RESEARCH

Effect of the Different Alloying Elements Mo, Ti and Si in Aluminized Mo-Based Silicides

Katharina Beck¹ · Till König¹ · Ceyhun Oskay¹ · Andreas K. Czerny² · Frauke Hinrichs³ · Georg Winkens³ · Anke S. Ulrich⁴ · Martin Heilmaier³ · Mathias C. Galetz¹

Received: 19 August 2024 / Revised: 25 June 2025 / Accepted: 27 June 2025 / Published online: 8 August 2025 © The Author(s) 2025

Abstract

To understand the influence of Mo, Si, and Ti during aluminizing pack cementation processes of Mo-Si-Ti alloys, two ternary Mo-Si-Ti alloys (eutectic Mo-20.0Si-52.8Ti and eutectoid Mo-21.0Si-34.0Ti) were investigated and compared with pure Ti and Mo-40Ti (all in at.%). The coating formation mechanisms, phase composition, and microstructures of the different substrates were compared. Subsequently, the effect of the different elements on the oxidation behavior was evaluated, using thermogravimetric analysis at 700 °C and 900 °C for 100 h in synthetic air. In addition, the type I (900 °C) and type II (700 °C) hot corrosion behavior of the Al-coated Mo-Si-Ti alloys was investigated for 24 h and 100 h in synthetic air + 0.1% SO₂. While the initial Al-rich coating phase was consumed or transformed at 700 °C, it successfully facilitated the formation of a protective Al₂O₃ scale on the surface, even if the underlying reservoir was diminished. At 900 °C, the Al coatings on both substrates failed, and a hot corrosion-induced pesting dominated. While Si generally has a positive effect on oxidation and hot corrosion resistance, the main impact of Mo is dictated by its evaporation, and Ti can lead to the formation of TiO₂ as a mixed oxide with Al₂O₃.

Keywords Aluminum coating · High-temperature applications · Hot corrosion · Oxidation resistance · Pack cementation · Silicides

Introduction

Due to their high melting points around 2000 °C, refractory metal-silicide alloys are promising alternatives to Ni-based superalloys as structural materials in high-temperature processes [1]. In recent years, Mo-Si-Ti alloys have been of particular interest because of their high creep strength in the range similar to single crystal Ni-based alloys [2, 3] and their oxidation resistance up to 1300 °C [2–4]. The ternary

alloy compositions in the Mo-Si-Ti system were synthesized forming fine lamellar microstructures by either a eutectic reaction (L \rightarrow (Mo,Ti,Si) + (Ti,Mo)₅Si₃; Mo-20.0Si-52.8Ti) or a eutectoid reaction $((Mo,Ti)_3Si \rightarrow (Mo,Ti,Si) + (Mo,Ti)_5$ Si₃; Mo-21.0Si-34.0Ti) [5, 6]. The eutectic alloy exhibited pesting resistance in the intermediate temperature range (700 °C to 900 °C), while the eutectoid alloy suffered catastrophic mass losses [4, 5]. The various influencing factors on the oxidation behavior of these two compositions, such as chemical composition, phase fraction, and lateral scale thickness, can be found in the literature [7].

Despite the promising results regarding the eutectic Mo-Si-Ti alloy, the sensitivity of the oxidation resistance to small compositional and microstructural changes, especially in the pesting regime, requires a more robust solution. Pack aluminization has been proven to be an effective tool to increase the oxidation resistance of Mo, Mo-alloys [8-12], and Ti alloys [13-16]. Al, as a coating element, offers several advantages over other potential elements or combinations thereof, such as Si [17, 18], Si-B [19–22], or Cr [4], because the formation of intermetallics in the subsurface zone causes a reduction in Gibbs energy, and thus a strong driving force for coating formation. Aluminides potentially form dense, slow-growing α-alumina scales, which are preferred in most high-temperature applications, over a wide range of temperatures, including the pesting range. At the same time, it is necessary to understand the impact of the alloying elements in the substrate material on coating formation and oxidation.

Besides the conventional dry oxidation behavior, the resistance against hot corrosion, a common phenomenon in turbines, needs to be investigated [23]. Na₂SO₄ is considered the main cause of hot corrosion and arises during combustion when traces of Na and S are present in the engine from fuel or air impurities [24–26]. Type I hot corrosion of Ni-based alloys occurs between 800 °C and 950 °C, and is caused by liquid Na₂SO₄ deposits, which results in a uniform attack of the material [27-29]. Type II hot corrosion takes place below the melting point of Na₂SO₄ in the temperature range 650–800 °C [30, 31]. Eutectic mixtures of Na₂SO₄ with other sulfate salts (typically $NiSO_4$ or $CoSO_4$) leads to the formation of liquid deposits, causing a localized attack of the metallic material (pitting) [27, 28]. While the hot corrosion behavior of Ni-based alloys is well understood, information on potential refractory metal-based alternatives is still scarce in the literature.

In this study, Al diffusion coatings are applied on two different Mo-Si-Ti alloys (eutectic Mo-20.0Si-52.8Ti and eutectoid Mo-21.0Si-34.0Ti) to form mainly Al₃Ti on the surface. The coatings' performance is compared to that of aluminized Ti, which forms pure Al₃Ti and thus can be used as a baseline to determine the influence of the different alloying elements on the oxidation of the Al₃Ti phase. Aluminized Mo-40Ti was selected to mimic a Si-free material with a high Mo/Ti ratio. The isothermal oxidation behavior of the four different systems is examined, focusing on the pesting regime of Mo-based alloys between 700 °C and 900 °C. Since the Al-coated Mo-Si-Ti alloys demonstrated the best oxidation resistance, their type I (900 °C) and type II (700 °C) hot corrosion behavior under a Na₂SO₄ deposit is also investigated.

Experimental Procedures

Alloy Manufacturing

Three Mo-based alloy compositions (Mo-40Ti, eutectic Mo-20.0Si-52.8Ti, and eutectoid Mo-21.0Si-34.0Ti (all in at.%)) and pure Ti (≥ 99.60%, Goodfellow) were chosen as substrates. The alloys were prepared in an arc melter (AM/0.5, Edmund Bühler GmbH) from elemental materials Mo (99.95%, EVOCHEM), Si (99.99%, ChemPUR) and Ti (\geq 99.8%, ChemPUR).

After evacuating the vacuum chamber to 10^{-4} mbar, the arc melting process was performed at an Ar (> 99.998%) base pressure of 600 mbar on a water-cooled Cu crucible. The ingot was repeatedly melted five times and flipped after each step to ensure a homogeneous alloy composition. A Zr getter was remelted before each melting step to keep the residual oxygen in the vacuum chamber as low as possible. In an additional arc melting step, rods of 12–14 mm in diameter and a typical length of 150 mm were produced through drop casting of the Mo-Si-Ti ingots into a water-cooled Cu mold. Subsequently the Mo-21.0Si-34.0Ti alloy was heat treated at 1300 °C for 200 h under Ar (> 99.998%) atmosphere in a resistance tube furnace (HTRH 70-600/18, Carbolite Gero GmbH & Co. KG). All samples were cut, using arc wire cutting, to the required geometries (Mo-Si-Ti alloys: height of 3 mm and 12–14 mm in diameter; Ti and Mo-40Ti alloy: 10 mm \times 10 mm \times 3 mm) and grinded with P 500 SiC paper to remove any Cu contamination that could have been introduced by wire erosion. Finally, the surface was cleaned in acetone in an ultrasonic bath to remove any remaining organic impurities.

Coating Manufacturing

The powder compositions and temperatures used during the pack cementation processes [32] are summarized in Table 1. The pack cementation powders for producing the Al diffusion coatings included Al ($\geq 99.5\%$, grain size $\leq 160 \,\mu\text{m}$, Roth), a halide activator (NH₄Cl, \geq 99.5%, grain size \leq 1.3 mm, Honeywell), and Al₂O₃ as an inert filler (\geq 98%, grain size \leq 130 µm, Honeywell).

