Distance) [145]. The RF-Distance is simple and fast to compute, and thus use-
ful for the pairwise comparison of large tree sets. However, it can be insensitive to
small topological changes. In such cases, the more fine-grained Quartet distance can
be used [42]. The Quartet distance counts the number of differing four-taxa sub-
trees (quartets). However, compared to the RF-Distance, normalizing the Quartet
distance is not straightforward [36]. When inferring trees using the ML criterion, we
obtain trees with optimized branch lengths. Both the RF-Distance and the Quartet
distance only compare the topologies of the inferred trees. Consequently, two trees
with the same topology but differing branch lengths will have a distance of 0. In
contrast, the branch score (also referred to as the Kuhner-Felsenstein distance) [98]
additionally accounts for differences in branch lengths when comparing phylogenies.
In this thesis, we rely on the RF-Distance, as we are mainly interested in topological
differences between large sets of inferred trees for our applications.

In the following, we briefly explain the computation of the RF-Distance between
two trees T} and T5. First, we need to define internal and external branches, as well
as bipartitions. An external branch connects a leaf to the tree, whereas an internal
branch connects two inner nodes. Each branch in the tree splits the set of taxa
into two disjoint subsets and thus induces one bipartition. External branches induce
trivial bipartitions. These trivial bipartitions are non-informative because any tree
with the same set of taxa induces these bipartitions. Using the sets of non-trivial
bipartitions By and By induced by 17 and T5 respectively, the RF-Distance is defined
as

d(Ty,Ty) = | By U By| — | By N By|. (2.13)

We can normalize the RF-Distance using the maximum possible distance between
Ty and T5. A binary tree with N taxa has N — 3 internal branches. If all non-
trivial bipartitions induced 77 and 75 differ, the RF-Distance is 2(/N — 3). Thus, the
normalized RF-Distance is defined as

d(Ty,Ty)

RE(T\,T) = 2V =5

(2.14)

Note that throughout this thesis, we use the normalized RF-Distance and denote it
as RF-Distance for the sake of simplicity.

2.1.4.2 Statistical Tests

As stated above, when inferring phylogenies under the ML criterion, we initiate mul-
tiple distinct tree inference procedures that result in — potentially highly — distinct
locally optimal candidate trees T. Due to the heuristic nature of ML tree inference
procedures, we cannot simply select the tree with the highest likelihood among these
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candidate trees and define it as the best hypothesis. Instead, we have to determine
if the likelihoods of the inferred trees are significantly different from each other
given the underlying distribution of likelihoods. However, since we cannot re-run
the process of evolution, we do not know the “true” distribution of likelihoods and
therefore need to estimate it to perform statistical significance tests. A common
method to estimate distributions given a limited set of observations is the bootstrap.
In phylogenetics, the most common procedure for computing statistical confidence
is the non-parametric Felsenstein bootstrap [48]. A single bootstrap replicate S @) is
obtained by resampling the sites of the original MSA S with replacement to obtain
a new MSA of the same length, but with a distinct site composition. This process
is repeated to obtain a set of bootstrap replicates B. For likelihood-based statis-
tical testing, for each candidate tree T, € T the branch lengths and substitution
model parameters need to be re-optimized based on each obtained bootstrapped
MSA S ¢ B to obtain the respective maximum likelihood value L{). Additionally,
the likelihoods need to reflect the expected distribution under the null hypothe-
sis of the respective statistical test. The standard approach to adjust the likeli-
hood values to conform to this requirement is centering: the likelihood value L{) of
candidate tree T, under bootstrap replicate S is shifted by the mean likelihood
L, = 58 LY to obtain the centered likelihood L) = L) — L,. This repeated
re-optimization of branch lengths and substitution model parameters is very time-
and resource-consuming. Instead, Kishino et al. [92] suggested the resampling es-
timated log-likelihoods (RELL) method as an approximation of the non-parametric
Felsenstein bootstrap. As discussed in Section [2.1.3.2, the phylogenetic likelihood
is computed as the sum over the per-site log-likelihoods. The RELL bootstrap pro-
cedure resamples these per-site log-likelihoods to quickly approximate likelihoods
of trees optimized under bootstrapped MSAs, thus allowing to approximate the
underlying distribution as a basis for likelihood-based statistical tests.

In this thesis, we rely on six likelihood-based statistical tests implemented in the
phylogenetic inference toolkit IQ-TREE [121], which we will briefly explain in the
following. IQ-TREE implements the RELL approximation of the standard bootstrap
as a basis for the statistical tests. Throughout this thesis, when applying statistical
tests, we rely on 10000 RELL samples.

Kishino-Hasegawa Test

The Kishino-Hasegawa (KH) [91] test compares two candidate trees T} and T by
comparing their likelihood difference 6 = L; — Lo to the expected distribution of
likelihood differences approximated using the RELL method outlined above. If both
trees are equally well-supported, we expect L; = Lo and thus

Hy: E[§] =0
Hy: E[5] 0.

The KH test rejects the null hypothesis if the test statistic J falls outside the accep-
tance region of 1 — . The KH test relies on candidate trees to be chosen a priori,
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that is, independently of any analysis of the underlying data. However, in phyloge-
netics, candidate trees are chosen a posteriori, for example, as a result of ML tree
inferences. Goldman et al. [60] thus conclude that the null hypothesis E[d] = 0 is
not reasonable and a one-sided KH test is more appropriate when comparing multi-
ple candidate trees against the tree T),;, with the highest log-likelihood Ly, in the
candidate tree set.

Shimodaira-Hasegawa Test

The Shimodaira-Hasegawa (SH) [159] test is a statistical test specifically designed
for comparing multiple a posteriori selected candidate trees. The respective test
hypotheses are

Hy :all T, € T are equally well-supported
H, :some or all T, € T are not equally well-supported.

Instead of pairwise comparisons, each candidate tree T, is compared against Ty,
the tree with the highest maximum likelihood value in 7. Thus, the test statistic
for candidate tree T, is 0, = Ly — L,. Similar to the KH test, the respective
distribution under the null hypothesis is approximated using the RELL bootstrap
procedure and subsequent centering of the likelihoods. Since each candidate tree
is compared against the ML tree, the SH test is a one-sided test and, for a 5%
significance level, Hy is rejected if the test statistic ¢, is in the rejection area beyond
95%. The SH test only yields the correct estimations of significance levels if the
globally optimal ML tree is in the candidate tree set [151]. Strimmer and Rambaut
[171] additionally showed that the SH test is biased by the size of the candidate
tree set and is more conservative when the number of trees in the candidate tree set
increases.

The weighted variants of the KH and SH test scale the likelihood differences using
the variance of differences in the set of candidate trees 7. The idea of this weighting
is to obtain a less conservative test statistic [151].

Approximately Unbiased Test

The SH test overestimates the selection bias and provides more conservative sig-
nificance levels with an increased number of candidate trees. To correct for this
selection bias, Shimodaira [158] proposed the Approximately Unbiased (AU) test.
The AU test is based on a multiscale bootstrap procedure. The standard bootstrap
procedure generates replicates with the same number of sites M as the original
MSA. Instead, the multiscale bootstrap, generates replicates with different lengths
M, = r - M. Following the original suggestion by Shimodaira [158], IQ-TREE gen-
erates replicates using r € [0.5,...,1.4]. For each M,, a set of bootstrap replicates
B, with |B,| > 10000 is drawn using the RELL method. To make sure that the
obtained likelihoods are comparable, the AU test scales them to the same length of
the original MSA M using the factor M/M,. The AU test subsequently applies the
same significance test as the SH test described above.
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Expected Likelihood Weight Test

Rather than significance testing, Strimmer and Rambaut [171] suggested generating
confidence sets using expected likelihood weights (ELW). The likelihood weight of
a candidate T, is computed as the fraction of its likelihood L, over the sum of
likelihoods of all candidates w, = L,/ > ; L;. To accept or reject candidates based
on the likelihood weight, we need to compute the expected likelihood weight under
the true model. Since the true model is not known in general, the ELW test estimates
the expected likelihood weight based on RELL samples as

|B]
Flw,| = w, = w

where w(" is the likelihood weight of T}, re-optimized under bootstrap replicate S,
The hkehhood weights sum to 1 across all candidate trees. The ELW test then orders
the candidates by the expected likelihood weights and accepts trees with the highest
weights while their cumulative sum is below a certain confidence level (typically
0.95). Note that since the ELW test is not a significance test, the posterior weights
cannot be interpreted as P-values.

2.1.5 Sequence Simulation

Verifying phylogenetic methods and hypotheses requires knowledge about the true
underlying process. Since there only exist but a few known, ground-truth phyloge-
nies, sequence simulation is an important tool for developing novel approaches. In
analogy to ML phylogenetic inference, state-of-the-art simulations tools are based
on probabilistic models of sequence evolution (Section 2.1.3.2) [28,/114]. While phy-
logenetic inference reconstructs a phylogeny given the sequence data, simulations
generate the sequence data given a phylogeny, thus, essentially reverting the infer-
ence process. There are two main approaches to simulate sequences using a given
model of sequence evolution: the probability-matriz approach and the rate-matriz
approach [194]. For both approaches, the general idea is to traverse the given in-
put phylogeny top-down until a sequence has been simulated for all inner nodes
and leaves. The final, simulated MSA is then simply the matrix comprising the
simulated sequences at all leaf nodes. Consequently, we require a rooted phylogeny
as input for these simulations. Given an unrooted phylogeny, we can determine a
root, for instance, at random, or using more elaborate approaches such as molecular-
clock rooting or outgroup routing [192]. Since the models of sequence evolution are
time-dependent, both simulation approaches also require branch lengths in the input

phylogeny.

Given a rooted phylogeny with branch lengths and a probabilistic model of sequence
evolution, the simulation procedure is initialized at the root of the tree. The root
sequence is generated by sampling the states of the respective data type based on
the equilibrium frequencies IT given by the model.
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The probability-matriz approach generates child sequences based on the transition
probability matrix P(t) = e (see Section [2.1.3.2), where t is the branch length
of the current branch. A state at a site is simulated by drawing a new state at
random from the discrete distribution of possible states with probabilities according
to P(t). For instance, if the state of the current node is the nucleotide A, the state
for the corresponding site in the child sequence is randomly drawn from A, C, G, T
with probabilities Py_x(t), Pyac(t), Pase(t), Pasyr(t). Unless the model of sequence
evolution accommodates rate heterogeneity, P(t) only needs to be computed once
per branch, as it solely depends on the branch length ¢. For models with discrete
rates, P(t) is computed per rate, and for models with a continuous rate heterogeneity
distribution, P(t) is computed for each site independently.

In contrast, the rate-matriz approach simulates waiting times between mutation
events and can thus simulate multiple substitution events along a single branch. If
the site is currently in state i, the substitution rate of i is Q; i = — 30,4 Qisj-
The waiting time until a substitution event occurs is exponentially distributed, with
a mean of 1/Q;;. To simulate the state of the same site in the child node, a
waiting time s is drawn from this exponential distribution. If the waiting time
exceeds the branch length (s > t), no substitution occurred between the current
node and the child node. Hence, the respective site in the child sequence equals
the current state 7. If a substitution occurred, the current state is updated by
drawing a new state j randomly from the discrete distribution of possible states
with probabilities according to P(s) (in analogy to the probability-matrix approach).
Since s < t, the evolutionary time between the current node and its descendant is
not reached, and the sampling process is repeated given the new state j and the
remaining evolutionary time ¢ — s.

In this thesis, we rely on the AliSim sequence simulation tool [114]. AliSim imple-
ments a combination of both simulation approaches. The runtime of the rate-matrix
approach increases with longer branches, whereas the runtime of the probability-
matrix approach is independent of the branch lengths. Thus, AliSim implements an
adaptive simulation procedure, that determines the simulation algorithm indepen-
dently for each branch based on its length. For short branches, the child sequence
is simulated using the rate-matrix approach, for long branches AliSim simulates
the child sequence using the probability-matrix approach. Ly-Trong et al. [114] de-
termined the optimal branch length threshold for this adaptive heuristic based on
extensive experiments.

The simulation procedures outlined thus far only simulated substitution events. To
simulate indel events, AliSim selects the mutation event (substitution, insertion,
deletion) with probabilities Sg, Ir, and Dg, respectively. In case of a substitution
event, AliSim simulates the new state according to the procedure described above.
In case of an insertion event, AliSim samples an insertion position uniformly at
random, and an insertion length from a given insertion length distribution. The
inserted sequence is then generated at random based on the equilibrium frequencies.
Analogously, in case of a deletion event, AliSim samples a deletion position uniformly
at random, and a deletion length from a given deletion length distribution. The
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probabilities of each mutation event, as well as the insertion and deletion length
distributions, can be estimated from empirical data using dedicated tools, such as
SpartaABC [110].

Instead of estimating insertion and deletion parameters to generate indel patterns,
AliSim alternatively offers a mimicking option. If the underlying (empirical) MSA
of the input phylogeny is available, AliSim can superimpose the gap pattern of this
MSA onto the simulated MSA, and thereby better mimic the evolutionary history
of the empirical MSA.
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2.2 Population Genetics

Population genetics studies the genetic composition of populations and its change
over time. It focuses on understanding population structure and the underlying
evolutionary forces that lead to genetic and phenotypic differences between individ-
uals. Unlike phylogenetics, which primarily studies the evolutionary history between
distinct species, population genetics focuses on the genetic diversity within a species.

The term population structure refers to the genetic variation and distribution of
genetic variants within or between closely related populations. Genetic variation
is a result of the four evolutionary forces: mutation, gene flow, genetic drift, and
natural selection. Figure |2.6] visualizes the effects of these four forces by example
of beetles of different colors. Mutation is the change of DNA sequences as a result
of nucleotide substitutions, insertions, and deletions (Figure , or as a result
of random (re-)combination of the parental DNA during sexual reproduction. For
instance, in Figure the offspring beetle differs in color compared to its parents
due to a random mutation of its DNA. Gene flow is the result of the migration of
individuals between populations, and refers to the transfer of genetic variants from
one population to another. In Figure [2.6(b), an individual from the population
of brightly colored beetles migrates to the population of darkly colored beetles,
leading to a change in its population structure. In human population genetics,
this phenomenon is also referred to as admizture. Genetic drift is the change in
composition (frequency of occurrence) of a genetic variant caused by a random event.
Figure 2.6(c) visualizes this evolutionary force. In this example, the phenotype
distribution changes as a result of the random event of a fire. Finally, the survival and
reproduction success probabilities of individuals differ depending on their phenotype.
This evolutionary mechanism was termed natural selection by Charles Darwin [35]
and is visualized in Figure|2.6(d). The crow can spot the bright beetles more easily.
Thus, the dark beetle variant has a selection advantage. Understanding population
structure can help to study these evolutionary forces.

Similar to phylogenetics, population genetics methods rely on molecular genotype
or phenotype data. In this thesis, we focus on computational approaches based on
genotype data only. Furthermore, we focus on studying population structure using
dimensionality reduction and clustering techniques.

2.2.1 Genotype Data

A genetic variant of a specific locus is called allele. A locus is the position of a
gene or genetic marker along a chromosome. Note that a locus can either describe
a single nucleotide or a sequence of nucleotides. Diploid organisms have two sets
of homologous chromosomes, one maternal and one paternal set. If both sets have
the same allele at a specific locus, the organism is homozygous in this allele. If they
differ, the organism is heterozygous. Allele differences within or between individuals
can induce phenotypic changes in the respective individual. One of the most famous
examples is the study of phenotypic traits of peas by Mendel [117]. For instance,
a single gene controls whether the pea seeds are wrinkled or round [19]. Note that
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(c) Genetic Drift: The population structure (composition) changed due to a fire that by
pure random chance only killed darkly colored beetles.
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(d) Natural Selection: A crow can spot brightly colored beetles more easily, leading to a
change of color distribution as a result of selective pressure.

Figure 2.6: Exemplary visualization of the four evolutionary forces mutation, gene
flow, genetic drift, and natural selection.

not all organisms are diploid, and ploidy can vary between cells and also throughout
the life cycle of organisms [185]. In this thesis, we focus on genetic data of diploid
organisms.



2.2. Population Genetics 29

(@)
K&
)<
)<
K&

X
U ! R i'i g

SNP

Figure 2.7: Visualization of a SNP. In the selected DNA region, the two strands
only differ in a single nucleotide pair: G — C versus A — T.

A [Single Nucleotide Polymorphism (SNP, pronounced “snip”) is the variation of a
single nucleotide among the DNA of individuals of a population. A SNP is associated
with a reference nucleotide, present in the majority of individuals, and a variant
nucleotide, present in the minority of individuals. Figure [2.7 visualizes a single SNP
at the DNA level of two individuals. The two DNA molecules differ in a single
nucleotide pair: G — C versus A — T.

A genotype dataset (or genotype data) comprises sequences of SNPs. For our appli-
cations, we assume genotype data to be biallelic, meaning that a specific locus in
the maternal and paternal genomic data can be either one of two alleles: a or A.
Hence, the genotype of an individual has one of the three states: homozygous a (aa),
homozygous A (AA), or heterozygous (aA/Aa). To apply mathematical operations
to these data, the genotypes need to be encoded via numeric values. One common
encoding is the EIGENSTRAT [133] format that encodes the genotypes using the
integers 0, 1, and 2, indicating if an individual has zero, one, or two copies of the
respective reference allele. A dedicated special character denotes missing genotypes
(9 in the case of the EIGENSTRAT format).

The resulting dataset is a matrix

G=|" % - RlecNxM, (2.15)
gnv 9N - 9N

where rows correspond to the N individuals (of the same species) under study,
and each column corresponds to one of the M SNPs. Typically M > N; for
instance, a dataset of global human genotypes published by Lazaridis et al. [102]
comprises M = 605775 SNPs for N = 2068 individuals. The genotype matrix is
usually accompanied by metadata for the SNPs and the individuals. This metadata
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includes, for example, the chromosome number where the SNP is located, or the
(sub-)population (for example “Greek”) an individual forms part of.

2.2.1.1 Simulating Genotype Data

Simulations are an important tool in population genetics to assess and verify novel
analysis techniques, tools, or hypotheses. Simulation approaches can be broadly
categorized into three categories [197]. The coalescent model simulates sequences
starting from currently living samples backward in time until a most recent common
ancestor is reached. In contrast, forward-in-time models start from an initial an-
cient population and simulate forward in time to generate subsequent generations of
sequences until the current time is reached. Finally, resampling approaches simulate
sequences based on bootstrap resampling of empirical genomic data.

The coalescent process developed by Kingman [90] simulates a trajectory of individ-
uals backward in time. At certain points in time, single alleles coalesce, leading to
coalescence of individuals until the most recent common ancestor of all individuals is
reached. The probability for a coalescence event to occur in the current generation
is modelled as a stochastic process, and depends on the population size. This model
can be extended to additionally model recombination and mutation events. Recom-
bination is an exchange of genetic material between individuals or between different
loci within a single individual. Mutation refers to the substitution, insertion, or
deletion of DNA nucleotides (see Section 2.1.2).

In this thesis, we simulate sequences using the msprime [14] simulation tool, which
implements a coalescent model. In addition to recombination and mutation events,
msprime can simulate migration events, that result in an exchange of genetic material
between populations, changes in population size, or population structure at various
points in time.

Parameterizing simulations to obtain realistic sequences is a challenging task. Thus,
in our work, we simulate genomic sequences based on 13 published, empirical human
demographic models in the stdpopsim catalogue [3, 101]. Each demographic model
defines simulation parameters such as the population size, recombination or mutation
rates, or migration events for up to 10 populations.

2.2.2 Dimensionality Reduction

Visualizing and analyzing high dimensional genotype data is challenging. Comput-
ing and examining two-dimensional plots of all possible combinations of SNPs is
not only computationally infeasible as there are (g) possible plots for M SNPs,
but it is also unlikely to be informative as the underlying pattern of similarity
between individuals might only be visible by combining SNPs. The idea behind
dimensionality reduction techniques is to find a representation of the data in a
lower dimensional space for easier visualization and interpretation. Popular dimen-
sionality reduction approaches include |Principal Component Analysis (PCA) [134],
|Multidimensional Scaling (MDS) [177], t-distributed stochastic neighbor embedding
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(t-SNE) [179], or more recent deep learning-based approaches such as variational au-
toencoders (VAFEs) [13]. In this thesis, we focus on the PCA and MDS approaches,
which we will explain in the following. Note that while the explanation focuses on
genotype data, the described approaches translate directly to numeric data matrices
in general.

2.2.2.1 Principal Component Analysis

The fundamental idea behind |Principal Component Analysis (PCA) [134] is to find a
low-dimensional embedding of the genotype data G that preserves as much informa-
tion of the higher dimensional data as possible. The underlying assumption is that
in the high-dimensional genotype data, structural information is redundant, that is,
some SNPs encode similar information as others. With PCA, information is quanti-
fied via the data variance. The axes of the low-dimensional space are called principal
components, and each principal component is a linear combination of the M SNPs
of the genotype data. PCA is computed such that the first principal component
explains the most variance in the data, the second principal component explains
the second most variance, and so on. Essentially, PCA performs a high-dimensional
rotation of the data such that the axes of highest variance in the original data are
the axes of the transformed space, under the restriction that the axes should form
an orthonormal basis, that is, the axes are orthogonal and of unit length. Note
that this does not immediately result in a dimensionality-reduction, but only in a
transformation of the data into a space that is now ordered by variance. Only after
this transformation, we can reduce the data dimensionality by only using the first L
dimensions of this new space. In the following, we explain the mathematical foun-
dation of PCA in more detail. This explanation is based on an excellent summary
by Shlens [160]. Note that, while we focus on genotype data and denote the input
data using the previously defined matrix G, the described method translates to any
data matrix X € N x M comprising N samples and M features with values in R.

To compute a PCA embedding, the input data needs to be centered such that
the mean of the data lies in the origin 0 in all M dimensions. This preprocessing is
necessary, as otherwise the first principal component tends to reflect the mean of the
data rather than the direction of highest variance. For a more detailed explanation,
we refer the interested reader to [122]. In the following, we denote the centered
genotype matrix as G.

Mathematically speaking, PCA corresponds to finding a transformation matrix W
of size M x M such that

Z=GwW, (2.16)

where Z is the PCA embedding of G.

Equation (2.16) describes a change of basis. The columns of W are a set of new
basis vectors, and transform the rows of G into a new coordinate system. These
column vectors are the principal components. In our original coordinate system,
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where each axis corresponds to one SNP, the individual SNPs are interrelated. We
can express the interrelation of SNPs using the covariance matriz. For the centered
genotype data G, the covariance matrix is computed as

1 ATA
Cy= MG G. (2.17)
This covariance matrix Cg is symmetric. Its diagonal entries are the variances
within each SNP, and its off-diagonal entries are the covariances between SNPs.
The covariance of a SNP pair g and g° describes their relationship. For instance, a
positive covariance between g® and g° indicates that large values in g correspond
to large values in g°. If the covariance between g® and g° is not zero, the SNPs are

correlated, indicating redundancy in the data.

With PCA, the goal is to find a new coordinate system such that the axes are
uncorrelated. This means that we want the covariance matrix of the embedding Z
to be a diagonal matrix. We can compute Cy as

Cy = AZZTZ (2.18)
L (ew)' (ew) (2.19)
= J\ZWTCA}T@W (2.20)
—w' <A14éTé> w (2.21)
D wre.w (2.22)

Note that in Equation (2.22) we express C using C¢. Since Cp is symmetric, we
can diagonalize the matrix via its eigenvectors and eigenvalues

Cy= EAE", (2.23)

where E is an M x M matrix whose ¢-th column corresponds to the ¢-th eigenvector
of Cp. A is a diagonal matrix with the respective eigenvalues as diagonal entries.
Computing E and A is called Eigendecomposition. By convention, the eigenvalues
in A and their corresponding eigenvectors in E are arranged in descending order of
magnitude of the eigenvalues.

If we set W to be the matrix of eigenvectors E, Cy equals the diagonal matrix of
eigenvalues A:

c, 2 wic.w (2.24)
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2w (BAET) W (2.25)
"=EwT (wAaw ) w (2.26)
= A. (2.27)

Thus, the principal components in W are the eigenvectors of the covariance matrix
Cs. The eigenvalues in A correspond to the variance per dimension of the PCA
embedding space. The sum over all eigenvalues yields the overall amount of variance
in the genotype dataset. Dividing each eigenvalue by this sum thus corresponds to
the proportion of variance explained by the respective eigenvectors, and thus by the
respective principal component.

Computing the matrix product G'G in Equation m is computationally intense,
with a complexity of O(M?N). When using Singular Value Decomposition (SVD),
the embedding can be computed directly on the data G. With SVD, we can factorize
G such that

G=UzZwW"', (2.28)

where W corresponds to the eigenvectors of GT@G. Note that this is proportional to
the covariance matrix C by a factor of 1/M. 3 is a diagonal matrix of the singular
values and equals the square root of A.

Using this factorization, we can reformulate the computation of the PCA embedding
Z as

7z %9 aw (2.29)
= USW'W (2.30)
=UX. (2.31)

Finally, with PCA, we aim to reduce the dimensionality of the data. Since the
eigenvalues in A (and analogously the singular values in ) are ordered by decreasing
magnitude, we can reduce the dimensionality if we only keep the first L principal
components, thus defining a lower-dimensional embedding as

Z,=GW, (2.32)
U3, (2.33)

The proportion of variance of the genotype data explained by this lower-dimensional
embedding is simply the sum over the proportion of explained variance per principal
component for the first L principal components.

Figure [2.8] visualizes the outlined PCA procedure. In this example, the input data
is two-dimensional and comprises 500 individuals. The left plot shows the input
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Figure 2.8: Example of a PCA embedding of two-dimensional input data. The left
figure plots the input data, and the two principal components that we identified using
PCA. The right figure shows the transformed data, that is, the PCA embedding
of the exemplary input data. The first principal component explains 85% of the
data variance, and the second principal components explains the remaining 15% of
variance.

data. We can clearly see that the two dimensions are correlated. Using PCA, we can
identify the two axes of highest variation, that is, the principal components. The two
dark arrows shown in the left plot visualize these axes, with PC' 1 corresponding to
the axis of highest data variation. Once we have computed the principal components
(PC 1 and PC 2), we transform the input data using the transformation matrix
W = [PC 1, PC 2|. This essentially results in a rotation of the space such that
the principal components form the axes of the new PCA embedding space. The
right plot visualizes the embedding of the input data after this transformation.

PCA requires a complete dataset, that is, a dataset without missing values, which is
generally not the case for genotype data. Consequently, we need to handle missing
data before PCA analyses. One straight-forward solution is to remove individuals or
SNPs that contain missing values. However, removing SNPs generally reduces the
information content, and thus the signal of the underlying population structure in
the data. Removing individuals is only possible if the removed individuals are not the
core focus of the study. Commonly, instead of removing missing data, missing values
are imputed. Imputation means that we replace a missing value with an estimate,
for instance, the average genotype of the respective SNP (mean imputation).

