KIT | KIT-Bibliothek | Impressum | Datenschutz

HubLink: A Novel Question Answering Retrieval Approach over Knowledge Graphs

Kaplan, Angelika 1; Keim, Jan ORCID iD icon 1; Schneider, Marco 1; Reussner, Ralf 1
1 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The rapid growth of scholarly literature poses challenges for efficient and effective information retrieval. Existing Question Answering over Knowledge Graphs (KGQA) systems, particularly those relying on Semantic Parsing, struggle with schema dependency and required training data. In this paper, we introduce HubLink, a schema-agnostic, training-free KGQA approach leveraging pre-trained Large Language Models to enhance scholarly search with semantic aspects. HubLink structures (research) knowledge graphs into conceptual hubs, enabling source-aware inference for literature. For evaluation, we use the Open Research Knowledge Graph as the underlying knowledge base and utilize a dataset from software architecture research to populate the graph. The empirical results show that our approach HubLink outperforms three state-of-the-art baselines, especially for complex queries, marking a major advancement in scholarly KGQA. In future work, we aim to explore more advanced techniques to improve the final answer generation.


Postprint §
DOI: 10.5445/IR/1000184807
Veröffentlicht am 01.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1316-0073
KITopen-ID: 1000184807
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in RAGE-KG 2025: The Second International Workshop on Retrieval-Augmented Generation Enabled by Knowledge Graphs (RAGE-KG 2025) co-located with 24th International Semantic Web Conference (ISWC 2025). Ed.: D. Dobrij
Veranstaltung 2nd RAGE-KG: The International Workshop on Retrieval-Augmented Generation Enabled by Knowledge Graphs, co-located with ISWC (RAGE-KG 2025), Nara, Japan, 02.11.2025 – 06.11.2025
Verlag CEUR-WS
Seiten 1-18
Serie CEUR Workshop Proceedings ; 4079
Projektinformation NFDIxCS, 501930651 (DFG, NFDI 52/1)
Schlagwörter Research Knowledge Graphs (RKG), Question Answering over Knowledge Graphs (KGQA), Retrieval-Augmented Generation (RAG)
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page