The individual alloys were coated as a set of four in a covered alumina crucible with an average powder-to-surface area ratio of 6-8 g cm⁻². Following a 6 h drying period at 150 °C, the pack cementation was carried out in a quartz tube furnace (HZS 12/600, Carbolite Gero GmbH & Co. KG). After the coating temperature was

Table 1 Pack cementation conditions for the different substrate materials

Substrate	Powder composition	Temperature	Atmosphere
Ti	5 wt.% Al, 0.5 wt.% NH ₄ Cl	800°C	Ar
Mo-40Ti	1 wt.% Al, 1 wt.% NH ₄ Cl	1000 °C	Ar
Mo-20.0Si-52.8Ti	1 wt.% Al, 1 wt.% NH ₄ Cl	1000 °C	Ar
Mo-21.0Si-34.0Ti	1 wt.% Al, 1 wt.% NH ₄ Cl	1000 °C	Ar

Ti was pack cemented at a lower temperature than the other substrates due to its allotropic transformation at 882 °C [33]

reached at a rate of 7 °C min⁻¹, it was maintained for 8 h under an Ar atmosphere (99.999%, Air Liquide) with a flow rate of approximately 102 cm h⁻¹. Pack cementation processes are often performed in inert atmospheres (e.g., Ar with 5 vol.% H₂ added) to prevent the oxidation of the materials. In this study, pure Ar is used, as H₂ led to pronounced crack formation on the Ti-rich substrates. This is attributed to the susceptibility of Ti to hydride formation and hydrogen embrittlement [34–36]. After the pack cementation, the samples were cleaned in acetone in an ultrasonic bath for 10 min.

Oxidation

Thermogravimetric analysis (TGA) was used to investigate the oxidation kinetics of the Al-coated substrates. The samples were oxidized at 700 °C (M25D-V, Sartorius; RAS 50/250/12, Thermconcept) and 900 °C (TGA 92, Setaram; TZF 12/65/550, Carbolite Gero GmbH & Co. KG) in dry synthetic air (80% N₂ and 20% O₂ with a flow rate of approx. 205 cm h⁻¹) while the mass change as a function of time was recorded up to 100 h. The samples were placed in a holder made from quartz glass, which was attached to the precision balance. The furnace was heated at a rate of 10 °C min⁻¹ until the oxidation temperature was reached. After the experiment, the furnace was turned off, and the samples remained inside while the furnace cooled down.

Hot Corrosion

By evaporating a saturated Na₂SO₄ solution, a salt deposit of 2.5 mg cm⁻² was deposited on the preheated (~100 °C) Mo-Si-Ti alloys. Subsequently, the salt-coated samples were exposed to the hot corrosion environment, dry synthetic air (99.999%, Air Liquide) + 0.1% SO₂ (99.98%, Air Liquide) with a flow rate of approx. 53 cm h⁻¹, at 700 °C and 900 °C. The samples were placed in individual alumina crucibles inside a quartz tube furnace (VST 12/900, Carbolite Gero GmbH & Co. KG). The gas mixture was passed through a Fe₂O₃ catalyst at the beginning of the tube furnace to establish the sluggish chemical equilibrium between SO₂ and SO₃:

$$SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3 \tag{1}$$

According to thermodynamic calculations [37], the p_{SO_3} of synthetic air + 0.1% SO_2 atmosphere equals 5.3×10^{-4} atm at $700\,^{\circ}\text{C}$ and 1.3×10^{-4} atm at $900\,^{\circ}\text{C}$. A drying period of 12 h at 150 °C under pure synthetic air removed residual moisture to prevent the formation of sulfuric acid. Afterward, the hot corrosion temperature was reached at a heating rate of 10 °C min⁻¹. After the experiment, the furnace was turned off. The samples remained inside while the furnace cooled down under pure synthetic air.

Analysis

Using the Leica MZ16 A stereomicroscope, macroscopic images of the samples were taken before and after pack cementation and after oxidation. X-ray diffraction (XRD) measurements (Bruker D8 Advance A25 equipped with a Cu tube) were used to analyze the phases formed during pack cementation and oxidation. A Renishaw inVia Raman spectroscope was used to further characterize the thin oxide films ($\lambda = 633$ nm). Cross sections of the samples were prepared using metallographic methods, including Ni-electroplating, mounting in epoxy, wet automated grinding (to P 2400), and polishing with 3 µm and 1 µm diamond suspensions and a colloidal silicon oxide suspension. Light microscopy and scanning electron microscopy (SEM, Hitachi FlexSEM 1000II with an energy-dispersive X-ray spectrometer (EDS)) were utilized to examine the cross sections, to determine the thicknesses of the layers, and standard deviations by averaging four or more separate measurements. The JOEL JXA-8100 electron probe microanalyzer (EPMA), equipped with five wavelength dispersive detectors (WDS), was used to conduct quantitative concentration profile measurements (step size of 0.5 µm) and semi-quantitative element mapping.

Results and Discussion

Aluminum Diffusion Coatings

Figure 1 shows cross-sectional BSE images after pack cementation of Ti, Mo-40Ti, and both Mo-Si-Ti alloys. On Ti and Mo-40Ti an Al₃Ti phase (tetragonal, *I4/mmm*, 139) formed on the surface (see Fig. 10), as previously reported in the literature for Ti-based alloys [38-40]. The Al content close to the surface of Mo-40Ti was between 72–73 at.%, corresponding to the D8₈ phase of Al₃Ti, which is stable above 977 °C in the binary Al-Ti system [41]. On pure Ti, the Al content was similar at 71 at.%, although at 800 °C the Al₃Ti phase should allow a higher Al content [41]. Below the Al₃Ti layer, intermetallic phases with lower Al contents were present in the interdiffusion zone, which were too thin at this stage to be characterized in detail. After exposure at 700 °C they grew and could be identified as Al₂Ti and AlTi₃ (see Fig. 4(a)). Due to the lower pack cementation temperature, the layer deposited on Ti was considerably thinner than on all other substrate materials. On Mo-40Ti, the Al₃Ti layer contained about 15 at.% of dissolved Mo, which is in the range of theoretically and experimentally determined Mo solubilities in Al₃Ti [42]. Closer to the substrate, the Mo-rich Al₈Mo₃ phase precipitated in the Al₃Ti phase, and a (Mo,Ti) Al layer occurred at the interface to the substrate, where the Al content decreased due to interdiffusion (see Fig. 1(b)). According to the phase diagram (see Fig. 2) for a Mo-40Ti alloy enriched with Al, three phases can be expected in equilibrium (Al₃) Ti, Al₈Mo₃, and Al₃Mo) [43]. Their distribution in the coating being more Ti-rich at the surface suggests the preferred outward diffusion of Ti over Mo.