In this thesis, we perform PCA analyses on genotype data using the implementations
in the Python machine learning library scikit-learn [135] and in smartpca [133]. Both
implementations include the centering of the genotype data and compute the prin-
cipal components using SVD. The smartpca implementation additionally includes
mean imputation.
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2.2.2.2 Multidimensional Scaling

In contrast to PCA, [Multidimensional Scaling (MDS) [177] does not reduce the
dimensionality of the genotype matrix directly. Instead, MDS relies on a matrix
of pairwise distances D € N x N between N individuals. The goal of MDS is to
find a configuration of individuals in an M-dimensional space that best explains the
given distance matrix. Only subsequently, the dimensionality of the data is reduced
by using the first L dimensions of the reconstructed data only. The advantage of
this approach is that the similarity between individuals can be expressed using any
distance metric. In population genetics, we compute the required distance matrix
D using the genotype data G.

We first motivate and derive the classical MDS algorithm that assumes Euclidean
distances in D. This explanation is based on Mead [116]. Afterward, we discuss
how MDS can be applied to non-Euclidean distances.

Given the assumption that D contains Euclidean distances, the distance matrix is
computed as

D = (dij) = |lgi — gjl|2, (2.34)

where g; denotes the row vector of all M SNPs recorded for the i-th individual in G
Instead of directly operating on this distance matrix, MDS operates on the matrix
D® of squared distances

2

The motivation for using squared distances becomes evident in the following, when
we derive the mathematical solution to reconstruct G. The Euclidean distance is
translation invariant. This means that if we shift each individual genotype data
G by a factor of ¢, the distances in D will remain the same. To account for this
translation invariance, MDS centers D such that its centroid is in the origin 0. We
denote the centered matrix as D.

The centered distance matrix is the Gram matrix of the inner products of G

D =GG", (2.36)

which is a symmetric N x N matrix. Using Eigendecomposition, we can factorize
D such that

D =GG" = EAE", (2.37)

where E denotes the matrix of eigenvectors of D and A the diagonal matrix of the
respective eigenvalues. Thus, we can compute the genotype matrix G as

¢ EVA, (2.38)
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based on the Eigendecomposition of the centered distance matrix D. Using only the
first L eigenvectors and eigenvalues defines an L-dimensional embedding Z; of G.

This closed-loop solution finds a perfect configuration of G in an L-dimensional
space if the pairwise distances in D are Fuclidean. In this case, the L-dimensional
embedding using MDS is identical to the L-dimensional embedding computed using
PCA [73].

If the pairwise distances in D are non-Euclidean, this outlined approach cannot
necessarily reconstruct the original genotype data G exactly. Instead, MDS will
find a configuration G of N individuals in an L dimensional space such that

dij ~ 655 = [|Gi — gjll2- (2.39)

In this thesis, we use the implementation of classical MDS in scikit-allel [120].

In addition to pairwise distances between individuals, distances between groups of
individuals (or populations) are also commonly used in population genetics studies.
For instance, the Fs7 population distance reflects the proportion of total heterozy-
gosity that can be explained by the within-population heterozygosity [190]. The
MDS algorithm outlined above works the same when using per-population instead
of per-individual distances. However, the size of the distance matrix is reduced
from N x N to P x P, with P being the number of distinct (sub-)populations in
the genotype data. Consequently, the result of MDS will not be a genotype matrix
comprising /N individuals, but a matrix comprising P samples, where each sample
corresponds to one population.

In analogy to PCA, MDS also requires a complete distance matrix and cannot handle
missing data. In our application, we compute the distance based on the genotype
data G and subsequently reduce the dimensionality via MDS. Thus, the distance
matrix in our setup never contains missing data. However, to compute the distance
matrix D, we need to impute missing values in G, for instance, via mean imputation.

2.2.3 Clustering

Clustering methods group individuals based on their similarity, and are useful tools
for detecting structure in data. In population genetics, clustering can help to identify
genetic (sub-)populations [148], or study the ancestry of individuals [165]. Usually,
instead of relying on the high-dimensional genotype data G, clustering is applied to
a lower-dimensional embedding Z; of G obtained via PCA or MDS.

While there exists numerous distinct clustering approaches, we focus on k-means
clustering in this thesis. K-means clustering assigns the N individuals in Z to k
disjoint clusters. The k-means problem is A'P-hard [6]. However, we can formulate
k-means clustering as an optimization problem that tries to minimize the within-
cluster sum of squares (WCSS)
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k
Wess =3 S @ — il (2.40)

=1 zcK;

where K is the i-th cluster and u; the respective cluster centroid

B 1
| K|

> @ (2.41)

rzeK;

22

The WCSS essentially measures how coherent the individual clusters are. The
most commonly used heuristic to solve this optimization problem is Lloyd’s algo-
rithm [109]. Lloyd’s algorithm initializes the k cluster centers using k randomly
selected individuals from Z. Subsequently, it alternates between two steps. First,
assign each of the N individuals to the cluster with the closest center according to
the Euclidean distance. Then, update the cluster centers using the assigned indi-
viduals according to Equation (2.41). The cluster assignments and recomputations
of centroids are repeated until the cluster assignments remain constant, or until
a convergence criterion is reached, for instance, a maximum number of iterations.
This heuristic does not necessarily find the optimal solution and heavily depends
on the initialization of the cluster centers [10]. Thus, instead of running Lloyd’s
algorithm once, we usually repeat the process multiple times with different random
initializations and select the result with the lowest WCSS.

In this thesis, we use k-means clustering as implemented in scikit-learn [135], which
relies on Lloyd’s algorithm. Instead of a random initialization of cluster centers,
the scikit-learn implementation uses a variant of k-means++ [10] as initialization
method. With this approach, the first cluster center is chosen at random from the
N individuals in Z;. The second cluster center is based on a weighted random
sample of the remaining N — 1 individuals. The weights are assigned according to
the distance of each individual to the first cluster center, such that the point with
the highest Fuclidean distance is most likely to be chosen as the second center. This
process is repeated until all £ centers have been initialized.
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2.3 Machine Learning

Machine learning is a field of artificial intelligence that uses statistical algorithms
to detect patterns in data and generalize these learned patterns to unseen data.
Machine learning algorithms can be broadly categorized into supervised and unsu-
pervised approaches [84]. In a supervised setting, each training datum is annotated
by its target value (label), and the machine learning model leverages these labels
during training. In contrast, unsupervised learning approaches detect patterns or
structures in unlabeled data, that is, data without a target value associated with each
datum. Clustering approaches, or dimensionality reduction techniques that were dis-
cussed in the previous section, are examples of unsupervised learning methods. For
the remainder of this section, we will focus on supervised learning.

Machine learning tasks can be separated into classification and regression tasks [84].
In classification, the target is to categorize data into a pre-defined set of categories
(or classes). A typical example is spam classification for emails. Regression tasks,
on the other hand, predict continuous values, for example, the price of a house.

In this thesis, we further differentiate between classical machine learning and deep
learning approaches. Classical machine learning techniques, such as linear regres-
sion or Decision Trees, deploy simpler statistical models, while deep learning meth-
ods rely on neural networks to automatically learn complex patterns. Classical
machine learning models require (manual) feature engineering. However, explain-
ing model decisions and learning processes, for example via feature importance, is
straightforward. In contrast, deep learning approaches require only minimal data
preprocessing as they automatically learn important features during training, but,
interpreting these features requires (extensive) additional analyses [107].

In the following, we outline the training procedure of machine learning models, and
discuss evaluation metrics for classification and regression tasks. We further explain
selected learning algorithms in greater detail. Finally, we briefly summarize two
explainability approaches for classical machine learning models.

2.3.1 Notation

We first define some relevant notation for the following section. A supervised ma-
chine learning model is trained on a training dataset {(x;,y;)}"_, where x; denotes
the training datum and y; the respective prediction target called (ground-truth) la-
bel. For classical machine learning approaches, we rely on p manually engineered
prediction features. In this case, x; = (z},22,...,2%) is the vector of feature val-
ues for all p prediction features for the ¢-th training datum. The target vector
¥y = (Y1,Y2,...,Yn) " is the column vector of all labels, and the feature matriz (or
design matriz) X is a matrix of row vectors x;. For classical machine learning mod-
els with pre-defined features, the dimension of X is n x p. We denote a machine
learning model as f and the trainable parameters as 8 = (o, f1,...). The train-
able parameters are the variables within a machine learning model that are adjusted
during training to optimize the fit to the training data. We further denote the pre-
diction of model f for a datum ; as §; = f(«;), and the column vector comprising
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all predictions as § = (1,92, ...,%,) . Training a machine learning model is also
referred to as fitting the model to the data. Throughout this thesis, we refer to a
trained machine learning model as predictor for regression tasks and as classifier for

classification tasks.

2.3.2 Training

Training a machine learning model requires optimizing its parameters to minimize
the prediction error. This prediction error is quantified after an epoch, that is, a
single complete iteration over each training sample x;. The error is quantified via
a loss function L(g,y) which reflects how well the predictions § approximate the
ground-truth labels y. The loss function guides the learning process of the prediction
model as it is used to update the model’s parameters 3 to optimize the fit to the
data. One common iterative optimization technique is gradient descent [149]. Model
parameters are updated after each epoch in the direction of the steepest descent, as
determined by the gradient of the loss function. Consequently, a loss function for
training needs to be differentiable. A commonly used loss function for regression
tasks is the mean squared error (MSE)

3\*—‘

Lyse(9,y)

f: . (2.42)

For binary classification tasks, the binary cross-entropy (BCE)

n

Lncs(@,y) =~ 3 i log(di) + (1 — yo)log(1 — 52 (243)

=1

is a commonly used loss function.

To evaluate the performance of a trained model and to ensure that it generalizes
well to unseen data, we split the full dataset into two disjoint sets, the training and
the test dataset. The model is trained only on the training dataset, and the test
dataset is exclusively used to subsequently evaluate the trained model. Typically,
the training dataset contains more samples than the test dataset to leverage as
much data as possible for training the model, for instance using 80% of the data for
training and 20% for performance evaluation. What proportion of data to use in the
training dataset depends, among other factors, on the total amount of data and the
complexity of the machine learning task [72]. Using a train-test-split can lead to a
highly variable performance on the test set depending on what samples are included
in the train and test set respectively. An alternative approach to training a model
is k-fold cross validation. In k-fold cross validation, the full dataset is divided into
k equally sized subsets and the model is trained using k& — 1 subsets for training and
the remaining subset for testing. The training procedure is repeated k times such
that each subset is used for testing exactly once. The overall model performance
is then reported using a summary statistic over all k iterations, for example the
average. In practice, k := 5 or k := 10 are common settings as a tradeoff between
computational overhead and performance variance [84].
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Figure 2.9: High-level overview of the training, evaluation, and inference of a ma-
chine learning model using an 80/20 train-test-split.

Figure 2.9 shows a high-level overview of this training and evaluation procedure.
It further depicts the application of the trained model for inference, that is, for
predicting the target §; for a new sample @;. The depicted pipeline uses an 80/20
train-test-split.

Hyperparameters are configuration settings that control the training procedure of
machine learning models, for example the depth of a Decision Tree or the learning
rate in a Gradient Boosted Tree model (see Section [2.3.4.2). Unlike the model
parameters B that are learned during training, the hyperparameters need to be
defined before starting the training process. These hyperparameters need to be
carefully optimized for the task at hand, as they are crucial for obtaining an effective
model [191]. Hyperparameter optimization is the process of systematically exploring
the hyperparameter space. Optimization techniques range from simple methods like
grid search, which tests all possible combinations on a predefined grid, to more
sophisticated methods such as Bayesian optimization [124]. Bayesian optimization
builds a probabilistic model of the objective function (similar to a loss function)
and subsequently selects the most promising hyperparameter combinations based on
this probabilistic model. In this thesis, we use the Bayesian optimization strategy
as implemented in the Optuna framework [4].

For classical machine learning methods, we need to manually define prediction fea-
tures. How many features we engineer constitutes a trade-off between predictive
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power, that is, how well the set of features approximates the underlying pattern,
and the size of the training dataset. In general, the more features we provide to a
model, the more training data we will require. Adding dimensions to the feature ma-
trix increases the volume of the feature space exponentially. This induces a sparsely
sampled feature space if our training dataset is small compared to the number of pre-
diction features. This phenomenon is referred to as the curse of dimensionality [84].
Additionally, the more features we include, the higher the risk of collinearity (in-
dividual features being correlated) and multicollinearity (combinations of features
being correlated). Correlated features can lead to reduced prediction performance
and can yield erroneous estimates of feature importance [84]. While classical ma-
chine learning models tend to have few trainable parameters, they can be trained
using only hundreds or thousands of training samples (given a small number of pre-
diction features). In contrast, training deep neural networks requires millions or
billions of training samples due to the vast number of parameters. For example, the
popular large language model GPT-3 has 175 billion trainable parameters and was
trained on a dataset of nearly a trillion words [26].

The training process needs to be carefully monitored to prevent overfitting the train-
ing dataset. Overfitting is a result of fitting the model to noise in the data rather
than to the true underlying pattern. The training error under such a scenario is
low, but the error on the test dataset is high, as the learned noise pattern does
not generalize to unseen data [72]. In contrast to overfitting, with underfitting a
model fails to capture the underlying pattern in the data. In this case, the training
performance and the test performance are low. Overfitting and underfitting can be
controlled via careful model selection and model parameter tuning. One aspect of
model selection is the bias-variance trade-off [72]. Bias and variance are error types
that affect model performance. Bias refers to the error induced by approximating
a (potentially complex) problem using a model that is too simple to capture the
complexity of the problem. High bias can lead to underfitting. Variance describes
the sensitivity of models to changes in the training data. For models with high
variance, small changes in the composition of the training data induce large changes
in the parameters of the trained model. High variance can cause overfitting. As
a model’s complexity, and thus flexibility to fit more complex problems, increases,
the variance increases and the bias decreases. While more complex models are more
prone to overfitting, we can restrain overfitting via regularization techniques [84].
The idea of regularization is to penalize complex models by adding a regularization
term R(f) to the loss function during training

L'(§,y) = L(§.y) + ER(f). (2.44)

The weight parameter £ controls the importance of the penalty and is a tunable
hyperparameter. The most common methods in classical machine learning are L1
and L2 regularization [84]. With L1 regularization, the regularization term R(f) is
the L1 norm of the model’s parameters

Ru =Bl = Z |31 (2.45)
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As a result, L1 regularization sets the parameters for the least important features to
0. It thus selects the most important features and thereby restricts the parameter
space. In contrast, L2 penalizes large absolute parameter values using the L2 norm
as the regularization term

Rip = 1818 = Y 62 (2.46)

Penalizing large parameters prevents the model from heavily relying on a few features
only.

2.3.3 Performance Evaluation

Using the independent test dataset, we can evaluate the performance of a trained
model. In contrast to the loss function for training the model, a metric for perfor-
mance evaluation does not need to be differentiable. Evaluation metrics are model-
agnostic. This means that they are independent of the internal structure of the
chosen learning model, as they only compare the prediction ¢ to the ground-truth
labels y. Hence, we can compare different trained models for the same task by
comparing their performance via appropriate evaluation metrics. The choice of the
evaluation metric depends on the task at hand. In the following, we present selected
evaluation metrics for classification and regression tasks. Note that the applica-
tions we discuss in this thesis are binary classification and regression tasks, and we
therefore focus on respective metrics.

Classification
Many (binary) classification evaluation metrics are based on the so-called confusion

matriz, that visualizes the predictive performance of a classifier:

Predicted
‘ Positive Negative
Positive | True positive (TP) False negative (FN)

Actual

Negative | False positive (FP) True negative (TN)

The sum over all four cells (TP+FN+FP+TN) equals the total number of samples.
The sum of the diagonal entries (TP + TN) corresponds to the number of correct
predictions. Based on this confusion matrix, we can define the Accuracy (ACC) of
a classifier as the proportion of correct predictions over all samples:

TP + TN

ACC = .
cC TP +FN + FP + TN

(2.47)

The ACC is easy to interpret, but it can be misleading in the case of imbalanced
datasets. The Balanced Accuracy (BACC) is better suited for imbalanced datasets.
The BACC is the average of the true positive rate (TPR, also called sensitivity) and
the true negative rate (TNR, also called specificity)
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1 1 TP TN

The TPR quantifies how many of the actual positive samples the classifier correctly
predicted as being positive. Analogously, the TNR quantifies the fraction of actual
negative samples that were correctly predicted as being negative.

Regression

The prediction target for regression tasks is a continuous, numeric value. Popular
metrics for evaluating trained regression models include the R?, the [Mean Squared

Error (MSE), the [Mean Absolute Error (MAE), and the [Mean Absolute Percentage
Error (MAPE).

The R? metric quantifies the proportion of variance explained by the model. R? is
computed as

RSS " (g — 0i)?
R2:1——:1—Zn—1<y—?{)2, (2.49)

TSS Yy —9)
where the RSS (residual sum of squares) is the sum of the squared prediction errors,
and the TSS (total sum of squares) measures the variance of the target vector y. ¥
denotes the average prediction target.

The R? assumes a value between 0 and 1, with higher values indicating a better
model fit. This metric is easy to interpret. However, what constitutes a good R? is
highly context-dependent, and it is unreasonable to assume the existence of a model
with R? = 1 for all machine learning tasks [84]. Moreover, R? assumes that a linear
relationship between the data X and the target y exists.

A more commonly used measure is the mean squared error (MSE)

1 .
MSE = - >y — 9:)° (2.50)

i=1

The MSE is smaller the better the predictions approximate the ground-truth labels.
However, since the MSE penalizes large errors, it is sensitive to outliers.

The mean absolute error (MAE) is the average magnitude of prediction errors

1 )
MAE = ~ 3" |y — il (2.51)
=1

The interpretation of the MAE is straightforward, with lower values indicating a
better model fit.
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The mean absolute percentage error (MAPE) quantifies the prediction error as a
percentage of the ground-truth labels, thus indicating the relative size of errors

n

MAPE = 100- - 3

n;3

Yi — Ui
Yi

(2.52)

The MAPE, while being easy to interpret, is undefined for labels y; = 0. Many
implementations of the MAPE add a small constant € to the denominator to prevent
a division by 0. However, this makes the MAPE disproportionately large for values
close to 0.

Each of these metrics covers a distinct aspect of model performance evaluation that
helps to guide model selection and refinement. Due to their individual constraints
and drawbacks, it is advantageous to use a combination of multiple metrics.

2.3.4 Learning Algorithms

Over the course of the past decades, a plethora of machine learning algorithms have
been developed, ranging from simple models such as linear regression to complex
models such as (deep) neural networks. With the most recent developments in
artificial intelligence research, complex deep neural networks with advanced model
architectures such as transformer networks [180] have become available, demonstrat-
ing high performance on various tasks [106]. Choosing the learning algorithm that is
best suited for the task at hand is challenging. The most obvious selection criterion
is model performance on an independent test dataset. However, aspects such as the
bias-variance-tradeoff, the availability of training data, model explainability, or the
potentially time-consuming and complex process of feature engineering need to be
considered as well.

In this thesis, we rely on tree-based models for regression and classification tasks, as
well as logistic regression and Convolutional Neural Networks for classification tasks.
In the following, we describe these approaches in greater detail. Our reasoning for the
choice of models is a combination of explainability, availability of training data, and
computational complexity of ground-truth label computation. We provide further
reasoning in the respective chapters.

2.3.4.1 Linear and Logistic Regression

The simplest classical machine learning approaches are linear regression for regres-
sion tasks and logistic regression for classification tasks. Both approaches are gen-
eralized linear approaches, that is, the model’s output is a linear combination of the
prediction features [84].

Linear regression predicts the quantitative response §j; of a datum x; as the weighted
sum over the respective features values

P
9i=Bo+ Y Biwl + e = Po+ Py + -+ Bt + ¢, (2.53)
j=1
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where ¢; is the error term or noise of the model that captures the unmodelled rela-
tionship between the target y; and the features values x;. Unmodelled means that
there is an aspect of the problem that is not represented by a feature. The model
parameters B are learned during training by maximizing the model’s fit to the data.
This can be achieved by minimizing the error term € = y — X 3, where € is the
vector of error terms ¢; and B is the p + 1-dimensional vector of model parameters.
Usually, instead of minimizing € directly, the respective sum of squared errors | €l|3
is minimized. Common methods to find good parameters 8 include least-squares or
mazimum likelthood estimation.

The prediction output of this linear regression model is quantitative. In a classifica-
tion setting, the target value is qualitative, since we intend to categorize data into
pre-defined categories. Ideally, we would want to predict the probability P(C}|x;)
that the datum @; belongs to a certain category C;. Using linear regression for clas-
sification poses two challenges. First, encoding qualitative targets into quantitative
values is not straightforward, as any numbering would suggest a natural order of, or
a distance between, categories. This is less problematic under binary classification
settings with categories Cyy and C;. In such a setting, we could, for example, predict
Cy if g; > 0.5. However, linear regression can predict values outside the [0, 1] interval
and these values do not provide reasonable probability estimates [84]. Instead, we
use a variant of linear regression called logistic regression. Note that logistic regres-
sion usually refers to a model for binary classification. An extension of this model
to more than two categories is referred to as multinomial logistic regression [84].

For binary logistic regression with categories C)y and C1, the output of linear regres-
sion is transformed to a [0, 1]-interval using the logistic function

. .
eﬁoJij:l Bjx]
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P(Cl2) = (2.54)

Similar to linear regression, we can fit a logistic regression model to the data using
maximum likelihood estimation.

2.3.4.2 Tree-Based Models

Tree-based models are based on Decision Trees. A Decision Tree recursively seg-
ments the feature space into multiple decision regions. The prediction for a certain
sample corresponds to the decision region to which it belongs. The respective split
decisions leading to these regions are learned during training and can be visualized
as a tree with inner nodes representing decisions (splits), and leaves representing the
learned decision regions.

In the following, we explain and visualize the underlying concept of Decision Trees
using a popular toy dataset for classification. The Iris dataset [8] [51] contains 150
samples with three target categories (Iris setosa, Iris virginica, and Iris versicolor).
Each sample has four morphological features: the sepal length and width and the
petal length and width.
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(b) Decision regions. Black horizontal and vertical lines correspond to split decisions.

Each region corresponds to one leaf in the Decision Tree, and colors indicate the predicted
category.

Figure 2.10: Decision tree and the respective decision regions for a tree trained on
the Iris dataset with a maximum depth of 2 using the petal width and petal length
as prediction features.

A Decision Tree is trained recursively and top-down. For each split, the goal is to
find the feature and respective value that best separates the current set of training
samples according to a pre-defined criterion. Common split criteria for classification
tasks include the Gini impurity or the Entropy, that both measure the variance
across categories. The MSE or MAE are common split criteria for regression tasks.
Figure m shows a Decision Tree for classifying samples of the Iris dataset using
the petal length and petal width as prediction features. Figure |2.10(b) shows the
respective decision regions.

Ultimately, this splitting process will lead to a single leaf for each training datum
and will consequently overfit the training data. To prevent overfitting when training
a Decision Tree, we can either configure early-stopping criteria, or build a full tree
and subsequently prune it by (iteratively) merging leaf nodes. Typical criteria for
both approaches are a maximum tree depth or a maximum leaf number [84]. These
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Figure 2.11: Decision regions of a Decision Tree trained on the Iris dataset without
a depth constraint. Black horizontal and vertical lines correspond to split decisions.
Each region corresponds to one leaf in the Decision Tree, and colors indicate the
predicted category.

hyperparameters of the tree are dataset-dependent and should be optimized for the
task at hand.

We constrained the Decision Tree in Figure to a maximum depth of 2 to
prevent overfitting. For the decision regions visualized in Figure [2.11, we removed
this constraint. Compared to the decision regions in Figure 2.10(b), only a single
Iris versicolor training datum is misclassified, simply because it has the same petal
length and width as an Iris virginica training datum. However, the respective De-
cision Tree is substantially more complex with a depth of 5 and comprises 8 leaf
nodes.

Considering these fine-grained decision regions, it is clear that a single Decision
Tree has high variance and is susceptible to small changes in the training data. This
has been shown to be a general problem of stand-alone Decision Trees [84]. We
can combine multiple Decision Trees into a single predictor to improve accuracy
and robustness using the Bagging and Boosting ensemble methods [84]. Bagging is
short for bootstrap aggregation and relies on Decision Trees trained on bootstrapped
training datasets. Such bootstrapped training datasets are obtained by repeatedly
resampling the training data with replacement. Each individual Decision Tree is
trained on a separate bootstrapped training dataset. A Random Forest is a learning
algorithm that relies on bagging [23]. With boosting, we train Decision Trees sequen-
tially. Compared to bagging, boosting does not rely on bootstrapped datasets, but
instead uses a modified version of the training dataset for training each individual
Decision Tree. Boosting algorithms mainly differ in the implemented modification of
the dataset. For instance, AdaBoost [58] weights the training samples according to
their current prediction error to grow the current Decision Tree in favor of samples
with a large error. In this thesis, we rely on the |Gradient Boosted Trees (GBT)
algorithm [59]. The respective underlying boosting algorithm modifies the training
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data in each iteration by modifying the prediction target instead of weighting the
individual training samples.

Note that ensemble approaches are applicable to other statistical learning methods
as well. Yet, here, we only focus on ensembles in the context of Decision Trees.

Random Forest

A Random Forest [23] relies on bagging and combines multiple Decision Trees that
are individually trained on bootstrapped datasets. The final prediction of this en-
semble of Decision Trees is the average over all predictions in a regression setting, or
a majority vote in a classification setting. A Random Forest additionally decorrelates
the Decision Trees. To this end, during training of each Decision Tree and during
each split, the algorithm is only allowed to consider a subset m < p of prediction
features as a potential split feature. A typical setting for the hyperparameter m is
m ~ /p [84]. The idea behind this restriction is the following: Suppose there is
one very strong prediction feature. Without this restriction, it is likely that each
individual Decision Tree will rely on this prediction feature as its top split. Conse-
quently, most Decision Trees in the ensemble will be similar to each other and the
predictions of the individual trees will be highly correlated [84]. Thus, the variance
of the Random Forest compared to the variance of a single Decision Tree will not
be substantially reduced and the overhead of training multiple Decision Trees will
not lead to a substantial performance improvement.

Figure [2.12 shows a schematic overview for the training procedure of a Random
Forest using the Iris dataset.

The number of Decision Trees to use in a Random Forest is highly dataset-dependent
and should be individually optimized. Other hyperparameters for Random Forests
include the hyperparameters of the individual Decision Trees and the number of
features m that are used for each split. Typically, a global set of hyperparameters is
determined for all Decision Trees in a Random Forest. The training and inference of
a Random Forest can be easily parallelized, since all Decision Trees can be trained
and queried independently.

In this thesis, we rely on the Random Forest regression model as implemented in
the Python package scikit-learn [135].

Gradient Boosted Trees

Gradient Boosted Trees (GBTs) [59] is an example of a learning algorithm based
on boosting. The core principle of GBTs is that each Decision Tree tries to predict
the pseudo-residuals of the previous tree. This means that each tree tries to learn
how to improve the overall prediction by predicting the accumulated error of its
predecessors. The training consists of the following three steps: an initialization, B
subsequent boosting rounds (each resulting in a single Decision Tree), and finally,
the accumulation of all predicted adjustments of all boosting rounds to obtain the
final model.
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Figure 2.12: Schematic visualization of the training procedure of a Random Forest
classifier for the Iris dataset. The independent Decision Trees are trained on boot-
strapped datasets.

The training procedure is initialized using a constant baseline prediction for all
samples. This baseline prediction is computed by minimizing the loss function

fUX) = arg mvin L(y,~). (2.55)

For example, for regression tasks trained with respect to the MSE loss, the baseline
prediction is simply the average of the target vector y. For binary classification tasks
trained using the BCE loss, the baseline prediction is the majority class.

