KIT | KIT-Bibliothek | Impressum | Datenschutz

Performance assessment of neural network models for seasonal weather forecast postprocessing in the Alpine region

Uttarwar, Sameer Balaji ; Lerch, Sebastian ORCID iD icon 1; Avesani, Diego; Majone, Bruno
1 Institut für Statistik (STAT), Karlsruher Institut für Technologie (KIT)

Abstract:

Seasonal weather forecasts are crucial for water-related sectors. However, the presence of systematic biases limits the usefulness of global seasonal weather forecasts produced by numerical weather prediction models. Although statistical postprocessing approaches, such as empirical quantile mapping, are widely used to improve accuracy and reliability, they have limitations in the accuracy of forecast values outside the training period and difficulties in incorporating multiple static and dynamic environmental variables to capture non-linear dependencies. This study seeks to overcome these limitations by implementing a neural network-based distributional regression method as a postprocessing tool. The study investigates the performance of these methods using seasonal forecasts of total precipitation and 2-meter temperatures for a one-month lead time over the Trentino-South Tyrol region in the northeastern Italian Alps. The forecast dataset is the fifth-generation seasonal weather forecast system (SEAS5) generated by the European Centre for Medium-Range Weather Forecasts (ECMWF), which has a 0.125°x 0.125°horizontal grid resolution with 25 ensemble members over the period from 1981 to 2016. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184833
Veröffentlicht am 12.09.2025
Originalveröffentlichung
DOI: 10.1016/j.advwatres.2025.105061
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Statistik (STAT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 0309-1708, 1872-9657
KITopen-ID: 1000184833
Erschienen in Advances in Water Resources
Verlag Elsevier Masson
Band 204
Seiten 105061
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page