By comparing the single phase materials with the coatings formed on the Mo-Si-Ti alloys the higher surface roughness became apparent, even though the

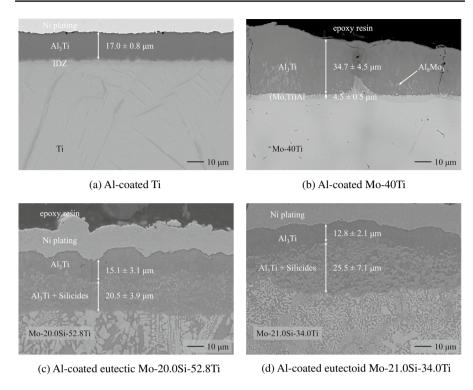


Fig. 1 BSE images of the coating illustrating the distinct phases formed on the binary Mo-Ti alloy and ternary Mo-Si-Ti alloys after Al pack cementation

surface finish of all samples before pack-cementation was the same. An Al_3 Ti phase formed on the surface of both Mo-Si-Ti alloys, but the amount of dissolved Mo was different. Quantitative EPMA measurements revealed that the dissolved Mo content was lower in the Ti-rich eutectic alloy with around 10 at.% in contrast to 15 at.% in the eutectoid alloy; 15 at.% matched the value for the Si-free Mo-40Ti alloy. The measured Mo/Ti ratio was lower than in the Mo solid solution, confirming the preferred outward diffusion of Ti over Mo. The Al content in the outer precipitate-free part of the coating was between 72–73 at.%, corresponding to the maximum Al content in the $D0_{22}$ variant of Al_3 Ti, which is stable above 977 °C in the binary Al-Ti system [41, 44, 45]. Quantitative EPMA line scans revealed a maximum Si content of 3.0 at.% in the Al_3 Ti phase in both Mo-Si-Ti alloys, which was only slightly above the 2.3 at.% Si found before at 700 °C for an Al-Ti-Si system without Mo [46].

In contrast to Mo-40Ti, no Mo-rich intermetallic phase was found within the coatings deposited on the eutectic and eutectoid Mo-Si-Ti, but closer to the metal interface titanium silicide precipitates were found, reflecting the microstructure of the substrate. EPMA point measurements showed that these matched the $(Ti,Mo)_5Si_3$ with a hexagonal D8₈ structure. According to quantitative EPMA line-scans the silicides were enriched with 9–23 at.% Al depending on the position within the coating. However, the lateral resolution limitations of EPMA might lead to an overestimation of the Al content of the small silicide inclusions surrounded by the Al₃Ti

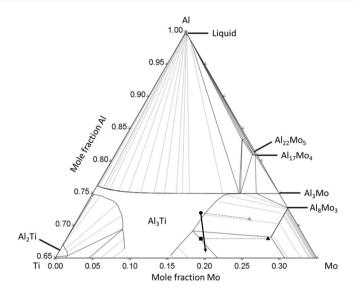


Fig. 2 Isothermal section of the phase diagram of the ternary Al-Mo-Ti system at 900 °C. The dot indicates the composition of the coating after the pack cementation process. The square indicates the composition of the coating after exposure to the oxidizing atmosphere at 900 °C. The triangles indicate the composition of the second Mo-rich phases after exposure (700 °C in light gray and 900 °C in black). The arrow indicates the depletion of Al in the direction of the composition of the substrate during oxidation. The dotted lines indicate which phases are in equilibrium with each other. The phase diagram was calculated (Thermo-Calc) using the dataset published by Distl et al. [47]

phase. In previous studies of the ternary systems Al-Ti-Si and Al-Mo-Si, the comparable phases Ti₅Si₃ and Mo₅Si₃ dissolved up to 6 at.% Al at 700 °C [46] and up to 12.5 at.% at 1400 °C [48], respectively. In a recent reassessment of the Al-Mo-Si system it was suggested that the Al solubility is not particularly dependent on temperature and remains at about 10 at.% at lower temperatures [49]. Hence, it is hypothesized that combining Ti and Mo on the A site of the A₅Si₃ phase might increase the solubility of Al. Additionally, an experimental and thermodynamic investigation of the Mo-Si-Ti system confirmed that Ti and Mo can be substituted over a wide range in Ti₅Si₃ [50]. As expected from the ratio between Ti and Mo in the substrate, the titanium silicides within the eutectic alloy had higher Ti contents and dissolved smaller amounts of Mo, while in the eutectoid alloy lower Ti contents were measured and larger amounts of Mo were found in the precipitates. The higher amount of Mo in the eutectoid alloy was also reflected in small precipitates extremely low in Ti found inside the Al₃Ti phase close to the coating/substrate interface, indicating the Al₈Mo₃ phase, which was found before within the coating on Mo-40Ti.

Multiple features imply the formation of partially outward-grown coatings due to Ti diffusion, such as the Mo/Ti ratio and the precipitate-free (silicides or Al₈Mo₃) outer layers. Similarly, it can be argued that the precipitate-rich layers of Al₃Ti were formed more likely by inward diffusion of Al, forming Al₃Ti, enriching the silicides in Al, and even forming Mo aluminides if the Mo solubility in both phases was exceeded. Based on this mechanism, the influence of Ti, the main coating-forming

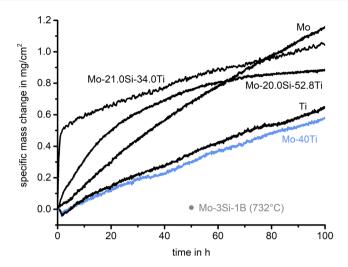


Fig. 3 Overview of the mass gain curves obtained by thermogravimetric analysis (TGA) of Al-coated substrates at 700 °C in synthetic air for 100 h. Al-coated Mo [51] and Al-coated Mo-Si-B [8] from literature are added for comparison

element of the substrate, was expected to be high. However, the Ti-content of all alloys was sufficient to form a single phase Al₃Ti. Only the proportions of precipitate-free to precipitate-rich Al₃Ti were slightly different for the two Mo-Si-Ti alloys. In line with the Ti-content, the precipitate-free layer was thicker on the Ti-richer alloy. By comparing the Mo-40Ti and the Mo-Si-Ti alloys, the influence of Si on the coating formation became apparent: Ti decreases the amount of Mo aluminides because the (Mo-rich) silicides bind the Mo, and no (Mo,Ti)Al layer was observed.

Oxidation Behavior in Synthetic Air

Exposure at 700 °C

Figure 3 displays the mass changes of the Al-coated substrates at 700 °C compared to the literature values of Al-pack cemented Mo [51] and Mo-Si-B [8].

The aluminide coating on pure Mo consisted of an outer Al_8Mo_3 (~ 50 µm) layer and an inner AlMo₃ ($\sim 7 \,\mu\text{m}$) phase [51]. On the Mo-9Si-8B (in at.%) alloy an Al₈Mo₃ matrix (~80 μm) with Mo(Si,Al)₂ and MoAlB inclusions was deposited [8].

For Al-coated Ti and Mo-40Ti, both with an Al₃Ti phase on the surface, a very similar linear mass gain was observed. The coated Mo-Si-Ti alloys exhibited initially faster kinetics, which were more parabolic and slowed down over time. When comparing Ti, Mo-40Ti, and the two different Mo-Si-Ti alloys, the weight gains of Mo-rich materials were lower without Si, but higher with Si, than their respective counterparts. To understand this, volatile oxides have to be considered. For instance, Al-coated pure Mo [51] produced the highest and mainly linear mass gain, as evaporating MoO₃ creates cavities inside the alumina scale when Al₈Mo₃ is oxidized, allowing for continuous scale growth. The formation of volatile Mo oxides becomes

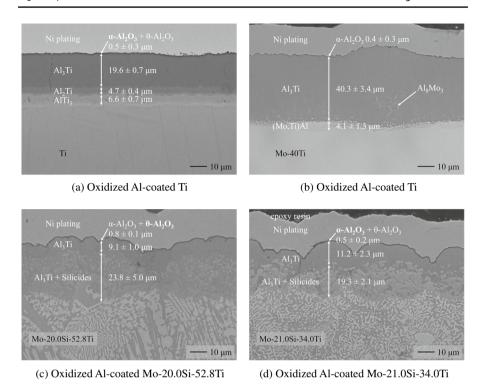


Fig. 4 BSE images of the oxides formed on Al-coated substrates after oxidation for 100 h at 700 °C in synthetic air. The Al₂O₃ polymorphs highlighted in bold in the respective images are the ones that form predominantly on the substrate

dominant in Al-coated Mo-Si-B, resulting in a exceptionally low mass gain compared to the other substrates. These findings indicate that small amounts of B and Si can significantly alter the oxidation behavior of the Al₈Mo₃-based coatings, even as much as Si alone for the Al₃Ti coatings on the Mo-Si-Ti substrates. However, with or without such elements, the results demonstrated that Al₈Mo₃ was generally less protective than the coatings based on Al₃Ti due to the evaporation of Mo oxides. But even for the Al₈Mo₃ phase, it was found that higher Mo contents resulted in faster oxidation kinetics.