This initialization is followed by B boosting rounds. Each boosting round b yields a
single Decision Tree and consists of the following three steps:

1. Compute the pseudo-residuals 7 as the negative gradients of the loss function
with respect to the prediction of the current model fo~!:

o 0Ly, (X))
0/ 1(X)

(2.56)

This essentially measures to which extent the prediction of the current model
needs to be adjusted to reduce the overall prediction loss.

2. Fit a Decision Tree to predict these pseudo-residuals

ST (2.57)

3. Update the model by adding the scaled predicted residuals of this new Decision
Tree to the current prediction:

FUX) = f77HX) + AR (2.58)
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Figure 2.13: Schematic overview of the training process of a GBT model. The
training is initialized with a constant prediction, and the subsequent boosting rounds
each add a Decision Tree to refine the model’s prediction and hence reduce the
prediction error on the training data.

The scale parameter A < 1 determines the rate at which the overall GBT
learns and is often called learning rate.

We obtain the final model 2 by accumulating the learned subsequent adjustments
with respect to the baseline prediction:

fB(X) = f9(X) + Z AP, (2.59)

Figure [2.13 shows a schematic overview of this training process for a GBT model.

While for regression, this algorithm can be implemented in a straightforward manner,
classification requires additional steps for transforming predictions into probabilities.
More precisely, in a classification setting, each individual Decision Tree is a regression
tree that predicts log-odds and this prediction is only subsequently transformed into
probabilities using the sigmoid function

s(z) = 7 (2.60)
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and the final prediction is obtained by defining thresholds to determine the final
class label.

The most important tuning parameters for GBTs are the number of boosting rounds
and the learning rate A [71]. Smaller A values require more boosting rounds, result-
ing in an increased runtime for training. However, it was shown that learning rates
A < 0.125 lead to better generalization on unseen test data [59]. Similar to Ran-
dom Forests, the hyperparameters for the individual Decision Trees are typically
determined globally for all trees.

In contrast to Random Forests, the training of GBTs cannot be as easily parallelized
due to the sequential training of Decision Trees. However, the prediction using a
GBT can be easily parallelized since the Decision Trees obtained from the boosting
rounds can be queried independently after training.

In this thesis, we rely on the implementation of GBT's for regression and classification
as provided by the LightGBM Python package [89].

2.3.4.3 Convolutional Neural Network

A |Convolutional Neural Network (CNN)) is a deep learning model that originated in
computer vision and image processing [106]. Yet, since images are data matrices,
CNNs are applicable to other domains as well by using other types of data, for
instance, biological sequences.

A CNN comprises three main components: an input layer, a set of subsequent
hidden layers, and an output layer. The input layer transforms the input data into
the dimensionality expected by the first hidden layer. This typically is a tensor
of size HY x W% x C° where H® and W? are the height and width of the matrix
and C° is the number of channels. For example, with RGB images, the input is a
H® x W° x 3 tensor that separates the three color channels.

The hidden layers are subsequent pairs of convolution and pooling layers. Each layer
receives its predecessor’s output of size H™! x W1 x C*~! as input. The idea
of the subsequent convolution and pooling operations is to compute a condensed
embedding of the information in the input tensor. The underlying operation of a
convolutional layer is a convolution that operates on a two-dimensional matrix of
the input tensor. A convolution kernel of size k x k with k < H* !, W1 slides
along the matrix with a stride s, and outputs the dot product of the matrix and the
kernel at the current position. The resulting feature map highlights regions of the
input that resemble the filter. For example, an edge detection kernel will highlight
all edges in the resulting feature map. Figure|2.14 shows an example for an image of
a mallard and the respective output of a convolution with a Canny edge detection
filter [27]. A single convolution layer consists of a variety C? of such kernels, and the
resulting output tensor is of size H® x W' x C%. The parameters of these kernels,
that is, what exactly they detect in the input matrix, is learned during the training
of the CNN.

Each convolution is followed by a non-linear activation function. Without such a
non-linear activation function, a neural network can only learn linear relationships
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(a) Input image of a mallard. (b) Edges detected in the image after convo-
lution using a Canny edge detection filter.

Figure 2.14: Example of an image convolution, applying a Canny edge detection
filter to an image of a mallard.

in the data, since, regardless of the depth of the network, the prediction could be
formulated as a linear combination of the input data. A non-linear activation func-
tion allows modeling more complex, non-linear relationships [84]. A typical choice
is the ReLU (rectified linear unit) function ReLU(z) = maxz(0,z). A convolution
layer is followed by a pooling layer. The pooling layer condenses the input matrix
by summarizing blocks of information. For example, maz pooling with a kernel size
of k outputs the maximum value in a k x k block. Similar to the convolution kernel,
this pooling kernel slides along the input matrix. Depending on the kernel size and
the stride, the height and width of the input are substantially reduced, resulting in
a compact representation of the information.

The final hidden layers are typically fully connected layers [106]. A fully connected
layer receives a vector as input and outputs a vector. The input vector of the
first fully connected layer is obtained by merely flattening the output of the last
pooling layer. Each element in the output vector is computed as a weighted sum
of all elements of the input vector. The weight for each connection between vector
elements is learned during the training of the CNN.

For regression tasks, the output layer is a fully connected layer with a single value as
output. This output is the final prediction of the CNN. For classification tasks, the
output of the last fully connected layer is a K-dimensional vector with one dimension
for each of the K target categories. This vector z needs to be transformed to a K-
dimensional vector of class probabilities, which can be computed via the softmazx
activation function

Zi

. e
Z]K:1 e*

o(z); fori=1,..., K. (2.61)

The components of ¢(z) sum to 1, and o(z); can be interpreted as the predicted
probability of the input datum being in category C;.
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Figure 2.15: Schematic visualization of a CNN architecture for image classification.

Figure 2.15/shows a schematic overview of a CNN architecture for image classifica-
tion. It comprises multiple hidden and subsequent convolution and pooling layers,
one fully connected layer, and the final softmax activation function that categorizes
the input image as mallard with 93% probability.

CNNs, and neural networks in general, are trained using backpropagation [106]. The
backpropagation procedure propagates the prediction error backwards through the
network and updates the parameters using the gradient of the error with respect to
the current set of parameters.

Important hyperparameters to optimize in a CNN include the number of hidden
layers, the kernel size, as well as the stride of the convolution and pooling kernels,
and how many kernels to use in each layer.

Compared to the classical machine learning approaches discussed in the previous
sections, a CNN requires only little pre-processing of the input data. This means
that we do not need to manually engineer prediction features, as the CNN learns
the relevant features by optimizing the kernel parameters and weights of the fully
connected layer [106]. The drawback is that a CNN has substantially more pa-
rameters that need to be optimized during training. Consequently, CNNs require
substantially more training data, and are more time- and resource-consuming during
training, and inference. Yet, given enough training data, deep learning approaches
tend to outperform classical machine learning methods [61].

2.3.5 Explainability

Understanding, interpreting, and trusting model predictions are important aspects of
machine learning applications [107, [112]. Interpreting the importance of individual
features is straightforward for linear and logistic regression, where the learned model
parameters B directly quantify the contribution of each feature to the final model.
With Decision Trees, the entire model can be visualized as a (binary) tree structure,
making the decision process easy to understand. Interpreting ensemble methods
such as Random Forests or GBTs requires more involved methods such as feature
importance or Shapley values [157]. Explaining the decision process, let alone the
learned features of deep learning models, is complicated due to the complex structure
of these models and is beyond the scope of this thesis. In the following, we focus on
feature importance and Shapley values for tree-based models. For a broad overview
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of alternative approaches, as well as methods for explaining deep learning methods,
we refer the interested reader to Linardatos et al. [107].

2.3.5.1 Feature Importance

Feature importance ranks the prediction features according to their contribution to
the predictive power of the model. The more influence a feature has on the overall
prediction, the higher its importance.

The permutation importance [23] measures the contribution of features based on a
randomization approach. To determine a feature’s impact on the model, the re-
spective values in the training dataset are randomly shuffled. This random shuffling
distorts the relationship between the feature and the target, and we can assess the
impact on the model by measuring the degradation of model performance. Per-
mutation importance is particularly useful when comparing multiple, individually
trained machine learning models, since feature importance is evaluated based on the
model’s predictions, rather than the internal model structure. Hence, the permuta-
tion importance is a model-agnostic approach.

In contrast, the gain-based importance (also called Gini importance) measures fea-
ture importance using the internal structure of the underlying model and is only
applicable to tree-based machine learning models. It measures the contribution of
a feature to the model’s prediction by quantifying the improvement under the used
split criterion across all splits in all Decision Trees. The gain-based importance pro-
vides a straightforward interpretation of feature contributions to the overall model
performance. This is particularly useful for understanding the decision-making pro-
cess of a model.

2.3.5.2 Shapley Values

Feature importance provides a global explanation of feature contributions across
all training samples. If, instead, we are interested in the contributions of specific
feature values for a single training datum, feature importances provide little insight.
However, Shapley values have been specifically designed to answer this question.

Shapley values originate from cooperative game theory [157]. The goal is to dis-
tribute the payout of a game fairly among cooperative players based on their con-
tribution. Translated to machine learning, the game is the prediction of a single
datum, the players are the feature values x},...,z¥ of the training sample x;, and
the payout is the difference in prediction g; for x; compared to the average predic-
tion across all training samples. A naive approach to measuring the contribution of
feature j with feature value xf would be to replace xf with randomly sampled values
from the training dataset and average the resulting differences in payouts. However,
this approach is likely to generate unrealistic samples, as the resulting combination
of feature values may be improbable. Additionally, this approach assumes features
to be independent of each other, which is rarely the case in real-world applications.

Instead, Shapley values rely on the concept of marginal contributions. The marginal
contribution is the change in the prediction when a particular feature is added to
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a subset of other features. To calculate the Shapley value for a certain feature,
we first consider all possible subsets of the remaining features and determine the
marginal contribution of the target feature by observing the difference in the model’s
prediction with and without that feature in each subset. The Shapley value for a
feature is then calculated as the weighted average of these marginal contributions
over all possible subsets. Shapley values satisfy four important aspects of payout
attribution: Efficiency, Symmetry, Dummy, and Additivity. Efficiency means that
the Shapley values of all features p for a datum a; sum to the difference in prediction
7; and the average prediction, meaning the payout is fully divided among players.
Symmetry ensures that the Shapley values of two features are identical if, and only if,
their contribution is identical. Shapley values further ensure that a dummy feature
which does not influence the prediction has a Shapley value of 0. And finally, Shapley
values are additive, meaning, for example, that the Shapley value of a feature in a
Random Forest can be computed as the average Shapley Value over all Decision
trees.

Shapley values are inherently designed to explain the prediction of a single datum,
and a Shapley value is only applicable to a certain training datum with its distinct
combination of feature values. We can obtain a feature-importance-like measure for
a set of samples by averaging the per-feature Shapley values across all samples.

With p prediction features, Shapley values need to consider all possible 2P com-
binations, making Shapley values computationally very costly, especially for large
numbers of prediction features. Shapley values are, in general, model agnostic, but
leveraging model structure can help to reduce the computational cost [112]. In this
thesis, we rely on Shapley values as implemented in the Python package SHAP [112].
We specifically rely on the TreeFxplainer method for efficient computation of Shap-
ley values for tree-based models [113].
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3. Pythia: Predicting the Difficulty of
Phylogenetic Analyses

This chapter is derived from the open-access publications:

Julia Haag, Dimitri Hohler, Ben Bettisworth and Alexandros Stamatakis.
“From Easy to Hopeless - Predicting the Difficulty of Phylogenetic Anal-
yses.” Molecular Biology And Evolution, Volume 39, Issue 12, December
2022. https://doi.org/10.1093 /molbev/msac254

Julia Haag and Alexandros Stamatakis. “Pythia 2.0: New
Data, New Prediction Model, New Features.” bioRxziv, 2025.
https://doi.org/10.1101/2025.03.25.645182

Julia Haag designed, implemented, and evaluated all presented methods. All
text and figures in this chapter were created by Julia Haag. Dimitri Hohler,
Ben Bettisworth, and Alexandros Stamatakis provided background knowledge,
discussion, and feedback.

Note that the first publication is peer-reviewed. The second publication is a
preprint, which we do not plan to submit for peer review. It primarily offers
an overview of all changes and improvements made to Pythia since our initial
publication to keep users informed on the latest updates.

3.1 Background and Motivation

The goal of a phylogenetic inference is to find the phylogenetic tree that best ex-
plains the given biological sequence data. Since the number of possible tree topolo-
gies grows super-exponentially with the number of taxa, one cannot compute and
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score every possible tree topology. Instead, one deploys tree inference heuristics that
explore the tree space, hoping to find a tree with a ‘good’ score, for example, under
the Maximum Likelihood (ML) criterion [195]. However, these heuristics do not
guarantee that the tree inference will converge to the globally optimal tree. There-
fore, under ML, one typically infers multiple trees and subsequently summarizes
the inferred, locally optimal trees via a consensus tree. One can observe that for
some datasets, all individual, independent ML tree searches converge to topologi-
cally highly similar trees. This suggests that the likelihood surface of such datasets
exhibits a single likelihood peak, yielding the dataset easy to analyze. For other
datasets, one observes that the independent tree inferences converge to multiple
topologically highly distinct, yet, regarding their ML score, statistically indistin-
guishable, locally optimal trees. These datasets are hence difficult to analyze, and
we say that they exhibit a rugged likelihood surface. This diverse behavior of phylo-
genetic tree searches has already been reported in several publications (Lakner et al.
[100]; Stamatakis [166]; Morel et al. [125]). In general, the more tree inferences
we perform, the better our understanding of the dataset’s behavior and coverage of
the respective tree space will become. However, under ML, inferring a single tree
can already require multiple hours or even days of CPU time. To save time and
resources, an optimal analysis setup will perform as few tree inferences as necessary.
For easy-to-analyze datasets with a single likelihood peak, we require fewer and less
involved tree search heuristics and bootstrap replicate searches to sample the tree
space adequately, in contrast to difficult-to-analyze datasets with rugged likelihood
surfaces. To the best of our knowledge, and despite anecdotal reports on the behav-
ior of difficult datasets, there does not yet exist a quantifiable definition of dataset
difficulty that captures the behavior of ML tree searches on a given input dataset.

In order to speedup ML tree inferences, researchers have developed elaborate ML
tree inference tools that combine multiple search strategies to reduce the risk of
becoming stuck in local optima. There also exist early stopping criteria to deter-
mine whether the tree inference has converged. Such early stopping methods either
deploy ad hoc or statistical criteria to terminate the tree inference. For example,
the ML tree inference software FastTree [142] relies on a maximum number of topol-
ogy optimization iterations as a function of the number of sequences in the dataset.
The ML software RAXML [167] implements an early stopping criterion based on
the topological distance between the respective best trees found in two consecutive
optimization cycles [166]. Vinh and von Haeseler [181] propose an estimation cri-
terion that determines with 95% confidence whether continuing the tree inference
will yield a better tree than the currently best tree. However, early stopping criteria
only determine the convergence of the current tree search, but they do evidently
not guarantee that the search has converged to the globally optimal tree. Thus, to
better characterize and explore the tree search space, additional tree inferences and
subsequent a posteriori analyses are required. In contrast, assessing the expected
behavior of a dataset before conducting compute-intensive tree inferences allows for
a more informed decision on the most appropriate tree inference and post-analysis
strategy. It also allows users to reassemble/modify difficult datasets, as these will
most likely require resource-intensive analyses that yield contradicting, yet almost
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equally likely, tree topologies with low confidence. Several methods have already
been developed to assess the information content of datasets prior to tree inference,
the most prominent example being the treelikeness of a dataset [12, (115, [187]. A
simple and fast-to-compute metric is the sites-over-taxa ratio. For instance, [147]
conclude that a higher phylogenetic inference accuracy can be achieved by increas-
ing the MSA length, rather than including more taxa/sequences. A more involved
method was proposed by [81]. The authors suggest the use of d-plots, that is his-
tograms, based on all quartet distances induced by the Multiple Sequence Alignment
(MSA). However, computing the d-plots is time-intensive due to the computational
complexity of O(N*), where N is the number of taxa in the MSA. Misof et al.
[123] provide an overview of various methods for calculating the treelikeness, before
a phylogenetic analysis. The authors acknowledge that the considered treelikeness
estimation methods capture certain aspects of the MSAs. However, they conclude
that none of them sufficiently informs the user about the expected behavior of phy-
logenetic analyses in general, and suggest further research in this area.

With our work, we initially introduce a quantification of the degree of difficulty
based on the result of 100 ML tree inferences per MSA. We demonstrate that this
quantification adequately represents the behavior of the ML searches on the dataset.
Since executing 100 ML tree searches is computationally prohibitive in general, we
train a machine learning regression model that can predict the difficulty of a given
MSA that is exclusively based on MSA attributes and fast and thus substantially less
expensive tree inferences under maximum parsimony (MP) [44, [52]. By extracting
multiple simple and fast-to-compute attributes, such as the sites-over-taxa ratio,
and by deploying machine learning, we devise an accurate difficulty predictor called
Pythia. In our initial work, Pythia 0.0, that was published in Haag et al. [66], we
used Random Forest regression trained on 3250 MSAs, resulting in a high accuracy
with an MAE of 0.09 and an MAPE of 2.9 %. With our latest, updated Pythia 2.0
version, presented in Haag and Stamatakis [65], we employed Gradient Boosted Tree
regression trained on 10461 MSAs, resulting in a slight prediction improvement with
an MAE of 0.08 and an MAPE of 2.2%.

Our latest Pythia 2.0 version is on average approximately 2 times faster than
Pythia 0.0 and 20 times faster than a single ML tree inference. Pythia predicts
the difficulty of a dataset on a scale ranging between 0.0 (easy) to 1.0 (difficult).

In contrast to the aforementioned early stopping criteria that can be applied during
ML searches, Pythia informs the user about the expected behavior of the MSA
under ML phylogenetic analysis prior to conducting any ML phylogenetic inference.
Thereby, users can make informed decisions on the most appropriate ML analysis
and post-analysis strategy. This includes, for example, a careful consideration of the
number of required independent, resource-intensive, tree searches as a function of
the difficulty. Furthermore, for difficult MSAs, the user will be able to improve the
informativeness of the MSA, for example, by increasing sequence length or removing
sequences, to assemble an MSA that is easier to analyze. Thereby, one can save
valuable time and resources by not performing tree inferences on difficult MSAs. We
therefore suggest that a difficulty analysis with Pythia should be conducted at the
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beginning of any ML phylogenetic analysis. Note that the predicted difficulty does
not directly predict the number of tree inferences required to sufficiently sample the
tree space, as this number also depends on the implemented tree inference heuristic.

Pythia is available as open-source software libraries in C and Python. Both libraries
include the trained prediction model and the computation of the required predic-
tion features. The C library CPythia is an addition to the COre RAXml LIBrary
(Coraxlib) [43] and is available at https://github.com/tschuelia/CPythia. Ad-
ditionally, we provide PyPythia, a lightweight, stand-alone Python library, includ-
ing a respective command line interface. PyPythia is available at https://github.
com/tschuelia/PyPythia, including a thorough documentation of the command
line interface and the Python library.

3.2 Methods

We formulate the difficulty prediction challenge as a supervised regression task. The
goal is to predict the difficulty on a scale ranging between 0.0 (easy) to 1.0 (difficult).
We face two main challenges: (i) obtaining ground-truth difficulties that represent
the actual difficulty of the training data and (ii) obtaining a sufficiently large set of
MSAs to train Pythia on, ideally comprising empirical MSAs.

In the following, we motivate and present a difficulty quantification that captures the
“ruggedness” of the likelihood surface on a scale from 0 to 1. We further present our
setup to train a regression model that accurately predicts this difficulty. We focus
on the prediction features, the training datasets, and our machine learning models
for both, our first prediction model Pythia 0.0 and our latest model Pythia 2.0.
Pythia 0.0 corresponds to the initial version of Pythia published in Haag et al. [66].
Pythia 2.0 corresponds to our latest model published in Haag and Stamatakis [65].
It includes all changes and improvements we introduced since our initial publication
in 2022.

3.2.1 Difficulty Quantification

To train a difficulty predictor, we require a reliable ground-truth label for each
training datum. To obtain such labels, we must initially quantify the difficulty. To
stringently quantify the difficulty of an MSA, we would have to explore the entire
tree space. Since this is computationally not feasible, we need to rely on a heuristic
definition. Our heuristic to quantify the difficulty is based on 100 ML tree inferences
we performed using RAXML-NG [96]. First, we infer N,; = 100 ML trees and
compute the average pairwise RF-Distance (see Section [2.1.4.1) between all trees
(RF.), as well as the number of unique topologies among the 100 inferred trees
(NZ;). Then we determine the best tree among the 100 inferred trees according to
the log-likelihood, and compare all trees to this best tree using statistical significance
tests (see Section 2.1.4.2). We assign trees that are not significantly worse than the
best tree to a so-called plausible tree set. In our analyses, we use the statistical
significance tests as implemented in the IQ-TREE software package [121]. Due to
the continuing debate about the most appropriate significance test for comparing
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Figure 3.1: Schematic depiction of the training data generation procedure. For
each MSA, we compute the difficulty label based on our difficulty quantification
using our training data generation pipeline (left dashed box). We further compute
the prediction features using our Python prediction library PyPythia (right dashed
box). Using the difficulty label and the corresponding prediction features for all
MSAs in our training data, we train Pythia.
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phylogenetic trees, we use the approach suggested by Morel et al. [125] and only
include trees that pass all significance tests in the plausible tree set. We further refer
to the number of trees in this plausible tree set as Ny. We compute the average
pairwise relative RF-Distances between trees in the plausible tree set (RF), as well
as the number of unique topologies (N})). Finally, we compute the difficulty of the
dataset based on the following formula:

1
difﬁculty = g : [RFaH + RFpl (31)
N*ll N;l
+ 2=+ = 3.2
Nan Nyl (32)

+ (1 - ]]\\ﬁ)] (3.3)

The rationale for expression is that, if the RF-Distance is high, the tree space
comprises multiple distinct, locally optimal tree topologies which characterize a
dataset that is difficult to analyze. With expression the rationale is that the
tree surface becomes more rugged, the more distinct locally optimal tree topologies
the tree inference yields, and the more tree topologies are not significantly different
from the best tree. Finally, the rationale for expression is that, the more tree
inferences yield a plausible tree, the more informative the MSA will be about the
underlying evolutionary process and the easier this MSA will be to analyze. Each
term is a value between 0.0 and 1.0, leading to an average value between 0.0 and 1.0
that quantifies the overall difficulty.

For each MSA in our training data, we compute the difficulty according to this
definition. To this end, we implemented a training data generation pipeline that
automatically performs all required tree inferences, statistical tests, and computes
the difficulty label alongside the features required for training Pythia. We imple-
ment this pipeline using the Snakemake workflow management system [94] and
Python 3. The pipeline code is available at https://github.com/tschuelia/
difficulty-prediction-training-data.

Due to the lack of absolute ground-truth labels, we need to rely on the inferred
difficulty labels for training Pythia. In Section [3.3.1 below, we provide a thorough
analysis to demonstrate that our difficulty quantification can accurately capture the
tree search complexity under ML-based phylogenetic inference, and thus provides a
reasonable training target for machine-learning models.

3.2.2 Model Training

Figure [3.1] depicts the workflow for generating the training data for our Pythia
difficulty predictor. For each MSA, we compute the difficulty according to the
above definition as ground-truth label for supervised training using the training
data generation pipeline. We compute the corresponding prediction features using
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Feature ‘ Explanation
MSA Attributes
Sites-over-taxa ratio The number of sites divided by the number of taxa:
M/N.

Patterns-over-taxa ratio | The number of unique site patterns divided by the
number of taxa: P/N.

% Invariant The proportion of fully conserved sites in the MSA.
% Gaps The proportion of gaps in the MSA.
MSA Information Content
Entropy The Shannon Entropy [156] H(MSA) to capture the

information content in the MSA. See below for further
details on how we compute H(MSA).

Bollback Multinomial Multinomial test statistic 7(MSA) based on the fre-
quency of site patterns [20]. See below for further de-
tails on how we compute T(MSA).

Treelikeness The treelikeness score [81] is a measure of phylogenetic
signal in the MSA. See below for further details on how
we compute this score.

ML-based Features
# SPR rounds RAXML-NG [96] optimizes the tree topology of an ini-
tial starting tree using Subtree Pruning and Regraft-
ing (SPR) moves (see Section [2.1.3.3). One iteration of
pruning and regrafting all possible subtrees in the cur-
rent tree is called an SPR round. This feature counts
the number of SPR rounds RAXML-NG performs dur-
ing a single ML tree inference.

RFyy, RF-Distance between the starting tree topology and
the inferred ML tree topology.
brlen yin/max /ave/std /sum Minimum, maximum, average, standard deviation, and

sum over all branch lengths in the inferred ML tree.
MP-based Features

RFyp Average pairwise relative RF-Distance between the in-
ferred MP trees.

Nyp Proportion of unique tree topologies among the inferred
MP trees.

Table 3.1: Overview and explanation of prediction features we considered for train-
ing Pythia 0.0. N denotes the number of taxa in the MSA, M the number of sites,
and P the number of unique site patterns.

our Python library PyPythia. The set of prediction features and the corresponding
difficulty label form our training data. We split the training data into two sets: a
training dataset used for training the model and a test set that is exclusively used
for evaluating the predictive power of the difficulty predictor. To ensure an even
distribution of difficulty labels in the training and test sets, we deploy stratified
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sampling. Stratified sampling splits all difficulty labels into disjoint subsets and
draws random samples from each subset independently. Note that we deployed
different training and splitting procedures in Pythia 0.0 and Pythia 2.0 which
we will explain in more detail below.

In the following, we provide further details on the prediction features and the col-
lections of MSAs we use for training Pythia. Additionally, we explain the training
setup of our initial model Pythia 0.0, as well as our latest model Pythia 2.0.

3.2.2.1 Prediction Features

In our preliminary experiments for Pythia 0.0, we assessed a plethora of distinct
possible prediction features. In the following, we present all the features we imple-
mented and analyzed, and motivate the selection of the eight features that we finally
used to train Pythia 0.0. We further explain the prediction feature changes and
additions introduced in Pythia 2.0.

For Pythia 0.0, we considered four feature categories. Table provides an
overview and explanation of all features. The first category comprises MSA at-
tributes that are fast to compute, such as the proportion of gaps in the MSA. The
second category captures information content. Together, both categories aim to
capture the phylogenetic signal in the MSA. We further analyzed features based
on a single ML tree inference. While with Pythia we aim to reduce the time- and
resource-consumption of (ML) tree inferences, the hypothesis was that using fea-
tures based on a single ML tree can yield useful information about multiple ML tree
inferences. Finally, we include two features that are based on trees inferred under
the fast-to-compute MP criterion. In Pythia 0.0, we relied on 100 MP trees. Fol-
lowing an extensive analysis that we describe further below, we reduced the number
of MP trees in Pythia 2.0 to 24.

