KIT | KIT-Bibliothek | Impressum | Datenschutz

Signal Recovery Using a Spiked Mixture Model

Delacour, Paul-Louis ; Wahls, Sander ORCID iD icon 1; Spraggins, Jeffrey M.; Migas, Lukasz; Plas, Raf Van de
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract:

We introduce the spiked mixture model (SMM) to address the problem of estimating a set of signals from many randomly scaled and noisy observations. Subsequently, we design a novel expectation-maximization (EM) algorithm to recover all parameters of the SMM. Numerical experiments show that in low signal-to-noise ratio regimes, and for data types where the SMM is relevant, SMM surpasses the more traditional Gaussian mixture model (GMM) in terms of signal recovery performance. The broad relevance of the SMM and its corresponding EM recovery algorithm is demonstrated by applying the technique to different data types. The first case study is a biomedical research application, utilizing an imaging mass spectrometry dataset to explore the molecular content of a rat brain tissue section at micrometer scale. The second case study demonstrates SMM performance in a computer vision application, segmenting a hyperspectral imaging dataset into underlying patterns. While the measurement modalities differ substantially, in both case studies SMM is shown to recover signals that were missed by traditional
methods such as k-means clustering and GMM.


Verlagsausgabe §
DOI: 10.5445/IR/1000184844
Veröffentlicht am 15.09.2025
Originalveröffentlichung
DOI: 10.1109/TSP.2025.3593082
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1053-587X
KITopen-ID: 1000184844
Erschienen in IEEE Transactions on Signal Processing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–14
Nachgewiesen in Scopus
Dimensions
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page