Figure 4 displays cross sections of the Al-coated substrates after 100 h at 700 °C. On all samples an Al₂O₃ scale was formed, which was further investigated using Raman and XRD analyses. This is consistent with previous studies, reporting that Al₃Ti is able to form a pure α -Al₂O₃ layer at this temperature [52–55].

Compared to the as-coated state (see Fig. 1(a)), a significant enlargement of the interdiffusion zone can be observed on Ti after only 100 h. Two additional distinct aluminide layers with lower Al content (Al₂Ti and AlTi₃) have formed beneath the Al₃Ti layer. In Mo-40Ti, interdiffusion was significantly less pronounced, and Mo-rich precipitates (Al₈Mo₃) were still observed in approximately the same quantity and size within the coatings when compared to the as-coated state (compare

Fig. 1(b)). The composition of the coating in the as-coated state (which only minimally changed during the 700 °C exposure) and the composition of the precipitates are shown in the phase diagram (see Fig. 2).

For both Mo-Si-Ti alloys, no significant interdiffusion was observed, thus the microstructure differed from the as-coated state (see Figs. 1(c) and 1(d)) only by the Al₂O₃ layer formed during oxidation. On the eutectic alloy, mainly θ-Al₂O₃ was formed, which is a commonly present intermediate polymorph during the transition from the low-temperature polymorph γ-Al₂O₃ to the preferred high-temperature polymorph α-Al₂O₃ [56]. Si was previously found to accelerate the outward growth of θ -Al₂O₃ [57] and elevate the γ -Al₂O₃ to α -Al₂O₃ transition temperature [58]. However, after 100 h, on the eutectoid alloy mainly α-Al₂O₃ was formed. Si seems to foster parabolic oxidation behavior compared to the more linear, siliconfree counterparts. On both Mo-Si-Ti alloys the remaining aluminide reservoirs entirely prevented the oxygen uptake and nitridation of the substrate during oxidation at 700 °C, which had been reported before for the uncoated materials [4].

The predicted layer thicknesses calculated from the mass increases and density of Al₂O₃ are considerably higher than the layer thicknesses actually measured. There are various reasons for this divergence: (i) The high surface roughness of the Al-coated Mo-Si-Ti alloys (compare Figs. 1(c) and 1(d)) led to a significantly increased actual surface area. This increase was not considered when determining the surface area used for the plot in Fig. 3. (ii) Due to the edge effects, the oxides formed there are approximately twice as thick as the oxides formed on the surfaces of the samples. (iii) The formation of fast-growing oxides in the early stages of oxidation contributed to higher mass gains. (iv) Additionally, an increased attack was observed at local defects (1-2 per sample), leading to oxide accumulations that were much thicker than the average.

Exposure at 900 °C

Figure 5 illustrates the thermogravimetric measurements of the Al-coated substrates at 900 °C along with the literature data [8, 51]. As already noted at 700 °C, the Al-coated Mo exhibited a linear mass increase in the first few hours of oxidation. At 900 °C, after about 10 h, the aluminide layer failed, followed by catastrophic oxidation. Subsequently, the Mo substrate was converted into volatile MoO₃, explaining the drastic mass loss. While the mass increase of Al-coated Ti was higher than the one at 700 °C, all other Mo-containing alloys had a lower mass gain compared to the oxidation at 700 °C, because of increased MoO₃ evaporation. The course of the Al-coated Mo-40Ti curve showed an increase in weight gain after about 40 h, suggesting lower evaporation after a certain time.

Figures 6 and 7 display cross sections of the Al-coated substrates after 100 h of oxidation at 900 °C. As the coating-substrate interactions were more pronounced at 900 °C than at 700 °C, semi-quantitative EPMA element distribution maps are added to supplement the BSE images. In addition, the layer thicknesses of the remaining coatings, including interdiffusion zones, are summarized in Table 2.

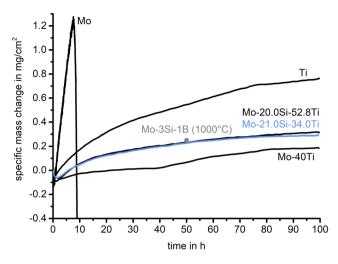


Fig. 5 Overview of the smoothed mass changes measured using TGA of Al-coated substrates at 900 °C in synthetic air for 100 h. Al-coated Mo [51] and Mo-Si-B [8] from the literature are added for comparison

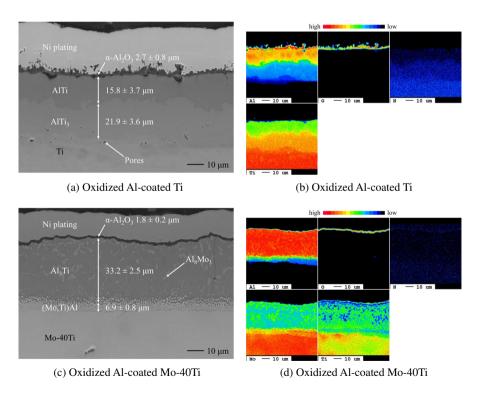


Fig. 6 BSE images and EPMA maps of the oxides formed on Al-coated substrates after oxidation for 100 h at 900 °C in synthetic air

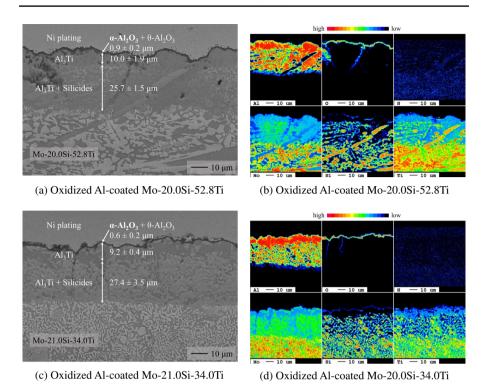


Fig. 7 BSE images and EPMA maps of the oxides formed on Al-coated substrates after oxidation for 100 h at 900 °C in synthetic air. The Al₂O₃ polymorphs highlighted in bold in the respective images are the ones which form predominantly on the substrate

Table 2 Overview of the layer thicknesses of the remaining coatings, including interdiffusion zones, found on the different substrate materials. The percentages given in brackets indicate the change compared to the as-coated state

Substrate	As-coated	700°C	900°C
Ti	17.0 μm	30.9 μm (+ 82%)	37.7 μm (+ 122%)
Mo-40Ti	39.2 µm	44.4 µm (+ 13%)	40.1 μm (+ 2%)
Mo-20.0Si-52.8Ti	35.6 µm	32.9 µm (- 8%)	$35.7 \mu m (\pm 0\%)$
Mo-21.0Si-34.0Ti	38.3 µm	$30.5\mu m~(-20\%)$	36.6 µm (- 4%)

The Al depletion in coated Ti was much more pronounced after 100 h of oxidation at 900 °C (Fig. 6(a)) compared to 700 °C (Fig. 4(a)). Below a protective Al₂O₃ scale with minor amounts of TiO₂ on the surface, the Al-leaner intermetallic phases AlTi and AlTi₃ were found. Accordingly, the thickness of the intermetallic layer increased in comparison to the as-coated sample and to the sample exposed at 700 °C (see Table 2). At 900 °C, the transformation into the Ti-richer aluminides by interdiffusion is much faster than the Al depletion at the surface and plays the main role for the coating lifetime. This finding is further supported by the formation of

voids at the oxide/aluminide interface, which can be attributed to volume changes due to the Al₃Ti → AlTi phase transformation. Additionally, Kirkendall pores were formed at the aluminide/substrate interface due to Ti outward diffusion into the aluminide layers, similar to the outward diffusion occurring during the pack cementation (best visible in Fig. 1 for the Mo-Si-Ti systems).