The Shannon Entropy [156] measures the information value of data. We compute
the Entropy for an MSA with NV taxa as average Shannon Entropy over all M MSA
sites:

1 M
H(MSA) = ZH site;) (3.4)
]:1
N
with  H(site;) = — Y p(s]) - log(p(s])), (3.5)
i=1

where p(s ) denotes the relative frequency of the respective character at the j-th
MSA site.

Bollback [20] designed a multinomial test statistic to quantify the frequency of site
patterns. We compute the Bollback Multinomial test statistic as:

T(MSA) = (2135@ ln(sz))>—M-ln(M), (3.6)
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where £(7) denotes the i-th unique pattern and Pe;) the number of times this pattern
occurs.

The treelikeness score [81] is designed to quantify the phylogenetic signal in the
data. The treelikeness score is based on a matrix of pairwise distances between all
sequences in the MSA. Let N be the number of taxa, and A € N x N the pair-wise
distance matrix with entries 6; ;; 0 < i,j < N. For a set of four taxa (a quartet)
q = (x,y,u,v), we compute the treelikeness as:

Ozulyu — Oaul
5. = Jxvlyu zulyv (37)
/ 5zv|yu - 6my|uv
with 5Iy|uv = (Sxy + 0w (38)
and 5a:y|uv < 6a:u|yv < 6a:v\yu (39)

The lower the score ¢,, the stronger is the phylogenetic signal in the quartet g.
For a set of N taxa, we compute this d,-score for every possible quartet ¢. The
treelikeness of the entire data is then computed as the mean over all J,-scores. Due
to the computational complexity on MSAs with many taxa (N > 100), we follow
the suggestion by Holland et al. [81] and compute the d,-scores based on a random
sample of 100 taxa.

To minimize the runtime of Pythia’s difficulty prediction, we analyzed the runtime
of computing each feature for all MSAs in our training data, as well as the feature
importance for the prediction. Note that we conducted the following analyses using
the training dataset of Pythia 0.0 comprising 3250 MSAs.

To determine the optimal set of prediction features, we trained a Random Forest
regression model using all presented features and considered the respective feature
importances, as well as the runtimes to obtain the respective features. Table [3.2|
shows the permutation importance and the runtime relative to a single ML tree
inference using RAXML-NG for each of the presented features. For benchmarking
the runtimes of the feature computation, we used the implementation in our Python
library PyPythia (version 0.0). Note that the ML-based features require a complete
ML tree search. Consequently, the relative computing time for these features is
> 100%. For obtaining the number of taxa, sites, patterns, the proportion of gaps
and invariant sites, we used the RAXML-NG --parse option. Since RAXML-NG
log files contain but a few lines, parsing the respective files using Python is fast
(runtime < 10ms). We therefore omitted this additional runtime contribution in
our assessment.

Based on these analyses, we selected the following subset of eight features, providing
a good trade-off between accuracy and runtime: sites-over-taxa ratio, patterns-over-
taxa ratio, % invariant, % gaps, Entropy, Bollback Multinomial, RFyp, and Nyp.
In particular, omitting the ML-based features and the treelikeness score improves
the runtime substantially. Thus, despite the substantial feature importances of the
branch-length statistics (especially the sum over all branch lengths), we decided
against using them for training Pythia. To quantify the impact of this choice on
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Feature Importance | Relative runtime p + o (median)

in percent | in percent

MSA Attributes

Sites-over-taxa ratio 3.5%
Patterns-over-taxa ratio | 3.0%
% Invariant 1.0% L1+ 3.1% (0.27%)
% Gaps 1.6%

MSA Information Content
Entropy 5.2% 8.8 +65.8% (1.5%)
Bollback Multinomial 3.1% 3.3 £16.6%(1.5%)
Treelikeness 3.8% 450 4+ 965%(254.3%)
ML-based Features
# SPR rounds 5.7% 100.0 + 0.0% (100.0%)
RFyn, 3.5% 100.8 + 2.5% (100.1%)
brlen i, 0.2%
brlen, .« 0.9%
brlen,ye 2.5% 100.1 + 0.2% (100.0%)
brlengq 1.9%
brlengym 9.3%
MP-based Features
ﬁg v (5)%7'(1%% 8.2 + 13.4% (3.8%)

Table 3.2: Permutation importance and runtime relative to a single ML tree infer-
ence in RAXML-NG for all features we considered for Pythia 0.0.

the overall prediction accuracy, we compared a Random Forest regressor trained
using all features to a Random Forest regressor only trained on the subset of eight
features. The model relying on all features showed an MAE of 0.08 (MAPE = 2.1%).
The model relying on the subset of eight features showed only a slight decrease in
performance, with an MAE of 0.09 (MAPE = 2.9%).

New Features in Pythia 2.0

In Pythia 2.0, we included two additional features: the patterns-over-sites ratio
as an additional MSA attribute and the Pattern Entropy as an additional approach
to capturing the information content of the MSA. The patterns-over-sites ratio is
simply the number of unique sites patterns in the MSA divided by the total number
of sites. The Pattern Entropy is an entropy-like measurement based on the number
and frequency of unique site patterns in the MSA. We compute the Pattern Entropy

Hp as
n

Hp(MSA) = Z Pegiy - In(Pe)),

i=1
where £(7) denotes the i-th unique pattern and Pe(;) the number of times this pattern
occurs. Note that the computation of this feature is closely related to the Bollback
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Multinomial feature. However, we expect it to be less biased by the total number
of sites in the MSA.

Reducing the Number of Maximum Parsimony Trees in Pythia 2.0

To improve upon the runtime of Pythia’s feature computations, for Pythia 2.0,
we aimed to reduce the number of MP trees required for computing the RFyp and
Nip features. In Pythia 2.0, we only rely on 24 inferred trees, compared to the
100 trees in Pythia 0.0. In the following, we detail the analyses leading to the
conclusion that 24 constitutes the optimal number of MP tree inferences.

The MP criterion is N'P-hard [55]. Consequently, implementing tree inferences
under this criterion requires heuristic algorithms. For instance, RAXxML-NG imple-
ments a randomized stepwise addition order algorithm to infer MP trees. A conse-
quence of these heuristics is that different initializations may result in topologically
distinct inferred trees, and can consequently yield variations in the average relative
pairwise RF-Distance between a set of inferred trees (RFyp). In Pythia 0.0, we in-
ferred 100 MP trees, simply because we based the ground-truth difficulty on 100 ML
trees. However, we observed that the runtime of Pythia 0.0 is dominated by the
MP tree inference runtime (approximately 50% of total runtime). Thus, to reduce
the computational overhead of the MP-based features in Pythia 2.0, we aimed to
reduce the number of inferred MP trees.

Inferring 100 MP trees under varying seeds used for the random number generation
will likely result in a variation of the resulting RF\p feature value. We can leverage
this expected variation as a baseline to find a lower number of MP trees m for the
MP-based feature computation. To determine this baseline variation, we inferred
20 sets of 100 MP trees each, using a different random seed 7 for each set. We
then computed the average pairwise RF-Distance RF},, within each set of 100 trees
inferred under seed 7. Finally, we computed the average standard deviation o1qg of
absolute pairwise differences between the RF-Distances of different seeds:

1 . ‘

0100 = , | 7o Z var (|RFf00 - RFfooD- (3.10)

190 .~ .
,J,i#]

Note that the mean of a standard deviation is computed as the square root of the

average variance within all @ = 190 unique pairs of RF-Distance values inferred

under 20 distinct seeds.

Using this baseline, our goal is to find the minimum number of MP trees m such
that the average standard deviation of differences in RF-Distance when using only
m trees compared to using 100 trees (o,,100) is less than oy9o. To this end, we
computed the RF-Distance between subsets of m = 3...99 trees sampled from the
100 trees inferred under seed i for all 20 seeds used for the baseline computation.
Then, for each m, we compute the average standard deviation o,, 190 of absolute
pairwise differences between the RF-Distance using m MP trees versus using 100
MP trees for all seeds i:
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Figure 3.2: Visualization of 0, 100 and o, for m = 3...99 averaged across 1000
MSAs. The dashed horizontal line indicates o199 and the dashed vertical line the
intersection of o, 100 With o199 at 23.

1 . .
Om,100 = \l 20 ZUC”“ (|[RE;, — RFjy). (3.11)

Finally, we visualize 0y, 100 as a function of the number of trees m in Figure|3.2| The
x-axis shows the number of trees (m = 3...99), and the y-axis shows the average
standard deviation o,, 100. The dashed horizontal line highlights o4, corresponding
to the baseline variance between seeds when inferring 100 MP trees. Note that we
averaged both values across all 1000 MSAs for this visualization. The intersection of
Om,100 With o109 corresponds to the minimum number of MP trees that are required
such that the difference in RFyp using only m trees compared to 100 trees is less than
or equal to the variance of differences in RF\p when using 100 trees but varying the
random seed. As indicated by the dashed vertical line, 093100 < 0109. This means
that inferring 23 MP trees constitutes the optimal tradeoff between approximation
accuracy and runtime. We decided to use one additional tree and infer 24 MP

trees instead, as 24 inferences are easily parallelizable in machines with varying core
counts (divisible by 2, 3, 4, 6, 8, and 12).

3.2.2.2 Training Data

We trained Pythia 0.0 on 3250 empirical MSAs obtained from TreeBASE [13§]
comprising 74% DNA MSAs and 26% amino acid (AA) MSAs. For our latest pre-
dictor, Pythia 2.0, we increased the training dataset to 10461 MSAs, using MSAs
from TreeBASE and the RAxML Grove database [79]. Note that the publicly avail-
able RAxML Grove database only contains phylogenetic trees. The underlying, fully
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anonymized MSAs are only available internally within our research group, and we
only use these MSAs to compute the features required for training Pythia. This new
training dataset comprises 87% DNA, 9% AA, and 4% morphological MSAs. Since
we explicitly include morphological MSAs, Pythia 2.0 can now accurately predict
the difficulty for this data type as well. Note that we provide a single predictor for
all data types, as we observe no substantial prediction accuracy differences when
using a combined predictor compared to using an independent, dedicated predictor
for each data type separately (see Section[3.3.2 below).

In principle, using simulated data would allow us to increase the training data size.
However, since simulating data that behaves analogously to empirical data under
ML tree inferences constitutes a challenging task (see Hohler et al. [79], Trost et al.
[178], and Chapter [4), we decided against using any simulated data for training
Pythia.

Figure [3.3 visualizes the distribution of ground-truth difficulty labels and feature
values in the training datasets for Pythia 0.0 and Pythia 2.0. For better visu-
alization, we removed values above the 95th percentile for the patterns-over-taxa,
sites-over-taxa, Entropy, and Pattern Entropy features. We removed values below
the 5th percentile for the Bollback Multinomial feature.

In the training data of Pythia 0.0, 46% of the MSAs are very easy, with a ground-
truth difficulty of less than or equal to 0.1. Only 9% of MSAs are difficult (difficulty
0.7 or higher). With our training data for Pythia 2.0, we still observe an abundance
of very easy MSAs (36%). We were nonetheless able to increase the number of
difficult MSAs to 1401 (13%).

3.2.2.3 Prediction Models and Training
Pythia 0.0

We trained and evaluated Pythia 0.0 using an 80/20 train-test split approach on
the initial training dataset of 3250 MSAs. This means that we used 80% of the
MSAs for training, and the remaining 20% for evaluation.

During our initial experiments, we trained distinct regression algorithms and com-
pared their predictive power according to the MAE and the MAPE (see Section@
for details on these metrics). We trained linear regression, lasso regression [174],
Adaptive Boosting (AdaBoost) [57], Support Vector regression [21] and Random For-
est regression [75] models. We trained each model using an 80/20 train-test-split ap-
proach, and the respective implementation in the scikit-learn Python package [135].
Additionally, we used dummy regressors as a baseline. These dummy regressors do
not learn to distinguish the data, but predict a value based on predefined rules. We
used three dummy regressors: one that always predicts the average difficulty of the
training set, one that always predicts the 75th percentile of the training set, and one
that predicts 0.5 for each dataset. Table|3.3|shows the MAE and the MAPE for all
trained regression models. The Random Forest regressor outperforms all other mod-
els according to all metrics. Using the dummy regressors as a baseline, we observe
that the trained regressors learned to predict dataset difficulty to some extent.
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Figure 3.3: Distribution of ground-truth difficulty label and feature values in the
training datasets for Pythia 0.0 and Pythia 2.0. Note that we only introduced
the patterns-over-sites and Pattern Entropy features in Pythia 2.0.
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Algorithm MAE | MAPE
Linear regression 0.14 | 7.2%
AdaBoost 0.15 | 9.7%
Lasso regression 0.26 | 18%

Support Vector regression 0.25 | 12.1%
Random Forest regressor 0.09 | 2.9%

Dummy regressor (average) | 0.26 | 18.3%
Dummy regressor (constant) | 0.32 | 33.7%
Dummy regressor (quantile) | 0.34 | 36.4%

Table 3.3: Results of the trained and dummy regression models. The bold values
indicate the highest scoring model per metric.

Based on these results, we trained a Random Forest regression model under the MSE
loss (see Section @) in Pythia 0.0. To determine the optimal set of hyperpa-
rameters for the regression model, we implemented a grid search that tests various
combinations of hyperparameter values. For this grid search, we use an additional
validation set, obtained by further subdividing the training set. We then perform
hyperparameter optimization using this validation set. Our final difficulty predictor
consists of 100 Decision Trees with a maximum depth of 10. To prevent overfitting,
we set the minimum number of samples in a leaf node to 10 and the minimum num-
ber of samples required for a split to 20. Further, we train the individual Decision
Trees on bootstrapped training data. We set the sample size for the bootstrapping
to 75 % of the training data size.

Pythia 2.0

Since our initial publication of Pythia 0.0, we transitioned to using a Gradient
Boosted Tree (GBT) regressor [59], as we observed an improved performance (see
Section @ below). We trained this new model using the aforementioned larger
collection of 10 461 MSAs and the implementation of GBTs in the LightGBM Python
package [89]. In analogy to Pythia 0.0, we trained Pythia 2.0 under the MSE
loss. We optimized the hyperparameters using the Optuna framework [4]. With
Pythia 0.0, we used an 80/20 train-test-split approach for evaluation. In contrast,
with Pythia 2.0, we evaluated the performance using a 10-fold cross validation
approach (see Section [2.3.2).

3.3 Results

In the following, we first provide a thorough analysis to validate our difficulty quan-
tification. We demonstrate that the inferred ground-truth labels accurately capture
the tree search complexity under ML-based phylogenetic inference, and thus con-
stitute an adequate training target for Pythia. Then we evaluate the prediction
performance of our difficulty prediction model Pythia. We compare Pythia 0.0
and Pythia 2.0, and we provide additional insights via feature importance and
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Shapley value analyses. We compare the runtime of our latest model Pythia 2.0 to
the runtime of Pythia 0.0, demonstrating a substantial performance improvement.
We additionally compare the runtime to a single ML tree inference, demonstrating
the utility of Pythia as a fast-to-compute MSA assessment. Finally, we present use-
cases of Pythia, including published applications, as well as an explorative analysis
we performed to also predict the convergence of Bayesian phylogenetic inference
methods.

3.3.1 Validating the Difficulty Quantification

Due to the lack of absolute ground-truth labels, we need to rely on the inferred
difficulty labels for training Pythia. The motivation for the difficulty prediction is
to limit the number of tree inferences required to sufficiently sample the tree space
and obtain a representative consensus tree. To verify the label assignment for each
dataset, we conducted two analyses. First, we compared the consensus tree obtained
from the plausible tree set constructed from all 100 ML tree inferences (baseline tree
Tp) to the consensus of the plausible trees we obtain when inferring only |difficulty -
100| trees (prediction tree Tp). Note that for this analysis we use the difficulty we
compute according to the above definition rather than a predicted difficulty. We
compare the topologies of the consensus trees using the RF-Distance. The RF-
Distance between Ts and Tp is 9.6 & 15.8% on average. This noticeable topological
difference suggests that either a) the difficulty labels do not sufficiently represent
the tree search behavior of the dataset, or b) 100 tree inferences do not sufficiently
sample the tree space. To determine the impact of b), we repeatedly sample 99 trees
out of the 100 tree inferences and compute the consensus tree T/, of the respective
plausible tree set. We then assess the average RF-Distance between all consensus
trees T},. For our training data, this RF-Distance is on average 8.1 & 14.5%. We
conclude that mostly b) causes the high topological distances between the baseline
tree and the prediction tree. In fact, a high RF-Distance between the consensus trees
T}, for an MSA is correlated with its difficulty. The Spearman’s rank correlation
coefficient is 0.88 (P-value < 1073%). Thus, the more difficult the MSA, the higher
the topological distances between the consensus trees T}, will be.

The second analysis to justify our difficulty quantification ensures that selecting the
number of tree inferences based on the difficulty does not negatively impact the
quality of the tree inference. In general, the difficulty cannot predict the number
of tree searches required to sufficiently sample the tree space, as this number also
depends on the implemented tree inference heuristic. However, since we define the
difficulty based on 100 ML tree inferences in RAXML-NG, we can use the difficulty to
approximate the number of required tree inferences, when again using RAxML-NG,
as a fraction of 100. Thus, to analyze the influence of the difficulty on the quality
of the tree inference, we compare the log-likelihoods obtained from 100 independent
RAXML-NG tree searches (LnLsig) to the log-likelihoods of |difficulty - 100]| tree
searches (LnLsgg) for all MSAs in our training data. We compare the respective
best found log-likelihoods LnLj,, and LnL}g, as well as the average log-likelihoods
mloo and mdiﬁ“.
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For 81% of the MSAs, the best found log-likelihoods Ln L7, and Ln L} are identical.
For the remaining 19% of the MSAs, LnL}s is on average < 0.01% worse than
LnL3y,. The average log-likelihoods LnLigy and Ln Lgs deviate on average by 0.01%
only.

This analysis only serves for justifying the definition of our difficulty quantification.
Predicting the number of tree inferences as a fraction of 100 is only applicable to ML
tree inference with RAxML-NG. It should further be mentioned, that RAXML-NG
only infers 20 trees by default. Thus, simply increasing the number of tree inferences
to |difficulty - 100| is discouraged.

Given these analyses, we conclude that our difficulty quantification is sufficiently
accurate to capture the tree search complexity and the behavior of an MSA under
ML based phylogenetic analysis. Consequently, the difficulty quantification can serve
as a prediction target for training machine learning models.

3.3.2 Prediction Performance Evaluation

Pythia predicts the difficulty of an MSA on a scale of 0.0 (easy) to 1.0 (difficult).
Our initial model, Pythia 0.0, has an MAE of 0.09 and an MAPE of 2.9%. With
Pythia 2.0, we slightly improved the prediction accuracy to an MAE of 0.08 and an
MAPE of 2.2%. When analyzing the prediction error, we noticed that Pythia tends
to overestimate the difficulty of MSAs with a difficulty < 0.3 and to underestimate
the difficulty for MSAs with a difficulty > 0.3 (see Figure. We observe this effect
for both, Pythia 0.0, and Pythia 2.0. However, with Pythia 2.0, this effect is
less pronounced. We suspect that this constitutes an artifact of the uneven difficulty
distribution in the training data (see Figure . Thus, future work should focus
on obtaining more intermediate and difficult MSAs.

We decided to train a single predictor for DNA, AA, and morphological data rather
than training a separate predictor for each data type. To justify this design choice,
we assess the prediction error of Pythia 2.0 per data type separately. As Figure[3.5]
shows, the overall performance of Pythia is comparable over all three data types.

To further justify this design choice, we also trained three separate predictors per
data type (fpna, faa, fm), and one predictor using all three data types simultane-
ously (fan). To ensure a fair comparison, we split the training data of 10461 MSAs
into a training set and a test set. The test set is only used for performance com-
parison. Note that we trained a new predictor for this experiment instead of using
Pythia 2.0 to ensure that the predictor was trained on the training set only for a
fair comparison. The training set comprises 8368 MSAs, and the test set contains
the remaining 2093 MSAs. We split the data using stratified sampling such that the
respective proportion of DNA, AA, and morphological MSAs is preserved. Thus,
fona is trained on 7287 DNA MSAs, faa on 766 AA MSAs, and fy; on 315 mor-
phological MSAs. The predictor f,y is trained on the full training set of 8368 MSAs
(DNA, AA, and morphological). We then compare the MAE of the per-data-type
prediction models to the prediction performance of f,; using the MSAs of the re-
spective data type in the test set. For DNA and AA MSAs, the prediction accuracy
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Figure 3.4: Average prediction error per difficulty range. The figure shows the error
for Pythia 0.0 and Pythia 2.0 on their respective training datasets. We compute
the prediction error as predicted difficulty - ground-truth difficulty.
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Figure 3.5: Absolute prediction error of Pythia 2.0 per data type.

is identical when only using DNA/AA MSAs for training, compared to using all
three data types (MAE = 0.1). For morphological data, we observe a slight decrease
in MAE for fy; (MAE = 0.12) compared to fu; (MAE = 0.11). We suspect that this
is caused by the lack of sufficient training data. The predictor trained exclusively on
morphological MSAs was trained on only 315 MSAs yielding it more challenging for
the predictor to generalize to unseen data. In contrast, the predictor using MSAs of
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Feature Pythia 0.0 | Pythia 2.0
Patterns-over-taxa 8.8% 39.6%
RFyvp 20.8% 31.5%
Bollback Multinomial | 1.7% 4.8%
Nip 54.7% 4.7%
Entropy 10.0% 3.8%
% Gaps 2.0% 3.7%
% Invariant 0.8% 3.2%
Patterns-over-sites - 3.0%
Sites-over-taxa 1.2% 2.9%
Pattern Entropy - 2.8%

Table 3.4: Feature importances in percent for Pythia 0.0 and Pythia 2.0. We
computed the feature importances using the gain-based feature importance.

all data types can detect patterns that are independent of the underlying MSA data
type, and can thus learn more general difficulty characteristics on a substantially
larger MSA collection.

3.3.3 Feature Importance and Model Insights

Table shows the feature importance for Pythia 0.0 and Pythia 2.0, respec-
tively. We computed the gain-based feature importance that directly measures
the contribution of each feature to the performance improvement during training.
Pythia 0.0 heavily relied on the MP-based features RFyp and Nyp with a com-
bined feature importance of approximately 75%. While Pythia 2.0 still heavily
relies on the RFyp feature (31.5%), the most important feature is the patterns-
over-taxa ratio, with approximately 40%. We suspect that Pythia 2.0 relies less
on the Ny feature (4.7%), since the new training data shows an abundance of
MSAs where Nyjp = 1, indicating that all 24 inferred MP trees have distinct tree

topologies (see Figure [3.3)).

Using Shapley values [157) (see Section[2.3.5), we can gain additional insights into the
contribution of individual features to the predicted difficulty. Pythia 2.0 includes
a command line option, as well as a dedicated method to plot the Shapley values
for a given MSA to allow for interpretable predictions, and to support Pythia users
in gaining additional insights. For these plots, as well as for the following analyses,
we rely on the SHAP Python package [112].

Using the Shapley values computed on multiple MSAs, we can visualize a feature
value contribution trend for the overall prediction via a so-called beeswarm plot. A
beeswarm plot simply combines multiple, individual Shapley value plots into a single
figure. Figure shows the beeswarm plot of Pythia 2.0 for all 10461 MSAs in
our training data. The features are sorted by importance, with the topmost feature
being the most important one. Note that the feature order differs compared to the
feature importances stated in Table [3.4] since the feature importance is computed
differently. The color of each dot corresponds to the magnitude of the respective
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feature value, with darker colors corresponding to higher values. The x-axis reflects
the contribution of a feature value to the model output (the predicted difficulty).
Negative values indicate a reduction in predicted difficulty, while positive values
indicate a difficulty increase. The x-axis is relative to the baseline prediction. In the
case of a GBT regressor trained via the MSE loss (see Section [2.3.2), this baseline
prediction simply corresponds to the average difficulty in the training data.

The beeswarm plot clearly shows that a higher signal in the MSA corresponds to
lower predicted difficulties. This is predominantly visible for the patterns-over-taxa
ratio, with contributions being as low as —0.3. This trend is also visible for the
patterns-over-sites ratio, the sites-over-taxa ratio, and the proportion of gaps. Anal-
ogously, a higher information content (as captured by the Entropy, the Bollback
Multinomial, and the Pattern Entropy) has a negative impact on the prediction,
thus contributing towards an MSA being easier to analyze. Note that, while higher
values indicate a higher information content for the Entropy and the Bollback Multi-
nomial, lower values indicate a higher information content for the Pattern Entropy.
Interestingly, a higher proportion of invariant sites contributes negatively to the
predicted difficulty and vice versa. This is unexpected, since a high proportion of
invariant sites is expected to induce less variation (and thus signal) for phylogenetic
inference. Consequently, we would expect higher proportions of invariant sites to in-
duce higher predicted difficulties. Further investigating this counter-intuitive trend
will be the subject of future work. As expected, higher RFy\pp values contribute
to an MSA being predicted as more difficult, while lower values contribute to pre-
dicting lower difficulties. This trend is expected, as our difficulty definition under
ML reflects the ruggedness of the tree space and correlates well with the ruggedness
under MP. Analogously, a higher proportion of unique topologies (Nyp) tends to
contribute positively to the predicted difficulty. However, this trend is not as clearly
pronounced. We again suspect that this is caused by the high abundance of MSAs
in the training data where Nyp = 1.

3.3.4 Runtime Evaluation

In the following, we benchmark the runtime of Pythia 2.0 against Pythia 0.0, and
against ML tree inference using RAXML-NG. Additionally, we provide an overview of
the runtime contributions of MSA parsing, feature computation, and difficulty pre-
diction to the overall difficulty prediction runtime for a single MSA in Pythia 2.0.
We used all 10461 MSAs in our training dataset for all subsequent analyses.

Pythia 2.0 is on average 2.4+ 1.2x faster than Pythia 0.0 (2.0x median). Multi-
ple factors contribute to this speedup. Firstly, we reduced the number of MP trees in
Pythia 2.0 to 24, compared to the 100 MP trees in Pythia 0.0. We also refactored
the internal representation of MSAs in Pythia 2.0. This allows us to natively com-
pute the number of patterns, the proportion of invariant sites, and the proportion
of gaps in Python using our MSA representation. In contrast, in Pythia 0.0, we
relied on RAXML-NG for computing these features. While the RAxML-NG-based
implementation is faster, including these features as MSA properties in Pythia 2.0
(and thus removing the RAXML-NG dependency) improves the re-usability of our
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Figure 3.6: Beeswarm plot of Shapley values of Pythia 2.0 for the 10461 MSAs in
our training data.

MSA representation in our PyPythia Python library for other applications that
rely on MSA attributes. We observe that the speedup of Pythia 2.0 compared to
Pythia 0.0 increases with increasing MSA size (number of taxa times number of
patterns in the MSA; see Figure . For instance, the average speedup for MSAs
with a size that exceeds 100000 is 4.2x (4.1x median).

The main goal of using Pythia is to gain insights into the expected behavior of the
MSA under ML phylogenetic inference. This allows for a more informed analysis
setup and adjustment of expectations before conducting any time- and resource-
intensive analyses. To demonstrate the utility of Pythia, we thus compare the run-
time of predicting the difficulty for an MSA using Pythia 2.0 to the runtime of
performing a single ML tree inference using RAXxML-NG. Across all MSAs, we ob-
serve an average speedup of 21.5+43.8x (7.7x median). We observe a high standard
deviation since the speedup predominantly depends on the MSA size. Figure [3.8|
shows the speedup as a function of MSA size. For (very) small MSAs with a size
below 1000, Pythia 2.0 is slightly slower than a single ML tree inference on aver-
age. However, the average speedup on MSAs with a size exceeding 100 000 is above
50x (37x median). Note that an MSA with 100 taxa and 1000 patterns already
falls into this category.