On the Al-coated Mo-40Ti, a remaining Al-rich Al₃Ti layer was found below the oxide scale (see Fig. 6(c)) with precipitates of a second Mo-rich phase, containing less Al (compositions of the Mo-rich and Ti-rich phases given in Fig. 2). The coating composition reflects the two-phase region Al₃Ti + Mo₃Al₈. Slightly further depletion would lead to Mo₃Al, a phase which was already observed in the IDZ of the ascoated sample. With just a minimal increase in the thickness of the interdiffusion zone at 900 °C (see Table 2), the presence of Mo significantly lowered the interdiffusion, as well as the thickness of the formed Al₂O₃ layer (see values given in Figs. 6(a) and 6(c)). Therefore, the addition of Mo drastically decreased the inwards diffusion of Al compared to the pure Ti substrate, and its evaporation led to higher Al activity, which allowed the formation of a more homogeneous Al₂O₃ layer with fewer TiO₂ inclusions.

Compared to Mo-40Ti (see Fig. 6(c)), an even thinner Al₂O₃ layer with a Si-Orich sub-scale formed on the surface of both Mo-Si-Ti alloys (see Figs. 7(a) and 7(c)), which showed almost the same weight gain. The development of such subscales has already been described in the literature, as has the difficulty of detecting them [59-61]. In this work, the detection was possible using semi-quantitative EPMA element maps (see Si map in Figs. 7(b) and 7(d)). Nevertheless, some differences were identified regarding the underlying Al₃Ti layer. Compared to the Mo-40Ti substrate, the presence of Si slows the inward diffusion of Al into the underlying substrate even more than just Mo. The formation of Al₈Mo₃ does not occur within the eutectic or the eutectoid Mo-Si-Ti alloy, and Al₃Ti remains the sole phase in the outer coating after 100 h.

To sum it up, the coating-substrate interactions at 900 °C were much more pronounced than at 700 °C with Mo and Si significantly reducing the interdiffusion. Additionally, the higher temperature as well as MoO₃ evaporation facilitated the selective oxidation of Al. Less Ti in the alloys minimized the influence of TiO₂ on the growth rate, while a silica sub-scale slowed it down.

Oxidation Kinetics

The description of the oxidation kinetics (illustrated in Figs. 3 and 5) is not straightforward when considering mass losses due to MoO₃ evaporation (very obvious e.g., in the initial weight loss of Al-coated Mo-Si-Ti) and superimposed linear and parabolic weight gain terms. Therefore, the TGA curves were fitted using a power function (see Equation 2). The initial mass losses were omitted, and the fit was limited to the remaining curve.

$$y = m \cdot x^{1/b} \tag{2}$$

The values obtained for the oxidation constant b (see Table 3) are close to 1 for Al-coated Ti and Mo-40Ti at 700 °C, confirming the linear oxide growth. For both

substrates, particularly low values of the factor m were obtained, which reflects the acceleration of the oxidation reaction. The marginally higher final mass gain of Ti compared to Mo-40Ti aligns with the slightly higher value for m. Additionally, the similar mass gains confirm that the evaporation of Mo oxides only marginally influence the linear oxidation kinetics of Al-coated Mo-40Ti at this temperature. Instead, the formation of Ti-rich oxides has a higher influence on the oxidation kinetics. From the oxidation behavior of titanium aluminides [53, 62] it is known that the thermodynamic stabilities of Al₂O₃ and TiO₂ are so close to each other that the competitive growth of these two oxides often prevents the formation of a protective scale with a parabolic growth rate for the stoichiometric composition. Additionally, TiO₂ exhibits high oxygen diffusivity at elevated temperatures [63]. Compared to the lower temperature, an almost two-fold increase of the parameter b and a fourfold increase of the factor m was observed for the coated Ti at 900 °C, indicating a change from linear oxidation kinetics to parabolic growth. This aligns with the oxidation behavior of Al₃Ti described in the literature [52, 53, 64]. Due to the higher temperature, the slight difference in the oxide stability between Al and Ti is enough to promote the diffusion and selective oxidation of Al₂O₃ (see Fig. 11). The factor b for Mo-40Ti at 900 °C was still between linear and parabolic, indicating the contribution of linear kinetics. In accordance with the lower temperature, the value for m remained constant. However, Mo-40Ti showed the lowest mass gain, which confirms that the 15 at.% Mo that dissolve from the substrate into the deposited Al₃Ti phase significantly evaporates at 900 °C.

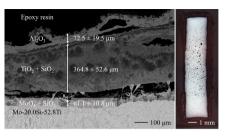
Table 3 Overview of the factors b and m which was determined using a fit of the TGA curves. *Due to a change in the oxidation kinetic after 40 h of exposure, only the part of the curve between 40 h and 100 h was included in the fit. Additionally, the mass change curves of the Al-coated Mo-Si-Ti alloys were fitted assuming paralinear kinetics (Equation 3). The values for parabolic oxidation constant k_p and linear volatilization rate k_v are listed in the table, too

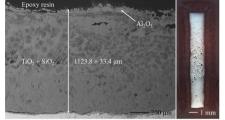
Substrate (Temperature)	Factor b	Factor m	Chi squared
Ti (700°C)	1.26	0.02	8.41 · 10 ⁻⁵
Mo-40Ti (700°C)	1.16	0.01	$6.81 \cdot 10^{-5}$
Mo-20.0Si-52.8Ti (700°C)	2.43	0.14	0.00181
Mo-21.0Si-34.0Ti (700°C)	4.20	0.34	0.00108
Ti (900°C)	1.90	0.08	$4.17\cdot 10^{-4}$
Mo-40Ti (900°C)*	1.53	0.01	$7.42\cdot 10^{-5}$
Mo-20.0Si-52.8Ti (900°C)	2.50	0.07	$1.75 \cdot 10^{-4}$
Mo-21.0Si-34.0Ti (900°C)	2.31	0.05	$2.10\cdot 10^{-4}$
Substrate (Temperature)	$k_p [g^2 cm^{-4} s^{-1}]$	$k_v [g^2 cm^{-4} s^{-1}]$	Chi squared
Mo-20.0Si-52.8Ti (700 °C)	$4.69 \cdot 10^{-12}$	$1.05 \cdot 10^{-12}$	0.00109
Mo-21.0Si-34.0Ti (700°C)	$9.77 \cdot 10^{-12}$	$2.50 \cdot 10^{-12}$	0.00473
Mo-20.0Si-52.8Ti (900°C)	$1.03 \cdot 10^{-12}$	$4.94 \cdot 10^{-13}$	$8.81 \cdot 10^{-5}$
Mo-21.0Si-34.0Ti (900°C)	$7.08 \cdot 10^{-13}$	$3.25 \cdot 10^{-13}$	$1.43\cdot 10^{-4}$

For the two Mo-Si Ti alloys, values above 2 for the factor b were obtained, indicating sub-parabolic oxidation kinetics at both temperatures. This illustrates the strong positive influence of Si on oxidation behavior and suggests a contribution of Mo evaporation. The parameter m was significantly higher for both materials at 700 °C, indicating a faster acceleration of the oxidation reaction at lower temperatures, which confirmed the influence of Mo evaporation at higher temperatures. As already observed for Ti and Mo-Ti, an increased value for m corresponds to a higher final mass increase. The exceptionally high values of both factors for the eutectoid alloy at 700 °C can be explained by the sharp mass increase at the start of the oxidation process. The high initial mass increase is due to the cracks within the coating of the eutectoid alloy, which initially oxidize and close before the surface determines the kinetics. The sub-parabolic oxidation behavior confirms the positive influence of the Si content on the oxidation kinetics of the aluminides investigated. For the Mo-Si-Ti alloys a paralinear fit (Equation 3) of the entire TGA curve was also performed, to better quantify the contributions of oxide layer growth and evaporation.

$$\frac{\Delta m}{A} = \sqrt{k_p \cdot t} - k_v \cdot t \tag{3}$$

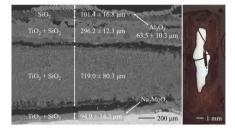
This evaporation is high in both systems, but layer growth and the associated mass gain predominates. Interestingly, due to the faster kinetics of oxide growth, the relative contribution of the evaporation is smaller than at 700 °C, even if the absolute amount of evaporated oxides is probably higher.

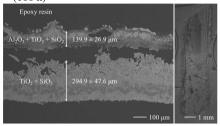

To sum it up, the kinetic data confirms the microstructural observations such as adding Mo to the substrate material significantly lowers the mass gain rate at 900 °C due to MoO₃ evaporation. Furthermore, higher temperatures facilitate the selective oxidation of Al over Ti, minimizing the influence of TiO₂ (compare Figs. 6(b) and 6(d)), thus enabling the formation of a protective α -Al₂O₃ scale with a parabolic growth rate. With the addition of Si to the substrate, the oxidation kinetics are changed to parabolic or even sub-parabolic at both temperatures. The strong positive influence of Si on the oxidation behavior is evident from the formation of a SiO₂ subsurface scale (best visible in Figs. 7(b) and 7(d)).


Hot Corrosion Behavior

Type I Hot Corrosion

Figure 8 shows cross sections of the Al-coated Mo-Si-Ti substrates after 24 h and 100 h of exposure to type I hot corrosion conditions at 900 °C. On both samples, an outer non-continuous Al₂O₃ layer formed before the oxidation continued in the form of unprotective TiO₂/SiO₂ oxides. After 24 h, the complete Al reservoir was already consumed, which led to a severe corrosion attack. Due to the higher Mo content of the eutectoid alloy and the associated MoO₃ volatilization, the TiO₂/SiO₂ oxide layer formed was significantly thicker compared to the eutectic alloy. After 100 h of exposure there was no metallic material left, and the complete substrate was oxidized.





(a) Corroded Al-coated Mo-20.0Si-52.8Ti (24 h)

(b) Corroded Al-coated Mo-20.0Si-52.8Ti (100 h)

(d) Corroded Al-coated Mo-21.0Si-34.0Ti (100 h)

Fig. 8 BSE images of the oxides formed on Al-coated substrates after hot corrosion at $900\,^{\circ}\text{C}$ in synthetic air + 0.1% SO₂. Optical microscopy overview pictures of the cross sections are displayed next to the BSE images

The aluminide coating did not provide sufficient protection against hot corrosion at 900 °C. No protective alumina scale was formed because the Na₂SO₄ deposit significantly reduced the MoO₃ evaporation, as the salt created a local environment where the partial pressure of oxygen is significantly reduced. This decreased the overall formation of Mo oxides and enabled the occurrence of MoO2, which has a considerably lower partial pressure. Additionally, the deposit caused steric hindrance, further limiting the formation and evaporation of Mo oxides. As a result, MoO₃ volatilization contributed to a notably reduced extent to the local increase of Al activity and accumulation at the sample surface as observed during oxidation. Instead, liquid phases were formed such as sodium molybdate (Na₂MoO₄, melting point 687 °C [65], which arises from the reaction of Na₂SO₄ with MoO₃. A comparison of the partial pressure of MoO_3 ($p_{MoO_3} = 5.21 \cdot 10^{-4}$ bar) and its evaporation from a liquid Na_2MoO_4 deposit ($p_{MoO_3} = 3.15 \cdot 10^{-12}$ bar) likewise demonstrates the reduced oxide volatilization [37]. At both test temperatures, Na₂MoO₄ is known to rapidly dissolve surrounding oxides [66-68], which led to progression of the corrosion. Additionally, the direct reaction of MoO₃ with Al₂O₃ produced aluminum molybdate (Al₂Mo₃O₁₂), which was also molten during type I hot corrosion (820 °C (Al₂O₃-rich side) or 740 °C (MoO₃-rich side) [69]). As a result, any protective Al₂ O₃ that may have formed at some point cannot be sustained.

Therefore, the hot corrosion behavior was mainly determined by the underlying substrate material and, hence, is similar to the behavior of the uncoated

samples [70] or even worse. After the failure of the pure Al₃Ti layer, the eutectic samples underwent an increased attack as the pack cementation process decreased the Si content at the surface, impeding the formation of a beneficial SiO₂ layer. As known from hot corrosion theory, for a progressive attack, a negative solubility gradient of the oxides involved is required [71, 72], otherwise the liquid phase would eventually become saturated with the dissolved species, and the corrosion attack would stop. After 24 h of exposure (see Fig. 8(a)), characteristic MoO₃ oxide needles [73, 74] were found in the gap at the substrate oxide interface of the eutectic sample. Since it is unlikely that these needle-shaped oxides were formed by solid state diffusion, it is suggested that the MoO₃ needles have reprecipitated from the liquid phase. In addition to reprecipitation, the negative solubility gradient was realized for both Mo-Si-Ti alloys, due to the evaporation of Mo oxides as evidenced by the absence of Mo oxides throughout the oxide scales.

Type II Hot Corrosion

Figure 9 displays cross sections of the Al-coated Mo-Si-Ti substrates next to the corresponding semi-quantitative EPMA element distribution maps after 100 h of exposure to type II hot corrosion conditions at 700 °C. A very similar microstructure was

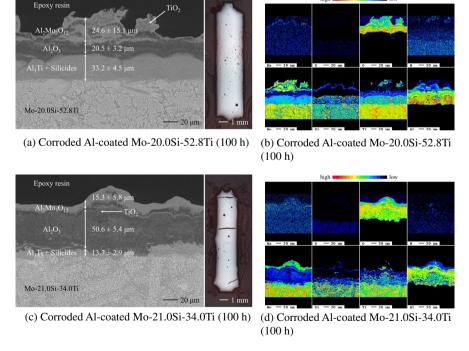


Fig. 9 BSE images and EPMA maps of the oxides formed on Al-coated substrates after hot corrosion at 700 °C in synthetic air + 0.1% SO₂ (24 h of exposure not shown). Optical microscopy overview pictures of the cross sections are displayed next to the BSE images

found after 24 h of exposure, therefore, these cross sections are not shown here. An extension of the exposure time only led to a thickening of the oxides.

In contrast to 900 °C, the hot corrosion behavior at 700 °C was dominated by the applied aluminide layer, which led to a comparable oxide structure on both samples: Al₂Mo₃O₁₂ was found as the outermost oxide layer, with Al₂O₃ underneath and small TiO₂ inclusions throughout the scale. On both samples, remaining aluminides were found beneath the oxides. Due to the higher Mo content in the aluminide layer on the eutectoid Mo-21.0Si-34.0Ti alloy, the remaining Al reservoir was significantly thinner compared to the eutectic Mo-20.0Si-52.8Ti alloy. This can be seen in the macroscopic overview image, in some areas on the eutectoid sample the aluminide layer was consumed, which led to the corrosive attack of the substrate material.

Compared to 900 °C and the hot corrosion behavior of the uncoated substrate materials [70], the aluminide coatings led to a significant improvement in type II hot corrosion resistance. The detrimental Na₂MoO₄, which formed during the exposure of the uncoated alloys [70], was successfully avoided with an Al₂O₃ content of over 20% by the formation of Al₂Mo₃O₁₂, becoming the predominant phase [75].