Finally, we analyzed the contribution of various computational steps required for
difficulty prediction in Pythia 2.0 with respect to the overall runtime. Figure
shows the average contribution across all MSAs in our training data. Note that
we summarized the feature computation into three separate groups: the MP-based
group (RFyp and Nyp), the Information Content group (Entropy, Bollback Multi-
nomial, Pattern Entropy), and the MSA Attributes group (sites-over-taxa, patterns-



78 3. Pythia

Speedup
w
X

[0, 10%) [103, 10%) [10%, 10%) > 10°

MSA size
(#taxa * #patterns)

Figure 3.7: Speedup of Pythia 2.0 compared to Pythia 0.0 as a function of MSA
size. MSA size is computed as the number of taxa times the number of unique site
patterns in the MSA. To improve visualization, we only show data between the 5th

and 95th percentile.
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Figure 3.8: Speedup of Pythia 2.0 compared to a single ML tree inference using
RAxML-NG as a function of MSA size. The MSA size is computed as the number
of taxa times the number of unique site patterns in the MSA. Note that the y-axis
is logarithmic. To improve visualization, we only show data between the Hth and

95th percentile.
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Figure 3.9: Contribution of computational steps in Pythia 2.0 to predict the dif-
ficulty of an MSA. The pie chart shows the average contribution across the 10461
MSAs in our training dataset.

over-taxa, patterns-over-sites ratios, % invariant, % gaps). MSA Parsing captures
the runtime for reading the MSA from file and transforming it into our internal
MSA representation. Prediction refers to loading the pretrained Pythia prediction
model and performing the final difficulty prediction. The runtime is dominated by
the computation of the MP-based features, with an average contribution of 67%.
This indicates that future work in Pythia should focus on improving the runtime of
the MP tree inference, either by improving the MP implementation in RAxML-NG
(which is developed in our research group) or by replacing RAXML-NG with a faster
alternative.

3.3.5 Applications of Pythia

We suggest predicting the difficulty using Pythia before conducting any ML phylo-
genetic inference, as this allows for more targeted analysis strategies. For example,
for a difficult MSA, the user should be careful to report a single ML tree as the
best-known tree, since the tree space most likely exhibits multiple, indistinguishable
local optima. The user should also be aware that a difficult MSA requires more
independent tree searches to construct a reliable consensus tree than an easy MSA.
Furthermore, difficult MSAs require a more careful consideration of necessary addi-
tional phylogenetic analyses and post-processing steps. Especially for very difficult
MSAs (difficulty > 0.8) we suggest considering improving upon the difficulty of the
MSA before the analysis. This is because a phylogenetic analysis on very difficult
MSAs, will most likely not yield a well-resolved tree, even if a consensus of numerous
almost equally likely, yet topologically distinct ML trees is built.

Ever since our initial publication in 2022, Pythia has been used in multiple studies
to analyze and characterize collections of MSAs [77,199, [144, 170, [176], or to select
data based on the predicted difficulty [17, [30, 95]. Additionally, Pythia proved to
be a useful prediction feature in multiple novel machine-learning based applications.
Collienne et al. [33] showed that Pythia is the dominant prediction feature when
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predicting the instability of taxon placement into an existing phylogenetic tree. In-
stability means that the evolutionary relationship of the taxa in the pre-existing
tree changes upon placement or addition of a new taxon. Furthermore, Ecker et al.
[37] recently proposed novel machine learning-based bootstrap support values for bi-
partitions in phylogenetic trees, including Pythia as a prediction feature. Similarly,
Wiegert et al. [188] published the Educated Bootstrap Guesser (EBG), a machine
learning-based framework that accurately predicts Felsenstein bootstrap support val-
ues for a given phylogeny. EBG does not rely on Pythia as a prediction feature, but
instead heavily relies on a fast-to-compute approximation of the Felsenstein boot-
strap using MP trees. The idea for using MP-based features in EBG stems from our
analysis of Pythia’s feature importances. In our work, we showed that MP-based
tree inferences are highly informative in approximating ML tree inference behavior
while being substantially faster.

Studying the influence of the number of starting trees in ML phylogenetic inference
across a wide range of empirical and simulated MSAs, Liu et al. [108] found that
Pythia can roughly approximate the number of required individual tree inferences
to sufficiently sample the ML tree space.

Building on Pythia, and on a thorough performance comparisons of various ML tree
inference heuristics by Hoehler et al. [77], Togkousidis et al. [175] implemented an
adaptive ML tree inference procedure for the popular RAXML-NG ML tree inference
tool (adaptive RAzML-NG). Adaptive RAXML-NG predicts the difficulty of an MSA
using Pythia and subsequently categorizes the MSA into easy (difficulty ranging
from 0.0 to 0.3), intermediate (0.3 to 0.7), and difficult (> 0.7). Depending on
the difficulty category, adaptive RAXML-NG adjusts the default number of inferred
trees, and also executes an appropriately adapted tree search strategy. Compared
to standard RAXML-NG by Kozlov et al. [96], adaptive RAXML-NG exhibits an
average speedup of 16x on easy and difficult MSAs, and of 1.8x on intermediate
MSAs. Note that the speedup cannot exclusively be attributed to the difficulty-
induced changes, as Togkousidis et al. [175] also adjusted the difficulty-independent
tree inference algorithm to allow for faster tree inferences. Yet, adaptive RAxML-
NG demonstrates the substantial potential of integrating Pythia-informed strategies
into phylogenetic analyses pipelines.

3.3.5.1 Exploration of MCMC Convergence Prediction

In our work, we focused on predicting the difficulty of ML phylogenetic inferences.
Another popular method to explore the tree space of an MSA is Markov chain Monte
Carlo (MCMC) based Bayesian phylogenetic inference. Since both methods, ML and
MCMC, rely on the same input MSA and on the same likelihood function, we suspect
the difficulty to also be reflected in the apparent convergence speed of MCMC meth-
ods. Since MCMC phylogenetic analyses constitute a time- and resource-intensive
task, we only explored this potential correlation using three exemplary MSAs. A
thorough exploration of the connection to difficulty prediction is beyond the scope
of this work.
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The features we use to predict the difficulty of an MSA are independent of the
inference method used for the subsequent analyses. However, as we describe in Sec-
tion[3.2.1, our difficulty quantification is based on 100 tree inferences using RAxML-
NG, which implements the ML, method. Therefore, our predictions might be biased
towards ML analyses and potentially do not describe the ruggedness of the tree space
in a model-independent manner. To assess if our predictions can be generalized, we
compare our difficulty prediction to convergence diagnostics of MCMC based phy-
logenetic analyses. For three DNA MSAs (D27 [74], D125 [139], and D354 [63]) we
performed MCMC analysis using MrBayes [146]. We ran four chains for 10 million
generations each using the general time reversible (GTR) model with four I" rate
categories to account for among site rate heterogeneity. MrBayes reports the average
standard deviation of split frequencies (ASDSF; split frequencies: relative number
of occurrence of splits/bipartitions in the set of posterior trees) as a convergence
diagnostic metric and suggests executing additional generations as long as the AS-
DSF is > 0.01. D125 is an easy dataset with an expected clear, single likelihood
peak. The difficulty according to our definition is low (< 0.1) and MrBayes ap-
peared to converge: the ASDSF value dropped below 0.01 after 150 000 generations
and is < 0.01 after only 1 million generations. D27 exhibits at least two distinct
likelihood peaks, suggesting that the MSA is rather difficult to analyze [100]. The
difficulty according to our definition is 0.45 and after 10 million generations, Mr-
Bayes reported an ASDSF of 0.011, indicating that the MCMC did not converge to a
single local optimum. D354 exhibits a rugged likelihood surface [63], so we expect a
high difficulty and no convergence. The assigned difficulty for D354 is 0.6 and after
10 million generations the ASDSF was 0.009. According to MrBayes this suggests
convergence and adding more generations should improve the ASDSF. However, we
observed that the ASDSF did not improve during the last 2 million generations,
and adding more generations did not further improve the ASDSF. D125 with 125
taxa and approximately 30000 sites is a larger MSA than D354 with 354 taxa and
only 460 sites. Yet, D125 apparently converged after 1 million generations, while for
D354 the ASDSF dropped below 0.01 only after 8 million generations. The smallest
MSA D27 with 27 taxa and 1940 sites indicated no convergence after 10 million gen-
erations, according to the ASDSF. We thus suspect that the number of generations
required for the MCMC is correlated to the difficulty rather than to the size of the
dataset. A thorough analysis of this potential correlation remains the subject of
future work.

3.4 Discussion

Predicting the difficulty of MSAs to gain a priori insights into the expected behavior
of phylogenetic tree searches and the shape of the likelihood surface constitutes a
vital step towards faster phylogenetic inference and a more targeted setup of the
computational analyses and post-analyses. Our difficulty prediction allows for care-
ful consideration of the number of tree inference required to sufficiently sample tree
space prior to ML analyses. Especially for easy MSAs, this has the potential to
save valuable time and resources. In this paper, we presented a quantifiable defini-
tion of difficulty for MSAs and showed that this definition adequately represents the
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ruggedness of the tree space of the MSA under ML. Using this definition, we trained
Pythia, a machine-learning based prediction model that predicts the difficulty on a
scale ranging between 0.0 to 1.0. Our initial version Pythia 0.0 achieved high pre-
diction accuracy with an MAE of 0.09 (MAPE 2.9%). We trained our latest model,
Pythia 2.0, on approximately three times more MSAs and slightly improved the
prediction accuracy to an MAE of 0.08 (MAPE 2.2%). We showed that we can accu-
rately predict the difficulty for DNA, AA, and morphological MSAs, making Pythia
applicable to a broad range of phylogenetic analyses. Using 10 fast-to-compute
prediction features, Pythia 2.0 is on average approximately 20 times faster than
a single RAXML-NG ML tree inference. The more taxa and sites the MSA has,
the faster the feature computation is relative to a single ML tree inference, making
Pythia especially valuable for phylogenetic analyses on MSAs with many sites and
taxa.

We conclude that predicting the difficulty of an MSA before any tree inference allows
for faster analyses, adjusting user expectations regarding the stability of the inferred
tree, and that Pythia should be included in ML phylogenetic inference pipelines by
default.
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This chapter is derived from the peer-reviewed open-access publication:
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Computational and Quantitative Biology (LCQB), Sorbonne Université, Paris,
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(LBBE), University Claude Bernard, Lyon, France). Johanna Trost (JT) and
our lab members Dimitri Hohler (DH) and Julia Haag (JH) contributed equally
to this publication.

JT and DH simulated the data collections. JT trained and evaluated the CNN
classifiers, including all CNN related feature importance analyses. JH trained
and evaluated the GBT classifiers. JH desgined and implemented the required
features for the GBTs, with DH contributing the randomness features. JH
performed all feature importance analyses related to the GBTs, as well as the
analyses of the relationship between the Pythia difficulty and the classification
accuracy.
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4.1 Background and Motivation

Reconstructing the evolutionary history of species or genes by inferring phyloge-
netic trees is a ubiquitous task in comparative genomics. Typically, phylogenetic
inference is based on an MSA that contains aligned sequences of the species under
study (see Section @) A plethora of inference algorithms, tools, and models
have been developed to infer phylogenetic trees based on the MSA, for example
RAxXxML-NG [96], IQ-TREE [121], BEAST [22], or RevBayes [80]. When developing
novel methods and validating their performance, comparing them to existing state-
of-the-art methods on both, empirical, and simulated data is mandatory. Simulated
data are particularly useful for conducting inference accuracy and implementation
verification assessments, when a known, ground truth phylogeny is required. Both,
simulation tools [28, 54, 114], and state-of-the-art inference methods are based on
probabilistic models of sequence evolution. Most of the latter exploit models through
likelihood functions, by searching for trees that maximize this likelihood [96, [121]
or by sampling from posterior distributions via Metropolis-Coupled Markov Chains,
which also rely on likelihood computations [22, 80]. Alternatively, researchers have
started to explore likelihood-free approaches (for examples outside our field, see
Lueckmann et al. [111]). These approaches sample the posterior density instead
of evaluating it, and thereby avoid computing the likelihood. The resulting sim-
ulated samples are used to build an estimate of the posterior distribution. This
so-called simulation-based inference paradigm was pioneered in population genetics
under the Approximate Bayesian Inference (ABC) framework [34], and extended
over the past decade to neural density estimation techniques [131], where a neu-
ral network is trained to output the correct distribution of parameters for a given,
observed input. In the context of phylogenetic inference, neural density estima-
tion has been restricted to the reconstruction of a single tree rather than a full
distribution. For example, Suvorov et al. [172] use convolutional neural networks
to reconstruct phylogenies from MSAs with four sequences, and Nesterenko et al.
[129] use a transformer-based network architecture to predict evolutionary distances
between all pairs of sequences in an MSA.

In all of the above contexts — evaluation, likelihood-based, or -free inference — it
is essential that the probabilistic model of sequence evolution is consistent with
empirical data. For evaluation, performance on simulated data is indicative of per-
formance on empirical data, only if the two are sufficiently similar. For inference, a
misspecified model can induce inaccurate and misleading results. For training ma-
chine learning-based methods, it is important that the training data and empirical
data are sufficiently similar to circumvent “out-of-distribution” problems [32]. Such
problems occur when the training data does not accurately represent the empirical
data, or when it misses subgroups of the empirical data: the trained method has
never “seen” data similar to the empirical data, and can thus behave poorly.

Authors using simulated data in their publications typically set simulation param-
eters according to attributes (for example MSA lengths, or proportions of gaps) of
empirical reference MSAs (see for example Price et al. [141]). Some also attempt to
extract or sample simulation parameters from ML estimates in large scale empirical
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databases, such as TreeBASE [138]. The intention is that, thereby, simulated data
will more closely resemble empirical data [1, [77]. Despite this effort, there still ex-
ist performance and/or program behavior differences on simulated versus empirical
data. For example, Guindon et al. [64] conclude that comparing methods using sim-
ulated data is not sufficient, as “the likelihood landscape tends to be smoother than
with real data”, and Hoehler et al. [77] observe differences between empirical and
simulated data when comparing ML phylogenetic inference methods. They conclude
that there exist not yet understood differences between simulated and empirical data.

Here, we introduce a metric to quantify how realistic a substitution model is, by
simulating data using the respective model, and training a classifier to discrimi-
nate between simulated and empirical data. We expect realistic models to produce
simulated data that are difficult to discriminate against empirical data and induce
low classifier accuracy. We leverage recent data simulation tools |28, (54, 114] that
are feature-rich and support a wide range of evolutionary models and simulation
parameters. We show that we can distinguish simulated from empirical data with
up to 99% classification accuracy, depending on the used simulation model. We
present two different and independently developed machine learning approaches ex-
ploiting distinct MSA characteristics for this classification task: One, using Gradient
Boosted Trees (GBT), and another approach based on a Convolutional Neural Net-
work (CNN). We show that prediction accuracy decreases, the more complex the
model of evolution used in simulations becomes. Yet, we also observe exceptions
to this general trend. For the most complex models in our experimental setup, the
prediction accuracy is still very high, with the CNN-based classifier achieving predic-
tion accuracies > 0.93 on all tested models. This indicates that simulated MSAs are
easy to distinguish from empirical MSAs, as they do not appear to reproduce some
characteristic features of empirical MSAs. We further show that simulating indels
remains a challenging task, as including indels results in higher classification accu-
racies with the CNN classifiers compared to simulations without indels. Further,
based on the feature importances of the GBT classifiers, we show that simulated
data exhibit more evenly distributed site substitution patterns than empirical data.

4.2 Methods

The goal of our study was to be able to distinguish between empirical and simu-
lated DNA and AA data with high accuracy under increasingly complex models of
sequence evolution. Figure|4.1|depicts our experimental setup for one exemplary set
of empirical MSAs (empirical data collection) and one exemplary model of evolution.
Using the empirical data collection and the given model of evolution, we simulated
a new set of MSAs (simulated data collection) using the AliSim sequence simula-
tor [114]. Based on the empirical and simulated data collections, we completely
independently trained two distinct classifiers for each simulated data collection: a
Gradient Boosted Tree (GBT) and a Convolutional Neural Network (CNN).

In the following sections, we describe our experimental setup, the sequence simula-
tion process, and both classification methods.
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Please note that this study was a collaborative research project. My main contri-
bution to this study was the training and evaluation of the GBT classifiers, with
Dimitri Hohler contributing the randomness features. Johanna Trost and Dimitri
Hohler conducted the MSA simulations, and Johanna Trost trained and evaluated
the CNN classifiers. Thus, the following section only briefly summarizes MSA sim-
ulations and the training of the CNN classifiers. For further details, we refer the
interested reader to our paper Simulations of Sequence Evolution: How (Un)realistic

They Are and Why [178].

4.2.1 MSA Simulations

For our study, we separately considered DNA and AA data. We simulated 15 sets
of MSAs, seven sets containing DNA MSAs and eight containing AA MSAs, respec-
tively. In the following, we refer to an MSA set as a data collection. To simulate
the MSAs for each data collection, as well as for data discrimination, we used two
empirical data collections as reference, one per data type. The empirical DNA data
collection contains MSAs obtained from TreeBASE [138]. The empirical AA data
collection consists of MSAs obtained from the HOGENOM database [136]. See Sec-
tion [2.1.2.1 for further details on both databases. We removed outliers based on
MSA length (number of sites), number of sequences, as well as MSAs with less than
four sequences to allow for a reliable and efficient analysis. Very long sequences
would inflate the memory footprint of the CNN, while very short MSAs are uncom-
mon. Removing outliers allowed us to deploy a balanced and representative data
collection that facilitates robust and unbiased predictions.

Moreover, empirical MSAs may contain sites with ambiguous AA/DNA states (see
Section[2.1.1). As a further pre-processing step, yet applied exclusively for the CNN
classifier, we removed all MSA sites containing at least one ambiguous character, as
they would bias the prediction. For AA data this concerned 912 out of 6969 MSAs,
and we removed 1.34% of all sites within these 912 MSAs. Furthermore, 13.24% of
sites in 6117 DNA MSAs were removed.

For each data type, we generated simulated data collections based on the corre-
sponding empirical data collection, resulting in identical numbers of simulated and
empirical MSAs. We simulated data using the AliSim sequence simulator [114] un-
der several evolutionary models ranging from easy to complex, in terms of number
of free parameters and computational methods used to derive respective AA substi-
tution models. See Section |2.1.3.2 for details on models of sequence evolution. The
goal of this setup was to progressively increase simulation realism. First, we sim-
ulated five DNA and seven AA data collections without gaps, which allowed us to
characterize the realism of substitution models per se. To this end, we removed all
sites containing gaps (=) from all empirical MSAs. The resulting empirical data col-
lections contain 7637 DNA MSAs and 6971 AA MSAs, respectively. We henceforth
refer to these data collections as gapless data collections. Second, we simulated two
DNA and one AA data collection with indel events, based on the empirical MSAs
containing gaps (9460 DNA MSAs and 6971 AA MSAs).
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In the following, we describe the simulation procedures for both data types and our
approach to simulate indel events in more detail.

4.2.1.1 DNA Simulation

We simulated seven DNA data collections in total (5 gapless and 2 with simulated in-
del events), with each data collection being simulated under a different evolutionary
model with increasing model complexity. We used the following models of evolution.
As the simplest model, we used the Jukes-Cantor (JC') model (equal substitution
rates and equal base frequencies) [85]. We also used the HK'Y model (four degrees of
freedom) [70], and the General Time Reversible (GTR) model (eight degrees of free-
dom) [173]. To account for among site rate heterogeneity, we additionally simulated
under GTR in conjunction with the T' model of rate heterogeneity [192] using four
discrete rates (GTR+G). The most complex model of evolution we used for simu-
lation was the GTR+G model, with an additional free parameter to accommodate
the proportion of invariant sites (GTR+G+I) [161].

We selected 9460 empirical MSAs (Set!) from TreeBASE [138, [183] as the basis for
our simulations. We removed all sites containing gaps (=) or fully undetermined
characters (N) from the MSAs of Setl. Thereby, we obtained 7637 non-empty MSAs
(that is, MSAs that still contained at least one site), which we defined as Set2. This
induced an MSA length reduction of around 55% compared to Setl. We based our
five simulated DNA data collections without indel events on Set2, and the two data
collections with indels on Set1.

AliSim simulates sequences along a given phylogenetic tree (see Section @) We
avoided the problem of simulating realistic phylogenetic trees for this purpose by
initially estimating a best-known ML tree using RAXML-NG [96] (default parame-
ters), for every MSA of Set2 under each of the five evolutionary models (JC, HKY,
GTR, GTR+G, GTR+G+I). We then used the inferred phylogeny and respective
estimated model parameters to simulate MSAs using AliSim [114] based on every
MSA of Set2, without specifying an indel model. In the following analyses, we re-
fer to the resulting five gapless data collections as JC, HKY, GTR, GTR+G, and
GTR+G+I according to the model of evolution used to simulate the respective data
collection. In Section [4.2.1.3 below, we describe the simulation of the two additional
DNA data collections with indel events.

4.2.1.2 AA Simulation

We simulated seven AA data collections limited to substitution events only, and one
additional data collection with indels. The most rudimentary evolutionary model
we used is the Poisson model, with equal substitution rates and equal equilibrium
frequencies. We further used two empirical substitution models: the WAG [186] and
the LG [103] model. The LG model is expected to produce more realistic simulations
than the WAG model as the former was derived from a larger and more diverse data
collection, using more refined inference techniques than the latter. These substitu-
tion models use a single set of equilibrium frequencies (one AA profile) to simulate
all sites in an MSA. We also used mixture models that incorporate heterogeneity
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among sites by employing multiple profiles. In such models, a profile is drawn from
a set of profiles to simulate a single site. We used the following two AA mixture
models: the C60 model with 60 profiles (LG+C60) [162] and the more recent UDM
model with 256 profiles (LG+S256) [153]. The advantage of the latter model is
that each profile is assigned a probability of generating a site, while under the C60
model, profiles are drawn with equal probabilities. In addition, the UDM model is
based on a subset of MSAs from the HOGENOM database, and should therefore
generate MSAs that are similar to empirical HOGENOM MSAs. To increase model
complexity, we performed further simulations accounting for among site heterogene-
ity using the I model [192], in analogy to the DNA simulations. We simulated two
data collections, one using four discrete I" rate categories (LG+S256+G4) and the
second one by applying a continuous I' distribution (LG+S5256+GC).

In analogy to the simulated DNA data collections, we refer to the simulated AA data
collections according to the model of evolution used. The gapless AA data collections
are Poisson, WAG, LG, LG4+C60, LG+S5256, LG+S5S2564+G4, and LG+S256+GC.
In the following section, we describe the simulation procedure for the data collection
with indels.

4.2.1.3 Simulating Indels

In addition to the gapless data collections, we simulated two DNA, and one AA data
collection with indels. For both data types, we used the most complex models of
evolution as a basis (GTR+G++I for DNA, LG+5256+GC for AA).

To generate the first DNA data collection with indels, we performed tree inferences
using RAXML-NG under the GTR4+G++I model for each MSA of DNA Set!. We then
simulated MSAs with indels using two distinct procedures to generate two distinct
data collections. For the first data collection, we simulated the MSAs in the same
way as for the gapless collections. Then, we superimposed the gap pattern of the
MSAs used as the basis of the simulation onto the simulated MSAs. We refer to
this procedure as the mimick procedure and denote the resulting data collection as
GTR+G+I+mimick.

For the second data collection, as well as the AA data collection with indels, we
simulated the MSAs using not only the inferred trees and estimated evolutionary
model parameters, but also by specifying indel parameters. In the following, we
describe the procedure to infer and validate these parameters. We performed this
procedure for both DNA and AA data collections separately. We refer to this pro-
cedure as the sparta procedure. We first used the SpartaABC tool [110] to obtain
indel-specific parameters from a subset of empirical MSAs. Here, we employed the
rich indel model (RIM), which differentiates between insertion and deletion events
using five free parameters. The inferred parameters are: Insertion and deletion rate
(Ig, Dg), root length (RL), and the parameter A that controls the Zipfian distribu-
tion of insertion and deletion lengths (A7, Ap). We will henceforth refer to this set
of parameters as empirical indel parameters.

To simulate MSAs, we drew indel parameters from the joint parameter distribu-
tion of empirical indel parameters. To approximate the probability density function
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(PDF), we applied Gaussian kernels to the five principal components of the indel
parameters. This choice was based on our observation that a more accurate match is
achieved between the empirical parameters’ empirical cumulative distribution func-
tion (ECDF) and the resulting parameters’ ECDF when using the principal compo-
nents. For the Gaussian kernels, we determined the bandwidth using Scott’s rule of
thumb [155]. Moreover, we employed the kernel-density estimation implementation
by Virtanen et al. [182], although it tends to overestimate the distribution’s actual
edges. To mitigate this issue, we re-sampled values if they exceeded the limits of
the parameter prior limits chosen by Loewenthal et al. [110]. To validate our ap-
proach, we compared the ECDF of the empirical parameter values with the ECDF
of parameters sampled from the empirical PDF for each indel parameter type. We
denote the resulting DNA data collection as GTR+G+I+sparta, and the resulting
AA data collection as LG+S5256+GC+sparta.

4.2.2 Classification Methods

To distinguish simulated from empirical MSAs, we developed two distinct approaches.
One approach is a classical machine learning algorithm based on hand-crafted fea-
tures and Gradient Boosted Trees (GBT). Using GBTs allows us to attain insights
on feature importance, explain the classification results, and determine shortcom-
ings of MSA simulations. Our second approach uses Convolutional Neural Networks
(CNN). In contrast to GBT, CNNs only require minimal data processing, as they
can automatically learn relevant features through training. However, to interpret
these features, additional analysis is required. In the following, we introduce both
machine-learning approaches to classification, and describe our training setups.

4.2.3 Training Classifiers

To assess the realism of simulations, we trained a GBT and a CNN classifier for
each simulated data collection separately and independently. Each classifier takes
as input an MSA or MSA features and outputs the label “simulated” or “empirical”.

We trained each classifier using 10-fold cross validation and averaged over the re-
spective 10 performance metrics. We used the Balanced Accuracy metric (BACC;
see Section[2.3.3) to assess performance, as this metric allows for varying proportions
of simulated/empirical MSAs in the data collection and better reflects classification
accuracy for imbalanced datasets. The best BACC value is 1 and the worst value is
0. See Section [2.3.2 for further details on training machine learning models.

4.2.3.1 Gradient Boosted Trees

Gradient Boosted Trees (GBT) is an ensemble machine learning technique that com-
bines multiple Decision Trees to obtain an accurate prediction model [59]. Training
a GBT classifier consists of B sequential stages, with each stage contributing an
additional Decision Tree that improves upon the estimator of the previous stage.
For further details on GBTSs, see Section |2.3.4.2.
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Prediction Features

To classify MSAs into simulated or empirical ones, we computed 23 features for
each MSA. Four of these features are MSA attributes: the sites-over-taza ratio, the
patterns-over-taza ratio, the patterns-over-sites ratio and the proportion of invariant
sites (% invariant). For data collections simulating indel events, we also used the
proportion of gaps as a feature (% gaps). Further, we quantified the signal in the
MSA using the difficulty of the respective phylogenetic analysis as predicted by
Pythia [66] (difficulty; see Chapter [3), as well as the Shannon entropy [156] of the
MSA (Entropy), a multinomial test statistic of the MSA (Bollback Multinomial; [20]),
and an entropy-like metric based on the number and frequency of patterns in the
MSA (Pattern Entropy). For further details on the computation of these metrics, see
Chapter|3, We inferred 100 trees based on the fast-to-compute maximum parsimony
(MP) criterion [44, 52] using RAXML-NG [96] and also included two features based
on properties of the inferred 100 MP trees: the average pairwise topological distance
using the Robinson-Foulds distance metric (RFyp) [145], as well as the proportion
of unique topologies (Nyp). We further refer to these features as difficulty features.

To assess downstream effects on tree inferences using simulated and empirical data,
we inferred a single Maximum Likelihood (ML) tree using RAXML-NG [96]. For each
MSA, we performed a single RAXML-NG tree inference based on a random starting
tree using RAXML-NG’s --searchl execution mode. On the resulting ML tree, we
executed the RAXML-NG --eval mode. In this execution mode, RAXML-NG does
not alter the tree topology, but only optimizes the branch lengths and substitution
model parameters. Based on the resulting ML tree, we computed a set of branch
length features, namely the minimum, maximum, average, standard deviation, me-
dian, and sum over all branch lengths in the ML tree (brlen,,, brlen, .., brienqgy,,
brienga, brieneq, briengy,).

We used the next six features to highlight one of the recurrent problems of simulated
sequence generators: a common simplification used in simulations is the assumption
that substitutions occur at uniformly distributed random locations along the se-
quence, which appears not to be the case for real-world genetic data [25]. Thus, we
expected empirical MSAs to be less uniform than simulated MSAs, and we hence-
forth attempted to confirm this hypothesis.

To quantify substitution frequency distributions along an MSA, we first inferred
a single MP tree using RAXML-NG. Then, based on the parsimony criterion, we
calculated the number of substitutions per site, resulting in a vector m.

Given the corresponding vectors m for empirical and simulated MSAs, we can anec-
dotally observe that the locations of substitutions appear to be less uniformly dis-
tributed in empirical than in simulated MSAs (see Figure [4.2). To the best of our
knowledge, there is no panacea in quantifying the absence of structure in data, and
it is part of ongoing research in the field of cryptography. We resorted to the Fourmi-
lab Random Sequence Tester (FRST) (https://www.fourmilab.ch/random/), that
is used to evaluate pseudo-random number generators, to quantify randomness in
m. FRST computes six measures of randomness: Entropy (Entropy,anq), maximum
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compression size reduction in percent (comp), Chi-Square test (Chi?), arithmetic
mean (mean, ,q), Monte Carlo Value for Pi (mcpi), and Serial Correlation Coeffi-
cient (SCC) [93]. We executed FRST with a binary representation of m on all data
collections. Then, we normalized the computed measures of randomness, and used
these values in our predictions. We henceforth refer to this set of six features as
randomness features.

Training and Optimization

For each of the simulated data collections presented above, we trained a distinct
binary GBT classifier. Note that we trained distinct classifiers to ensure an unbi-
ased estimate of the simulation realism per data collection separately. We trained
each GBT classifier using a stratified 10-fold cross validation procedure. Here, strat-
ified means that the proportion of empirical and simulated MSAs in both training
and test subsets was the same. The training data consisted of one simulated data
collection and the empirical data collection for the respective data type. We used
the hyperparameter optimization framework Optuna [4] to determine the optimal
set of hyperparameters for each classifier. For each GBT classifier, we performed
100 Optuna iterations using a Tree-structured Parzen Estimator algorithm [16] to
sample the hyperparameter space.

To prevent the classifiers from overfitting the data, based on preliminary experi-
ments, we limited the depth of the individual Decision Trees to a maximum of 10,
the maximum number of leaves to 20, and the minimal number of samples per leaf
to 30. Additionally, we applied L1 and L2 regularization to prevent overfitting and
better generalize to unseen data [61] (see Section [2.3.2). We determined the optimal
weights of L1 and L2 regularization independently using Optuna.

We generated the training data and features with a custom pipeline that we imple-
mented using Snakemake [94] and Python 3. In our setup, we used RAXML-NG
version 1.1.0 for the ML tree inference and the MP tree inferences, and PyPythia
version 1.0.0 to compute the difficulty features. The pipeline code, instructions to
reproduce the results, as well as the Apache parquet files containing all training
data, are available in our GitHub repository at https://github.com/tschuelia/
SimulationStudy. We trained all Light GBM GBT classifiers using a custom train-
ing script that is also available at the above GitHub repository, alongside all training
results presented in our work.

4.2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a popular prediction method originally
developed for computer vision and image processing. Recently, they have been
applied to predict properties of biological sequences [5,19,198]. A CNN jointly learns
a representation of the data (through convolution layer(s)) and the classification of
the data based on these representations (in our case using a fully connected layer).
See Section |2.3.4.3 for a more detailed explanation of CNNs. Note that, in analogy
to the GBT classifiers, we trained a distinct CNN per simulated data collection.
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In the following, we provide a brief overview of the network and its architecture. All
code required to reproduce the CNN training and classification results is available
on GitHub at https://github.com/JohannaTrost/seqsharp.

MSA Representation

To obtain a numeric representation of an MSA, where the CNN is invariant to the
order of sequences, we used a two-step approach. First we decided to represent the
MSA using its site-wise AA or nucleotide composition, that is, the AA or nucleotide
proportions per site, which sum to one. Second, each AA /nucleotide, as well as gaps
are passed to the convolution network as input features (channels), resulting in 5 (4
DNA sites + gap) or 21 (20 AAs + gap) channels. This is analogous to using color
channels in an image. It maintains the identity of a nucleotide/AA and is common
practice when applying CNNs to biological sequences [9]. The input size was the
maximum MSA length in the simulated and empirical data collection. All MSAs
with fewer sites were zero-padded at their edges to match the fixed input size.

Empirical AA sequences typically start with Methionine (M), which simulations do
not account for. Therefore, we removed the first and second sites from the empirical
AA data to avoid biasing the prediction.

CNN Architecture

We developed two architectures, one for each data type (DNA and AA). We explored
alternative architectures and chose the architecture with the best balance between
complexity and performance. For AA MSAs, we used a single one-dimensional con-
volution layer with 210 filters of size 1 x 21 (kernel size x input channels). Of note,
these filters do not consider the phylogenetic structure of the data, and simply cap-
ture AA profiles at single sites, instead of larger motifs spanning several contiguous
sites that are typically used in CNNs. For DNA sequences, we used a two-layer CNN,
whose first layer has 100 filters of size 3 x 5 and intends to capture codon struc-
ture. The second layer has 210 filters of size 1 x 100. A standard Rectified Linear
Unit (ReLU) activation function is employed in both architectures. For both, DNA,
and AA architectures, the layers following convolution comprise a dropout layer,
which deactivates a node with a certain probability (here we chose 0.2) to avoid
overfitting and global average pooling along the sequences. A final fully connected
layer combines all features (channels) to generate the binary prediction. For this, we
used a Sigmoid activation function. In total, the AA network counts 4831 learnable
parameters, while the DNA network has 23021 due to the additional convolution
layer.

4.2.3.3 Performance Evaluation

Using the BACC metric per data collection, we compared the performance of pairs
of classifiers of simulated data collections. To evaluate whether the difference of the
BACCs of two data collections and therefore two different evolutionary models is
significant, we conducted multiple unpaired two-samples t-tests, where one sample
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consists of the validation BACC for each fold. This allowed us to compare models in
their ability to simulate data that are more or less or equally realistic. For AA data,
we compared the BACCs of the following groups: Poisson vs. WAG, WAG vs. LG,
LG vs. LG+C60, and all pair-wise combinations of site heterogeneous models. The
null hypothesis is that these models yield equal average BACCs across folds. We
rejected the null hypothesis if the resulting P-value was below the significance level
of 0.05. For DNA data, we compared the BACCs of JC vs. HKY, HKY vs. GTR,
GTR vs. GTR4+G and GTR+G vs. GTR+G+I. To account for multiple testing,
we applied a Bonferroni correction [2]. This means that we multiplied each P-value
by the number of tests for each data type separately.

4.3 Results

4.3.1 Classification Accuracy

Table 4.1/ shows the BACC for our GBT and CNN classifiers across all data collec-
tions. Both classifiers were able to accurately distinguish simulated from empirical
data. The GBT classifiers achieved high BACCs for all simulated AA data collections
(> 0.98), as well as for all gapless DNA data collections (> 0.89). We observed the
worst BACC of 0.77 for the DNA data collection simulated under GTR+G++1 with
gaps simulated according to the mimick procedure. The CNN classifiers achieved
BACCs ranging from 0.93 to 0.9996. Interestingly, the GBT classifiers showed simi-
lar BACCs or even outperformed the CNN on the AA data collections, but achieved
lower BACCs on DNA collections.

On DNA data collections, substitution models with fewer degrees of freedom than
the GTR model (JC and HKY) were classified more accurately (BACC = 0.99 for
CNN and BACC = 0.96 for GBT). However, increases in model complexity did not
always translate into improvements in data realism. For instance, the performance
of the CNN was marginally better on simulations under the HKY model than on
simulations under the simpler JC model (P-value = 0.03). The GBT predictions,
which were equally accurate for JC and HKY simulations (BACC = 0.96), did
not reflect any improvement in the simulations due to more degrees of freedom
in the HKY model either. Moreover, the CNN yielded the lowest BACC (0.93)
on simulations conducted under the GTR model. In contrast, simulations that
included rate heterogeneity (GTR+G) were slightly easier to classify (BACC = 0.94,
P-value = 0.04). Contrary to our expectations, including a proportion of invariant
sites (GTR4G+I) did not result in a lower BACC compared to GTR+G simulations
(BACC = 0.94, P-value = 1.0 for CNN, BACC = (.89, P-value = 1.0 for GBT).

We did not observe the expected trend of improved realism with increasing model
complexity for the AA data collections. For instance, the CNN showed the lowest
BACC on simulations under the LG substitution model (BACC = 0.95) and not on
the more complex mixture models. For the GBT, distinguishing the LG+S256+G4
data collection appeared to be easier than the data collection based on the simpler
LG+C60 model (P-value = 0.77). Unexpectedly, all simulations using a mixture of
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Data collection BACC
GBT | CNN
DNA data collections

JC 0.96 | 0.99
HKY 0.96 | 0.99
GTR 0.94 |0.93
GTR+G 0.89 | 0.94
GTR+G+I 0.89 | 0.94

GTRA+G+I+mimick 0.77 | 0.97
GTR+G+I+sparta 0.94 | 0.97
AA data collections

Poisson 0.99 | 0.9996
WAG 0.99 |0.97
LG 0.99 |0.95
LG+C60 0.98 |0.99
LG+S256 0.99 | 0.995
LG+S256+G4 0.99 | 0.99
LG+S256+GC 0.98 |0.99

LG+S5256+GC+sparta | 0.99 | 0.996

Table 4.1: Average of the BACC on empirical and simulated data collections across
10 folds for the GBT and CNN classifiers. Parameter configurations of simulations
listed in the first column are sorted with increasing complexity from top to bottom

for both DNA and AA data. The last row(s) per section (DNA and AA) shows
results on data collections with indels.

stationary frequency profiles (LG+C60, LG+S256, LG+52564+G4 and LG+5256+GC)
were nearly perfectly discriminated from the empirical data collection with both
GBT and CNN (BACC > 0.98). With the CNN, we did not observe a significant

performance difference between these evolutionary models (P-value > 0.38).

To rule out the possibility that these rather unexpected findings are a consequence
of specific behaviors inherent to the AliSim simulator, we conducted an experiment
to evaluate the performance of the CNN classifier pre-trained with LG+S5S256 simu-
lations on data generated using a simulator developed in the LBBE research group
that employs the same model. Our results indicated that the CNN classifier per-
formed comparably well on the alternative simulations (BACC = 0.99). In addition,
we tested the same CNN on simulations using 4096 profiles. These simulations were
only slightly harder to classify (BACC = 0.98) than the ones based on only 256
profiles (BACC = 0.995).

The CNN trained on empirical data collections with indels and simulations under the
most complex evolutionary model with indels (LG+S256+GC+sparta, GTR+G+I+mimick,
GTR+G+I+sparta) also yielded highly accurate predictions (BACC = 0.996 for AA
and BACC > 0.97 for DNA data). The results were similar to or better than the
results obtained without indels. There was no significant difference between CNN
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Data collection ‘ BACC ‘ Three most important features

DNA data collections
JC 0.96 SCC, brlengqey, Entropy
HKY 0.96 SCC, brlengiqey, Entropy
GTR 0.94 SCC, brlengiqey, Entropy
GTR+G 0.89 SCC, Pattern Entropy, brleng,,,
GTR+G+I 0.89 SCC, Pattern Entropy, brleng,,
GTR+G+I+mimick 0.77 SCC, % invariant, patterns-over-sites ratio
GTR+G+I+sparta 0.94 SCC, % gaps, mean,anq

AA data collections

Poisson 0.99 SCC, brlen,,eq, Bollback Multinomial
WAG 0.99 SCC, brleny,eq, % invariant

LG 0.99 SCC, brleny,eq, % invariant

LG+C60 0.98 SCC, Entropy, patterns-over-sites ratio
LG+S256 0.99 SCC, Entropy, % invariant
LG+S256+G4 0.99 SCC, Entropy, patterns-over-sites ratio
LG+S256+GC 0.98 SCC, Entropy, patterns-over-sites ratio

LG+S52564+GC+sparta | 0.99 patterns-over-sites ratio, SCC, Entropy

Table 4.2: Average BACC on empirical and simulated data collections across 10
folds. Parameter configurations of simulations listed in the first column are sorted
by increasing model complexity from top to bottom for both, DNA, and AA data.
The third column lists the three most important features for classifying the data.

performance on the two DNA indel models employed (P-value = 1.0). Simulating in-
dels increased the GBT classification accuracy for AA data (BACC = 0.99) and the
sparta based DNA data collection (GTR+G+I+sparta; BACC = 0.94) compared
to the same model of evolution without indel simulations (LG+S5256+GC BACC =
0.98; GTR4+G+I BACC = 0.89). We did, however, observe a significant decrease in
accuracy comparing the two DNA indel models (P-value << 1073%). The GBT clas-
sified the GTR+G+I+sparta data collection with high accuracy (BACC = 0.94),
but showed an unexpectedly low BACC of 0.77 for GTR+G+I+mimick.

4.3.2 Feature Importance
4.3.2.1 GBT

To gain insights into why the classification task achieved high prediction accuracy
and appears to be rather easy in general, we assessed the influence of the described
features on the prediction of the GBT classifiers. To this end, we computed the gain-
based feature importance. The gain-based feature importance directly measures the
contribution of a feature to the reduction of the loss function (see Section [2.3.5).
Table 4.2/ shows the prediction accuracy as well as the three most important features
for the gradient boosted tree classifiers. The features are sorted by importance, that
is, the most important feature is listed first.
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We observed that, except for one data collection, the SCC randomness metric was the
most important feature. For classifying the LG+S256+GC+sparta data collection,
it was the second most important feature. Figure [4.3) shows the distribution of
SCC values for one example DNA data collection (GTR+G+I), as well as for one
example AA data collection (LG4+S5256+GC) compared to the distribution for the
respective empirical data collections. The lower the SCC value, the more random
the distribution of rates of evolution across sites in the MSA is. The SCC values
for simulated MSAs are substantially lower than for empirical MSAs. This indicates
that the rates of evolution across sites are more uniformly distributed in simulated
MSAs compared to empirical MSAs, simulated data is thus more “random” than
empirical data. We also observed similar patterns for all other data collections.

We also frequently observed the Entropy, the Pattern Entropy, as well as the Bollback
Multinomial metrics as being among the three most important features. While the
randomness features measure the randomness across sites of the MSA, these three
features quantify the randomness across taza per site, indicating that simulated data
are not only more “random” across sites, but also within sites.

To gain further insights into the importance of the randomness features for classi-
fication, we retrained all GBT classifiers without this set of randomness features.
As expected, the BACCs decrease for all data collections. Interestingly, the BACCs
for the GTR+G and GTR+G+I DNA data collections decreased substantially from
0.89 to 0.65 and 0.61 respectively, yielding a prediction that is only marginally better
than random guessing. Using this reduced set of features for the prediction, we ob-
served interesting differences in feature distributions. We observed that, compared
to simulated data, empirical data tend to exhibit a higher proportion of invariant
sites (Figure [4.4(a)). The branch lengths in trees inferred for simulated MSAs tend
to be shorter (Figure [4.4(b); for better visualization, we only show data below the
90% percentile), and the RFyp tend to be higher for empirical data (Figure |[4.4(c)).
While Figure |4.4] depicts the distribution of feature values for one exemplary data
collection (JC) only, these observations apply to all simulated data collections. The
more complex the model of evolution, the less pronounced these differences become,
especially for the simulated DNA data under GTR+G and GTR+G+I. It is note-
worthy however that even GTR+G+I, which contains a dedicated parameter for
modelling the proportion of invariable sites, yields MSAs with fewer invariant sites
than in empirical data.

Compared to the remaining data collections, we observed a substantially worse
BACC of 0.77 for the GBT of the GTR4+G-+I+mimick data. To investigate this phe-
nomenon, we split MSAs site-wise into 100 parts (buckets), averaged the number of
substitutions per bucket (normalized by the maximum number of substitutions per
MSA), and averaged the buckets over every MSA. Interestingly, we could observe
that the substitutions for empirical and the GTR+G+I+mimick data collections
are concentrated at the beginning and the end of the MSAs, while the number of
substitutions in GTR+G+I+sparta appear to be uniformly distributed. This also
appeared to be the case for other substitution models according to our analyses.



4.3. Results 97

This result is in agreement with Bricout et al. [25], who also found this pattern in a
large-scale analysis of empirical MSAs.

As described above, we simulated the DNA data collections and the AA data collec-
tions without indels based on trees inferred using RAXML-NG. Trees for AA data
with indels used for our indel simulations were inferred using IQ-TREE. For 10 out
of 15 data collections, one of the branch length features was among the three most
important features. To ensure that we did not capture an inference tool induced
bias in our prediction, we retrained all classifiers using only the MSA-based features
by discarding all branch length features. We observed no substantial impact on
overall prediction accuracies. With GTR+G+I+mimick we observed the highest
BACC difference. Using all features, the GBT achieved a prediction accuracy of
0.77. Discarding the branch length features resulted in a BACC of 0.74.

4.3.2.2 CNN

In addition to the feature analysis of the GBTs, we further investigated the remark-
ably accurate performance of the CNN on simulations using mixtures of stationary
frequency profiles (the S256 or C60 model). Given that we could achieve better per-
formance when using average global pooling, that is, averaging across the sequence,
instead of maximum local pooling following the convolution layer (see the paragraph
on [CNN Architecture), we hypothesized that there must be predictive global fea-
tures that aid in distinguishing simulated from empirical MSAs. In particular, we
hypothesized that MSA-wise frequencies of AAs or nucleotides may differ between
simulated and empirical data. To test this hypothesis, we trained logistic regres-
sion models to undertake the same classification task, but using site compositions
averaged along the MSA, that is;, MSA compositions. Figure [4.5 shows that the lo-
gistic regression model indeed performed well, particularly for simulated data under
mixture models (BACC > 0.94). Moreover, across collections, there is a strong cor-
relation between BACCs of the CNNs and the logistic regression models (r? = 0.85).
We also attempted to train the logistic regression model on DNA data simulated
under the GTR+G++I model, but found that there was no significant improvement
during the first 100 epochs (BACC = 0.51). Therefore, the MSA composition is not
informative for the classification of DNA data, but highly informative for AA data.

4.3.3 Classification Accuracy and Pythia Difficulty

For both, GBT, and CNN classifiers, we observed a general trend for lower classifi-
cation accuracy on more difficult MSAs according to the Pythia difficulty score. The
higher the Pythia difficulty for an MSA, the weaker the signal in the data and the
more difficult it is to obtain a well-supported phylogeny, as the likelihood surface
exhibits multiple likelihood peaks that are indistinguishable by standard phyloge-
netic significance tests [66]. In addition to assessing the BACC as a function of the
difficulty of simulated MSAs, we also assessed the BACC as a function of the diffi-
culty of the underlying empirical MSAs. For MSAs with a higher Pythia difficulty, it
should be more difficult to find the true phylogeny, as the likelihood surface exhibits
multiple peaks. However, simulating an MSA requires a reference phylogeny and
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relying on a “bad” tree might have a negative impact on the realism of the simulated
data. If this holds true, the classification of simulated MSAs based on easy empirical
MSAs (that is, simulations based on “good” trees) could be more difficult, leading to
a lower BACC than the classification of simulated MSAs that are based on difficult
empirical MSAs. Interestingly, we observed the opposite effect: the more difficult
the underlying empirical MSAs, the lower the BACC.

Figure 4.6/ depicts this observation for the simulated data collections with the lowest
BACC for GBT (GTR+G+I+mimick) and CNN (LG) respectively. Both Figures
show the BACC as a function of the Pythia difficulty over the simulated MSAs
(left panels), as well as the BACC as a function of the Pythia difficulty over the
underlying empirical MSAs (right panels). The colors indicate the number of MSAs
per difficulty range on a log-scale. All four examples demonstrate a substantial
decrease in BACC with increasing difficulty. Note that the LG data collection only
contains 9 simulated MSAs with a Pythia difficulty > 0.6. The CNN misclassifies
5 of these MSAs as being empirical, resulting in the decrease of the BACC in the
right tail of the left subplot of Figure 4.6(b). A similar effect causes the decrease of
the BACC in the right tail of the right subplot of Figure [4.6(b): only 12 empirical
MSAs have a Pythia difficulty > 0.7, out of which the CNN misclassifies 6 MSAs.
Taking this into account, the decrease of BACC with increasing difficulty is overall
more pronounced for the GBT on the DNA data collection.

We suspect that the decrease in BACC with increasing difficulty is related to the
amount of information in the data: MSAs with low information do not only yield
inconclusive phylogenetic analyses (as indicated by the high Pythia difficulty), but
also lack a strong signal indicating their realism. For instance, an MSA for a highly
conserved gene essentially only contains the information about a single sequence
because all sequences are nearly identical, which yields phylogenetic reconstruction
and classification challenging. An MSA for a less conserved gene contains more
information, which can be leveraged for both, phylogenetic reconstruction, and clas-
sification. In the extreme case, an MSA where all sites are constant would obviously
be difficult to use for both tasks.

To test this hypothesis, we computed a sequence similarity measure for each MSA
in the GTR4+G+I+mimick DNA data collection, and the LG AA data collection.
To this end, we computed the sequence similarity of an MSA as the median pair-
wise Hamming distance of all pairs of sequences. We normalized the Hamming
distance to a zero-one-scale by dividing by the sequence length. The lower this me-
dian hamming distance, the more similar the sequences in the MSA are. We then
computed the Pearson correlation coefficients between the sequence similarities and
the difficulties of the simulated MSAs, and between the sequence similarities and the
difficulties of the empirical MSAs. We performed these analyses for both data col-
lections individually. For the GTR+G+I+mimick DNA data collection, we observe
Pearson correlation coefficients of -0.39 and -0.33 for simulated and empirical MSAs
respectively (P-value < 1072 in both cases). This confirms our hypothesis that the
difficulty tends to increase with increasing sequence similarity. However, for the LG
AA data collection, we could not confirm our hypothesis: the Pearson correlation
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is only -0.07 (P-value < 1077) for the sequence similarities and the difficulties of
the simulated MSAs, and the Pearson correlation is insignificant in correlating the
difficulties of the underlying empirical MSAs to the sequence similarities (correla-
tion coefficient 0.01 with a P-value of 0.65). However, as stated above, the LG data
collection, as well as all remaining simulated gapless AA data collections, comprise
only but a few difficult MSAs (Pythia difficulty > 0.7), leaving little opportunity to
unravel a significant correlation.

4.4 Discussion

In this study, we assessed the realism of sequence simulations by attempting to
discriminate between simulated MSAs and empirical MSAs using two distinct and
independently developed classification methods. Specifically, we evaluated and in-
terpreted the predictive accuracy of these approaches as a measure of realism. By
addressing this question, we aimed to gain insights into the ability of current evolu-
tionary models to accurately simulate evolutionary processes using Continuous Time
Markov Chains (CTMC). The ability to accurately model sequence evolution and
thus simulate realistic MSAs is crucial both for the evaluation of inference tools and
the development of neural density estimation techniques for inference.

Note that producing MSAs that are indistinguishable from empirical ones is a neces-
sary, but not sufficient, condition for the degree of realism of the underlying model.
First, poor classification performance can occur because the classifier deploys inap-
propriate functions or data representations. Hence, one cannot guarantee that the
simulated MSAs are realistic under all possible criteria. Second, poor performance
can also be induced by optimization issues, especially when using deep learning
methods. During our experiments, we observed low accuracies for CNNs several
times. We managed to alleviate this by adapting the learning rate, the number of
filters, or the pooling method, for instance. We thus advise researchers interested
in classification performance as a realism metric to closely monitor indicators of
poor optimization, in particular, learning curves and gradient norms — in our case,
poor optimization also induced a larger variance across folds and accuracy discrep-
ancies for the two classes. Because we found that all simulated MSAs were easy
to discriminate from empirical MSAs, and because our results are consistent across
two technically substantially distinct and independent classification methods, we
conclude with confidence that the simulated MSAs generated in our study are not
realistic.

It is worth noting here that we originally chose to develop a CNN for the classifi-
cation task, as it can capture local dependencies among sites. With a kernel size
greater than one, the network could potentially benefit from these dependencies for
classification, as they are present in empirical MSAs yet cannot be replicated with
standard site-independent models of sequence evolution. However, we discovered
that for AA data, the CNN yields accurate performance, even with a kernel size of
one in combination with global average pooling (as an alternative to the commonly
used local maximum pooling). This type of network primarily focuses on captur-
ing global features while overlooking local among-site dependencies. Consequently,
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these choices enabled us to thoroughly explore the limitations of current sequence
simulations and different evolutionary models beyond their unrealistic assumption of
independently evolving sites. However, in the future, a CNN architecture could be
deployed to assess the importance of local site dependencies that are not accounted
for in current state-of-the-art simulators.

Our study uses two fundamentally different classifiers, which allows for a broader
assessment of possible weaknesses of current sequence evolution simulations: GBT's
rely upon diverse, yet well-defined MSA properties, such as branch lengths or the
randomness features that capture the assumption of homogeneity along MSAs in
standard simulations. Given the high feature importance of the evolutionary rates
(SCC) in the MSA, our GBTs exploit a lack of structure along simulated MSAs. The
CNN only considers site-wise composition vectors, and thus exploits a signal that
is not directly exploited by the GBTs. Furthermore, for the classification we used
diverse and representative empirical AA and DNA databases: TreeBASE comprises
representative data sets that are commonly analyzed in the field because it only
contains MSAs of published studies, whereas HOGENOM offers a diverse sample of
existing data, drawing from 499 nuclear Bacterial genomes, 46 from Archaea, and
121 from Eukaryotes.

The structure detected by our GBTs in empirical nucleotide MSAs from TreeBASE
is not due to the type of genetic code present. We computed the number of stop
codons in all genes in the database and at all three phases, and did not observe an
excess of MSAs with 0 or 1 stop codons per sequence (Figure . However, in the
future it will be interesting to investigate the realism of existing codon models, on
a data set of coding DNA sequences.

We used phylogenetic trees reconstructed from these empirical data collections to
simulate data as realistically as possible. Thereby, we circumvented having to sim-
ulate realistic trees and can invoke simulations that are as similar as possible to the
empirical MSAs. However, it is important to note that the realism of the simula-
tions depends on the quality of the inferred phylogenetic trees when deploying this
procedure. Since we do not know the true trees for the empirical MSAs, we must
acknowledge that there is some uncertainty or error in the inferred trees that the
simulations inherit. Hence, at least part of the classifier accuracy, that is, part of
the difference between the simulations and the empirical MSAs, could be attributed
to the difference between the inferred trees and the unknown true trees. However,
our choice to use ML trees inferred under the same models used for the subsequent
simulation (except for the AA data, see below) may constitute the most realistic
approach toward generating MSAs that resemble empirical MSAs. Indeed, the best-
known ML tree 7' under the model M for an MSA S is the best tree we can find
that maximizes the probability of observing S. Any other tree is less likely to have
generated S under the model M (assuming that the optimization did find the ML
tree). Therefore, by simulating under model M along the tree T, we maximize the
probability (or get close to maximizing it) of generating MSA S. We expect that
thereby, we also obtain a high probability of generating MSAs that resemble S, that
is, MSAs that “look” empirical.
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However, for AA data, the inference of trees from AA MSAs without indels was per-
formed under the LG substitution model. The resulting trees may be different from
the ML tree obtained under the WAG model or under mixture models. In particular,
trees inferred under the LG model may have branches that are too short to be used
for simulating MSAs with site-heterogeneous mixture models because inferences un-
der mixture models typically yield longer branches than inferences under the LG
model. However, looking at the per-site AA diversity (Figure reveals that sites
simulated under mixture models appear more similar to empirical sites than sites
simulated under the LG model. Therefore, it remains unclear why mixture models
failed to improve MSA realism according to our classifiers. Overall, for some of our
experiments on AA data, the mismatch between substitution models used to infer
the trees, and those employed to simulate the MSAs, may be consequential and
warrants further investigation.

The classification task was not difficult, neither for DNA nor for AA data. Our
CNN achieved an average BACC of 0.98 across all evolutionary models. This shows
that existing models of sequence evolution fail to capture important characteristics
of empirical site-wise compositions. In turn, this questions to which extent previous
results obtained on simulated data apply to empirical data.

We originally hypothesized that with increasing evolutionary model complexity, clas-
sification performance would decrease. However, our results do not fully confirm this
initial hypothesis. On the contrary, both classifiers remained highly accurate un-
der the most complex evolutionary models for AA simulations with heterogeneous
stationary distributions across sites. In DNA simulations, the inclusion of rate het-
erogeneity and a proportion of invariant sites did not induce a substantial decrease
in CNN classification accuracy, either. Using the HKY substitution model instead
of the JC model did also not result in more realistic simulations as a function of ob-
served classification performance. Finally, the most simple models, JC and Poisson,
were classified with ease.

Future studies may help characterize the influence of the trees used for simulating
MSAs on their realism. For instance, experiments where we simulate data using
complex models of sequence evolution, and using simpler models on the same trees,
may help us to characterize the ability of our classifiers to distinguish between dif-
ferent models, when the phylogeny is not a confounding factor.

We used a state-of-the-art indel model with individual parameters for insertions
and deletions and sampled indel parameters from approximated joint distributions.
Nevertheless, both classifiers could again easily distinguish simulated from empirical
MSAs. In fact, classification accuracy substantially increased on DNA data with
indels compared to DNA data without indels (GTR4G+I). In contrast, using the
mimick procedure to superimpose gaps onto simulated data appeared to result in
more realistic MSAs. Yet, these MSAs could still be easily identified as simulated
ones based on their site-wise compositions, as shown by the CNN results.

Furthermore, the prediction accuracy for AA data tended to be higher than the
prediction accuracy for DNA data. We suspect that this is due to the higher number
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of states in the AA alphabet and therefore the increased number of possible patterns
in an AA MSA, which makes it harder to simulate realistic data.

Our findings suggest that existing evolutionary models might not be able to gen-
erate data collections that appropriately resemble global low-level site composition
features of empirical DNA or AA data collections using standard site- and position-
independent CTMC. Considering the high importance of randomness related fea-
tures for the GBT classifiers, and the respective feature value distributions, we
conclude that the rate of evolution across sites of simulated MSAs are generated
more uniformly along the MSA compared to empirical MSAs. For instance, we
found that current models cannot reproduce the serial correlation of evolutionary
rates that is present in empirical MSAs. We further observe that the proportion of
invariant sites in standard simulations reduces their realism as measured by GBT.
In addition, the CNN results reveal that simulated MSAs have unrealistic proper-
ties in terms of site-wise compositions that are independent of correlations among
neighboring sites.

The unexpectedly high accuracy of the logistic regression model on simulations under
mixture models that produce heterogeneous stationary distributions across sites in-
dicates that these models simulate MSAs with an average MSA composition which is
distinct from that of empirical data. This is particularly surprising for the LG+S256
models, which had been trained on HOGENOM data [153]. This discrepancy is un-
likely to arise from simulating on trees inferred under the LG model rather than
mixture models. Indeed, shorter branches in the LG trees should result in lower
per-site AA diversity. However, we did not observe this in our data collections,
as sites in simulations under the LG model have slightly higher AA diversity than
those in empirical data (Figure . Moreover, the site-wise AA diversity appeared
similar between simulations under LG+S5256 and empirical data. The causes for the
discrepancy in average MSA compositions need to be further investigated.

We believe that in the years to come, learning-based, likelihood-free approaches are
likely to be more widely used in our field. Especially, if their performance (both in
terms of phylogenetic reconstruction accuracy and runtime) is superior. However, we
further believe that likelihood-based inference will continue to play an important role
in the area of computational phylogenetics, as the statistical properties of ML and
Markov chain Monte Carlo (MCMC) methods for posterior estimation still benefit
from a better empirical knowledge.

Looking forward, this work paves the way for approaches to simulate more realistic
MSAs by developing more realistic models of sequence evolution. We conclude that
a substantial amount of research remains to be conducted to improve substitution
as well as indel evolution models, for both, AA, and DNA data.
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Figure 4.1: Schematic overview of our experimental setup. Based on a set of empir-
ical MSAs (empirical data collection), we determined parameters for sequence sim-
ulation and simulated new MSAs (simulated data collection) under a given model
of evolution using AliSim. Using the empirical and simulated data collections, we
trained two distinct classifiers: a Gradient Boosted Tree (GBT) and a Convolutional
Neural Network (CNN). The goal of both classifiers is to distinguish empirical from
simulated MSAs. For training and evaluating our classifiers, we used a 10-fold cross
validation procedure (not depicted for simplicity). In each fold, 90% of the data
were used for training and 10% were used for performance evaluation. We evaluated
the overall performance of the classifiers via the BACC.
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Figure 4.2: Visualized substitution rates for an anecdotal (specifically selected to
highlight the issue) gapless empirical DNA MSA (left), and gapless simulated MSA
(right) generated based on the inferred tree and estimated evolutionary model pa-
rameters of the left MSA under the GTR model. The x-axis denotes the MSA site
index. A brighter color denotes more substitutions.
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Figure 4.3: Feature distribution of SCC feature values for one exemplary DNA and
AA data collection. The dark bars represent the respective empirical data collection
and the light bars represent the respective simulated data collection.
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Figure 4.4: Feature distribution for important features for classifying the JC data
collection. The dark bars represent the empirical data collection and the light bars
represent the simulated JC data collection.
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(b) BACC of the CNN classifier on the LG data collection as a function of the
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Figure 4.6: The accuracy of the GBT and CNN classifiers as a function of the
Pythia difficulty of the underlying MSAs. The number of MSAs per difficulty range
is indicated by colors (log-scale), as well as text annotations.
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Figure 4.7: Number of stop codons in all translated DNA sequences of all MSAs
of the empirical TreeBASE data collection. To ensure that we are not missing stop
codons due to a shift in the reading frame, we computed the number of stop codons
without shift, with one, as well as with two shifts in each sequence.
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Figure 4.8: Site-wise AA diversity as number of unique AAs per site.
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This chapter is derived from the peer-reviewed open-access publication:

Julia Haag, Alexander I. Jordan and Alexandros Stamatakis. “Pan-
dora: A Tool to Estimate Dimensionality Reduction Stability of Geno-
type Data.” Bioinformatics Advances, Volume 5, Issue 1, March 2025.
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Julia Haag designed, implemented, and evaluated the algorithm. All text and
figures in this chapter were created by Julia Haag. Alexander I. Jordan provided
statistical knowledge and helped design the Pandora Support Values. Alexandros
Stamatakis contributed background knowledge, discussion, and feedback.

5.1 Background and Motivation

Dimensionality reduction techniques such as Principal Component Analysis (PCA)
and Multidimensional Scaling (MDS) are routinely deployed in numerous scientific
fields as they facilitate data visualization and interpretation. Both methods project
high-dimensional data to lower dimensions, while preserving as much variation, and
thus information, as possible. Ever since the first application of PCA to genetic data
almost half a century ago [118], PCA as well as alternative dimensionality reduction
techniques have been widely used in modern population genomic analyses, including
ancient DNA studies, to draw conclusions about population structure, genetic varia-
tion, or demographic history. For example, Hughey et al. [83] found that the Minoan
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civilization did not originate from Africa, relying on PCA results. However, due to
common challenges such as missing data and noise, the deployment of dimensionality
reduction techniques to analyze ancient DNA or conduct contemporary population
genetics studies is controversial. For instance, Yi and Latch [196] demonstrated that
missing data can bias PCA analyses. Thus, quantifying the intrinsic uncertainty is
pivotal to conclusive and cautious result interpretation. For example, the relative
location of a population or an individual in a PCA/MDS embedding determines its
relation to other populations or individuals. If there exists a substantial uncertainty
regarding the projection location for some, or even all individuals in a study, the
respective conclusions may potentially be erroneous and hence misleading. To the
best of our knowledge, there currently exists no method to quantify the inherent
uncertainty of dimensionality reduction techniques in either ancient or contempo-
rary population genetics studies. To address this challenge, we introduce Pandora,
an open-source tool that estimates the uncertainty of PCA and MDS analyses of
population genetics and ancient DNA genotype datasets. Pandora estimates the
uncertainty via bootstrapping over the Single Nucleotide Polymorphisms (SNPs).
In addition to an overall, global stability score, Pandora also estimates the stability
of a subsequent k-means clustering based upon the computed embeddings. Both
stability scores have values that range between zero and one. Higher values indicate
a higher stability and thus a lower uncertainty regarding the computed embedding
for the respective dataset. Beyond this, Pandora also infers dedicated per-individual
bootstrap support values for all individuals in the dataset. These support values in-
dicate whether an individual’s location in the lower-dimensional embedding space is
stable across bootstrapped embeddings, or, if the individual should be considered as
being “rogue” when its projections between distinct bootstrapped embeddings differ
substantially. For such a “rogue” individual, any conclusion concerning, for instance,
the assignment to a specific (sub-)population should be carefully (re-)considered.

Pandora is implemented in Python and is available open-source on GitHub https:
//github.com/tschuelia/Pandora. It can be used via the command line or as a
Python library. A thorough documentation of the tool, including usage examples,
is available at https://pandorageno.readthedocs. io.

5.2 Methods

Figure [5.1] outlines our algorithm to estimate the stability of a genotype dataset un-
der dimensionality reduction via bootstrapping. We initially generate B bootstrap
replicates by randomly sampling from the set of Single Nucleotide Polymorphisms
(SNPs) in the input genotype data with replacement. Then, for each bootstrap repli-
cate, we perform a dimensionality reduction using either PCA or MDS, depending
on the user’s choice. Based on the computed embedding replicates, we subsequently
compute three stability values: the overall Pandora stability (PS), the per-individual
Pandora Support Values (PSVs), and, after applying k-means clustering, the Pan-
dora Cluster Stability (PCS).

In the following, we describe Pandora’s bootstrap procedure in more detail, focusing
on the pairwise comparison of two embeddings, as well as the computation of the
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Figure 5.1: Schematic overview of the bootstrap-based stability analyses for geno-
type data, as implemented in our Pandora tool.
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PS, PCS, and PSVs values. For further details on genotype data and dimensionality
reduction, see Section [2.2|

Henceforth, the term ‘population’ refers to its biological rather than to its statistical
interpretation. We refer to a genotype data sequence in the input data as a single
individual and, in general, each individual is associated to a population (for instance
“Greek”).

5.2.1 Genotype Data Representation

The input to Pandora is a genotype data matrix G € N x M comprising M SNPs
recorded for N individuals (see Section[2.2.1). Pandora supports two distinct geno-
type data representations: file-based and NumPjy-based. For the file-based input,
Pandora expects three distinct files per dataset: one genotype file containing the
sequence data, one file containing metadata for each SNP, as well as one file contain-
ing metadata for each individual. Pandora supports the three file formats defined
by the EIGENSOFT software package [133] (EIGENSTRAT, ANCESTRYMAP,
PACKEDANCESTRYMAP), as well as the pedigree, and binary pedigree formats
defined by the PLINK software package [143]. The NumPy-based representation
relies on data matrices as defined by the Python library NumPy [69]. This allows
users to preprocess their dataset using custom (Python) scripts without requiring
an explicit (and potentially complicated as well as error-prone) conversion into a
specific population genetics file format. Additionally, this input format allows for
a more generic deployment of Pandora in other fields of biology beyond population
genetics, such as PCA analyses of gene expression data, for instance.

Note that Pandora requires a preprocessed dataset, as it does not internally handle
preprocessing. Thus, preprocessing steps, such as pruning Linkage Disequilibrium
(LD) or rare variant filtering, must be completed before conducting Pandora analy-
ses. This prerequisite does not constitute a limitation of Pandora as it applies to any
PCA or MDS analysis. For instance, EIGENSOFT’s smartpca tool also expects a
preprocessed dataset when performing a PCA analysis. Thus, regardless of the spe-
cific analytical tool employed, conducting proper dataset preprocessing constitutes
a fundamental step in population genetics research.

5.2.2 Dimensionality Reduction

Pandora supports two distinct dimensionality reduction techniques: Principal Com-
ponent Analysis (PCA; see Section [2.2.2.1) and Multidimensional Scaling (MDS; see

Section [2.2.2.2).

If the user provides the genotype data using the file-based representation, Pandora
computes all PCA embeddings via EIGENSOFT’s smartpca tool, as it has been
specifically designed and highly optimized for population genetics data [133, 140].
Therefore, Pandora supports and propagates all additional smartpca PCA analysis
commands, including the option to project (ancient) individuals onto an embedding
computed using another, distinct set of individuals. For MDS analyses, Pandora
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computes the Fgr distance matrix using smartpca and subsequently applies metric
MDS as implemented in scikit-allel [120].

Using the alternative NumPy-based data representation, Pandora performs all PCA
analyses using the PCA implementation provided in the Python machine learning
library scikit-learn [135]. In analogy to the file-based data representation, the de-
fault distance metric is the Fgr distance (in this case as implemented in scikit-allel).
Pandora also provides alternative distance metrics such as the Euclidean, Manhat-
tan, or Hamming distances. The subsequent MDS is computed using the scikit-allel
implementation of metric MDS.

Note that choosing the appropriate number of components for PCA or MDS con-
stitutes a challenging and debated question. Patterson et al. [133] propose to base
this decision on the Tracy-Widom statistic, but Elhaik [41] claims that this statistic
is too sensitive and results in overestimating the appropriate number of PCs. A
common criterion used in other PCA application domains is to compute as many
PCs as required to explain, for instance, 80% of the variance. However, this is not
applicable to genotype data due to its extremely high dimensionality. For example,
to explain 80% of the variance for a dataset analyzed by Lazaridis et al. [102] com-
prising approximately 600 000 SNPs, over 500 PCs need to be computed. In analogy
to Price et al. [140], we thus set the default number of components for PCA analyses
in Pandora to 10. For MDS analyses, we set the default number of components to
2. Pandora users can specify any number of components that best suit their analy-
sis. Pandora uses all computed PCA or MDS components for its stability analyses.
Further, note that the user needs to make an informed decision on the number of
components to perform dimensionality reduction regardless of using Pandora.

To keep the following description of Pandora as generic as possible, we henceforth
refer to the result of a PCA or MDS analysis as embedding and denote it as Z.

5.2.3 Bootstrapping Genotype Data

The bootstrap procedure [40] is a statistical approach to quantify measures of ac-
curacy based on random sampling with replacement from a set of observations.
Estimating the stability of PCA using bootstrapping is not a novel concept. For ex-
ample, Fisher et al. [50] propose a bootstrap-based method to estimate the sampling
variability of PCA results on datasets where the number of features is substantially
larger than the number of samples. However, standard bootstrapping methods are
not directly applicable to genotype data. A necessary condition for bootstrapping
is the (assumed) independence of the bootstrapped dimensions. In general, individ-
uals (especially individuals of the same species) do not evolve independently of each
other. However, Felsenstein [48] argues that we may assume independent evolution
of genetic loci. Therefore, in Pandora, instead of sampling the individuals, we sam-
ple the SNPs to obtain a new bootstrap replicate matrix B € N x M. Thus, a
bootstrap replicate has the same set of individuals but a distinct SNP composition.
In doing so, we follow the standard approach used in phylogenetics, as first proposed
by Felsenstein [48].
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The computations of embeddings for individual bootstrap replicates are independent
of each other, and their computations are therefore straight-forward to parallelize.
Pandora exploits this parallelism and also allows users to specify the number of
threads to use.

Since Pandora computes a lower-dimensional embedding (a compute-intensive di-
mensionality reduction) of each bootstrap replicate, the computational resource re-
quirements for Pandora’s uncertainty estimation are substantial. To alleviate this,
we periodically perform a heuristic convergence assessment until a maximum num-
ber of bootstrap replicates is reached. The frequency of this convergence check is
determined by the number of threads being used. During the convergence check,
Pandora assesses the variation of PS estimates based on random subsets of the com-
puted replicates at the time of the convergence check. When this variation falls
below a certain tolerance level, Pandora terminates all remaining bootstrap compu-
tations and conducts the final stability value calculation using the set of completed
bootstrap replicates. We provide a more detailed description of our convergence
criterion in Section [5.2.5 below.

5.2.4 Stability Estimation
5.2.4.1 Pandora Stability

The Pandora Stability (PS) describes the overall stability of the genotype dataset
that is based on the pairwise similarity scores over all bootstrap replicates. To
compute the similarity between two bootstrap embeddings Z* and Zv, we follow
the approach suggested by Wang et al. [184] using Procrustes analysis. Procrustes
analysis determines the optimal transformation f(Z") that matches the projections
of all individuals g; in Z* to Z" as accurately as possible while preserving the
relative distances between individuals. This transformation consists of a scaling
factor, a rotation and reflection matrix, and a translation matrix. In Pandora, we use
the Procrustes analysis as implemented in the Python scientific computing package
SciPy [182]. Before computing the optimal transformation, both embeddings are
standardized such that trace(ZZ") = 1, and both sets of points are centered around
the origin to remove translation effects. The optimal transformation minimizes the
squared Frobenius norm (also called disparity)

D" =|f(2") = Z"|[3- (5.1)

The disparity D*" has a minimum of 0 and a maximum of 1 [184]. Based on this
disparity, we can compute the pairwise similarity as

PS"" = /1 Dwv (5.2)

on a scale from 0 to 1, with higher values indicating higher similarity [184].

To obtain the overall PS, we average over the pairwise similarity across all @

possible distinct pairs of bootstrap replicates

2
PS=——— PS™". 5.3
B(B-1) 1<uz,U:<B (53)

u<v
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The resulting PS is again a value between 0 and 1. The higher the PS, the more
similar the bootstrap replicates are, with 1 indicating that all bootstrap embeddings
identically project all individuals.

5.2.4.2 Pandora Cluster Stability

In analogy to the PS, we initially compute the pairwise Pandora Cluster Stability
(PCS) for all unique pairs of bootstrap embeddings and then average over all pairwise
scores to obtain the overall PCS

2
PCS=——" PCS™, (5.4)
B(B —1) 131%333

u<v

To compute the pairwise PCS™" for bootstrap embeddings Z" and Z", we first
match both embeddings using Procrustes analysis as described above and subse-
quently perform an independent k-means clustering for the two embeddings. To
compare the resulting label assignments for all individuals, we use the same number
of clusters k for both embeddings. Finally, we compute the pairwise PCS“" for
bootstrap embeddings Z" and Z" via the Fowlkes-Mallows index [56].

The PCS is a value between 0 and 1. The higher the PCS, the higher is the similarity
between clustering results across bootstraps.

Selecting the number of clusters k£ to best represent the dataset is not trivial. Pan-
dora users can manually set the number of clusters based on, for instance, prior
knowledge of the expected underlying (sub-)population structure in the data. When
the user does not explicitly specify k, we automatically determine the optimal k
based on a grid search and the Bayesian Information Criterion (BIC) [154]. To
reduce the computational cost of searching for the optimal k, we determine an in-
put data specific upper bound via the following heuristic. If the individuals of the
dataset to be analyzed include population annotations, we set the upper bound to
the number of distinct populations in the dataset. If this information is not avail-
able, we set the upper bound to the square root of the number of individuals in the
dataset. Based on empirical parameter exploration experiments, we set the lower
bound to 3. During Pandora development, we observed a substantial influence of
k on the resulting PCS scores for various empirical population genetics datasets.
Figure [5.2 depicts this observation for a dataset of West-Eurasian individuals [102]
with 100 bootstrap replicates for k € [3,15]. While we do observe a general trend
for decreasing PCS values with an increasing number of clusters k, we also observe
fluctuations for k € [5, 8] without a clear trend.

We thus strongly recommend users to provide a reasonable k to Pandora based
on prior knowledge or preliminary experiments, for instance, using the number of
distinct populations in the dataset. We further note that the PCS should only be
reported in conjunction with the number of clusters k.
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Figure 5.2: PCS for the HO-WE dataset as a function of the number of clusters k
used for k-means clustering.

5.2.4.3 Pandora Support Values

To assess the projection stability for each individual in the dataset, we compute the
Pandora support for each individual g; as

Zlguing“gi,u - gi,v” ( )
2B - Y 1<u<pllgiull

where g, ,, and g;, denote the projection of g; in bootstrap u and v, respectively.

The fraction in Equation corresponds to the Gini coefficient, a statistical mea-
sure of dispersion from economics. In our case, the Gini coefficient measures the
dispersion of the projections of an individual with respect to all bootstrap replicates
on a scale from 0 to 1. The higher the dispersion, the higher the Gini coefficient
will be. To align this with the interpretation of the PS and PCS values, where 0
corresponds to unstable and 1 to stable, we simply subtract the calculated dispersion
measure from 1.

5.2.5 Bootstrap Convergence Criterion

As stated above, the implemented bootstrap procedure in Pandora induces high
computational resource requirements. To reduce this computational overhead, we
periodically perform a heuristic convergence assessment until a maximum number
of bootstrap replicates is reached. The frequency of this convergence check is deter-
mined by the number of threads used.

The default setting is a maximum of B := 100 bootstrap replicates. Now, let
B* be the number of bootstrap replicates already computed when performing the
convergence assessment. We create 10 subsets of size B = 37* by sampling 10 times
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without replacement from the set of B* completed bootstraps. We then compute
the Pandora Stability (PS) for each of the 10 subsets and determine the relative
difference of PS values between all pairs of PS values (PS", PS): %. We
assume convergence if no pairwise relative difference exceeds a. In other words,
we require that the highest sampled stability is at most « - 100% larger than the
lowest sampled stability. If this is the case, all remaining bootstrap computations
are omitted. Pandora allows users to explicitly set the convergence tolerance «;
the default setting is 0.05. Note that we decided to sample 10 subsets of size B
as a trade-off between the accuracy and the additional runtime overhead induced
by the bootstrap convergence assessment. The runtime overhead induced by the
convergence assessment is substantial, as we need to compute the PS for each of the
B(B-1)
2

subsets, meaning that we need to perform Procrustes analyses.

We also determine the frequency of invocation of this convergence assessment based
on the number of threads specified by the user, which defines the size of a full batch
of bootstrap replicates. Pandora checks for convergence after every full batch or
once 10 replicates are computed, whichever number is higher. For example, if a user
executes Pandora with 40 threads, it will compute 40 bootstrap replicates in parallel
and hence complete 40 replicates at approximately the same time. If Pandora were to
run the convergence assessment after completing 10 bootstraps and determined that
it has converged, we would discard 30 (almost) finished bootstraps, thus wasting the
resources used for their computation, as well as for three unnecessary convergence
assessment computations (after 10, 20, and 30 completed replicates).

5.2.6 Simulating Genotype Data

We use simulated genotype data to verify whether Pandora can detect instability
in genotype data under dimensionality reduction. We simulated genotype datasets
using the stdpopsim python library [3, [101]. This library provides a catalog of
13 distinct, published human demographic models describing the demographic his-
tory of various human populations. We simulated genotype data according to each
model to generate realistic whole-genome population genetic data. Note that we
use msprime [14] as simulation engine for all following stdpopsim simulations. The
msprime tool simulates data via the coalescent model (see Section [2.2.1.1). To not
bias the simulations in favor of single populations, we simulated the same number
of individuals for each population in the demographic model, up to a total of 500
individuals.

Figure [5.3] visualizes our simulation pipeline. We first simulated genotype datasets
with a target sequence length of 10°, 10°, 107, and 10® nucleotides. While the result-
ing simulated sequences are of this target length, not all positions in the simulated
sequences are SNPs. Consequently, we only used the SNPs for the subsequent anal-
yses. Following standard population genetics data preprocessing procedures [7,102],
we filtered rare variants (MAF filtering) and removed correlated SNPs by applying
Linkage Disequilibrium (LD) pruning using PLINK 2.0 [29]. We removed SNPs with
an allele frequency below 1%. We applied LD pruning with a r? threshold of 0.5, a
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Figure 5.3: Schematic overview of the implemented simulation pipeline.

window size of 50 and a stride of 5. Table 5.1 states the resulting number of SNPs
per simulated dataset (by model and target sequence length).

Using our 13 simulated datasets with a target sequence length of 10®, we distorted
the data by injecting random missing data and random noise. For the missing data
simulations, we randomly replaced a certain proportion of entries in the genotype
matrix with the missing value character (1%, 5%, 10%, 20%, and 50%). For simulat-
ing noisy data, we randomly replaced a certain proportion of values in the genotype
matrix with random variants (10%, 20%, and 50%). The number of SNPs remains
unaffected by these changes. Note that we did not mix missing and noisy data simu-
lations. That is, for the missing data simulations we did not inject additional noise,
and for the noise data simulation we did not inject missing data.

We performed Pandora stability analyses using PCA and MDS for all datasets high-
lighted in Figure . For PCA analyses, we reduced the data to 10 dimensions (the
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Target Sequence Length

Demographic Model 10° [ 105 | 107 108
Africa_1B08 217 | 2255 | 22172 | 222290
Africa_1T12 195 | 1924 | 18924 | 190410
AmericanAdmixture_4B11 165 | 1470 | 13076 | 135622
AncientEurasia_9K19 142 | 1331 | 13446 | 133 883
AncientEurope_4A21 60 | 692 | 6722 | 65006
AshkSub_7G19 183 | 2202 | 21573 | 207071
OutOfAfrica-

ArchaicAdmixture_5R19 1051 1019 ) 10546 | 106972
OutOfAfricaExtended-

Neandertal AdmixturePulse_3121 272 | 2920 | 29971 | 296 220
OutOfAfrica_2T12 182 | 1769 | 16721 | 163492
OutOfAfrica_3G09 153 | 1560 | 15725 | 156 819
OutOfAfrica_4J17 127 | 1502 | 14477 | 142285
PapuansOutOfAfrica_10J19 411 | 3994 | 38065 | 373325
Zigzag 1514 150 | 1586 | 17449 | 171090

Table 5.1: Number of SNPs in the simulated population genetics datasets per target
sequence length.

default setting in smartpca). For MDS analyses, we reduced the data to 2 dimen-
sions, and we used the Euclidean sample distance as the distance metric. We used 20
threads for all Pandora analyses. If not stated otherwise, we used Pandora’s default
bootstrap convergence setting (convergence tolerance of 5%).

We implemented the outlined simulation pipeline using the Snakemake workflow
management system [94]. Note that we explicitly set the random seed for each sim-
ulation to ensure reproducible simulation results. We provide all scripts required
for reproducing our simulations on GitHub at https://github.com/tschuelia/
PandoraPaper, and all simulated datasets (including all datasets with random miss-
ing and noise data) in EIGENSTRAT format at https://cme.h-its.org/exelixis/
material/Pandora_supplementary_data.tar.gz.

5.3 Results

In the following, we demonstrate the utility of Pandora. Due to the novelty of our
approach, and the novelty of stability estimation of genotype data under dimen-
sionality reduction, there exists no benchmark data collection to compare Pandora
against. We therefore verify and demonstrate the functionality of our proposed
approach using our simulated genotype data and empirical, published population
genetics datasets. We additionally analyze the influence of the implemented boot-
strap convergence check on the stability estimates and the runtime of Pandora.

All scripts to reproduce the following analyses, as well as all results, are available
via the aforementioned GitHub and data download links.
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Figure 5.4: PS values for PCA (left panel) and MDS (right panel) analyses as a
function of the target sequence length for the simulated genotype datasets.

5.3.1 Simulated Data

We first analyze the simulated data with varying sequence lengths (10°, ..., 108).
Simulating longer genomes increases the number of SNPs in the simulated dataset.
With increasing SNP numbers, we expect the amount of informative data in the
genotype dataset to also increase. Thus, we expect dimensionality reduction to bet-
ter capture population structure. Consequently, we expect PCA or MDS results to
become more stable with increasing SNP numbers in the dataset. Note that, as
stated above, while we simulate sequences of length 10, this will not necessarily
yield 10° SNPs since not all genomic sites evolve. Since the resulting SNP num-
ber varies as a function of the demographic model, in the following, we identify
datasets via the target sequence length. Figure|5.4|shows the distribution of PS val-
ues for PCA (left panel) and MDS (right panel) analyses as a function of the target
sequence length. The expected trend of higher stability with increasing target se-
quence lengths is clearly visible for both, PCA, and MDS. This trend can be further
visualized by plotting the first two principal components of the PCA analysis per
target sequence length. Figure [5.5| visualizes the first two principal components of
the PCA computed for data simulated under the AncientEurope_4A21 demographic
model with increasing target sequence lengths (10°, ..., 10%). The longer the target
sequence, the better the population structure becomes visible. As expected, the PS
increases with increasing sequence lengths.

Missing data is known to affect the stability of dimensionality reduction [196]. We
therefore expect decreasing PS values with increasing proportions of missing data.
To test this hypothesis, we distorted simulated datasets by injecting missing data
into our datasets with a target sequence length 108. Note that we used the datasets
with the maximum target sequence length to not bias the following analysis by
weak(er) signal resulting from small SNP numbers in the dataset. For the missing
data impact analysis, we distorted the dataset by replacing proportions of the data
(1%, 5%, 10%, 20%, and 50%) with the missing data character. Note that this
does not alter the number of SNPs per dataset. Further, note that imputing (or
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Figure 5.5: The first two principal components of the PCA computed for data
simulated under the AncientEurope_4A21 demographic model with increasing target

sequence lengths.

removing) missing data is essential for PCA or MDS analyses, as the underlying
mathematical frameworks cannot process incomplete datasets. Thus, we imputed
missing data using mean imputation.

Figure |5.6(a)| shows the distribution of PS values as a function of the missing data
proportion for PCA analyses. We do observe the expected trend of decreasing PS
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Figure 5.6: PS values for PCA (left panel) and MDS (right panel) analyses as
a function of the proportion of random missing data for the simulated genotype
datasets.

values with increasing missingness. Yet, even with 50% missing data, the results
are relatively stable with an average PS value of 0.78, and its decline is not as sub-
stantial as one might expect. One reason for this is that the simulated datasets are
overall clearly structured with highly distinct populations. For example, Figure|5.7|
shows the first two principal components of the dataset simulated according to the
demographic model of ancient European populations with increasing proportions of
missing data. Despite the high proportion of missing data of 50% (bottom right
panel), the population structure was easily recovered. We observe only a slight
dispersion within the individual population clusters compared to the PCA on the
dataset without missing data (upper left panel). Furthermore, Yi and Latch [196]
report analogous findings: while PCA results are affected by random missing data,
high proportions of random missing data can be compensated by a strong underlying
population structure.

For MDS analyses, we observe no substantial effect of missing data on the stability of
genotype datasets for missing data proportions of up to 20%. Even for 50% missing
data, we only observe a slight PS decrease (Figure [5.6(b)). Evidently, the distance
matrix calculation is comparatively robust to missing data imputation, as is the
MDS embedding construction with respect to small changes in the distance matrix.

In contrast to missing data, noisy data cannot be imputed, as we do not know
which part of the data is noise and which part is “real” data. We expect lower PS
values for higher proportions of noise in the dataset because uninformative noise
distorts the dataset structure. For the following simulations, we used our simulated
datasets with a target sequence length of 10 and without any missing data. We
distorted the data by adding 10%, 20%, and 50% of noise. To this end, we altered
single genotypes of randomly selected SNPs and individuals in the genotype matrix.
As expected, we observe a substantial stability decline with increasing proportions
of random noise. We observe this result for both, PCA (Figure 5.8(a)), and MDS
(Figure |5.8(b)) analyses. However, the effect is substantially more pronounced in
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Figure 5.7: The first two principal components of the PCA computed for data
simulated under the AncientEurope_4A21 demographic model with a target sequence
length of 10® and increasing proportions of random missing data.

PCA analyses. In analogy to the argument above, we suspect MDS to be less prone
to distorted data due to the distance matrix-based approach.

Using the simulated dataset of the demographic model of ancient European individu-
als, Figure|5.9| visualizes the impact of noise on the resulting population structure in
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Figure 5.8: PS values for PCA (left panel) and MDS (right panel) analyses as a
function of the proportion of random noise data for the simulated genotype datasets.

the PCA, clearly showing a higher dispersion of individuals with higher proportions
of noise.

Given that Pandora consistently reflects the expected trends of increasing stability
with an increasing number of SNPs, and decreasing stability with increasing pro-
portions of missing and noisy data, we conclude that bootstrapping-based stability
estimation adequately captures instability in dimensionality reduction studies.

5.3.2 Empirical Data

All simulated datasets exhibit a clear underlying population structure. As this is not
necessarily the case for empirical data, we also demonstrate the utility of Pandora
on empirical datasets. Additionally, PCA or MDS studies are frequently applied in
ancient DNA (aDNA) studies. Usually, in aDNA studies, the embedding is com-
puted using a dataset of modern individuals. Subsequently, ancient individuals are
projected onto the resulting PCA or MDS embedding. In human population stud-
ies, especially in work on newly sequenced ancient specimen, the Human Origins
(HO) SNP Array [102] comprising 2068 publicly available individuals is used as a
reference dataset of modern individuals. For our first empirical analysis, we assem-
bled the West-Eurasian subset based on the description provided by Lazaridis et al.
[102]. The resulting West-Eurasian subset contains 813 individuals from 55 distinct
populations. We henceforth denote this dataset as HO-WE. The HO-WE dataset
contains 605 775 SNPs with 0.5% missing data. We then merged the HO- WE dataset
with the 13 ancient Cayonii individuals published by Altimigik et al. [7] (HO-WE-
Cayonii). These ancient individuals contain between 90% and 99% of missing data.
Using the smartpca option lsgproject:YES, we computed all PCA embeddings in
the following analysis using the modern individuals only and then projected the 13
ancient Cayonii individuals onto the resulting embeddings. According to Pandora,
the HO-WE-Cayoni dataset is overall very stable under PCA, with a PS of 0.89.
In their analyses, Altimgik et al. [7] computed a 95% confidence region for the first
two principal components using the confidence ellipse function in smartpca. This
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Figure 5.9: The first two principal components of the PCA computed for data
simulated under the AncientEurope_4A21 demographic model with a target sequence
length of 10® and increasing proportions of random noise.

confidence interval indicates a high projection uncertainty, especially for the cay015
individual. Our results are in line with these findings, as the cay015 individual has
a PSV of only 0.54 according to our analyses. Figure[5.10 visualizes this behavior,
showing the computed PCA embeddings of two bootstrap replicate datasets and
highlighting the cay015 individual. A comparison of the figures clearly shows that
the positions of the cay015 individual in both embeddings differ substantially, hence
the low PSV. For individuals with such low PSVs, conclusions based on PCA anal-
yses should only be drawn with extreme caution. For example, cay015 is projected
closest to an Israeli individual in the PCA of the unbootstrapped HO-WE-Cayonii
dataset (BedouinA population). However, when considering the two bootstraps we
used in Figure @, cay015 is projected closest to a Yemeni individual (bootstrap
replicate #1; Yemenite-Jew population) and a Libyan individual (bootstrap repli-
cate #2; Libyan-Jew population), respectively. These observations are again in line
with the findings of Altinigik et al. [7], as they conclude that Cayonii is a genetically
diverse population.
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Figure 5.10: PCA embeddings of two bootstrap replicates of the HO-WE-Cayonii
dataset The highlighted points correspond to the respective projection of the cay015
individual.

We suggest filtering individuals with low PSVs before conducting any additional
analyses. If, however, the individuals with low PSVs are important to the study,
we suggest performing additional analyses, for instance admixture analyses. Since
version 8, smartpca includes a confidence ellipse functionality that plots a 95% confi-
dence region for individuals. This functionality can be particularly useful for placing
ancient individuals (see for example the analyses in Altimsik et al. [7]). However,
the confidence ellipse only considers the first two principal components and does
not quantify the instability. Instead, it yields a plot showing the confidence regions.
Consequently, this approach cannot be applied simultaneously to all individuals in
the dataset, as the resulting figure would be overly complicated and uninforma-
tive. With Pandora, users can pre-filter unstable individuals with low PSVs and
subsequently perform a more targeted confidence region analysis.

Finally, we analyzed two datasets of genomic dog data published by Morrill et al.
[126]. Using the respective definition of Morrill et al. [126], we assembled a subset
of 601 purebred dogs and a subset of 1071 highly admized dogs based on the 2155
publicly available genomic dog sequences comprising 6059222 SNPs. The idea of
this analysis was to demonstrate the usage and utility of Pandora’s PCS estimate.
We determined the number of distinct breeds in each dataset using the data provided
by Morrill et al. [126]. The purebred dogs comprise 88 distinct breeds, whereas the
highly admixed dogs comprise 60 distinct dog breeds. We assessed the stability of
breed assignments via the PCS as estimated by Pandora, using the respective number
of breeds as k in k-means clustering. Morrill et al. [126] consider a dog as being highly
admized if it has below 45% ancestry from any single breed in admixture analysis.
Consequently, we expect a lower PCS for the highly admized dataset compared to
the purebred dataset. In fact, for the highly admized dataset we observe a PCS of
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only 0.63, whereas the purebred dataset is substantially more stable under k-means
clustering with a PCS of 0.87.

5.3.3 Speedup and Accuracy under the Bootstrap Convergence
Criterion

In the following, we describe our analysis setup to assess the influence of the im-
plemented bootstrap convergence check as described in Section [5.2.5 on the stabil-
ity estimates and the runtime of Pandora. For each of the 13 simulated genotype
datasets (target sequence length 10® and no missing or noisy data), we performed the
following analyses. As baseline, we executed Pandora with the full set of Bygg := 100
bootstrap replicates (default Pandora setting) and disabled the bootstrap conver-
gence check. We denote the runtime of this execution by Tigy, the PS as P.Sigo,
and the PSVs as PSVig9. We further executed Pandora twice with the convergence
check enabled, but with a different convergence tolerance in each execution. In one
execution, we set the convergence tolerance to 0.05 (5%) and in a second execution
to a more conservative value of 0.01 (1%). We denote the results of both execu-
tions as Tsy, PS5y, PSVsy and Ty, PSieq, PSVig, respectively. We further report
the number of bootstraps required for convergence in both runs (Bsy, Big). To
compare the runtimes, we computed the speedups S5y, = :;15?; and Sig = 5}0/0 A
speedup below 1 indicates that the runtime with the convergence check enabled ex-
ceeds the runtime of computing all 100 replicates without checking for convergence.
In cases where the bootstrap procedure does not converge before all 100 bootstraps
have been computed, the speedup is necessarily below 1 due to the additional con-
vergence checks. To analyze the potential loss in stability analysis accuracy induced
by the early termination, we computed the deviation of PS values,

|PSs9, — PSi00] and |PSi9 — PSiol,
as well as the deviation of PSVs,
|PSV;% _PSW00| and |P5V1i% - PSV1i00|
fori=1,...,N.

Figure|5.11 shows box plots for the speedup, PS deviation, and PSV deviation of the
Pandora execution under the 5% and 1% convergence tolerance settings for PCA
analyses. We observe an average speedup of 2.6 + 0.6x for the 5% convergence
tolerance. The bootstrap procedure converged after computing 20 replicates for all
13 datasets. With the 1% convergence tolerance, we observe an average speedup
of 1.4 £+ 0.4x and bootstrap convergence after 63 replicates on average. The PS
values deviate only slightly, with a maximum observed deviation of 0.01 under both
settings. The PSVs of individuals differ on average by 0.01 with the 5% convergence
tolerance and 0.0 (no deviation) with the 1% convergence tolerance. We observe a
maximum deviation of PSVs for single individuals of 0.08 and 0.06, respectively.

The speedup and deviation of PS values are similar for MDS analyses. We observe
an average speedup of 2.2+ 0.6x with the 5% convergence tolerance, and an average
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Figure 5.11: Box plots showing the speedup (top left panel), PS deviation (top right
panel), and PSV deviation (bottom panel) of the Pandora execution under the 5%
and 1% convergence tolerance settings for PCA analyses. Note that we used 20
threads for all Pandora analyses.

speedup of 1.7 4 0.7x with the 1% convergence tolerance (Figure|5.12(a)). Pandora
converged on average after 20 (5%) and 34 replicates (1%), respectively. In analogy
to the PCA results, the PS deviations for MDS deviate only slightly, with maximum
deviations of 0.02 under both convergence tolerance settings (Figure 5.12(b)). The
average PSV deviation is 0.01 under both settings. However, we observe substantial
deviations for single individuals, with differences of up to 0.19 (Figure 5.12(c)).

Our results suggest that for PCA and MDS analyses, the 5% convergence tolerance
is suitable when the overall PS is of primary interest. When accurate PSVs estimates
are paramount, we recommend decreasing the convergence tolerance to 1% for PCA
analyses, and disabling the convergence check for MDS analyses.

5.4 Discussion

Pandora estimates the stability of a genotype dataset and its individuals under di-
mensionality reduction via bootstrapping. Pandora supports PCA and MDS anal-
yses. In addition to an overall stability estimate (PS), Pandora applies k-means
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Figure 5.12: Box plots showing the speedup (top left panel), PS deviation (top right
panel), and PSV deviation (bottom panel) of the Pandora execution under the 5%
and 1% convergence tolerance settings for MDS analyses. Note that we used 20
threads for all Pandora analyses.

clustering to all bootstrapped embeddings to estimate the stability of the assigned
clusters across all bootstrap replicates (PCS). Furthermore, Pandora computes a
bootstrap support value for each individual in the genotype dataset (PSVs). The
latter is particularly useful for datasets with projections of ancient individuals onto
an embedding computed on modern individuals only. For these analyses, the PSVs
for the ancient individuals provide a confidence value for their placement in the
embedding space relative to modern individuals. The lower the support for an in-
dividual, the more careful users should be when drawing conclusions regarding this
individual based on dimensionality reduction analyses.

Our analyses on empirical and simulated data show that Pandora can detect insta-
bility in PCA and MDS analyses. As expected, Pandora yields lower stability for
both, PCA and MDS analyses, with increasing fractions of missing and noisy data
under simulations, as well as higher stability with an increasing number of SNPs
in the dataset. Compared to a single PCA or MDS analysis, Pandora introduces
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a substantial runtime and resource overhead. Our bootstrap convergence criterion
alleviates this to the extent possible.

Our analyses using simulated genotype datasets showed that Pandora is particularly
useful when performing PCA or MDS analyses for datasets with few SNPs, high
proportions of missing data, or if the data is expected to be noisy. With the exem-
plary analysis of the empirical HO-WE-Cayoni dataset, we further demonstrated
the utility of Pandora stability values for preventing potentially erroneous and hence
misleading conclusions based on unstable dimensionality reduction results.

We believe that Pandora will be of high value to population genetic studies as the
inherent uncertainty of PCA and MDS analyses can now be seamlessly and routinely
assessed via an easy-to-use tool and thereby contribute to circumventing potentially
biased conclusions.

In Pandora, the bootstrapping and the subsequent dimensionality reduction are both
performed along the SNPs. Pandora does not implement a resampling of the individ-
uals, since Elhaik [41] demonstrated the sensitivity of PCA studies to (subjective)
selection of individuals. The author showed that PCA analyses can be manipulated
to confirm the desired hypothesis, depending on the selection of individuals used for
PCA analyses. Consequently, for Pandora, we refrained from sampling individuals.
Thus, Pandora results cannot directly be used to justify a subjective selection of
individuals. However, such an individual-sampling-based procedure might allow es-
timating the bias induced by specific individuals. In conjunction with the Pandora
stability estimates, especially the PSVs, this can contribute to identifying an appro-
priate, meaningful set of individuals for population genetics studies. Devising such
a selection criterion constitutes the subject of future work.

As previously mentioned, despite their popularity, the use of PCA or MDS in pop-
ulation genetics is controversial. More recent dimensionality reduction approaches
such as t-SNE [179] or deep learning based variational autoencoders [13] alleviate
some problems, but exhibit inherent disadvantages (see Battey et al. [13] for a dis-
cussion). Integrating such methods into Pandora as alternatives to PCA or MDS
also constitutes future work.
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In this thesis, I outlined three novel applications of machine learning and data sci-
ence methods to evolutionary genomics. I developed Pythia, a tool that predicts the
difficulty of a phylogenetic inference prior to conducting time-consuming analyses,
thus allowing evolutionary biologists to perform a more systematic and informed
data analysis. Furthermore, I demonstrated a lack of realism in phylogenetic data
simulations and identified the respective root causes. Finally, I presented Pandora,
a tool for estimating uncertainty of dimensionality reduction techniques that are
applied to population genetics data. Pandora seamlessly integrates uncertainty es-
timation and analysis via a single software tool.

Initially, I presented Pythia, a machine learning-based framework that predicts the
difficulty of MSAs under ML phylogenetic analyses. I proposed a novel quantification
of the “ruggedness” of the ML tree space and demonstrated that this quantification
accurately captures the difficulty of an MSA. I trained a machine learning model
that predicts this difficulty with high accuracy based on fast-to-compute prediction
features. These features include MSA attributes, measures of information content,
and features that approximate the properties of the ML tree space via MP trees.
Pythia allows predicting the difficulty before conducting any time- and resource-
intensive ML-based phylogenetic analyses. I showed that predicting the difficulty of
an MSA using Pythia is substantially faster than conducting a single ML tree infer-
ence. Therefore, Pythia presents a major step towards faster and more systematic
data analyses. Finally, the published applications of Pythia as outlined in Sec-
tion [3.3.5 prove the high impact of Pythia and its utility, not only for phylogenetic
analyses, but also for phylogenetics research.

I also presented Pandora, a software tool to estimate the stability of genotype data
under dimensionality reduction. Pandora estimates the stability via bootstrapping
and supports PCA and MDS analyses. Through three distinct stability criteria,
Pandora allows exploring various data instability aspects. The PS value estimates
the overall data stability, while the PSVs provide a per-individual stability estimate.
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This is particularly useful if the projection of single individuals is of interest, for ex-
ample, in ancient DNA studies. Finally, Pandora estimates the stability of clustering
individuals into (sub-)populations via the PCS. Using empirical and simulated geno-
type data, I demonstrated that Pandora can detect instability in both, PCA, and
MDS analyses. I further demonstrated the usability and utility of Pandora, and
its potential to unravel potentially misleading results that are induced by unstable
analyses. While the implemented bootstrapping procedure induces a substantial
runtime overhead, I showed that my bootstrap convergence criterion can alleviate
this overhead to some extent.

To ensure an easy usability, Pythia and Pandora are available as command line tools
as well as Python libraries on GitHub. Both tools are well-tested, production ready,
and include a thorough documentation. To simplify their installation, I also made
both tools available on conda-forge, a popular open-source package repository.

Finally, in a collaborative study, Johanna Trost, Dimitri Hohler, and I demonstrated
a lack of simulation realism in phylogenetics. We simulated collections of MSAs us-
ing increasingly complex models of DNA and AA sequence evolution. We deployed
two distinct machine learning-based classification approaches (GBTs and CNNs) to
distinguish between empirical and simulated MSAs. The GBTSs rely on hand-crafted
prediction features, and therefore yield interpretable results. In contrast, the CNNs
categorize an MSA based on the site-wise composition of nucleotides/AAs, and clas-
sify data more accurately than the GBTs. Overall, our classifiers easily distinguished
empirical from simulated MSAs across all evolutionary models, indicating a general
lack of realism in sequence simulation. We found that a major cause for unreal-
istic simulations is that the rate of evolution across sites, as well as the site-wise
composition, is more uniform in simulations than in empirical data. Our approach
provides a framework for assessing the realism of simulations for future research on
evolutionary models or simulation tools.

6.1 Future Work

In this final section of my thesis, I will outline possible directions of future work for
all research projects I presented in this thesis.

6.1.1 Pythia

In our initial published version, we observed that Pythia tends to overestimate the
difficulty of easy MSAs, and to underestimate the difficulty of hard-to-analyze MSAs.
We hypothesize that this effect is caused by the abundance of easy MSAs in Pythia’s
training data. The training data for our latest Pythia version comprises approxi-
mately three times more MSAs than our initial dataset, and includes more intermedi-
ate and hard-to-analyze MSAs. As a result, the respective over- and underestimation
is less pronounced. For a next version of the difficulty predictor, one could include
more intermediate and hard-to-analyze MSAs in the training procedure to attain a
more even distribution of difficulty levels.
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Pythia’s runtime is dominated by the MP-based feature computations. In our latest
Pythia version, we were able to reduce the absolute runtime by reducing the number
of inferred MP trees from 100 to 24. Yet, the MP-based features still account for
approximately 70% of the runtime. Currently, Pythia relies on RAXML-NG for MP
tree inference. Future work should therefore focus on either improving the MP tree
inference runtime in RAXxMIL-NG (which is developed in our research group), or by
replacing RAXML-NG with a faster alternative.

Since the initial publication of Pythia in 2022, difficulty prediction has proven useful
across various applications beyond a more informed analysis setup (see Section @
for an overview). Exploring additional applications could be the subject of future
work. For instance, expanding on our explorative analyses on the correlation be-
tween Pythia’s difficulty prediction and MCMC convergence could be valuable to
demonstrate the utility of difficulty prediction for tree inference methods beyond
ML. Furthermore, Pythia difficulty scores can serve as a useful criterion for assem-
bling collections of MSAs for testing and benchmarking novel inference tools. Such
MSA collections should ideally comprise MSAs across all difficulty levels to ensure
a representative experimental setup. Finally, one goal of this thesis was to explore
novel tools for systematic data analysis. While Pythia currently predicts the diffi-
culty of an assembled MSA, one could also devise a sequence selection criterion using
Pythia to find the most promising (sub)set of sequences for a specific phylogenetic
analysis. Given a set of aligned sequences (possibly comprising multiple sequences
for the same species), one could search for a subset of these sequences that yields
an easier MSA.

6.1.2 Simulations of Sequence Evolution

In our study on the realism of sequence simulations, we analyzed a plethora of
DNA and AA evolutionary models. For DNA models, we focused on nucleotide
substitution models. These models do not make any assumptions about the type
of the underlying DNA. The DNA can be broadly categorized into coding and non-
coding regions [185]. Only the coding regions of the DNA encode proteins, with three
nucleotides forming a so-called codon, which corresponds to a single AA. Dedicated
codon substitution models can take these restrictions into account. Thus, simulating
MSAs of coding regions via codon models might yield more empirical-like data.
Testing this hypothesis could be the subject of future studies.

Furthermore, with recent advances in deep learning, one could design and implement
novel sequence simulation tools. Using approaches such as Generative Adversarial
Networks [62] might allow for model-less simulations without imposing an artificial
bias such as the assumption of uniform evolution along the MSA. Yet, designing and
training such a network is a challenging task and requires careful consideration of
all components. Especially, the integration of a ground-truth phylogenetic tree to
simulate an MSA on is a major challenge.

6.1.3 Pandora

Pandora estimates the stability of genotype data via bootstrapping. This boot-
strapping, and the subsequent dimensionality reduction, are performed along the
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SNPs rather than along the individuals. This is because we assume statistical inde-
pendence between the SNPs, whereas we cannot assume independence among the
individuals within a single population (see Chapter @ Yet, sampling individu-
als and subsequently estimating the data stability under dimensionality reduction
might help to estimate the bias induced by single individuals. Furthermore, such
an individual-based sampling and subsequent stability estimation might serve as
a sample selection criterion that helps researchers to determine the optimal set of
individuals to use in their analyses.

The implemented bootstrapping procedure for stability estimation is a time-consuming
procedure, since Pandora repeatedly performs dimensionality reduction on the geno-
type data. Future work should focus on finding a shortcut to obtain a reliable
stability estimate without this runtime overhead. Using, for instance, a machine
learning model and carefully selected, hand-crafted prediction features could yield a
fast approximation of genotype data stability under dimensionality reduction.

Currently, Pandora only supports stability estimation for PCA and MDS analyses.
While PCA and MDS are still being widely used, more recent approaches such as
t-SNE or variational autoencoders are becoming increasingly popular. To provide a
universal solution for stability estimation of dimensionality reduction in population
genetics research, one could include such alternative techniques in Pandora.
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