Conclusions

Ti, Mo-40Ti, and two ternary Mo-Si-Ti alloys were aluminized and analyzed to determine the influence of the alloying elements on the coatings' phase formation, morphology, oxidation, and hot corrosion behavior.

- Oxidation experiments at 700 °C and 900 °C revealed a significant influence of the temperature on oxidation kinetics.
- At 700 °C, thin oxides were observed, but only the Si-containing alloys exhibited a parabolic mass gin behavior, while the Ti, Mo-rich, and binary Ti-Mo aluminide coatings grew linear.
- At 900 °C, Mo-oxide evaporation was beneficial and promoted alumina formation. Ti was oxidized alongside Al and accelerated the scale growth, while Si and Mo positively influenced interdiffusion with the substrate.
- While the Al coatings were suitable for oxidative atmospheres at both temperatures, a strong temperature dependence of the protective effect was observed in hot corrosion environments. At 900 °C, the Mo-containing aluminides failed, and led to the formation of liquid phases. At 700 °C, an alumina scale was formed, which protected both Mo-Si-Ti alloys.
- During both oxidation and hot corrosion, the aluminide layers primarily determined the respective behavior, with a secondary dependence on the molybdenum content within these layers.

Appendix A: XRD analysis

See Figs. 10, 11 and 12.

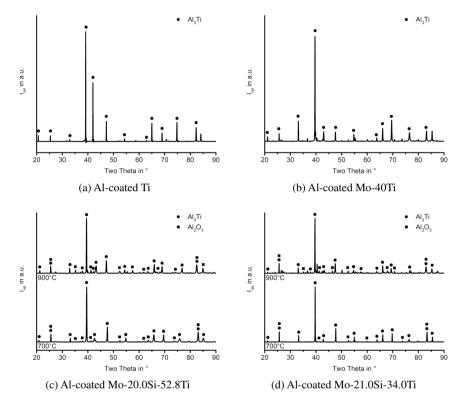


Fig. 10 XRD diffractograms of the different phases formed on the different substrates after pack cementation

(d) Oxidized Al-coated Mo=21.0Si-34.0Ti

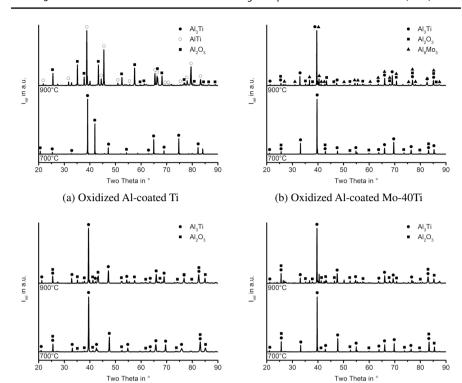


Fig. 11 XRD diffractograms of the oxides formed on the substrates after oxidation

(c) Oxidized Al-coated Mo=20.0Si-52.8Ti

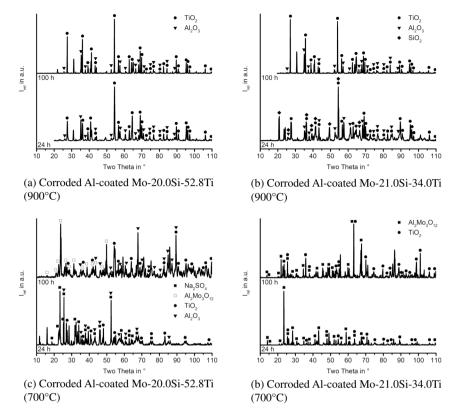


Fig. 12 XRD diffractograms of the oxides formed on the Mo-Si-Ti substrates after hot corrosion

Appendix B: Raman analysis

See Fig. 13.

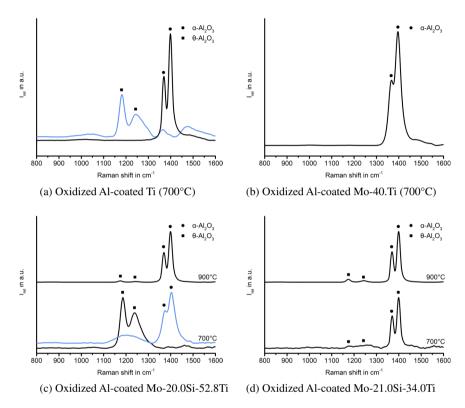


Fig. 13 Raman spectra of the oxides formed on the different substrates. The black spectra represent the signals found during the majority of measurements. Sometimes additional signals were found which are shown in light blue

Acknowledgements The authors thank Dr. Gerald Schmidt for EPMA measurements, Mathias Röhrig for technical support, Melanie Thalheimer for SEM support and Susann Rudolphi as well as Daniela Hasenpflug for metallographic preparation.

Author Contributions KB: methodology, investigation, writing—original draft preparation, visualization; TK: writing—review and editing, supervision; CO: writing—review and editing, supervision; AKC: validation, writing-review and editing; FH: resources, writing-review and editing; GW: resources, writing—review and editing; ASU: conceptualization, writing—review and editing, supervision; MH: writing—review and editing, project administration, funding acquisition; MCG: conceptualization, writing—review and editing, supervision, project administration, funding acquisition.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by the Research Training Group 2561 "MatCom-ComMat: Materials Compounds from Composite Materials for Applications in Extreme Conditions" (Project Number: 413956820) funded by the Deutsche Forschungsgemeinschaft (DFG).

Data Availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

References

- 1. J. H. Perepezko, M. Krüger, and M. Heilmaier, Materials Performance and Characterization 10, 2021 (122).
- 2. S. Obert, A. Kauffmann, and M. Heilmaier, Acta Materialia 184, 2020 (132).
- 3. S. Obert, A. Kauffmann, R. Pretzler, et al., Metals 11, 2021 (169).
- 4. K. Beck, F. Hinrichs, C. Oskay, et al., Coatings 13, 2023 (1712).
- 5. D. Schliephake, A. Kauffmann, X. Cong, et al., *Intermetallics* **104**, 2019 (133).
- 6. A. Schmitt, K. S. Kumar, A. Kauffmann, et al., Intermetallics 90, 2017 (180).
- 7. S. Obert, A. Kauffmann, S. Seils, et al., Journal of Materials Research and Technology 9, 2020 (8556).
- 8. R. Sakidja, F. Rioult, J. Werner, et al., Scripta Materialia 55, 2006 (903).
- 9. F. Rioult, N. Sekido, R. Sakidja, et al., Journal of the Electrochemical Society 154, 2007 (C692).
- 10. S. Majumdar, I. Sharma, and A. Suri, International Journal of Refractory Metals and Hard Materials 26, 2008 (549).
- 11. A. S. Ulrich and M. C. Galetz, Oxidation of Metals 86, 2016 (511).
- 12. K. Choi, W. Yang, K. H. Baik, et al., Oxidation of Metals 92, 2019 (423).
- 13. I. Gurrappa, Oxidation of Metals 56, 2001 (73).
- 14. A. S. Ulrich, N. Laska, A. Straubel, et al., Materials at High Temperatures 35, 2018 (204).
- 15. N. Chaia, C. Cossu, L. Ferreira, et al., Corrosion Science 160, 2019 (108165).
- 16. W. Yang, J. Park, K. Choi, et al., International Journal of Refractory Metals and Hard Materials **101**, 2021 (105642).
- 17. K. Ito, H. Numakura, T. Hayashi, et al., Metallurgical and Materials Transactions A 36, 2005 (627).
- 18. R. Sakidja, J. Park, J. Hamann, et al., Scripta Materialia 53, 2005 (723).
- 19. Z. Tang, A. J. Thom, M. Kramer, et al., *Intermetallics* 16, 2008 (1125).
- 20. J. H. Perepezko and R. Sakidja, JOM 62, 2010 (13).
- 21. A. Lange, M. Heilmaier, T. A. Sossamann, et al., Surface and Coatings Technology 266, 2015 (57).
- 22. D. Schliephake, C. Gombola, A. Kauffmann, et al., Oxidation of Metals 88, 2017 (267).
- 23. G. H. Meier, Oxidation of Metals 98, 2022 (1).
- 24. P. Hancock, Corrosion Science 22, 1982 (51).
- 25. V. Lemoine, P. Steinmetz, B. Roques, et al., Corrosion Science 25, 1985 (431).
- 26. B. Grégoire, X. Montero, M. Galetz, et al., Corrosion Science 141, 2018 (211).
- 27. R. Bürgel, H. J. Maier, and T. Niendorf, Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, (Springer-Verlag, Hochtemperaturlegierungen und -beschichtungen, 2011).
- 28. N. Eliaz, G. Shemesh, and R. Latanision, Engineering Failure Analysis 9, 2002 (31).
- 29. P. Hancock, Materials Science and Technology 3, 1987 (536).
- 30. J. Stringer, Materials Science and Technology 3, 1987 (482).

- 31. J. Nicholls, JOM 52, 2000 (28).
- 32. R. Bianco, M. A. Harper, and R. A. Rapp, JOM 43, 1991 (68).
- 33. I. Gurrappa, Journal of Alloys and Compounds 389, 2005 (190).
- 34. C. Briant, Z. Wang, and N. Chollocoop, Corrosion Science 44, 2002 (1875).
- 35. E. Tal-Gutelmacher and D. Eliezer, *JOM* **57**, 2005 (46).
- 36. V. Madina and I. Azkarate, International Journal of Hydrogen Energy 34, 2009 (5976).
- 37. C. Bale, E. Bélisle, P. Chartrand, et al., Calphad 54, 2016 (35).
- 38. A. Donchev, A. Kolitsch, M. Schütze, et al., Materials and Corrosion 62, 2011 (695).
- 39. A. Donchev, J. Grüters, M. Galetz, et al., Advances in Materials and Processing Technologies 2, 2016 (471).
- 40. A. Donchev, M. Galetz, M. Schütze, et al, Protection of Ti-Alloys against high temperature environmental attack by a two step process, aluminization + fluorination. TMS 2014: 143rd Annual Meeting & Exhibition: Annual Meeting Supplemental Proceedings pp 79–85, 2016b.
- 41. F. Van Loo and G. Rieck, Acta Metallurgica 21, 1973 (61).
- 42. X. Huang, L. Zhu, G. Cai, et al., Journal of Materials Science 52, 2017 (2270).
- V. Raghavan, Journal of Phase Equilibria and Diffusion 26, 2005 (357).
 J. C. Schuster and M. Palm, Journal of Phase Equilibria and Diffusion 27, 2006 (255).
- 45. H. Wang, R. Reed, J. C. Gebelin, et al., Calphad 39, 2012 (21).
- 46. Z. Li, C. Liao, Y. Liu, et al., Journal of Phase Equilibria and Diffusion 35, 2014 (564).
- 47. B. Distl, A. Walnsch, R. F. Mellor, et al., MSI Eureka 88, 2021 (1).
- 48. P. Eason, K. Jolly, and M. Kaufman, Reassessment of the Mo-Si-Al ternary isotherm at 1400 °C. In: 22nd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings, Wiley Online Library, 1988, (437)
- 49. C. Guo, C. Li, P. J. Masset, et al., Calphad 36, 2012 (100).
- 50. Y. Yang, Y. Chang, L. Tan, et al., Materials Science and Engineering: A 361, 2003 (281).
- 51. K. Beck, A. S. Ulrich, A. K. Czerny, et al., Surface and Coatings Technology 476, 2023 130205. 52. J. L. Smialek and D. Humphrey, Scripta Metallurgica et Materialia 26, 1992 (1763).
- 53. J. Smialek, Corrosion Science 35, 1993 (1199).
- 54. J.L. Smialek, and N.S. Jacobson, Oxidation of high-temperature aerospace materials. In: High temperature materials and mechanisms. New York: CRC Press 2014, (95–162)
- 55. J. Grüters and M. Galetz, Intermetallics 60, 2015 (19).
- 56. S. H. Cai, S. N. Rashkeev, S. T. Pantelides, et al., Physical Review B 67, 2003 (224104).
- 57. T. L. Barth and E. A. Marquis, Oxidation of Metals 95, 2021 (293).
- 58. Y. Saito, T. Takei, S. Hayashi, et al., Journal of the American Ceramic Society 81, 1998 (2197).
- 59. A. S. Ulrich, P. Pfizenmaier, A. Solimani, et al., Corrosion Science 165, 2020 (108376).
- 60. A. Soleimani-Dorcheh and M. Galetz, Oxidation of Metals 84, 2015 (73).
- 61. A. Solimani, T. Nguyen, J. Zhang, et al., Corrosion Science 176, 2020 (109023).
- 62. A. Rahmel, M. Schütze, and W. Quadakkers, Materials and Corrosion 46, 1995 (271).
- 63. I. Gurrappa and A. Gogia, *Materials Science and Technology* 17, 2001 (581).
- 64. L. Mengis, C. Oskay, A. Donchev, et al., Surface and Coatings Technology 406, 2021 (126646).
- 65. Institut für Arbeitsschutz DgU, Gestis-Stoffdatenbank (2023)
- 66. A. Navrotsky, Physics and Chemistry of Minerals 2, 1977 (89).
- 67. A. Navrotsky, Journal of the American Ceramic Society 97, 2014 (3349).
- 68. M. Lepple, K. Lilova, C. Levi, et al., Journal of Materials Research 34, 2019 (3343).
- 69. G. Dbrowska, P. Tabero, and M. Kurzawa, Journal of Phase Equilibria and Diffusion 30, 2009 (220).
- 70. K. Beck, T. König, E. Senvardarli, et al., Materials and Corrosion 2021 submitted
- 71. C. Giggins and F. Pettit, Hot corrosion degradation of metals and alloys A unified theory. Pratt & Whitney Aircraft Group East Hartford, 1979
- 72. R. Rapp and K. Goto, ECS Proceedings Volumes 1, 1981 (159).
- 73. S. Sunu, E. Prabhu, V. Jayaraman, et al., Sensors and Actuators B: Chemical 94, 2003 (189).
- 74. R. Rathnasamy and V. Alagan, Physica E: Low-Dimensional Systems and Nanostructures 102, 2018
- M. Kassem, Inorganic Materials 42, 2006 (165).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Katharina Beck¹ · Till König¹ · Ceyhun Oskay¹ · Andreas K. Czerny² · Frauke Hinrichs³ · Georg Winkens³ · Anke S. Ulrich⁴ · Martin Heilmaier³ · Mathias C. Galetz¹

Mathias C. Galetz mathias.galetz@dechema.de

> Katharina Beck katharina.beck@dechema.de

Till König till.koenig@dechema.de

Ceyhun Oskay ceyhun.oskay@dechema.de

Andreas K. Czerny andreas.czerny@kit.edu

Frauke Hinrichs frauke.hinrichs@kit.edu

Georg Winkens georg.winkens@kit.edu

Anke S. Ulrich silvia.ulrich@uni-bayreuth.de

Martin Heilmaier martin.heilmaier@kit.edu

- Materials and Corrosion, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
- Institute for Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Applied Materials-Materials Science and Engineering, Karlsruhe Institute of Technology, Engelbert-Arnold-Straße 4, 76131 Karlsruhe, Germany
- Metals and Alloys II, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany

