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ARTICLE INFO ABSTRACT
The review of this paper was arranged by Strong first-order phase transitions (SFOPT) during the evolution of the Higgs potential in the early universe not
Prof. Z. Was only allow for the dynamical generation of the observed matter-antimatter asymmetry, they can also source a

stochastic gravitational wave (GW) background possibly detectable with future space-based gravitational waves
interferometers. As SFOPTs are phenomenologically incompatible with the Standard Model (SM) Higgs sector,
the observation of GWs from SFOPTs provides an exciting interplay between cosmology and particle physics
in the search for new physics. With the C++ code BSMPTv3, we present for the first time a tool that performs
the whole chain from the particle physics model to the gravitational wave spectrum. Extending the previous
versions BSMPTv1 and v2, it traces the phases of beyond-SM (BSM) Higgs potentials and is capable of treating
multiple vacuum directions and multi-step phase transitions. During the tracing, it checks for discrete symmetries,
flat directions, and electroweak symmetry restoration, and finally reports the transition history. The transition
probability from the false to the true vacuum is obtained from the solution of the bounce equation which allows
for the calculation of the nucleation, percolation and completion temperatures. The amplitude and characteristic
frequencies of the GWs originating from bubble collisions and highly relativistic fluid shells, sound waves and
turbulence, are evaluated after the calculation of the thermal parameters at the transition temperature, and finally
the signal-to-noise ratio at LISA is provided. The code BSMPTv3 is a powerful self-contained tool that comes more
than timely and will be of great benefit for investigations of the vacuum structure of the early universe of not
only simple but also complicated Higgs potentials involving several vacuum directions, with exciting applications
in the search for new physics.
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NEW VERSION PROGRAM SUMMARY
Program Title: BSMPT - Beyond the Standard Model Phase Transitions: A C++ package for the computation of phase transitions and of gravitational
waves sourced by first-order phase transitions (FOPT) in beyond-Standard-Model (BSM) theories with extended Higgs sectors.
CPC Library link to program files: https://doi.org/10.17632/sjtp7bb33t.2
Developer’s repository link: https://github.com/phbasler/BSMPT
Licensing provisions: GPLv3
Programming language: C++17
Journal reference of previous version: Comput. Phys. Commun. 269 (2021) 108124, https://doi.org/10.17632/sjtp7bb33t.1
Does the new version supersede the previous version?: Yes
Reasons for the new version: Add algorithms for multi-step phase tracking, the computation of the bounce solution, of thermal parameters and of the
spectrum of gravitational waves sourced by FOPTs.
Summary of revisions: BSMPTv3 can track multiple non-global and global minima of the effective potential as a function of the temperature, solve the
bounce equation to calculate the tunnelling rate and compute the spectrum of the primordial gravitational waves sourced by FOPT as well as their
signal-to-noise ratio at LISA, a future space-based gravitational waves observatory.
Nature of problem: Scalar extensions are promising models capable of providing a strong first-order electroweak phase transition, one (i.e. departure
from thermal equilibrium) of the three Sakharov conditions for successful electroweak baryogenesis. Furthermore, they can provide additional
sources of CP violation, which is another Sakharov condition. Such FOPT can source gravitational waves that are possibly detectable at future GW
observatories. In order to decide if and which phase transitions take place during the evolution of the universe, the effective potential of the model
under consideration has to be computed at higher orders including the thermal mass corrections. Its non-global and global minima then have to be
traced as function of the temperature. For overlapping minima, the tunnelling rate from the false to the true minimum needs to be calculated. For
this the bounce equation has to be solved. For the phase transitions that take place, the thermal parameters are then determined. They are required
for the computation of the generated GW spectrum. Finally, the signal-to-noise ratio is computed for the future GW observatory LISA.
Solution method: The minima are tracked across the temperature range by using a Newton-Raphson method with seed points determined by the
BSMPTv2 routines. For the computation of the tunnelling rate, the bounce equation is solved by the path deformation algorithm. This consists of
splitting the bounce equation into a tangential and a perpendicular component, and then solve it iteratively until convergence is reached. With the
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tunnelling rate as a function of the temperature, the nucleation, percolation and completion temperatures are calculated as well as the other thermal
parameters (released latent heat, inverse time scale) required for the computation of the GW spectrum. The computations of the spectrum and its
respective signal-to-noise ratio are performed using results from numerical simulations and fits available online.
Additional comments including restrictions and unusual features: The wall velocity is considered an input parameter. It can be set to a specific constant
value or alternatively chosen between two different approximations. If none of these is chosen, the wall velocity is set by default to 0.95. Models
with a spontaneously broken discrete symmetry can lead to domain walls. The code does not take into account the possible existence of different
domains separated by domain walls. In this case, only phase transitions with the shortest path between false and true vacuum are considered. The
code assumes only one transition taking place between one pair of false and true vacuum phases. The code calculates GWs originating from bubble
collisions and highly relativistic fluid shells, sound/shock waves and magneto-hydrodynamic turbulence.

1. Introduction

Despite the success of the Standard Model (SM), which has been structurally completed with the discovery of the Higgs boson [1,2] and tested to
great accuracy, there are open questions which cannot be answered by the SM. The investigation of the development of the vacuum structure during
the evolution of the universe allows us to get exciting insights, which may help to find answers to some long-standing open problems. Among these is
the question of the generation of the observed baryon asymmetry [3] of the universe. A dynamical explanation is given by electroweak baryogenesis
(EWBG) [4-12], provided the three Sakharov conditions [13] are fulfilled. While these could in principle be met by the SM, for the measured value
of the SM-like Higgs mass of 125 GeV, there is a smooth cross-over [14,15]. Since EWBG requires a strong first-order electroweak phase transition
(SFOEWPT), compatibility with Higgs phenomenology hence leads to the investigation of beyond-the-SM (BSM) Higgs sectors. The requirement of
an SFOEWPT restricts the allowed parameter space of BSM models entailing observable consequences at collider experiments, like the Large Hadron
Collider (LHC), and provides us with an indirect probe of new physics scenarios.

The first direct observation of gravitational waves (GWs) reported by the LIGO Collaboration in 2016 [16], was awarded the Nobel Prize for
physics in 2017 and initiated a new era of multi-messenger astronomy. Future GW observatories with increased sensitivity provide new exciting
avenues with unprecedented opportunities for the exploration of particle physics. Thus, first-order phase transitions (FOPTs) can source a stochastic
gravitational wave background that can be detectable with future space-based gravitational waves interferometers. This would not only provide us
with the exciting possibility to directly probe the echo of a cosmological FOPT, but it would also amount to the discovery of physics beyond the SM.

The combination of collider phenomenology and cosmological observations is hence an exceptional opportunity to get insights into the true
physics that underlies nature, spanning a large range of energy scales. For this to be meaningful, we have to consistently combine information
from collider observables and gravitational wave observation. Specific new physics models, that fulfil all relevant theoretical and experimental
constraints, are tested w.r.t. their ability to induce an FOPT, and if the gravitational wave spectrum that is generated during this transition may
be detectable at future GW observatories. This program has to be performed at the highest possible precision taking into account all available
state-of-the-art information. There exist several codes that are publicly available, which trace the minima of extended Higgs sector potentials at
non-zero temperature some of which also determine the bounce action. None of these codes, however, performs the whole chain from testing an
arbitrary extended Higgs sector model w.r.t. its constraints via tracing the minima of its scalar potential at non-zero temperatures, the determination
of the bounce solution and the possible phase transitions, to the computation of the gravitational wave spectrum originating from these first-order
phase transitions, in a self-contained way. Moreover, some codes become very slow and even fail when it comes to the determination of the various
vacuum phases of involved potentials with multiple field directions. Last but not least, the widely used code CosmoTransitions [17] is not publicly
maintained any more.

It is hence timely and imperative to develop a new self-contained code being able to perform the whole chain of calculations starting from a
particle physics model considering all relevant constraints to the spectrum of gravitational waves from FOPTs, implementing the state-of-the-art
approaches at highest available precision, which are updated constantly when new developments appear. This is the aim of the C++ code BSMPT
and the here presented extension BSMPTv3. With BSMPTv1/v2 [18,19] and the link to ScannersS [20-24] the check of new physics models w.r.t.
their potential of generating an FOPT while simultaneously being compatible with all relevant theoretical and experimental constraints is possible.
In this paper, we present the new release BSMPTv3, a C++ code that extends the previous versions substantially by the ability to

— track temperature-dependent coexisting minimum phases over arbitrary temperature intervals;

— trace multi-step phase transitions;

— deal with discrete symmetries;

— deal with flat directions;

— test electroweak symmetry restoration at high temperature;

— calculate the bounce solution for regions of coexisting minima;

— determine the critical temperature, the nucleation temperature, the percolation temperature, the completion temperature, and the reheating
temperature;

— calculate the released latent heat « and the inverse time scale g/ H of the phase transition;

— derive the amplitude and characteristic frequencies of gravitational waves, with bubble collisions and highly relativistic fluid shells, sound waves
and turbulence as their possible origins;

— calculate the signal-to-noise ratio at LISA;

for all models implemented in BSMPT and those included by the user.

The outline of the paper is as follows. We start with a description of the state-of-the-art and the new features of BSMPTv3 in Sec. 2. In Sec. 3, we
describe in great detail the program. After giving details on download and installation in Sec. 3.1, we describe the structure and new algorithms of
the code, before moving on to the presentation of the newly implemented classes MinimumTracer, BounceSolution, GravitationalWave, and
TransitionTracer in Secs. 3.3-3.6. Subsequently, we describe the new executables MinimaTracer, CalcTemps, CalcGW and PotPlotter in
Secs. 3.7-3.10, as well as new stand-alone features in Sec. 3.11. We finish the program section in Sec. 3.12 with the summary on the status codes that
are given out. Section 4 contains example runs, the discussion of their results as well as comparisons with the existing code CosmoTransitions.
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Our conclusions are given in Sec. 5. The appendix details the improvement on the bosonic thermal function used in BSMPT that we implemented
together with this new version of the code.

2. State-of-the-art and new features

The vacuum structure of the universe is theoretically described by the effective Higgs potential at non-zero temperature. As the universe cools
down and expands, its vacuum structure changes. At a certain temperature a new minimum evolves which may eventually become degenerate with
the existing one, and finally become the global minimum. The degenerate situation defines the critical temperature 7, and the corresponding critical
vacuum expectation value (VEV) v,, but it does not guarantee that actually a phase transition from the false to the true vacuum takes place. First-
order phase transitions from the false to the new true vacuum proceed via bubble nucleation. The bubbles with non-zero VEV evolve and expand until
they dominate the universe. These bubbles generate GWs through friction with the thermal plasma and through collisions (see e.g. Refs. [25-29] for
reviews).

The crucial quantity for the phase transition is the decay rate of the false vacuum, or in other words the tunnelling rate for the transition from
the false vacuum to the true vacuum. The probability for the phase transition to take place at finite temperature is computed via minimisation of
the O(3)-symmetric Euclidean action S5, the bounce action, of the scalar field. For the bounce solution the trajectory in field space connecting the
local minima needs to be found, which minimises the Euclidean action. This is technically very challenging and is complicated by the fact that the
vacuum structure of extended Higgs sector potentials is very involved and changes when loop and temperature effects are included. The behaviour
of the ground state of the universe as it cools down is hence highly non-trivial and requires tracing the ground states, given by the minima of the
effective potential, as a function of the temperature. Through the decay rate and the Euclidean action the thermal parameters characterising FOPTs
are obtained. These are the transition temperature, the inverse duration of the PT and the transition strength given by the latent heat released during
the PT. Together with the bubble wall velocity, they ultimately determine the characteristic frequencies and the amplitude of the gravitational wave
spectrum.

There are several codes on the market, besides BSMPT, which trace the minima of involved scalar potentials and some of them also provide
bounce solutions. They are briefly reviewed here:

— CosmoTransitions [17]: traces minima upwards and downwards in the temperature, initiating the tracing with a collection of starting points
that are then optimized locally using a Nelder-Mead-type algorithm. It contains Python modules to calculate the bounce solution via path
deformation. The nucleation temperature is obtained using the approximation .S3(T)/T < 140.

— In Vevacious [30] homotopy continuation is exploited to find all extrema of the tree-level potential. These are then used as starting points for
gradient-based minimisation of the one-loop effective potential. Tunnelling times are obtained by using CosmoTransitions.

— VevaciousPlusPlus [30,31] has no new implementation of the bounce solution calculation, but a C++ code wrapper of CosmoTransitions
interfaced with models in the framework of SARAH [32-35].

— AnyBubble [36] is a Mathematica code for finding bubble nucleation instantons via a multiple shooting algorithm.

— EVADE [37-39] performs the minimisation of the scalar potential through polynomial homotopy continuation and estimates the decay rate of
the false vacuum in a multi-scalar theory by using the straight-path approximation.

— BubbleProfiler [40] is a C++ is library for finding the bounce solution via a semi-analytic algorithm formulated in [41].

— The C++ code PhaseTracer [42] tracks phases and identifies critical temperatures using an algorithm that is similar to the one used in
CosmoTransitions, but faster. It handles discrete symmetries and can be linked to potentials implemented in FlexibleSUSY [43,44] and
BSMPT.

— SimpleBounce [45] applies the gradient flow method from [46] to calculate the bounce solution.

— FindBounce [47] finds the bounce solution via the polygonal multi-field method described in [48].

— OptiBounce [49] obtains the bounce solution via solving the ‘reduced’ minimisation problem [50].

— TransitionListener [51,52] extends CosmoTransitions by functionalities to study the case of dark sector phase transitions and also
derive e.g. stochastic GW spectra and signal-to-noise ratios.

The C++ code BSMPTv1 [18] has been developed to compute the loop-corrected daisy-resummed effective potential of BSM Higgs sectors at
non-zero temperature, applying an on-shell (OS) renormalization scheme. It checks for absolute vacuum stability requiring the electroweak vacuum
to be the global minimum of the one-loop corrected effective potential at zero temperature. This ensures that we live in a stable vacuum today,
however, it excludes the valid parameter region of points with metastable vacuum configurations.”> Our code BSMPTv1/v2 traces the position of
the global minimum for temperatures T € {0, 300} GeV, looking for a discontinuity in the electroweak VEV as the order parameter of the phase
transition between the high-temperature symmetric and the electroweak vacuum at 7= 0 GeV. However, this approach only shows the possible
coexistence of two minima. It does not guarantee that the transition actually takes place. It can also not reveal the possible existence of multiple
phases during the evolution of the universe. In BSMPTv2 [19] the code was extended to the computation of the generated baryon asymmetry in the
CP-violating 2-Higgs-Doublet Model (C2HDM), and included a new model, the Complex Singlet Extension of the SM (CxSM). A detailed description
of BSMPTv1 and v2 is given in the two corresponding manuals [18] and [19], respectively, phenomenological investigations using the code can be
found in [55-90].

The here presented version BSMPTv3® extends BSMPT into a capable single and multi-step phase transition finder. Starting from an absolutely
stable electroweak vacuum at zero temperature, it traces the electroweak and all emerging global minima as functions of the temperature and
calculates all possible found transitions and key parameters (temperature scales, released latent heat, inverse time scale etc.) as well as the resulting

2 The electroweak vacuum of the SM at zero temperature is metastable [53,54], its quartic coupling 4 is negative for scales > 10'" GeV and a lifetime larger than
the age of the universe.
3 For a phenomenological study, an early version of the code was used in [91].
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gravitational wave spectra. We also implement a framework of status codes that report e.g. on electroweak symmetry non-restoration at high
temperature,* as well as vacuum trapping.®

The code BSMPT with its extension to v3 goes beyond existing codes in the following sense. First of all, the innovations related to the versions
v1 and v2 are:

— BSMPT was the first code to implement an on-shell renormalization scheme [55], where, at zero temperature, the loop-corrected masses and
mixing angles are renormalized to their corresponding leading-order (LO) values in the minimum of the potential. Crucial for phenomenology,
this allows for directly checking the relevant theoretical and experimental constraints of the investigated model without resorting to an involved
time-consuming iterative procedure. In this on-shell renormalization scheme UV-finite counterterms are added after the potential has been
renormalized in the MS scheme. We have fixed the renormalization scale in the MS scheme to the value of the VEV, v =246 GeV. Since this
fixing does not allow to study the renormalisation scale dependence of the obtained results, we provided the option to change the value of the
renormalisation scale in the model file. This allows the users to use their own preferred value for the renormalisation scale. Furthermore, it
provides the possibility to study the impact of the change of the renormalisation scale on the results. This residual scale dependence originates
from the fact that the on-shell renormalisation conditions for the masses and mixing angles are derived for the minimum of the zero-temperature
potential and that moreover the Higgs self-interactions are not renormalised on-shell.

— The code can be easily linked to Scanners [20-24], so that extensive scans in the parameter spaces of the investigated models can be per-
formed checking for the relevant theoretical constraints, implemented in Scanners, and (through the links to HiggsBounds [97-103] and
HiggSignals [104-107], which have been recently merged into the new package HiggsTools [108], and MicrOMEGAs [109-118]) for the
experimental collider and DM constraints. ScannersS also checks for flavour constraints, and, in CP-violating models, tests the compatibility
with results from the electric dipole moments.

— Several models are already pre-implemented, namely the complex singlet extension of the SM (CxSM) [19], the CP-conserving, i.e. real, 2-Higgs-
Doublet Model (R2HDM) [18] and its CP-violating version C2HDM [18], the next-to-minimal 2HDM (N2HDM) [18], and the model ‘CP in the
Dark’ [77,85]. New models can easily be added following the prescription in the manual of BSMPTv2 [19]. Also, consult the README . md-file on
how to use our SymPy [119] as well as Maple [120] and Mathematica [121] interfaces for model implementation. In BSMPTv3, we furthermore
added an exemplary model file for the SM.

— The code allows to calculate the loop-corrected trilinear Higgs self-couplings of the pre-implemented models and any model provided and
implemented by the user, from the effective potential calculated in the code, at zero temperature.

— In BSMPTv2 the computation of the baryon asymmetry for the model C2HDM was implemented.

The new version v3 presented here surpasses the existing codes because of the following features:

— Our algorithms for tracing minima and calculating the bounce solutions are more stable than the ones in CosmoTransitions, in particular
for complicated potentials with numerous field directions. It is for most scenarios faster than CosmoTransitions. Importantly, it finds phase
transitions, where CosmoTransitions fails to identify them. We will discuss the comparison with CosmoTransitions in Sec. 4.

— BSMPTv3 allows to check for symmetry restoration at high temperature, and it can treat potentials with discrete symmetries and potentials with
flat directions.

— In the derivation of the nucleation temperature, we do not only rely on the approximation applied in CosmoTransitions S;(T)/T < 140, to
get the nucleation temperature, but also derive it from the condition that the tunnelling decay rate per Hubble volume matches the Hubble rate.

— Unlike existing codes, BSMPTv3 calculates the nucleation, the percolation, the completion and the reheating temperature. The user can optionally
define the values of the false vacuum fractions to be applied for the percolation and completion temperature, respectively.

— The user can select the characteristic temperature scale at which the thermal parameters relevant for the gravitational wave spectrum are
calculated.

— Contrary to the above listed codes, BSMPTv3 computes the gravitational wave spectrum originating from bubble collisions and highly relativistic
fluid shells, from sound waves and magneto-hydrodynamic turbulence.

— BSMPTv3 computes the related signal-to-noise ratio at LISA.

The code BSMPTv3 hence provides the whole chain from tracing the phases of extended Higgs sectors, calculating the bounce action, the transition
rate, the strength of the phase transition to the gravitational wave spectrum (and it calculates also the baryon asymmetry in case of the C2HDM), in
a self-contained framework applying on-shell renormalization in the effective potential.

Recently, an excellent overview has been published in [122], which reviews comprehensively the path from a particle physics model to GWs. The
review also briefly comments on lattice methods. Lattice simulations allow to complete the incomplete perturbative approach to the study of EWPTs.
They are computationally demanding, however, and not able to explore in detail many beyond-SM extensions. For lattice treatments of the effective
potential cf. e.g. [123-126], for works on lattice simulations of gravitational waves, cf. e.g. [127]. An algorithm for the construction of an effective,
dimensionally reduced, high-temperature field theory for generic models has been implemented in DRalgo [128], which allows to better describe
infrared effects [129] that can only be treated properly by lattice simulations [130]. The approximation through leading-order perturbation theory,
which is widely used, contains large theoretical uncertainties because it converges only slowly, as has been pointed out in [131-134]. In [122],
also gauge-independent approaches are reviewed which address the problem of gauge dependence of the effective potential [135,136]. For recent
developments, cf. e.g. [124,133,137-141]. The review introduces all relevant quantities, discusses related obstacles and open problems, reviews
the state-of-the-art and related literature, and provides useful formula. While we restrict here to a minimal description for the introduction of our
notation needed for the presentation of our code and its new features, without a discussion of pros and cons of different approaches,® we refer the
reader for further background information to Ref. [122].

4 The possibility and consequences of electroweak symmetry non-restoration were studied in e.g. [69,81,92-95].
5 Vacuum trapping has been studied in e.g. [69,81,96].
6 Where appropriate, we provide flags that allow the user to choose between approaches.
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3. Program description

In the following, we describe how to install and use BSMPTv3 focusing on the new executables and describing the new structure.
3.1. Download and installation

The program was developed and tested on Arch Linux, OpenSuse 15.3andmacOS 13.2.1 witharange of compilers: GNU 7.5.0-13.2.17
and Clang 14.0.3.%9 The here presented version v3, as well as all previously released versions, can be obtained from:

https://github.com/phbasler/BSMPT.

The code is structured into the following directories:

example example input and output files for all executables and models

include header files

manual manuals

profiles Conan profiles

sh Python files for converting input data files to required format

src source files

standalone stand-alone example codes that allow users to directly use selected algorithms

tests input and source files used for the unit tests

tools a SymPy [119] as well as a Maple [120] and a Mathematica [121] interface to calculate all necessary input needed to implement

a new model, as well as configurations for the installation with CMake

The directory src contains the following:

src/prog executable source code

src/models implemented models and SM parameters

src/minimiser minimisation routines

src/ThermalFunctions thermal integrals

src/WallThickness calculation of the wall thickness

src/Kfactors calculation and interpolation of the thermal transport coefficients
src/baryo calculations VIA and FH approach to calculate the baryon asymmetry of the universe!'®
src/minimum tracer (multi-step) phase tracing and identification of coexisting phase pairs
src/bounce solution bounce solution and characteristic temperatures
src/gravitational waves  derivation of GW spectrum parameters

src/transition_tracer transition history evaluator that operates the classes

minimum tracer, bounce solution, gravitational waves for the new executables

BSMPTv3 requires a C and C++ compiler that supports the language standard 17, as well as an installation of CMake!! and Conan.!? The latter
two can e.g. be installed with the Python package manager pip [151] through the command pip3 install cmake conan.

For a default installation of BSMPTv3, our Build.py script can be used. This script installs the necessary Conan profiles for the operating
system, handles the dependencies and compiles BSMPT with its default settings. It is executed via the command (from within the main directory of
BSMPTv3):

python3 Build.py

If the installation is successful, a new directory build is created and the following new executables are built in $BSMPT/build/ [operating-
system-specific-name] /bin:

MinimaTracer Tracing of minima as function of the temperature (Sec. 3.7)

CalcTemps Calculation of the bounce solution and characteristic temperatures for first-order phase transitions between pairs of coexisting
phases (Sec. 3.8)
CalcGW Calculation of the gravitational wave spectrum sourced by first-order phase transitions (Sec. 3.9)

PotPlotter Visualization of multi-dimensional potential contours (Sec. 3.10)

By default, also the BSMPTv2-executables BSMPT, CalcCT, NLOVEV, TripleHiggsCouplingsNLO, Test, VEVEVO are built. To build the baryo-
genesis executables, CalculateEWBG, PLotEWBG nL and P1otEWBG_vw, one needs to set CompileBaryo=True when installing BSMPT via our
Setup.py script, as will be described below. Before doing so, we first comment on the dependencies that are used by Conan:

7 https://gcc.gnu.org/.

8 https://clang.llvm.org/.

9 We furthermore continuously ensure that BSMPT compiles and passes all unit tests under the latest versions of mac0s, Windows and Ubuntu as well as Ubuntu-
20.09.
10 We used the FH [142-145] and the VIA [146-149] approach to compute the baryon asymmetry of the universe in the C2HDM. Recently, it was argued, however,
that the source term in the VIA method vanishes at leading order [150], which would have consequences for the derived baryon asymmetry in this method.
1 https://cmake.org/.
12 https://conan.io/.
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— The library GSL [152] is required for its routines for numerical derivation, integration, interpolation as well as minimisation and its mathematical
algorithms.

— Eigen3'® is used for matrix- and vector-manipulations.

— nlohmann_ json [153] is used for the option to supply input to the executables in the form of json-files as further described below.

— Catch [154] and benchmarks [155] are used for unit tests. If the unit tests should not be compiled, the option EnableTests=False must be
set when using the detailed installation method via the Setup . py script, as further described below.

— Boost!# is optional and only required for the calculations related to baryogenesis. In order to compile the baryogenesis calculation, the option
CompileBaryo=True must be set in the detailed installation method, as described below.

In addition to GSL, at least one of the following minimisation libraries should be used. By default, both are installed:

— libcmaes [156] is a C++ implementation of the Covariance Matrix Adaptation Evolution Strategy algorithm. If an installation is not wanted,
UseLibCMAES=False must be specified when using Setup . py for installation, as will be explained below.

— NLopt [157] uses the DIRECT L [158] algorithm. If the user does not want to install NLopt, the option UseNLopt=False can be specified
analogously.

We provide the script Setup . py which allows for a customized installation. It can take several optional arguments, e.g. all above listed options
and more. All possible optional arguments can be viewed by running python3 Setup.py -h or python3 Setup.py -help.!®> A complete
installation of BSMPTv3 using our Setup.py script looks like:

python3 Setup.py [optional arguments]
cmake --preset ${profile}

cmake --build --preset ${profile} -j
cmake --build --preset ${profile} -j -t doc

The -t doc uses doxygen'® to create the documentation in the local build directory.!” The ${profile} parameter depends on the operating
system. After running Setup.py, cmake -list-presets gives a list of all selectable profiles.
When BSMPTv3 is successfully compiled (with option EnableTests=True), unit tests can be run by calling (in the main directory):

ctest --preset ${profile} -j

These tests should be extended if the user implements a new model.
3.2. Structure and description of the algorithms of BSMPTv3

The main objective of the code BSMPTv3 is the tracing of (multiple) phases as a function of the temperature and the calculation of the transition
probability from the respective false to the true vacuum, the computation of the relevant thermal parameters and the determination of the gravita-
tional wave spectrum from a FOPT. The solution is divided into three steps: (i) Construction of the loop-corrected effective potential (evaluated in the
Landau gauge) including thermal masses and applying the on-shell renormalization scheme; tracing the minima of this potential and identification
of pairs of coexisting phases. (ii) Determination of the bounce solution for each of the found pairs of coexisting phases; calculation of the tunnelling
rate from the false to the true vacuum of the phase pair; computation of the critical, nucleation, percolation, and completion temperatures. (iii) For
the found FOPT, computation of the gravitational wave spectrum based on the transition temperature (percolation temperature by default) and the
bounce solution determined in step (ii). These three steps are performed in the corresponding three classes MinimumTracer, BounceSolution,
and GravitationalWave and organized by a fourth class, TransitionTracer, cf. Fig. 1. The user interface to extracting the results is given by
four executables, namely MinimaTracer . cpp (reports on all found minima as functions of the temperature), CalcTemps . cpp (gives out charac-
teristic temperatures for all found coexisting phase pairs), CalcGW. cpp (reports on characteristic temperatures and GW parameters for all found
coexisting phase pairs) and PotPlotter (calculates potential contours useful for visualization).

In the following four sections 3.3-3.6, we will describe the four classes with our applied solutions and the relevant formulae. In the four subsequent
sections 3.7-3.10, the four executables will be explained together with the flags that can be applied. In this context, we will also describe various
algorithms that can be chosen by the user through the flags. In Sec. 3.11 we collect functions that the user might want to use for specific computations.
The last section 3.12 finally is devoted to the summary of the given out status codes and their explanation.

3.3. The class MinimumTracer

The computation of the effective potential in the on-shell renormalization scheme for an already implemented model or a new model implemented
by the user was described in the BSMPT manuals of v1 and v2, to which we refer the user for details. Here we describe the newly implemented
algorithm for the tracing of (possibly multiple) coexisting phases as function of the temperature.

Between a user-defined high temperature T, and the low temperature T, = 0GeV, MinimumTracer traces phases using found global minima
at high and low temperature as well as the zero-temperature electroweak minimum as seed points. We start with the definitions of phases and phase
transitions in Sec. 3.3.1 and then give in Sec. 3.3.2 details on the algorithm for tracing one phase. In Sec. 3.3.3 we describe how we identify symmetries
of the potential and find the closest distinct phases in field space. Section 3.3.4 shows how BSMPTv3 deals with flat directions in potential space.
More details on how BSMPTv3 traces landscapes with possibly multiple coexisting phases are given below in Sec. 3.7.1.

13 http://eigen.tuxfamily.org/ and https://gitlab.com/libeigen/eigen.

14 https://www.boost.org/.

15 Note, that if a compiled version of BSMPT is distributed to other machines, which do not share the same or related CPUs, it is advisable to disable vectorization
for its compilation. This can be done by setting UseVectorization=False.

16 https://www.doxygen.nl/index.html.

17" The documentation for BSMPT can also be found online at https://phbasler.github.io/BSMPT/documentation/.
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BSMPTv1/v2

one-loop daisy-resummed finite- ——+ PotPlotter.cpp

temperature effective potential
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class TransitionTracer transition history
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structure in the temperature range @
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- identification of coexisting phase pairs
and their critical temperatures T,
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with T,

class BounceSolution

calculation of the bounce solution as a
function of temperature

finding the nucleation temperature 7;,

through matching the tunnelling rate CalcTemps. cpp

with the Hubble rate

- derivation of the percolation 7}, and
completion temperature Ty via solving
the integral of the false vacuum fraction

l

class GravitationalWave

calculation of all parameters of the GW spec- CalcGW.cpp

trum, e.g. «, B/H, K, ¢, & the GW spectrum

Fig. 1. Structure and dependencies of the algorithm of BSMPTv3. The four classes are compiled as libraries. The class TransitionTracer acts as a logic interface
between the executables and the three subclasses that contain the steps of the calculation and, based on the results, reports on the transition history.

3.3.1. Phases, first and second order phase transitions

Multi-scalar Higgs potentials exhibit complicated cosmological histories accompanied by possibly a multitude of phase transitions between
different vacuum states. For the sake of clarity, we have to define the meaning of the expressions phase as well as first-order and second-order phase
transition as they are used in our code for the derivation of the gravitational waves related to a first-order phase transition. The phase of a multi-
scalar potential is defined by the values of its temperature-dependent vacuum expection values of the complete set of scalar fields. Different phases
differ in the scalar field directions in which they exhibit a non-zero VEV. With decreasing temperature during the evolution of the universe, the
temperature-dependent effective potential changes and different minima, maxima, and saddle points at different locations in field space and with
different potential values evolve. Starting from a global minimum at high temperature, with decreasing temperature at some moment a second
minimum starts evolving, which may become degenerate with the existing global minimum at the critical temperature T, however, separated by
a barrier, so that we then have a discontinuity in the VEVs of the two degenerate global minima. Finally, the second minimum becomes the global
one and then, if the tunnelling rate is sufficiently large, a first-order phase transition from the false to the true vacuum takes place. In a second-order
phase transition, on the other hand, we have a continuous change of the VEV as a function of the temperature. In BSMPTv3, we only consider GWs
sourced by FOPTs.

3.3.2. Phase tracker

Our goal is to find the transition rate between two distinct phases as a function of the temperature 7. Thus, before we do any calculation, it is
of utmost importance to have an accurate description of the vacuum structure of a particular BSM model. Usually, models are too complex to allow
for an analytical description of their vacuum so that we need to employ numerical methods to find the phases and track them across the whole
temperature range.

The location of the global minimum in BSMPTv2 is searched for using algorithms of the libraries GSL, 1ibcmaes or NLopt. These gradient-free
methods only use potential values to locate the minimum, so that they are rather fast. The available precision provided in BSMPTv2 was considered
sufficient in previous iterations. However, for the identification of the bounce solution in BSMPTv3, significantly higher precision is required,
primarily as a result of the complexity of the boundary conditions. In BSMPTv3, we still use these gradient-free methods to find the seed points from
where we start the tracing.

To find the minimum q_§ of the potential we have to search for points with vanishing gradient, VV(q.T)) =0. The method that we settled for is the
Newton-Raphson method which uses the gradient and the Hessian matrix to take an educated step in the right direction. To understand the core of
the method let us Taylor expand the gradient around a point 5,

VV($+E)=VV($) + H(E+OED, @.1)
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where H(¢) is the Hessian matrix calculated at ¢. Suppose that this small step takes us to the minimum of the potential, i.e. VV (¢ + €) =0, then
we can invert the equation to find the step &,

E=-H@)'VV (). (3.2)

In our code, we start with an initial guess 47;0 provided by the gradient-free minimisers and take educated steps J;i = q?;[ -H ($i)—1 VV((Z;[) until the
gradient vanishes. This method is the equivalent of locally approximating the potential with a multivariate second-degree polynomial and finding
the minimum with a single iteration. Although each iteration is computationally costly, as one needs to numerically calculate the gradient and the
Hessian and its inverse, the convergence is so fast that near the minimum only a few iterations are needed to find the minimum.

We then want to track the phases across the whole temperature range, so after finding the minimum for some temperature T we slightly change
the temperature T — T + 6T and rerun the algorithm starting at the minimum found at 7. If the minimum is now a saddle point (which can
also be found by the method) then we decrease 6T . If the Hessian matrix is singular this method will not work because the Hessian matrix will
have no inverse. This might be a problematic scenario because the Hessian matrix eigenvalues coincide with the masses of scalar particles and
massless particles are a possibility. To circumvent this scenario we add a small constant to the diagonal elements of the Hessian, thereby shifting all
eigenvalues by this constant value. This allows us to have zero, and even small negative eigenvalues to account for numerical errors, in the Hessian
matrix without destroying the convergence.

This method uses gradients and Hessian matrices that, in our case, have to be calculated numerically. A useful trick that stabilises the numerical
derivatives is to rescale the potential as

V(@)
1GeV? + T2
Obviously, a minimum in the rescaled potential is also a minimum in the non-rescaled potential. The advantage comes from the fact that at high T
the potential behaves as

V($) - (3.3)

Tlim V(q_5, T)~ T217(q_5) +T*x% (field-independent constants), (3.4)

where 17($) is the part of the potential proportional to T2 and is T-independent.'® The T term is irrelevant for the derivatives, the other term scales
as T so that the rescaled potential becomes T -independent at high T'. Because of this, it is much easier to choose a good step size for the numerical
derivatives. We chose to rescale the potential with 1 GeV? 4+ T2 and not just T2 in order not to run into LatlowT.

A short comparison with CosmoTransitions is in order. While we use the Newton-Raphson method to find the minimum, CosmoTransitions
first uses a Newton-Raphson step combined with a gradient descent step in temperature from the previous temperature iteration to find a good
approximation; next it uses the Nelder-Mead downhill simplex method [160] until it finds the minimum. While, as said above, our method is
computationally more expensive, as we have to compute and invert the Hessian matrix, we found that it converges much faster than the Nelder-
Mead simplex method, in particular if the temperature step is well-chosen.

3.3.3. Discrete symmetries

Some of the models may exhibit discrete Z, symmetries in the scalar sector or Z, subgroups of the gauge groups. As these symmetries increase the
number of possible minima, it is important to know if two particular minima can be transformed from one to the other. By knowing the symmetries,
BSMPTv3 does not trace the same minimum twice which reduces the computational time. Another important issue is that, although minima which
are related through symmetries have the same physics, they may have different transition rates to other minima. Let us consider a model with a

symmetry transformation J) — ¢, and with a true vacuum d;r and a false vacuum $ ¢ that cannot transform into each other or themselves applying
the symmetry transformation. We hence have four distinct minima. Obviously, we have for the Euclidean action .55 that S5 ((;_5 ;= 5,) = S3($ ;= 5,).

But we also have other possibilities, S5 ((f; r 5,) = S3($ ;= (f;,) etc., which might produce different transition rates. If this is not taken into account,
the code might miss the transition with the lowest action. This is precisely what was noticed and discussed in Ref. [161] in the 2HDM and which
alerted us for such scenarios.

The user does not need to provide the symmetries. BSMPTv3 deals with this scenario by first computing the group G of all Z, symmetries that
the potential can have. The general group is given by the following direct product

n
G= H zy (3.5)
i

) ) 0
where Z(z') = {e, z"} is the symmetry group that affects the sign of the i-th component, i.e. e is the identity and {¢,-,¢;, -, d,)} %

{¢1,.—;, -+, ¢,}. The order of the group G is 2" where n is the dimension of the field space. As an example, we consider the 2HDM. The
eight group generators of its symmetry group in the field basis {wcg, @1, @,, wp}” are given in Table 1. The indices ‘CB, 1, 2, CP’ denote the
charge-breaking, the two CP-even neutral and the CP-breaking VEV directions, respectively. In general, we denote VEV directions at arbitrary tem-
perature by w; and at zero temperature by v;. After generating the group elements, the code verifies which of the symmetries keeps the potential
invariant and saves this information to be used later.

18 There are two different approaches to implement the temperature-corrected masses in the effective potential, referred to as ‘Arnold-Espinosa’ [131] and ‘Parwani’
[159] approach. For details, cf. e.g. [55]. In BSMPT, the default option is the Arnold-Espinos approach, which consistently implements the thermal masses at one-loop
level in the high-temperature expansion. The scaling with T2 is found for the Arnold-Espinosa approach, for the Parwani approach it is 72log T2. The numerical
advantage holds for both methods.
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Table 1
2HDM group elements applied on the initial field con-
figuration {-10,5, —20,0}7 and the resulting measure
M (gi$) in binary and decimal numbers. We can see that
{10,5,-20,0}7 is the field configuration mapped into the
principal quadrant.

Group Element  Measure in binary =~ Measure in decimal

1000
0100
0010
0001

0101 5

-1000
0100
0010
0001

1101 13

10 00
0-100
00 -10
00 01

0011 3

1000
0100
001 0
000-1

0101 5

-10 00
0-100
0 0 -10
00 01

1011 11

-100 0
0100
0010
000-1

1101 13

100 0
0-10 0
00-10
00 0 -1

0011 3

-10 00
0-100
0 0-10
00 0 -1

1011 11

We also introduce the notion of ‘principal quadrant’.’® Its definition takes into account our preference for positive VEVs (which of course is an
arbitrary choice) and makes sure, by comparing two elements, that we have all VEVs in the same quadrant so that we do not follow the same VEV
twice. We apply the symmetries such that we get the largest number of positive VEVs in the upper components of the field vector. This means, given
an arbitrary field configuration (f; we apply the group element g; that maximizes the measure M (g,-(i;) given by

Mgd = (), = i}zf {0} 3.6)

0
i

where 5(55) = {5(55),. =0(x;)} is the vectorised Heaviside step function, and the subscript 2 indicates that we should interpret the components of the
vector as a binary number. It is best to think of this measure as mapping the field space on binary numbers. Let us consider two field configurations gaq_5
and gbq_5 such that gaq_5 #* gb$. This means that the measures are different, i.e. M (g, $) *M (gb$), because they have different binary representations.
With this we showed that given a field configuration $ there is a single®’ g[d; that maximizes M (gi$). We choose the set of field configurations that
maximize M (g,-(i;) under the symmetries, to be the principal quadrant.

To give some context to this measure, we apply all group elements for an arbitrarily chosen 2HDM field configuration given by {—10,5,-20,0}7,
cf. Table 1. From the second and the sixth row of the table, we can conclude that there are two group elements that produce the same measure. This
is not an issue, however, as both symmetries transform the initial field configuration into the same configuration {10, 5, —-20,0}7.

The method has one caveat. Models with a spontaneously broken discrete symmetry give rise to domain walls, which are a topological defect
[162-164]. If domain walls were to exist they would dominate the energy density of the universe at some late time [162,165,166] and be in
contradiction with observation, which is also known as the domain wall problem. In this case, constraints would have to be placed on models that
can lead to the formation of domain walls, such that the domain wall domination does not occur [167], or at least not until today.?! In our code,
we do not take into account the possible existence of different domains separated by domain walls. As an approximation, we only consider phase
transitions with the shortest path between false and true vacuum. The users have to make sure themselves not to apply models with unphysical

19 While depending on the number of VEVs connected through discrete symmetries, geometrically this is not necessarily a quadrant, for the sake of simplicity we
still keep this expression.

20 This is not a injective mapping, in particular if there are zeros in the components. In that case we can have two symmetries g; and g ; that maximize the measure
but then they are equal, i.e. g,-zfﬁ =g; $
21 For recent works on domain walls in the 2HDM, see [168-172].
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domain walls, respectively, else be aware that the existence of domain walls is not taken into account by BMSPTv3. In case of explicitly (softly)
broken discrete symmetries the vacuum configurations of the related minima have different energies, such that domain walls are unstable and the
domain with the higher energy eventually decays into the lower energy configuration. Such decays can lead to gravitational waves [173]. The fact
that the domain walls exist by some time, may furthermore influence the energy of the universe and hence also the cosmological history of the
universe. Again such effects are not described by our code. In summary, while the impact of topological defects may play an interesting role in the
dynamics of phase transitions and electroweak baryogenesis, this is beyond the present goal of our code and is left for future work.

3.3.4. Flat directions
Multi-dimensional scalar potentials can exhibit flat directions resulting in an effective sub-dimensional minimisation problem that is notoriously

difficult to be dealt with numerically. In BSMPTv3 we identify flat directions, i.e. in the one-dimensional case when the potential is invariant in one
field direction w; with Aw; > w;,

V(w,...)=V(w; + Aw;, ...), 3.7)
or in the two-dimensional case when the potential is invariant in w,.2 + wjz., i #j, with

V(w.o;....)=V (@ +Ao,0; + Aw;,...) with Z w?= Z (0, + Aw,)?, (3.8)

a€li,j} ae{i.j}

and in the three-dimensional case, checking for invariance in a)lz + a)f + a)i, i # j#k, i # k, analogously to the two-dimensional case above. In order
to catch the largest possible flat dimension first, we check subsequently for three-dimensional, two-dimensional and one-dimensional flat directions.
If an n-dimensional flat direction is encountered with n € {1,2,3}, we set the last (n — 1) VEV directions in the model-specific VevOrder to zero and
use the respective first one only to report on found phases and transitions.>?

3.4. The class BounceSolution

In the following, we describe the newly implemented algorithm for the determination of the bounce solution, which is needed for the computation
of the transition probability from a false to a true vacuum, the characteristic temperatures and the gravitational wave spectrum.

3.4.1. Bounce equation
Our starting point is the Lagrangian

=2 (0,8) (9) -V, 3.9)

where ¢ is the vector of scalar fields of some particular theory and V(¢) is the effective potential. As shown by Coleman [174] based on the WKB
approximation developed by Banks, Bender and Wu in [175], the transition rate per unit volume of the false vacuum (;b + into the true vacuum d;, is
obtained by

T(¢; — d)=T=AT)e™5r (3.10)

where S is the Euclidean action of the classical path given by
1 - - -
SE(T):/drd3x [5 (0,,¢> (a”¢) + V(d;)] , 311

and A(T) is a temperature-dependent prefactor that will be discussed shortly. At T = 0, the lowest Euclidean action is O(4)-symmetric [174],
therefore, one can make the following change of variables p = \/72 + X2 that simplifies the calculation of the action to

oo

SN\ 2
1{d -
S4(T)=27r2/dpp3 5<d_f> +V)|. (3.12)

0
At finite T, the statistics of bosons is periodic in the imaginary time 7 direction with period % That allows us to combine all contributions into an

O(3)-symmetric Euclidean action, with the imaginary time integration giving a factor % [176], i.e. we have the replacement S,(T) — @ Thus,

we can make the change of variables p= /Y 3 xl.z, simplifying the action to

e N\ 2
d -
S3(T) =4x / dpp® L(d¢ +Vp)|. (3.13)
7 2\ dp
0
The Euler-Lagrange equations are given by

d*¢ d - - dd

¢ + — b-1 ¢ VV(¢) w/ the boundary conditions : @(p) =gy, —¢ =0, (3.14)
d p P d p—0 d p lp=0

22 Furthermore, a message is printed on the screen if the corresponding 1ogginglevel is enabled with -1logginglevel: :mintracerdetailed=true. More
details on useful diagnosing output, managed by all implemented 1ogginglevels, can be found in Sec. 3.7.

11
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Fig. 2. Plot of a generic upturned potential. The orange points ¢, and ¢, are the false and true vacuum, respectively, the green point ¢,, is the potential barrier, the
cyan point ¢, is the point with the same potential value as the false vacuum, the dashed red line is the potential value of the false vacuum. (For interpretation of the
colours in the figure(s), the reader is referred to the web version of this article.)

where D =4 at zero temperature and D =3 at finite temperature. The boundary conditions state that far away from the true vacuum bubble the
false vacuum remains undisturbed, and that the transition happens at p = 0, which can be chosen without loss of generality. For D = 3, the prefactor
A(T) can be well approximated [176,177] by

3
A(T) =T* (iy if T>0. (3.15)
27T
We can cast the two expressions of the spherically symmetric action, S5 and .Sy, into a single expression (D = 3,4)
© N\ 2
Sy =4, / apo |3 <%> +V (@) |=SKm) +s¥ D), (3.16)
0

where Ap denotes the area of the D-dimensional unitary sphere, and Sg (T) and Sg (T) are the contributions to the action coming from % and

V($), respectively. We can draw a relation between these two contributions to the action [178]. To see that, let us assume that $(p) is a solution to
the bounce equation. Making the ansatz ¢(4p) for the solution, where A is a real number, the action can be written as

Sp(T)=S§MA*P+Sp(M)A™"P. (3.17)
The action must be stationary at 4 =1 so that we must have

dSp(T)

m =Q2-D)S§(T)-DSH(T)=0 = S§(T)= %Sg(T), (3.18)

i=1
which allows us to write the action as

Sp(T)=SK(T)+S)(T)
— %Sg(T) (3.19)

-2

“2-D
This will be later used as a consistency check of the results: We compute Sg (T) and SE(T), the kinetic and potential part of the action, respectively,
and use Egs. (3.19) and (3.20) to verify that they are consistent with the original expression for the action, Eq. (3.16). Let us note also that we
assume that the finite-temperature transition rate is the dominant contribution for phase transitions taking place at finite temperature. We neglect
zero-temperature contributions to the tunnelling rate.

The solution of Eq. (3.14) is highly non-trivial. Before diving into its detailed derivation, let us first discuss if the differential equation has a
solution or not. In [174] it was shown that the one-dimensional version of the bounce action always has a solution. We shortly repeat this proof. If
we take a look at Eq. (3.14), we can see that it resembles the equation of motion of a particle in an upturned potential that starts at rest in a position
¢ at p=0 and ends up at the false vacuum ¢ in the limit of p — co. The solution of the bounce equation can be uniquely characterised by the
starting position ¢, so, to complete the proof, we must show that there is a starting position that makes the system end up at ¢ .

In the particle analogy, the variation of the energy as a function of p is given by [174]

2 2
d - d
d |1 _¢ V() =_D_1 _¢ <0, (3.21)
dp |2\ dp p dp
which means that energy is lost due to the drag term. For this reason, if the starting position ¢ is between ¢, and ¢, in Fig. 2, then it will never
have enough energy to reach ¢ ;. We call this an undershoot. In the case of thin-walled situations, the particle stays close to ¢, across a large range of

Sp). (3.20)
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p. In this case, we can neglect the drag term, as it is proportional to ™", making the particle go over ¢ , without stopping. We call this an overshoot.
Therefore, by continuity, between these two situations, there must exist a p, which solves the ODE, as to one side we overshoot and to the other we
undershoot.
The bounce equation (3.14) can only be solved numerically, as will be described below, except for p = 0. Here an analytical approach is required,

because of the % % term. This term has an oo X 0 indetermination. Another benefit of analytically integrating at p =0 is that it allows for a quick
integration over very thin-walled solutions, i.e. solutions that stay close to ¢, across a large range of p.
From now on, we use a different parametrisation for the equations of motion, similar to the one described in Refs. [17,179]. We parameterize

the tunnelling path as

1

$(p) > $U(p)), (3.22)
where we impose unitary velocity, i.e.
O] (3.23)
di

which allows us to interpret / as length along the tunnelling path. This parametrisation simplifies the Euler-Lagrange equation (3.14) into

&1, D=1dl _dV($)

a’ = , 3.24
dp? p dp dl (3.24)
with the boundary conditions
dl
d_p p:O_O’ I(P—oo)—lf, (325)

where / is the total length of the tunnelling path.
The analytical solutions are found by approximating the potential by a quadratic function and writing it as a function of the spline parameter /,
with the starting position /; = /(p = 0) and the spline parameter of the true vacuum /,. We made one further assumption, namely that the smallest

bounce solution is monotonic in p. In the particle analogy this means that it never moves backwards, equivalent to 5—; > 0. The solutions at p =0

depend on D, and we are going to provide the solutions for the D = {3, 4} cases specifically. We distinguish between the following solutions:

— Solutions starting near the true minimum
In this scenario we start very close to the true vacuum at a position /,. The potential is then approximated by V (/) = %H (I - 1,)%, where

2

H= % o The solutions start at /(p = 0) =/, and are given by
p=
(l,~ly)sinh( pv/H
I(p)= P s 3.26
(ﬂ) 2(11_10)11(P\/E) ( )
l,—————~ for D=4
VH
where sinh(x) is the hyperbolic sine function and /,(x) is the modified Bessel function of the first kind.
— Solution starting where H > 0
In this scenario we still start near a local minimum but with a non-negligible potential gradient G = %/ o which is taken to be positive to
p

ensure the assumption that j—/[) > 0. Therefore, the potential is approximated by V (/) ~ G(I —[,) + %H (I — 1y)? and the solutions are given by

G Gsinh(p\/ﬁ)

l() lo—ﬁ"rpH—% for D=3 (327)
p)= . .
G 2GI1(pVH)
IO_E+;H—F% for D=4

— Solution starting where H < 0
In this scenario we start near the potential barrier with a non-zero gradient G = % o which is taken to be positive to ensure the assumption
o=

that Z—/I] > 0. The potential is approximated by V' (I) = G(I — 1)) + %H (- 10)2 and the solutions are given by

G Gsin(p —H)

=% -———+ for D=3
I(p) = p(~H)2 . (3.28)
IO—E—MLEH) for D=4
p(—H)2

The J;(x) is the Bessel function of the first kind.

There are two analytical solutions that can be used when H > 0, Eq. (3.26) and Eq. (3.27). To have a smooth transition between these two branches,
we first calculate the branch switching point Iy, cs,01¢ Which minimizes the relative error on p between the two expressions. Secondly, given a
starting point /,, we compute both solutions and combine them in a logistic function weighted average based on the distance to /, esho1q> Such that
the transition between the two branches is continuous.
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3.4.2. Numerical solution of the bounce equation

The bounce equation that we need to solve to find the tunnelling rate has no analytical solution for a generic potential V(zi;), so that we have to
employ numerical methods to find an approximate solution, which we will sketch in the following.

The ordinary differential equation (ODE), presented in the last section, is difficult to solve. The main issue is that the boundary conditions are
not applied at the same point in p and, since we are working with the inverted potential, i.e. with a potential with the opposite sign, the integration
of the ODE is highly susceptible to small changes in q% = $(p =0), which is exactly what we want to find. Once q?o is known, it is trivial to integrate
the ODE. There is some bias for q% to be around (]_5, but, apart from that, (]_50 lives in a space with the same number of dimensions as the number of
fields that can acquire a VEV. From a computational point of view, this problem is very difficult to solve since, as mentioned above, small variations
of the starting position (f;o will produce very different solutions to the bounce equation. For this reason, trying to guess the initial position is very
inefficient, requiring an alternative approach.

The approach of CosmoTransitions [17] is to start with a guess path, a straight line between q;, and ¢ +» and solve Eq. (3.24), which is
computationally feasible. Then one deforms the path such that

¢ (di\ >
A (d_p> =V, V(®), (3.29)
where
- - . dd\do
V V()=VV(p)— <VV(¢) : d_(f> d_? , (3.30)

is fulfilled. This equation imposes that the curvature of the path matches the perpendicular forces originating from the potential. This is done by
selecting points on the guess path and applying a small (rescaled) force to them,

L d2¢ [ di\? -
N—ﬁ (d_p> -V, V(g), (3.31)
until they converge and this produces a new, hopefully better, path. Then one goes back to Eq. (3.24), solves it, and deforms the path again. This
process is repeated until convergence is achieved, i.e. N =0.

While there are numerous methods to numerically solve the problem (cf. e.g. the algorithm of the codes described Sec. 2 as well as [49] and
references [28-36] therein), we chose in BSMPTv3 an algorithm fulfilling our needs, that is very similar to the one used by CosmoTransitions
described here above, but with a few differences. CosmoTransitions relies on B-splines to describe the tunnelling path, whereas we use cubic-
splines with not-a-knot boundary conditions to describe it. This allows for a more general tunnelling path as B-splines have a finite resolution. During
path deformation, however, we also use B-splines to remove slight numerical instabilities. The step size for the path deformation is calculated in
the same way as in CosmoTransitions. i.e. we start with a small step size. If we are constantly deforming in the same direction we increase
the step size; if the direction inverts we reduce the step size. For the computation of the relevant thermal quantities, it is necessary to have the
Euclidean action S5 /T as a function of the temperature for a wide temperature range. For this reason, after solving the bounce equation for a given
temperature T we solve the bounce equation for a temperature 7'+ 6T by slightly warping the path from the solution previously found. This increases
the reliability of the computation and considerably decreases the computational time.

To find the solution we apply bisection until the desired resolution is reached. Here, we initially perform the binary search on a linear scale but
if a thin-walled solution is detected we switch to a log scale. Note, however, that the solution needs not be unique. Furthermore, for more than one
field a solution does not always exist [180]. This does not mean that the false vacuum is stable, but rather that the decay rate must be computed
differently [181-184].

After providing the one-dimensional solution for the bounce equation using the overshoot/undershoot method as described above, we deform the
path with a force perpendicular to the path and proportional to N, cf. Eq. (3.31). Since the normal force depends on the one-dimensional solution,
it only makes sense to deform the path from the initial position at (]_50 = (1_5(/) =0) up until q; +(p = 00), so that the path from $, to (]_50 is thrown away
during each path deformation iteration. This can be problematic because we cannot guarantee that the new path can solve the bounce equation. If
e.g. the new path is longer or has a steeper starting position, then it can dissipate more energy than the previous iteration, making it impossible to
solve the one-dimensional bounce equation. For this reason, it is necessary to add path to the beginning of the current guess. We do that by using
av (ém)

T i,
This condition ensures that, since —V($bp) > =V (¢,), the one-dimensional bounce equation has a solution for the same reasons presented above.

the spline to extrapolate the beginning of the path until we reach through this backwards propagation (‘bp’) a point d;bP with =0.

3.4.3. Characteristic temperature scales

The effective potential and hence also the vacuum decay rates are temperature-dependent. Depending on the temperature, the transition rate
may eventually become large enough to make the universe go from one to the other vacuum with the cosmological FOPT taking place in a certain
temperature interval. It is hence useful to consider certain characteristic moments of the transition as the decay rate grows, which, instead of time,
is done using the temperature of the universe. We will present here these characteristic temperatures and how they are calculated in BSMPTv3. They
will be used in the calculation of the spectrum of the gravitational waves presented below.

— Critical Temperature - T, - This is the temperature, where the effective potential has two degenerate minima and, consequently, the transition
from the false vacuum to the true vacuum may start via quantum tunnelling.
— Nucleation Temperature - T, - This is the temperature at which the tunnelling decay rate per Hubble volume matches the Hubble rate,

I, =1 (3.32)
HYT,) '

which can be further approximated as (cf. e.g. [17])
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~ 140. (3.33)

n
We note that BSMPTv3 calculates and outputs the nucleation temperature calculated via Eq. (3.32) as well as Eq. (3.33) in order to compare to
e.g. CosmoTransitions which uses this approximation.

— Percolation Temperature - T, - This is the temperature at which at least 29% of the false vacuum has tunnelled into the true vacuum or,
equivalently, the probability of finding a point still in the false vacuum is 71 % [185-187]. This condition imposes that at the percolation
temperature there is a large connected structure of true vacuum that spans the whole universe, and that is stable and cannot collapse back to
the false vacuum. This large structure is known as the percolating cluster. The probability of finding a point in the false vacuum is given by

3
4zv? y NdT' -
w / (T"dT aT
3 T'4H(T") ] H(T)

P,=P(T=T)=e"'T"=¢, I(T) = (3.34)

where v, denotes the wall velocity. To find the percolation temperature one has to solve I(7},) = 0.34 or, equivalently, P(T,) =0.71. This is the
default set in BSMPTv3. The user has the possibility, however, to set ¢, through the input.

— Completion Temperature - T - This is the temperature, at which the transition completes, no finite regions in the universe in the false vacuum
are left. It is obtained from demanding the probability of finding a false vacuum to be

Pr=PT=Ts)=¢;, (3.35)

with the default setting ¢, = 0.01. Again, the user has the possibility to choose a different value of ¢, through the input.
3.5. The class GravitationalWave

In this class both the gravitational wave spectrum as well as the signal-to-noise ratio at the Laser Interferometer Space Antenna (LISA) [28,188,
189] are calculated as will be described in the following.

3.5.1. Gravitational wave spectrum

Thermal parameters, like the transition temperature, the transition strength, the characteristic length scale, the bubble wall velocity, not only
characterise FOPTs, they are also relevant for the gravitational wave predictions. Thermal parameters are evaluated, however, only at a single
temperature. Gravitational waves on the other hand are produced during the whole phase transition. The question is hence, which temperature to
apply when evaluating the thermal parameters used in gravitational wave predictions. In the following, we generically call this transition temperature
and denote it by 7,.. A common choice for 7, is the nucleation temperature T,. Since GWs originate from bubble collisions and sound shells and the
following turbulence, it might be more appropriate to chose the percolation temperature T,,. Another choice might be the completion temperature.
In a plasma reheating to a homogeneous temperature T, after the completion of the transition, the redshift of the GWs should be calculated from
T en» see Eq. (3.55) below, instead from T, [190], but not the characteristic length scale and the energy available for the production of gravitational
waves, as they take place before reheating. In the following, we will give the formulae for the relevant thermal parameters of the gravitational waves
at the transition temperature 7. In BSMPTv3 the default setting is

DefaultinBSMPTv3 : T, =T, . (3.36)

The user can also choose other settings using the input flags.
The second key parameter is the strength of the phase transition, which is measured by the parameter a. It can be, and most commonly is, defined
by the trace anomaly [127,191] as

1 - -
a=———\V(p,) - V(g)—
()L ’
where p, (T,) is the energy density of a radiation dominated universe at T, written as a function of the effective number of relativistic degrees of
freedom g(T'), which we derive as a function of the temperature in Appendix C. The p, is given by

T ( W @) V() )] ,
T=T,

4\ or oT (3.37)

71'2 4
py(T)=g(T)%T . (3.38)

The parameter o measures the energy budget available for the production of GWs. A common classification is that « ~ (9(0.01) corresponds to weak
transitions, a ~ ©O(0.1) to intermediate transitions, and a > O(1) to strong transitions. Strong phase transitions not only may source preferably GWs
through bubble collisions, but may also lead to an early onset of turbulence [26,127,191,192], which we account for by introducing the GW source
lifetime factor Y, see Eq. (3.77) below. Note, that some studies use in the nominator of the right-hand side of Eq. (3.37) the latent heat released
during the transition, which does not have the factor 1/4 in the second term. The definition used here, has been shown to describe the energy budget
better, however, [193].

We take the occasion to comment on the notion of the strength of the phase transition. One of the three Sakharov conditions [13] for successful
electroweak baryogenesis is a strong first-order EWPT. It is quantified by the sphaleron suppression criterion which classifies a PT as of strong
first-order if the ratio &, of the critical VEV v, and the critical temperature T, is larger than one [7,194],

£ = Ye 1 (3.39)

[ Tc . .
Here v, is the vacuum expectation value at the critical temperature 7T, taking into account only the doublet VEV values. Non-zero singlet VEVs in
models where they are available, are not included here. There is hence some ambiguity in the definition of the strength of the PT, so that it has to
be made clear, where necessary, which definition is used. Note, also that a value of £, > 1 does not guarantee that an SFOPT actually takes place.
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The universe could also be trapped in the wrong vacuum, cf. e.g. [69,81,96]. This can only be decided by applying the criterion for the nucleation
temperature, Eq. (3.32).
The third important thermal parameter is the inverse duration of the phase transition in Hubble units, denoted as f/H, and defined as
(cf. e.g. [192])

Bo_q d (S
H, *dT T
with H, being the Hubble rate at the transition temperature T,,, H, = H(T =T,).

The Hubble rate as a function of temperature is derived taking into account contributions from the radiation energy density p,, as well as from
the difference in the vacuum energy between the false and the true vacuum, AV = V;,1c — Viges cf. [195-1971,

true>?
1 <g(T)7r2

=332 U 30
MPl

, (3.40)
T,

HAT) = 3# (b, (T) + AV(D))

T + AV(T)) , (3.41)
P1

where M, p1 ~2.4-10'8 GeV is the reduced Planck mass. The inverse time scale i/ H is obtained from a linear approximation of the action in time,
i.e. S5(1)/T (1) = S5(t,)/T(t,)— p(t —1t,), assuming an adiabatic expansion of the universe with dT /dt = —T H(T') [122], which leads to an additional
factor H,T,. This expansion allows us to write the tunnelling rate as

_ 5300
e 10

53T
T*

-t _ g2 (=T

(3.42)
Although there is no physical reason to impose any lower bound on g/ H,, it has been argued in Refs. [122,198,199] that #/H,, < 1 would constitute
a GW wavelength which is larger than the Hubble-horizon and would lead to difficulties with causality bounds on the amplitude [122,200]. We
therefore only consider GW signals with f/H, > 1 to be realistic. Furthermore, within our internal testing we even found GWs point with negative
B/ H, which are not necessarily a mistake. These points might have an action that plateaus around 140 and the percolation temperature is only
reached when the action is increasing again as the temperature lowers. For these cases, we still consider that the universe transitions into a different
phase, but do not compute the gravitational waves spectrum. In such an instance, the characteristic time scale of the transition would have to be
determined differently, which is beyond the current scope of the code.

The fourth parameter that determines the GW spectrum is the bubble wall velocity v,,. This parameter is extremely complicated to determine.
The bubble walls start at rest and accelerates due to the difference of pressure between the phases, so that the wall velocity is a time-dependent
quantity. The wall velocity is subject to a lot of ongoing activity and (also controversial) discussions.?> We therefore treat the (terminal) wall velocity
as input parameter. If it is not given by the user it is by default set to

default wall velocity: v, =0.95. (3.43)

Furthermore, the user can choose to use the approximate expression (« and p, evaluated at T,) [202,203]

AV . AV
a if E <Ucy,
o 21V V (3.44)

: AV
1 if — > ¢y,
w, > VC1

or the formula given in [201],

b
+ ch<l—a—(1 a‘l’) ) , (3.45)

where a =0.2233, b=1.704, p = —3.433 are numerically fitted values, ¥ = w, /o is the ratio of enthalpies »; = —T% at the transition tempera-
ture 7, and vcy is the Chapman-Jouguet velocity, for general sound speeds c, defined as [193]

1+ \/311 (1 —cif +3cifa>

Vey = s 3.46
a l/cs’f + 3cs’fa ¢ )

o = 3a+¥ -1
“l2(2-3P+ )

where ¢ ¢ denotes the sound speed in the false vacuum. The sound speeds in the true and false vacuum, respectively, are calculated as [204]

, 1 V'@.T) , 1 V'@T)

C = = s = —_— (3.47)
ST, VNG, T,) ST, v, T,)

where the prime denotes the partial derivative with respect to the temperature. In the derivation of both expressions for the velocity, the authors
assumed local thermal equilibrium, and for the result (3.44) a constant temperature across the bubble was assumed. As argued by the authors of
[201], their result can be interpreted as an upper bound on the wall velocity, as out-of-equilibrium effects always slow down the wall velocity
compared to the equilibrium case. Alternatively, the user can calculate the bubble wall velocity with the recently published code WwallGo [205].

The primordial GW signals produced in such violent out-of-equilibrium cosmological processes as given by the FOPTs, are redshifted by the
cosmological expansion and look today like a cosmic gravitational stochastic background. The corresponding power spectrum [206-210] of the GW
is given by

23 For a recent summary of the discussion, cf. [201], which provides a model-independent determination of bubble wall velocities in local thermal equilibrium.
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2 9
h= 9pgw (3.48)

R Qgw(f) = — ,
oW p. dlog f

where p, is the critical energy density today and & = 0.674 + 0.005 is the reduced Hubble constant [211]. It can be split into three contributions,

W2 Qgw () = R Quon(f) + W2Qy, (f) + h2Qu (f). (3.49)

In our analysis we consider GWs originating from the collision of bubbles and highly relativistic fluid shells (coll), as well as from sound/shock waves
(sw) and from magnetohydrodynamic turbulence (turb) [28,212] which are generated by breaking the spherical symmetry through the process of
rapid expansion of the bubble wall in, and especially through its interaction with, the surrounding plasma in the early universe. For non-runaway
bubbles with a < 1, the shock wave is the contribution that dominates the GW spectrum [28].

We implement the spectra of [212] for gravitational waves sourced by first-order phase transitions. The spectrum for gravitational waves sourced
by the collision of bubbles and by highly relativistic fluid shells, is modelled by a broken power law [212] as

ny—n

ny ay a L
Qcoll(f) — Q;oll <#> |:% + % <f;)ll ) :| B (3.50)

with ny =2.4, ny = —-2.4, a; = 1.2 and the amplitude and characteristic frequency given by [213,212]

-2
1l 2 B
Q‘;}O ~0.05 FGW,O Kcoll (m) N (3-51)
Fell~0.11 H, OL. (3.52)
b “H(T,)
The redshift of the Hubble rate, H, (, and the redshift of the fractional energy density K., Fgw g, are expressed as [212]
. \1/6 T,
H*0:1.65><10‘5Hz(1%0) (ﬁ), (3.53)
’ e
1/3
h? Foyo=164x107 ({;LO) , (3.54)
with the reheating temperature 7., > T, approximated by
_ T, sa(T,) <1 (3.55)
reh = T, [1 + a(T*)] 174 , else ’ ’

assuming that the universe enters radiation domination almost instantaneously, cf. [197]. Note, that this simplified prescription is only valid for
large enough bubble wall velocities in the case of strong enough phase transitions, cf. [122] and references within. We therefore print a warning if
for a(T,) > 1, v,, < vcy, With vy as defined in Eq. (3.46). In contrast to [212], we introduce the model-dependent efficiency factor «; of [214], as
also used in [197], in the definition of the fractional energy density, K, of the collision GW source

Keon &
I+a’

(3.56)

coll =

The efficiency factor k) for bubble collisions is defined as the fraction of the vacuum energy that is stored in the bubble walls. We implement the
updated prediction [214,215,213,195] of

Ao 1\ Req 7.
x0011=<1—7)<1—y—n>R;°q— (3.57)

eq % Yeq

where a, defines the weakest strength of the phase transition for which Eq. (3.63) (see below) is valid if the next-to-leading order friction contribution
P,_, y is neglected [214,215], and it is given by
_ P, 1-1
@, =—=1, (3.58)
Py
where p, is the energy density given by Eq. (3.38) and P,_,, is the leading-order friction given below in Eq. (3.66). The Lorentz factor y, in the
absence of plasma friction at the moment of collisions is derived from

y* = min(}’eqv yrun—away) K (3'59)
with [216]
Yrun—away = R./BRo) and Ry =3Rgre, - (3.60)

This definition takes into account whether the bubbles were still accelerating at collision or if they reached their terminal velocity. The initial bubble
radius R, [195] is given by

Ry = |23 |° (3.61)
07 l8zav| :

and the average bubble radius at the transition temperature R, [217-220,195,197,221] is given by
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TL’
" T(T’
R, =|T3 ar’ &e—I(T’) ) (3.62)
* * T'4 H(T')
T,

The above derivation of the collision efficiency factor is valid in the regime where the bubble wall is accelerated by the pressure difference

AP=AV -P_,-P" (3.63)

between vacuum pressure AV and the plasma friction terms, P;_,; and Pf"_Z - The leading-order pressure contribution [222] is given by
Lo\ 200
P_ ~—Am"T:, 3.64
1-1% 57 m- L ( )
where

Am? = Z Jeje;(m?, —m?,) (3.65)

with ¢; = 1(1/2) for bosons (fermions) and k; denoting the internal number of degrees of freedom. The masses of the particles i in the true and
the false vacuum are denoted by m;, and m;¢, respectively. For the next-to-leading order (NLO) pressure contribution there are two conflicting
results [223,214,216,224] that have different scalings with the Lorentz y and will, in general, produce a different terminal Lorentz factor Yeq- TO the
best of our knowledge, the correct result is an open question so that we include both results in our implementation. The NLO pressure [223,214,216]
result with linear y-scaling is given by

1
Pl(—zN ~y ZgizAm[ Tf R (3.66)
i

where the sum runs only over the gauge bosons, g; is the gauge coupling and Am; is the difference in the masses of the gauge bosons in the true
vacuum and the false vacuum, respectively. The NLO pressure [224] result with the y2-scaling is given by

P2y =77 Y kgl T (3.67)
i

The bubble wall accelerates driven by the energy difference until it reaches at equilibrium pressure AP =0 a terminal velocity with a Lorentz v,
which in general is given by [215,195]
AV - P,

P /7

Yeq = (3.68)

where (n) denotes the y"-scaling chosen for the NLO pressure contribution.

We set Kk as defined in Eq. (3.57) to zero if either a < a,, or if 7.4 < 1. The former allows us to deal with supercooled and non-supercooled
phase transitions simultaneously, the latter excludes situations with an unphysical Lorentz factor y. The spectrum for sound waves and for magne-
tohydrodynamic turbulence is fitted with a double broken power law template [212],

Qg ()= Qun X S() =2 X Sy(f). (3.69

with the shape function

—ny+ny —ny+n3

)T )T
sH=N(L) l1+(L 1+(L , 3.70
o) <f1> \7 “\7 .70

and {n, ny, n3, a;, a,} = {3,1,-3,2,4} for sound waves and {3, 1,—%,4,2.15 for turbulence, respectively, and S,(f) = S(f)/S(f,). The normal-

ization N of the shape function is then determined via the requirement .S,(f,) = 1. The characteristic frequency breaks f;, of the sound wave
spectrum are

W ~02H, o (HR,) ™, @371
LY ~=05H,0A (H.R)™, (3.72)
with A, = &g /max(v,,, ¢ ) and the fluid shell thickness estimated as &g = &rront — &rear With [212,225]
, forv, <uv v,, forv,<c
éfrom - éshock w C) , érear — w w s,t . (3.73)
Uy s for v, > vy cgp» foru, >cgy

We determine the shock velocity &, from the fluid velocity profile that is determined by solving the hydrodynamics equations using the method
of [193,204].
For sound waves, the integrated amplitude Q;, is derived as [212]

Q= FowoAw Ky, (H.R,) Y. (3.74)
where Ay, =0.11 and with the kinetic energy fraction
0.6k, @
Kaw=—70" 3.75
sw T+a (3.75)
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We calculate the efficiency factor &, from x4, which we obtain with the template model introduced by [193,204],

Xeff
— M

K >
a W

(3.76)

swW T

by a rescaling with the effective strength a.¢ = a(1 — k) to account for supercooled transitions, where a large portion of the energy goes into
collisions. For non-supercooled transitions we have that a ~ a.¢ as the collision efficiency factor is small, i.e. k ,; < 1.
The suppression factor Y arising from the finite lifetime 7z, of sound waves, is estimated by [127,192,214,226-228]

1 . | 2H,R,
Y=1—- ——, where H,r, =min 1. (3.77)

VI+2H,z,, o V3K,

The sound wave amplitude €, at f, is expressed in terms of the integrated amplitude Q;, as
2
Q=1 <\/§+ M) Q. 3.78)

™ L+ 13/ 17
Magnetohydrodynamic (MHD) turbulence is characterized by

Vi,

1

= H.R,) 3.79
fr=—5 Heo (HLR.)” (3.79)
fr222H,0(H,R,)™, (3.80)
Q, = Fow o Ayup @ (H., R*)z , (3.81)

with Aypp = 4.37 x 1073 and Q, = kK> Where k., represents the fraction of the overall kinetic energy in the bulk motion that is converted to
magnetohydrodynamic turbulence, and N ~ 2. The turbulence efficiency factor iy, is set to
Kturb = € Ksw » (382)

with the efficiency factor e that can be set by the user to a value between 0 and 1 or to the upper bound given [122] by
e=V1-Y. (3.83)

3.5.2. Signal-to-noise ratio at LISA

The stochastic gravitational wave signal produced in an FOPT is in a frequency range to which the future space-based gravitational wave
observatories like LISA [28,188,189] could potentially be sensitive. The Signal-to-Noise ratio (SNR) of the GWs tells us if a GW signal from an FOPT
can be detected by LISA. It can be computed as [28]

Smax

h*Qew(f )]
SNR = d N (3.84)
f/ / [h 2Qsens ()

where h2Qgy (f) is the gravitational wave signal, h2Qq., (f) is the nominal strain sensitivity of LISA [229] of a given LISA configuration to
stochastic sources, 7 is the experimental acquisition time in seconds, and f,;, and f,,« are minimum and maximum frequency, respectively, to
which LISA is sensitive. The expected acquisition time of data for LISA is around 4 years with a minimum duty cycle of 75% [230] so that we
choose 7 = 3 years - 365.25 days/year - 86400s/day = 946728005, and hence

SNR in BSMPTv3: SNR(3years) . (3.85)

In case one wants to calculate the SNR with an acquisition time of J years, the SNR calculated by BSMPT can be rescaled as

SNR(Y) = 4 / %SNR@ years) . (3.86)

The nominal sensitivity h2Qg., (f) can be written as a function of the power spectral density .S,(f), given in the LISA mission requirements
[230,226,231] as

47
Qgens(f) = ﬁﬁshm, (3.87)

where Hj =67.4 +0.5km/s/Mpc is the Hubble constant today [211]. A GW signal is considered to be detectable if it gives rise to an SNR > 10.
3.6. The class TransitionTracer

The class TransitionTracer interfaces all previously described classes, MinimumTracer, BounceSolution and GravitationalWave,
with the executables. It initiates the phase tracking, calling the routines of MinimumTracer, and collects all phases and coexisting phase pairs with
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their critical temperatures. It then goes through all pairs of coexisting false and true phases®* for which a critical temperature could be determined®®
and tries to determine a bounce solution using the algorithms described in BounceSolution. If a bounce solution is successfully determined,
it is evaluated in the temperature range of the overlap region to determine the characteristic temperatures of the transition, i.e. the nucleation
temperature (cf. Eq. (3.32)), the percolation temperature (cf. Eq. (3.34)), and the completion temperature (cf. Eq. (3.35)). If requested by the user,
we then calculate the gravitational wave signal for each phase pair that was found to have the transition temperature (as chosen by the user through
the input).

BSMPTv3 calculates characteristic temperatures and gravitational wave signals for all phase pairs that are found. However, some transitions
might cosmologically be impossible to realize due to the respective false phase never getting populated by a sufficient fraction of the universe.
Therefore, apart from managing the calculation, the class TransitionTracer also reports on the transition history for each point. We label found
phases and coexisting phase pairs with increasing indices {0, 1, ... } for decreasing upper temperatures Ty;gy. After studying all phase pairs with the
algorithms of BounceSolution and GravitationalWave as described above, we collect all phase pairs for which a completing transition could
be calculated, meaning a completion temperature was reached. Then, starting from the initial phase which is assumed to be the global minimum
at the user-specified highest temperature of the tracing, Ti,y,, phase 0, TransitionTracer goes through all pairs with false phase 0 until a first
pair with T, is found before any other transition becomes possible. Then, the old true phase becomes the new false phase and we continue to
look for transitions until no transition for the current false phase can be found anymore. We then report the transition history for the point in a
column transition history in the form of a string of the following form in the output file, as further described in the following sections for the
executables,

0-(@{El)—»jl-(@{12)—»j2—...,

with i1, i2 being placeholders for the phase pair indices and j1 and j2 being placeholders for the phase indices in the notation described above.
In this example, first in the pair i1 a transition completes into the true phase j1 that then is the false phase of a second transition in the pair i2
into the true phase j2. For examples on how the transition history is reported and how the output is interpreted, consult Sec. 4 where we illustrate
results for benchmark points.

Note, that BSMPTv3 assumes non-overlapping transitions: The calculation of the percolation and completion temperatures described in Sec. 3.4.3
and the reported transition history are only valid for one transition happening between one pair of false and true phases.

During the calculation, we report on its intermediate state by throwing status codes, managed by TransitionTracer. In the sections about the
executables, Secs. 3.7-3.9, all relevant codes are introduced, and a complete summary of them is given in Sec. 3.12.

3.7. The executable MinimaTracer

The minimum tracing algorithm is capable of identifying the temperature evolution of non-global and global minima in a user-defined temperature
interval 7;,,, =0GeV < T < Th;qp. Minimum tracing is the first step before we determine the characteristic temperatures and from there calculate the
spectrum of gravitational waves. The executable MinimaTracer allows to separately perform the phase tracing for one or more input parameter
points and saves all found phases in one output file per point. Calling the executable without arguments . /bin/MinimaTracer or with the -help-
flag . /bin/MinimaTracer -help prints out the following menu:

MinimaTracer traces phases in T = [0, Thigh] GeV
it is called by

./bin/MinimaTracer model input output firstline lastline
or with arguments

./bin/MinimaTracer [arguments

with the following arguments, ([x] are required arguments, others are optional) :

argument default description

--help shows this menu

--model= [*] model name

--input= [*] input file (in tsv format)

--output= [*] output file (in tsv format)

--firstline= [*] line number of first line in input file
(expects line 1 to be a legend)

--lastline= [*] line number of last line in input file

--thigh= 300 high temperature [GeV]

--multistepmode= default multi-step PT mode

default: default mode

0: single-step PT mode

>0 for multi-step PT modes:

1: tracing coverage

2: global minimum tracing coverage
auto: automatic mode

24 With decreasing temperature newly appearing phases are first local minima relative to the already existing phases. Therefore, in a pair of coexisting phases, the
phase which is found to exist since a higher temperature is always considered the respective false phase.

25 A critical temperature can be determined if the false phase starts as the lower minimum at the highest temperature of the overlap and ends as the higher minimum
at the lowest temperature of the overlap, or if the true phase starts already as the lower minimum at the highest temperature of the overlap. In the former case, the
critical temperature is found in between the lowest and the highest temperature of the coexisting temperature region, in the latter case the critical temperature is
set to the highest temperature of the overlap.
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--num_pts= 10 intermediate grid-size for default mode
--checkewsr= on check for EWSR at high temperature

on: perform check

off: check disabled

--usegsl= true use GSL library for minimization
--usecmaes= true use CMAES library for minimization
--usenlopt= true use NLopt library for minimization
--usemultithreading= false enable multi-threading for minimizers
--json= use a json file instead of cli parameters

A minimal example call being
./bin/MinimaTracing --model=MODEL --input=input.tsv --output=output --firstline=2 --lastline=2

traces the point of model MODEL found in the second line of the tab-separated input file input.tsv in between T' € {0,300} GeV. Note that the
first line of the input file is expected to be a legend. The temperature range for the tracing can be specified by setting the optional flag -thigh
to a user-defined value. The optional mode for multi-step phase tracing -multistepmode with its optional grid size -num pts for the default
mode is discussed in detail below in Sec. 3.7.1. The check of electroweak symmetry restoration controlled via -checkewsr is discussed in detail
below in Sec. 3.7.2. The flags -UseGSL, -UseCMAES, -UseNLopt can be used to enable or disable the three implemented minimising libraries
separately. By default, all installed and linked libraries are enabled. Setting -UseMultithreading=true enables CPU-parallelization via the C++-
thread class. Additional terminal output for any of the executables can be requested by enabling any or all of the following logginglevels of
the Logger class. All output of BSMPT is channelled through the Logger class since BSMPTv2 . 3, the new release of BSMPTv3 extends this by five
new logginglevels so that we have

-logginglevel:: default description

default= true print output enabled by default

debug= false print additional output useful for debugging

disabled - disable all output

ewbgdetailed= false show additional output during the calculation of the baryon asymmetry®
progdetailed= false show status messages generated by executables
minimizerdetailed= false show additional minimizer-output

transitiondetailed= false show additional output of the TransitionTracer class
mintracerdetailed= false show additional output of the MinimumTracer class
bouncedetailed= false show additional output of the BounceSolution class
gwdetailed= false show additional output of the GravitationalWave class
complete= false enable all logginglevels above except minimizerdetailed

2 We remind the reader, that this is only relevant for the C2HDM, as only in this model the baryon asymmetry
is calculated.

The executables also accept input in form of json files if the package [153] was found during installation. Examples for all executables, on
how json-files can look like can be found in example/JSON. After the executable ran successfully, the output is saved in output 1.tsv?® in
tabular-separated form by extending input . tsv by the status columns (a summary on all status codes is presented in Sec. 3.12)

status nlo stability Reports success if the next-to-leading order (NLO) zero-temperature global minimum is found to lie at the position
of the electroweak tree-level minimum and no_nlo stability if not. Note, that for the MinimaTracer executable
NLO stability is merely a status, not an error code.

status_ewsr Stores information on the status of the check for electroweak symmetry restoration, more information is found in
Sec. 3.7.2.

status_tracing Contains information on the success of the tracing; details on the multi-step phase transition mode can be found in
Sec. 3.7.1.

as well as the following columns for each found and traced phase i:

Temp i Temperature in [GeV] of each tracing step in phase 1.

omega X(Temp_i)  Field value of direction X in [GeV] at temperature Temp_i. The labels of direction X are model-specific and defined in
addLegendVEV () in the respective model file.

Veff (Temp i) Value of the one-loop corrected effective potential in [GeV] at phase configuration omega X (Temp i) at temperature
Temp_1i.

The last column runt ime logs the runtime of the code after each tracing step in seconds.

Note, that in addition to the new MinimaTracer executable, we continue to ship the VEVEVO executable with BSMPTv3. VEVEVO calculates
and outputs the location of the global minimum in a multi-dimensional field space using minimisation routines from GSL, CMAES and NLopt. For a
documentation consult [19]. The new executable MinimaTracer is designed to use the new algorithms of local-minimum tracing enabling BSMPTv3
to track the location of global and non-global minima over temperature ranges and to look for regions of coexisting phases.

The next section, Sec. 3.7.1, describes in detail how we manage the tracing of multiple, possibly coexisting, phases and how the users can
customize the tracing method according to their needs.

26 The index refers to the point number, for which the output is given.
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3.7.1. Multi-step phase transition mode
We trace individual phases using the algorithms described in Sec. 3.3. In order to be able to study phase transition histories with multiple phases
that possibly exist in overlapping temperature regions we make the following assumptions:

1. At the user-defined temperature T;g, and at Tj,,, = 0GeV the universe is realized in the global minimum of its one-loop corrected effective
potential.

2. Phases that always remain the non-global minimum over the whole temperature range escape our multi-step phase tracing as we, for the moment,
only use global minima positions as seeds for the phase tracing.

The only exception to this assumption is the electroweak minimum with v =246 GeV at T = 0GeV, that we always use as an additional seed
point, as this is at least a local minimum due to the choice of our counterterm potential. For the executables CalcTemps (see Sec. 3.8) and CalcGW
(see Sec. 3.9) the potential is required to be NLO stable by default, meaning that unphysical points with a one-loop global minimum at zero
temperature, which is different from the electroweak minimum, are discarded immediately. However, the user can switch off this requirement
with -checknlo=off. In this case then also an only non-global electroweak minimum gets traced.

3. Phases start as a non-global minimum when they are first found at their highest temperature, they only become the global minimum at a lower
temperature. This statement assumes that BSMPTv?3 is able to trace the phase over the whole temperature region in which it exists.

The user can specify how the minimum tracing algorithm detects possible multi-step phase transitions by setting the flag -multistepmode to
default, 0, 1, 2 or auto. By default, mode default is selected. For most points, it will provide successful tracing with status_tracing =
success, while being the most resource-optimized. In addition to mode default, we offer four tracing modes with slightly different algorithms.
These are mode 0, which is optimal if the user is only interested in one-step first-order phase transitions; mode 1 if one wants to ensure tracing
coverage with a global minimum check at phase endpoints for multi-step phase tracing; mode 2 enforces global minimum tracing coverage explicitly.
The auto mode automatizes mode 1 and mode 2 by running mode 2 in case the global minimum check at phase endpoints fails for mode 1.

More details on all five implemented multi-step phase transition modes are given in the following. In Fig. 3 the respective tracing algorithms are
illustrated.

mode default The default tracing mode provides a fast and customizable grid-checked way of tracking phases for points with multi-step phase
transition. It starts at the global minimum at the user-defined Ty;g;, and tries to trace it down to Tj,,, = 0GeV. When the currently
traced phase ends, the new global minimum is traced subsequently until a phase existing down to Tj,,, = 0GeV is found. The
global minimum at 7j,,, = 0GeV is also traced up to Tj;g,. The default mode then uses the global minima found at an equidistant
temperature grid as additional seed points to check the completeness of the tracing. Each of these points are checked whether they
are part of an already traced phase, and if not, are traced between {0, T}, } and added as a new phase. By increasing the grid-size
of equally-spaced intermediate checked points, by setting -num_pts to a value larger than the default value -num pts=10, the
user can fine-tune the tracing granularity.

Note, that this mode returns success, status_tracing=success, if tracing coverage is found, so if at least one phase is
found for each temperature in the traced temperature interval. This does not necessarily indicate that the found phase structure
contains the global minimum in the whole temperature range, which we call global minimum coverage. Global minimum coverage,
if not already achieved with the default settings of -multistepmode=default, can be ensured by requesting a larger grid-size.

In case temperature gaps between traced phases are identified, we try to patch up such gaps by explicitly choosing and tracing
seed points inside the temperature gap. Note, that we attempt to patch up gaps until AT < 107° GeV. Gaps smaller than 1076 GeV
are no longer patched up. In that case we cannot numerically find tracing coverage with mode default and status_tracing
is set to the error code no_coverage.

mode 0 one-step phase transition mode: This is a dedicated mode to exclusively look for one-step first-order phase transitions. It only
traces the global minima from 7;,,, =0GeV towards Ty, and from Ty, towards Tj,,, = 0GeV, respectively. If they are found to
overlap and the high-temperature phase is found to be the global minimum when the low-temperature phase ends at its highest
temperature and vice versa, a valid one-step phase transition point was found and status_tracing reports success.

The calculation for this mode reports an error code if the low-temperature and the high-temperature phase are not found
to overlap (no_coverage) or no global minimum coverage was found (no_glob min_coverage), indicating that no valid
one-step phase transition can exist for this point. If in this mode we cannot find a stable seed point for the two phases, an error
code no mins_at boundaries is reported.

mode 1 enforced tracing coverage mode: This mode is specialized to deal with multi-step phase transitions, and will (as far as it is
numerically possible) enforce coverage while checking for global minimum coverage in a performance-optimized way, similarly
to the check done by mode 0, as elaborated below. It therefore can deal best with points illustrated in Fig. 3 (second from
right), which have multiple phases and multiple overlaps between them which only consist of exactly two phases at a time.
Again, like in mode 0, the initial low- and high-temperature phases are traced and if they are not found to coexist, then, at
their respective phase-end-points, we determine the global minimum again and trace it up and down in temperature, until we
reach full coverage by traced phases over the whole temperature region. Temperature gaps with no phases found larger than
1070 GeV are patched up as described for mode default. Global minimum coverage is ensured by checking at all temperatures
coinciding with phase end points (from tracing up and down in temperature) whether the lower and higher temperature phases
coincide with the global minimum. If global minimum coverage is achieved in this sense, we classify a valid multi-step phase
transition point with status_ tracing=success. In this case, using mode 1 and not mode 2, can significantly save runtime.
If for any intermediate overlap we do not find the global minimum as part of any of the already traced phases, we miss tracing
the global minimum in some areas of the temperature region. Then, rerunning the parameter point with -multistepmode=2
is recommended and minima tracing fails with status_tracing=no_glob min coverage.

mode 2 enforced global minimum tracing coverage mode: Finally, mode 2 has the strongest implemented check for global minimum
coverage. It can reliably deal with multi-step phase transition points with multiple overlaps between any number of phases as
well as overlaps between phases that only coexist while both no longer include the global minimum, as illustrated in Fig. 3 (right).
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mode default mode O mode 1 mode 2

Fig. 3. Illustration of the multi-step phase transition modes default, 0, 1, 2 (from left to right) for the exemplary class of points where the respective mode performs
best. Mode auto attempts to run mode 1 and only if unsuccessful, immediately afterwards starts mode 2. All modes are described in detail in the text. The diagrams
show the phases in the generic field coordinate (¢) for each point as a function of the temperature 7. Temperature regions in which the found minimum is the global
minimum are marked by bold red lines, regions in which the phase contains only a non-global minimum are marked by thinner dashed blue lines. The vertical dotted
black lines in the left-most diagram that illustrates mode default represent the grid points that are used for additional tracing seeds.

It works similarly to mode 1, but in addition we track how long a traced minimum is still found to be the global minimum. At
temperatures where the global minimum is no longer part of the traced phase, a new phase gets traced and added using the new
global minimum as a seed point. The procedure is repeated until the whole temperature range is covered, making sure that the
global minimum is a subset of all traced phases in the whole traced temperature range. In this mode we again patch up gaps as
described for mode default and it can only fail with no_coverage in case tracing coverage can numerically not be achieved.

mode auto automatic mode: This mode automatizes the choice between mode 1 and mode 2. It first attempts to run mode 1 and switches
to the more resource-intensive mode 2 in case of failure with no_glob_min_ coverage. Note that mode auto therefore relies
in a first iteration on the global minimum coverage check that only takes into account phase end points, as described above, and
only in case of failure, moves on to mode 2.

All above-mentioned status codes for the minima tracing are logged in the status_tracing column. Note that, as described above, even though the
performance-optimized modes suffice, success in mode default, mode 0 ormode 1 (and mode auto) can still mean that the global minimum
is not part of the traced phases at every temperature inside the interval. The mode 0 and mode 1 only check if the global minimum at the endpoints
of the traced phases is part of a different traced phase and therefore for complicated transition histories might miss phases.?’” The same applies to
mode auto, as it relies in a first iteration on the reduced global minimum endpoint coverage check done by mode 1. Full global minimum coverage,
however, can be achieved in the default mode by increasing the size of the checked point-grid by setting -num_pts to a value larger than the
default value 10. For a reasonable choice of -num_pts, mode default is as accurate as mode 2 while being orders of magnitude faster. The mode
2 ensures full global minimum tracing coverage for any point independent of its phase structure at the expense of runtime.

3.7.2. Electroweak symmetry restoration check
The loop-corrected effective potential at finite temperature 7' as function of the classical constant field configuration, generically denoted by w,
implemented in BSMPT is given by

Vo,T)=V()+ VI @, T) =V Q@) + VWV w) + VT () + VT (0,T), (3.88)

where V() is the tree-level potential, WV (w) is the zero-temperature Coleman-Weinberg potential, ¥ T(w) is the counterterm potential and
VT (w,T) contains the thermal corrections at finite temperature 7. In the following, we derive the high-temperature limit of the effective potential,
which is obtained from V7 (w, T), that in the notation of [232] is given by

T 2 T 2
V@)= 3 P (1+25y) 557, (A%,/72). (3.89)
X=5,G,F
where
[so]
J, (A;‘;{)/TZ):Tr / dkkzlog[liexp<— k2+Af;)/T2)] , (3.90)
0

is a function of the mass matrices A?)y() of scalars (.S), gauge bosons (G) and fermions (F), respectively, that is evaluated via a trace Tr. The spins are
denoted by sy for the scalar, gauge and fermion fields, respectively, J_ is used for bosons and J, is used for fermions. Additionally, daisy corrections
[233] 1Y and 1% are also considered, given by

S) ©
- T2 ""Higgs Ngauge
yo_2 _1\25s ijkk _1\25¢ aaij
=35 [ (1+2s5) I; LUKk 4 (=1)%56 (1+2s) ; G
1”fermion
2, wIJivyJ xIJjy/i
H=DPF (1425p) 5 2 (y 1), +y /Y;J)] (3.91)

27 The multi-step modes mode 1 (and mode 0) would report success even though the global minimum is missed in case of a phase (or an overlap of phases)
that only for an intermediate region does not contain the global minimum. In this scenario, the global minimum moves to a new phase only in an intermediate
temperature range of the initial phase that remains the global minimum for its lower and higher temperatures, therefore passing the global minimum coverage check
that only relies on the check of the phase end points. Such a scenario, where mode 1 would falsely report success, is shown in Fig. 3 (right) illustrating the overlap
of two phases where the global minimum is no longer contained in any of the two phases.
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m=

where only the longitudinal modes of the gauge bosons get the daisy corrections and 7iy; < nyjg, is the number of Higgs fields coupling to the gauge

bosons, and n¢mion and n are the numbers of the fermion and gauge fields in the theory, respectively. The definition of the tensors Lk, G4/,

gauge
Y'Ji, and Afg')"’” can be found in [18]. There are two different approaches to implement the temperature-corrected Daisy-resummed masses in the

effective potential. In the Arnold-Espinosa approach [131] one makes the replacement

VH(@.T) >V (@,T) + Vayisy (@, T) (3.93)

NHiggs Ngauge
T _50\3/2 3/2 _2\3/2 3/2
Vaaisy @.T) = == [ ) ((ml ) =) Y ()T -7 (3.94)
i=1 a=1
2 =2 2 =2 i ij ij ij ab pab ab
where m;, m;, ms, m, are the eigenvalues of A(S),A(S) + H(S),A(G),A(G) + H(G),
Lagrangian terms bilinear in the scalar and in the gauge fields, respectively. Remark, that only the longitudinal modes of the gauge bosons get the

thermal corrections HEaGb)). In the Parwani approach [159], one replaces

respectively. The tensors Aig and A“g are the coefficients of the

ij ij ij
Mgy = Mgy T (3.95)

and also

ab ab ab
Ay = Ny + Mgy (3.96)

for the longitudinal modes. Therefore the Debye corrected masses are also used in the VW potential. Since the high-temperature limit of the potential
depends on which of the two approaches is used, it has to be analysed for the two schemes separately.
In the Arnold-Espinosa scheme, the thermal correction are contained in V7 (w,T) and Vaaisy(@, T). For high temperatures, i.e. xr=m?/T? « 1,
the thermal functions J, can be approximated as
4 2
) T b3
Iy ( ) =

2, 1 4 2
L, —x* (1 _
3,60+24x +32x (ogx c+)

n 1
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4 2
2 VoA E o w032 1 g 2 _
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+ -— AL A A 3.98
s é( 4n2x) enii+1) (3.98)
where
3
c, = 3 +2logmw =2y (3.99)
c_=c, +2log4, (3.100)

where y; denotes the Euler-Mascheroni constant, {(x) the Riemann {-function and (x)!! the double factorial. Taking into account the leading two
terms in the high-temperature expansion, the asymptotic behaviour of the J, is given by

4 2
T (x®) ~ = % + Z—4x2 (3.101)
4 2
J_(x®) ~ = Z—S + 71[—2x2. (3.102)

Inserting this high-temperature expansion in (3.93), we find the asymptotic behaviour of V7 (@, T) as

2
T
VT(“L T)~ -T* % <8nHiggs -@2- 7)nfermion +@3- 8)ngauge)

T2 Xy Xy Xy
+or [t (a33) - (a%7)) +31 (A3))] - (3.103)
We do not expand the daisy corrections in the high-temperature limit, but explicitly factor out their dependence on the temperature as
Xy _ 2y
sy =T, (3.104)
and
ab _ p2yyab
i) =T (3.105)

where the tilde denotes that these matrices are explicitly temperature independent. The eigenvalues of Hg,) and H?é) can be written as Tzﬁiz and

Tzrﬁg, respectively, where rﬁf and 1%3 are the eigenvalues of I:Ig) and ﬁ;’é), respectively. They are temperature independent. At high temperature,

we expect ﬁlz (ﬁi) and Tzrﬁi2 (Tzrﬁ%) to differ by a perturbative effect induced by Ag) (AE’(’;)). Similar to perturbation theory in quantum mechanics

and using the fact that the Hg) and H?g) are hermitian, the shift of the mass eigenvalues is given by
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- Xy =
2, Vi) W
m ~T m + —— (3.106)
W)
AL,
NP L Y (3.107)

(u/a)2

where y; (i7,) are the eigenvectors of l'[g) (H?g)
the daisy-corrected potential as

"'Higgs .- N
T 372 3. 12 Vit sy Vi
Vaaisy (@ T) ~ =7~ [ 2z <(T2mi2) +5T ()" ———— |+

) associated with the eigenvalue Tzﬁ‘.z (T 21%3). With this, we can write the asymptotic behaviour of

= (,)?
Ngauge ll_} . Aab . ll_)

3 (a2 2 @) L2 ). (3.108)
= 2 W)

In the Parwani scheme, the asymptotic behaviour of V7 (w,T) can be written as

4 A 1Y

X=5.G.F T2
—2
T4 m
= (=DZx (14 2sy) 2—22J <T2>
X=S.G.F =
(—=1)%x - v - Axy- v, .
NXSZGF(1+25X) ) ;[T“J ( 2) ¥ o 'J; (mlz)]7 5109
=,0, i

where we used the same definitions as in the last section. In this scheme, the daisy corrections also affect the Coleman-Weinberg potential

VV(w) - VWV, T)

-y (_1)25)((1+2sX)Tr[<Ag()+HgO) <log< (Af;)+nj;))>—kx>],

4X=S.G.F

log IT"
~E 0N (=DPX (1+2sg) (T2 logT?) Tr | T2 1+M 2 ) (A e (3.110)
. x J log 72 @x) oo f | :

Using these results, we can factor out the temperature dependence from the effective potential in the two different approaches as (AS =
Arnold-Espinosa P = Parwani) and arrive at

Vet Hys
— ~ (const.) 4 - T? +VAS+GAS o+ - 2] (3.111)
T Arnold-Espinosa 2

2

Veff > 2 T
_ ~ (const.) p1-T"+ (const.) Pa”
( T? IOg T2 Parwani log T2

_ Hp

+Vp+Gp - +d  —= (3.112)

&

The rescaled potentials Eq. (3.3) for both schemes have a field-independent temperature dependence. In the investigation of the electroweak symmetry
restoration (EWSR) of the potential in the high-temperature limit we can therefore ignore the first term in Eq. (3.111) and Eq. (3.112), respectively.
The remaining potential parameters V, S,VP,C_f A S,é p.-Hys, and Hp are field independent. The relevant part of the effective potential for our
investigation is just a quadratic function in the fields @, which has a field-independent Hessian. Therefore, if H,¢/H p has a negative eigenvalue
this means that the potential has a concavity in one of the directions. Therefore the minimum, if it exists, must be outside the region where the
high temperature expansion holds. If the smallest eigenvalue is zero, then there is an infinite number of degenerate VEVs and more orders in the
high-temperature expansion are needed in order to lift this degeneracy, which is not considered in this paper. If the Hessian is positive definite then
there exists a single minimum in the region where the high temperature expansion is valid, and it is located at the VEV, given by

¢ =H;\G for the Arnold-Espinosa scheme (3.113)
T—»oo ASTAS
q.’) = H;'G, for the Parwani scheme. (3.114)
T—co P P

The flag -checkewsr= allows for the check of electroweak symmetry restoration (EWSR) at high temperature. The results of this check are
reported in the column status_ewsr that is added in the output file. For the EWSR calculation we iteratively calculate the Hessian matrix of the
rescaled potential at the origin @, = {0, ---, 0} until its behaviour is temperature independent, allowing us to determine G AS G p)and H,q (Hp),
respectively, and, consequently, the shape of the potential. Iteratively means that we calculate the smallest eigenvalue of the Hessian matrix of
Vug/T?, i.e. the lowest mass value, at three different temperatures until the relative difference of the obtained mass values is < 1075.

The four options that can be set for the flag -checkewsr= are

on Enables the check and saves the result without removing any point.

keep pos_def  Enables the check and removes all points that do not have a positive definite Hessian in the high temperature expansion. (Only
for CalcTemps and CalcGW.)

keep_ ewsr Enables the check and removes all points with no electroweak symmetry restoration. (Only for CalcTemps and CalcGW.)

off Disables the check. The status_ewsr-column in this case is filled with of £.
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The possible status_ewsr codes that can be reported in the output file and their respective meaning are

of f The test was disabled.

failure The check failed, because the numerical precision was not sufficient.

non pos_def The potential does not have a positive definite Hessian.

flat region There is an infinite number of degenerate VEVs that minimise the rescaled potential.
ew sym non_res There is a single minimum at high temperature that does not restore the EW symmetry.
ew _sym res There is a single minimum at high temperature that restores the EW symmetry.

It is important to note that our conclusions are only valid inside the region where the high-temperature expansion holds. If we predict that a
parameter point restores the EW symmetry at high temperature, this does not rule out the possibility of another minimum with a lower energy than
the EW-restoring minimum. The same reasoning applies to a parameter point with a non-positive definite Hessian which indicates that no minimum
exists inside the region where the high-temperature expansion applies. Still, a minimum could exist outside this region. The conclusion that can
definitely be drawn, however, is that if we find that the Hessian is not positive definite then there is no EWSR.

3.8. The executable CalcTemps

Based on the information obtained from the tracing of the phases in a temperature interval, we calculate characteristic temperatures for all found
coexisting phase pairs. The CalcTemps executable is an interface to obtain these temperature values directly and therefore extends the Minima-
Tracer algorithm by additional steps to solve the bounce equation and derive the critical, nucleation, percolation and completion temperature, as
described in Sec. 3.4.3. Calling CalcTemps without arguments, . /bin/CalcTemps, or with the -help flag, . /bin/CalcTemps -help, prints
out the following menu:

CalcTemps calculates characteristic temperatures for phase transitions
it is called by

./bin/CalcTemps model input output firstline lastline
or with arguments

./bin/CalcTemps [arguments

with the following arguments, ([*] are required arguments, others are optional) :

argument default description

--help shows this menu

--model= [*] model name

--input= [*] input file (in tsv format)

--output= [*] output file (in tsv format)

--firstline= [*] line number of first line in input file
(expects line 1 to be a legend)

--lastline= [*] line number of last line in input file

--thigh= 300 high temperature [GeV]

--multistepmode= default multi-step PT mode

default: default mode

0: single-step PT mode

>0 for multi-step PT modes:

1: tracing coverage

2: global minimum tracing coverage

auto: automatic mode
--num_pts= 10 intermediate grid-size for default mode
--vwall= 0.95 wall velocity: >0 user defined

-1: approximation

-2: upper bound

--perc_prbl= 0.71 false vacuum fraction for percolation
--compl_prbl= 0.01 false vacuum fraction for completion
--checknlo= on check for NLO stability

on: only keep NLO stable points
off: check disabled
--checkewsr= on check for EWSR at high temperature
on: perform check and add info
keep_bfb: only keep BFB points
keep_ewsr: only keep EWSR points
off: check disabled
--maxpathintegrations= 7 number of solutions of 1D equation =
number of path deformations + 1

--usegsl= true use GSL library for minimization
--usecmaes= true use CMAES library for minimization
--usenlopt= true use NLopt library for minimization
--usemultithreading= false enable multi-threading for minimizers
--json= use a json file instead of cli parameters

Again, the required flags to set are the name of the model to investigate -model=, the name of the input file in tsv-format - input=, the name of the
output file in tsv-format -output=, and the line number of the first and the last line in the input file, -firstline= and -lastline=, respectively.
A minimal example call is
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./bin/CalcTemps --model=MODEL --input=input.tsv --output=output.tsv --firstline=2 --lastline=2

Optionally, it is again possible to specify the temperature range in which to trace the phases, whether or not the check for NLO vacuum stability
or the check for electroweak symmetry restoration at high temperature is enabled and which mode should be used to handle multi-step phase
transitions. Note, that contrary to MinimaTracer, if -checknlo=on, no _nlo_stability acts as an error code, and -checkewsr=keep_ bfb or
-checkewsr=keep ewsr only keep points that are bounded-from-below or restore the EW symmetry at high temperature, respectively. The wall
velocity can be set via the flag -vwall=. The different options are:

>0 If avalue €(0,1) is given, the wall velocity is set to this value. By default, if no flag is provided, the wall velocity is set to 0.95.
-1 For -vwall=-1 the approximation, see Eq. (3.44), from Refs. [202,203] is chosen.
-2 For -vwall=-2 the upper bound, see Eq. (3.45), defined in [122] is chosen.

Additionally, it is possible to define the false vacuum fraction used to define the percolation and the completion temperature via the flags -perc_prbl
and the -compl_prbl, respectively. By default, the percolation false vacuum fraction is set to 71 %, -perc_prbl=0.71, and the completion false
vacuum fraction to 1 %, -compl prbl=0.01. By setting the optional -maxpathintegrations= flag one can specify the number of solutions to
the 1D equation which equals the number of path deformations plus one. Note that the choice of the number of path integrations ideally finds a
good (model-dependent) balance between the number of attempts and computational time. All other optional flags and the Logger classes work in
the same way as for MinimaTracer, cf. Sec. 3.7.

A successful run of the CalcTemps executable attaches the following columns to input . tsv and creates and saves the output to output.tsv.
The first columns report on several status codes whose output partially depends on the set flags:
status nlo stability Information on whether the global minimum of the loop-corrected effective potential at 7' = 0 GeV coincides with the
global minimum of the tree-level potential. success if the point is found to be NLO stable when -checknlo=on, if
not no nlo_stability discards the point and of £ indicates that the check is disabled with -checknlo=off.
Information on electroweak symmetry restoration at high temperature, all details can be found in Sec. 3.7.2.
Status of the minima tracing, see Sec. 3.7.1.
If the tracing is successful this column informs on whether (success) or not (no_coex_pairs) coexisting phases
are found.
Runtime of code in seconds.

status_ewsr
status_tracing
status_coex pairs

runtime

More details on all status codes can be found in Sec. 3.12. If pairs of coexisting phases can be identified, we then try to obtain a critical temperature
for each pair i of coexisting phases:

status_crit_i If for a phase pair coexisting in {7 pign, 75 10w} We have AV(T pign) > 0 and AV(T 1) <0 with AV(T) = Vi (T) —
Viaise(T), the critical temperature is identified via binary search between T; piep, and T; ), and success is reported
in the status column. If AV < 0 in the whole range of coexistence, the true phase is always the lower minimum.
We then set T, =T gy, and the reported status is true_lower. If AV > 0 over the whole range of coexistence,
the false phase is always the lower minimum and there is no critical temperature for this pair, the reported error is
false_ lower. The identification of the critical temperature for a pair of (false, true) phases fails with failure if
the true phase starts as a lower minimum at 7; y;,, and the false phase ends as a lower minimum at 7 j,,,.

This set of columns for phase pair i contains information about the critical temperature 7, in [GeV], the coordinates
of the false vacuum and the coordinates of the true vacuum at the critical temperature.

T crit i,
omega X crit false i,
omega X crit true i

If a critical temperature can be identified successfully for a coexisting phase pair i, the next step is to solve the bounce equation and extend the
output by the following columns:

If a bounce solution for pair i can be calculated, the status is success, and the derivation of the nucleation,
percolation and completion temperatures is attempted. If the calculation of the bounce solution fails, due to
e.g. too small overlap, the status is failure, and no nucleation, percolation and completion temperature
can be calculated for this transition.

status bounce sol i

status_nucl_approx i

T nucl_ approx i,

omega X nucl approx false i,
omega X nucl_ approx true_ i
status_nucl i

T nucl i,

omega X nucl false_ i,
omega X nucl true i
status_perc i

T perc i,

omega X perc_false i,
omega X perc true i
status_compl i

T compl i,

omega X compl false i,
omega X compl true i

success if Eq. (3.33) can be met, not_met if not.
Attached next are the columns for the approximate nucleation temperature 7,, obtained from Eq. (3.33) and
the false and true phase coordinates at this temperature, respectively.

success if Eq. (3.32) can be met, not_met if not.
Contains the nucleation temperature 7, derived from Eq. (3.32) and the false and true phase coordinates at
T, respectively.

success if Eq. (3.34) with P;(T}) optionally set by -perc_prbl can be met, not_met if not.
Reports the percolation temperature T, derived from Eq. (3.34) and the false and true phase coordinates at
T,, respectively.

success if Eq. (3.35) with P;(T) optionally set by -perc_prbl can be met, not_met if not.

Informs on the completion temperature 7 derived from Eq. (3.35) and the false and true phase coordinates
at T, respectively.
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Note, that an error message not_met might indicate vacuum trapping. The last added column, transition_history, reports on the history of
transitions that likely took place for the point. For details, compare Sec. 3.6 as well as see the examples in Sec. 4.

3.9. The executable CalcGwW

Based on the tracing of the phases in the temperature interval Tj,,, = 0GeV < T < Ty, the identification of coexisting phase pairs and the
determination of the characteristic temperatures, the CalcGW executable provides the calculation of the spectrum of primordial gravitational waves
sourced by sound waves and turbulence. The used terminology is introduced in Sec. 3.5.1. Running . /bin/CalcGW or ./bin/CalcGW -help
prints the following menu, specifying all required and optional arguments:

CalcGW calculates the gravitational wave signal
it is called by

./bin/CalcGW model input output firstline lastline
or with arguments

./bin/CalcGW [arguments

with the following arguments, ([*] are required arguments, others are optional) :

argument default description

--help shows this menu

--model= [*] model name

--input= [*] input file (in tsv format)

--output= [*] output file (in tsv format)

--firstline= [*] line number of first line in input file
(expects line 1 to be a legend)

--lastline= [*] line number of last line in input file

--thigh= 300 high temperature [GeV]

--multistepmode= default multi-step PT mode

default: default mode

0: single-step PT mode

>0 for multi-step PT modes:

1: tracing coverage

2: global minimum tracing coverage

auto: automatic mode
--num_pts= 10 intermediate grid-size for default mode
--vwall= 0.95 wall velocity: >0 user defined

-1: approximation

-2: upper bound

--perc_prbl= 0.71 false vacuum fraction for percolation
--compl prbl= 0.01 false vacuum fraction for completion
--trans_temp= perc transition temperature, options are:

nucl approx: approx nucleation temperature
nucl: nucleation temperature
perc: percolation temperature
compl: completion temperature
--epsturb= 0.1 turbulence efficiency factor
>0: user defined
-1: upper bound
--pnlo_scaling= 1 1 -> N NLO pressure
1: propto gamma
2: propto gamma”2
--checknlo= on check for NLO stability
on: only keep NLO stable points
off: check disabled
--checkewsr= on check for EWSR at high temperature
on: perform check and add info
keep_bfb: only keep BFB points
keep_ewsr: only keep EWSR points
off: check disabled

--maxpathintegrations= 7 number of solutions of 1D equation =
number of path deformations + 1

--usegsl= true use GSL library for minimisation

--usecmaes= true use CMAES library for minimization

--usenlopt= true use NLopt library for minimization

--usemultithreading= false enable multi-threading for minimizers

--json= use a json file instead of cli parameters

In addition to the previously described required and optional arguments, cf. Secs. 3.7-3.8, CalcGwW allows the user to set the transition temperature.
By default, it is set to T, = T),, and by specifying -trans_temp= one can choose:

nucl approx Nucleation temperature determined via the approximation of Eq. (3.33).

nucl Nucleation temperature determined via the condition, Eq. (3.32).

perc Percolation temperature evaluated via Eq. (3.34). Note that the false vacuum fraction used to determine the percolation temper-
ature can be set optionally with -perc prbl.
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Completion temperature calculated via Eq. (3.35). Note that the false vacuum fraction used to determine the completion temper-
ature can be set optionally with -perc compl.

compl

The -epsturb flag allows the user to set the turbulence efficiency factor in case a value > 0 is entered. Alternatively, for -1, the upper bound of
Eq. (3.83) can be chosen. With the flag -pnlo scaling=1, 2 the user can switch between the NLO pressure with the linear y scaling of Eq. (3.66)
or with the y? scaling of Eq. (3.67). By default, the linear y scaling is used. A minimal example call can look like:

./bin/CalcGW --model=MODEL --input=input.tsv --output=output.tsv --firstline=2 --lastline=2

The first columns added to input.tsv in output.tsv are status columns, compare again with Secs. 3.7-3.8 and Sec. 3.12 for a summary of
all status codes. Then for each identified coexisting phase pair i, the columns containing information on the bounce solution and characteristic
temperatures are added, cf. Sec. 3.8. In addition, the information on the gravitational wave spectrum is given out in the following columns with the

respective contents:
status gw i

T star i

T reh i

v _wall i
alpha PT i
beta/H i
kappa col i
kappa sw i
eps_turb i
cs f i
cs t i

fb col i
h20megab col i
£1Xi

£2Xi

h20mega 2 X i

Status of the gravitational wave calculation, success if successful, failure if an error was encountered. Possible
encountered errors are that the requested transition temperature could not be calculated or that % <1, cf. Sec. 3.5.1.
Transition temperature T,.

Reheating temperature 7,,.

Wall velocity.

Strength of the phase transition, Eq. (3.37).

Inverse time scale, Eq. (3.40).

Efficiency factor for bubble collisions as defined in Eq. (3.57).

Sound-wave efficiency factor derived with the method from [193,204], as described in Sec. 3.5.1.

Efficiency factor for the turbulence contribution as defined in Eq. (3.82).

Sound velocity in the false vacuum as defined in Eq. (3.47).

Sound velocity in the true vacuum as defined in Eq. (3.47).

Characteristic frequency of the collision spectrum as defined in Eq. (3.52)

Amplitude of the collision spectrum as defined in Eq. (3.51)

First characteristic frequency break for the sound wave and turbulence source, with X = sw/turb, as defined in
Egs. (3.71) and (3.79).

Second characteristic frequency breaks for the sound wave and turbulence source, with X = sw/turb, as defined
in Egs. (3.72) and (3.80).

Amplitude Q, for sound waves, X = sw, and turbulence, X = turb, asdefined in Eq. (3.78) and (3.81), respectively.

Signal-to-noise ratio (SNR) at LISA with an acquisition period of three years, given by Eq. (3.84), for the collision
contribution only.

Signal-to-noise ratio for the sound-wave contribution only.

SNR for the turbulence contribution only.

SNR for the collision, sound-wave and the turbulence contribution combined.

SNR(LISA-3yrs) col i

SNR(LISA-3yrs) sw i
SNR(LISA-3yrs)_turb i
SNR(LISA-3yrs) i

The last added column, transition history, reports on the history of transitions that likely took place for the point. For details, compare
Sec. 3.6 as well as see the examples in Sec. 4.

3.10. The executable PotPlotter

Visualizing the multi-dimensional effective potential often is useful for understanding complicated minima landscapes. The executable Pot Plot -
ter provides an interface for extracting (multi-dimensional) effective potential data grids that can be used to generate different kinds of contour
plots. If . /bin/PotPlotter -help is called, its menu is printed:

PotPlotter calculates the effective potential on a user-specified field grid
it is called by

./bin/PotPlotter [arguments

with the following arguments, ([*] are required arguments, others are optional) :

argument default description
--help shows this menu
--model= [*] model name
--input= [*] input file (in tsv format)
--output= [*] output file (in tsv format)
--line= [*] line number of line in input file
(expects line 1 to be a legend)

--temperature= [*] temperature [GeV]
--point= ., 0 grid reference point
--npointsi= number of points in direction i

(with i = [1,..,6])
--lowi= lowest field value in direction i

[* if npointsi > 0] (with i = [1,..,6])
--highi= highest field value in direction i

[* if npointsi > 0] (with i = [1,..,6])
--slice= false enable slice mode

--min_start=

[* in slice mode] start minimum
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--min_end= [* in slice mode] end minimum
--npoints= 100 grid size in slice mode
--json= use a json file instead of cli parameters

The user has to specify the model, the input and output files and the line number, as well as the temperature, at which the contour is to be evaluated.
Furthermore, one of the two different operation modes of PotPlotter has to be chosen. The two modes work as follows:

grid mode The potential values are evaluated on a user-defined grid that lies along the field directions of the model, in which we (model-
specifically) allow for the generation of a non-zero finite temperature VEV, called VEV directions in the following. The user has to
specify the number of grid points and the grid ranges in all VEV directions in which the grid should span by setting -npointsi=,
-lowi= and -highi= to the desired values. Note, that the index i runs from 1 to n with n being the total number of VEV
directions. The order of the VEV coordinates is set in the model file and can be read e.g. from the model-specific implementation
of addLegendVEV (). At the moment, up to six field dimensions are possible for a grid, for higher-dimensional VEV spaces, the
algorithm needs to be extended. Optionally, the user can force the evaluation of the point grid with all VEV dimensions that are not
axes of the grid set to the coordinates of a reference point. The reference point coordinates are supplied via -point=x1, .., xn.
If no reference point is specified, all VEV coordinates that are not varied in the grid are set to zero. This is useful if a user wants to
display a lower-dimensional projection of a higher-dimensional VEV space.

slice mode The potential values are evaluated along a straight line between two user-defined points. The result is a one-dimensional array of
potential values along this one-dimensional path. In order to enable the s1ice mode, the user has to set - s1ice=true and specify
the coordinates of the two points via -min_start and -min_end. Again, the order of the VEV coordinates is set in the model
file and can be derived e.g. from the model-specific implementation of addLegendVEV (). Optionally, the number of points along
the straight line at which the potential gets evaluated, can be changed by setting -npoints= to the requested number. By default,
-npoints=100 are evaluated.

The output of PotPlotter is then saved to the output file where each line corresponds to one grid or slice point. The columns are

v X Field value of direction X in GeV for one grid or slice point. The labels of the direction X are model-specific and defined in
addLegendVEV () in the respective model file.

v_X point (only in grid mode) Coordinates of the reference point.

Veff (v, T) Value of the effective potential in GeV at the grid or slice point and temperature.

Veff (point,T) (only in grid mode) Effective potential value in GeV at the reference point and temperature.

T Temperature in GeV at which the effective potential is evaluated.

Examples on how the output of PotPlotter can be used for visualizations can be found in Figs. 8, 9, and 11. The figures in the respective left
columns were made using the slice mode, the ones in the respective middle and the right columns were made with the grid mode with the
coordinates of the global minimum chosen as the reference point of the two-VEV-dimensional projection.

3.11. The folder standalone

In case the user wants to use some particular function or class of BSMPTv3, such as those explained in the last sections, we also provide a few
examples on how to do so. They are placed in the folder standalone and automatically compiled when BSMPTv3 is compiled. If new . cpp files
are created/moved into standalone then it is necessary to run CMake and compile again so that all libraries are properly linked. Three examples
are already put inside standalone:

CalculateAction.cpp Solves the bounce equation and calculates the Euclidean action. The user is expected to provide the initial guess path
and the potential, the gradient is optional.

GenericModel.cpp The user provides a potential V' (®), the zero temperature VEV and the dimensionality of the VEV directions. This
tracks the minima and calculates the GWs spectrum.

TunnellingPath.cpp Solves the bounce equation using the full BSMPTv3 and prints the tunnelling path and the VEV profile in Mathemat -

ica and Python formats.

Remark that the provided examples merely serve as demonstrations of how to use the classes. In case some functionality is missing, the recommended
way of extending BSMPT is by adding these features in form of functions which can be tested in unit tests. Our team welcomes suggestions. To ensure
everything is still working fine, we recommend running the unit tests during development.

3.12. Summary on status codes

We summarize here all codes in text format to log the status of several steps of the calculation. The new status code framework is used by all
executables that were added with the release of BSMPTv3. For information on status codes of the previous versions, cf. [18,19]. The status codes are
listed and described in the following and illustrated in Fig. 4:

status nlo stability  The NLO stability status is set to success if the global minimum of the loop-corrected effective potential at 7 = 0 GeV
coincides with the global minimum of the tree-level potential. It is set to no_nlo stability otherwise.

status _ewsr Status of the EWSR check, described in Sec. 3.7.2. If the check is enabled, it will be filled with one of the following
results: failure if the test failed; non bfb if the potential is not bounded from below at high temperature; flat_re-
gion if there is an infinite number of degenerate VEVs that minimise the rescaled potential; ew sym non_res if
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CalcGW

MinimaTracer

status_nlo_stability
off, success,
no_nlo_stability

i

status_ewsr

off, failure,
non_bfb, flat_region,

ew_Sym non_res, ew_sym.res
I
status_tracing

success, no_coverage,
no_mins_at_boundaries,
no_glob_min_coverage,

failure

¢ ..........................

status_coex_pairs
success, no_coex_pairs
status_crit_i
success, false_lower,
true_lower, failure
status_bounce_sol_i
success, failure
status_nucl_approx_i
success, not_met

i

status_nucl_i

success, not_met
status_perc_i
success, not_met
status_compl_i
success, not_met

status_gw_i
success, failure

Fig. 4. Logical-flow diagram of BSMPTv3. Status codes are marked in blue, error codes in red. If -checkewsr=keep bfb (-checkewsr=keep_ ewsr) the codes
failure, non_bfb and flat_region (ew_sym non_res) for status_ewsr act as error codes. All possible error codes in status_nlo_stability, sta-
tus_ewsr and status_tracing only act as status codes for the executable MinimaTracer. Codes are described in the text.

status_tracing

status_coex pairs

status_crit i

there is a single minimum at high temperature that does not restore the electroweak symmetry and ew sym res if
there is a single minimum at high temperature that restores the EW symmetry.

Status of the phase tracing algorithm. Successful tracing is logged with success. The tracing fails, if no cov-
erage is found or the global minimum is missed for some temperature regions, reported as no coverage and
no _glob min_ coverage, respectively. If mode=0 is chosen, meaning that it is searched for a one-step first-order
phase transition exclusively, an error code no mins at boundaries indicates that we cannot identify a numer-
ically stable local minimum at the edge temperatures 0 or Ty;g. Successful tracing in the mode default can still
mean that the global minimum escapes tracing in some temperature regions. In this case or in the case of failure,
increasing the equidistant point grid size or using a different multi-step phase transition tracing mode might help,
cf. also Sec. 3.7.1. The failure code failure is reported if either no phases could be traced or the global minimum
at T =0 GeV is found at too large field values.

Status of the check for coexisting phase pairs. If no coexisting phases are found for the point in the whole temperature
range, this status is set to no_coex_pairs, ending the calculation for this parameter point. As soon as at least one
coexisting phase pair is identified, success is reported.

Status of the calculation of the critical temperature for a coexisting phase pair i. If the false phase starts as the lower
minimum at the upper temperature of the coexisting region and the true phase ends as the lower minimum at the
lower temperature of the coexisting region, the critical temperature lies in between and the status is success. If the
true phase is always the lower minimum, the critical temperature is located at the upper end of the overlap and the
status is true lower. If the false phase remains the lower minimum over the whole overlap region with the true
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phase, there is no critical temperature within the overlap and the error is false lower. If the false phase is found
to be the lower minimum at the low temperature and the true phase is found to be the lower minimum at the high
temperature, the reported error is failure and there is no critical temperature for the identified pair of (false, true)
phase.

status bounce sol i Status of the bounce solution calculation for coexisting phase pair i. success if a bounce solution can be calculated
in the temperature range of the phase pair overlap, failure otherwise.

status nucl approx i  Status of the approximate nucleation temperature calculation for coexisting phase pair i. success if Eq. (3.33) can
be fulfilled, not_met if not.

status_nucl i Status of the nucleation temperature calculation for coexisting phase pair i. success if Eq. (3.32) can be fulfilled,
not_met if not.

status perc i Status of the percolation temperature calculation for coexisting phase pair i. success if Eq. (3.34) can be fulfilled,
not_met if not.

status compl i Status of the completion temperature calculation for coexisting phase pair i. success if Eq. (3.35) can be fulfilled,
not_met if not.

status_gw i Status of the gravitational wave calculation for coexisting phase pair i. Set to failure if the requested transition

temperature could not be calculated or a % < 1 is identified, success otherwise.
4. Examples and comparison with CosmoTransitions

This section illustrates the functionality and usage of BSMPTv3 by discussing some sample parameter points and by performing a comparison
between BSMPTv3 and CosmoTransitions.?® We start in Sec. 4.1 with the comparison of the solutions provided by the two codes for the bounce
equation in a toy model. We then compare in Sec. 4.2 the phases and phase transitions for sample benchmark points. In Sec. 4.3 a comparison is
performed on a broader basis by using a parameter point sample obtained from a parameter scan in the 2HDM which takes into account all relevant
theoretical and experimental constraints.

4.1. Comparison in a toy model

We compare the results for the bounce equation found by BSMPTv3 and CosmoTransitions for the toy model provided by CosmoTransitions
as an example. It is given by the potential

# o
Vet = (e =12+, ~17) (cd2+92) + /. <7 - 7) +fy(7 - ?> : .1

For the potential parameters we choose ¢ =5, f, =0 and consider two cases f, =2 and f, = 80. For all cases, the true vacuum of the potential sits
at (¢, ¢,) = (1, 1) and the false vacuum at (¢,, ¢,) = (0,0). The potential contours for the two cases are depicted in Fig. 5 (upper). The middle plots
show the tunnelling path obtained by CosmoTransitions (red) and BSMPTv3 (blue), respectively, as a function of the distance p from the true
vacuum. The lower plots display the difference between the tunnelling path calculated by CosmoTransitions and BSMPTv3. The left plots are for
fy =2 and the right plots for f, =380.

In the case of f, = 2, the vacuum phases are almost degenerate so that the starting position is extremely close to the true vacuum, i.e. $(p =0)~ <;_5,.
The field starts so close to the true vacuum that it stays near it across a large range of p before rolling down the inverted potential. This is because,
since the minima are almost generated, the drag term « 1/p needs to have a small impact on the dynamics. As can be inferred from the middle plot,
there is a small difference between the CosmoTransitions solution (red) and the BSMPTv3 solution (blue). This difference stems from the fact
that thin-walled solutions extremely depend on the starting position which ultimately dictates when the field rolls down. Nevertheless, since the
bounce solution minimises the Euclidean action and fulfils the Euler-Lagrange equations, we expect the action to be insensitive to small variations
of the correct solution, which is indeed what we found. The relative error between both actions that is less than 0.2%. And the profile of the two
solutions (lower plot) is very similar.

In the case of f|, = 80, the vacuum phases are far apart in energy so that the starting position is not near the true vacuum, i.e. Hlp=0) 4;,. There
are differences in both the tunnelling paths (middle plot) and the profile solution (lower plot).>° Although this is the case, the relative difference
between both actions is around 1%.

The determination of the bounce action is a challenge both from a mathematical and computational point of view. The solution is highly dependent
on the boundary conditions, i.e. the starting position of the field configuration. Hence, the calculation entails a numerical instability which has to
be treated carefully. So it is not surprising that both codes attacking this complex problem numerically show some numerical discrepancies.

4.2. Benchmark points

For the purpose of illustrating BSMPTv3, we present and discuss in this section a few benchmark points. Benchmark points BP1 and BP2 have
been chosen from an earlier publication of members of our group because they exhibit several vacuum directions and multi-step phase transitions
as well as the interesting case of an intermediate charge-breaking phase at non-zero temperature. Benchmark point BP3 has been chosen from the
literature as example for flat field directions. We also comment on the results obtained with CosmoTransitions for each point and on differences
in the results. If not explicitly stated otherwise, all our runtimes were obtained on one core of an Apple M1 Pro using Clang 14.0.3 and Python
3.9.13.

28 To the best of our knowledge, CosmoTransitions is the only other code that is capable of calculating the bounce solution and the critical as well as the
nucleation temperature, where in CosmoTransitions the approximation of Eq. (3.33) is used.
2 In CosmoTransitions the tunnelling path stops at a lower p value than in BSMPTv3 due to different termination conditions in the codes.
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Fig. 5. Comparison between CosmoTransitions (red) and BSMPTv3 (blue) for a toy model with fy =2 (left) and f y= 80 (right). Upper: Potential contours in the
(¢, ¢,) plane. The colour code denotes the potential values in arbitrary units. The lowest value is obtained at the true vacuum located at (¢, ¢,) = (1, 1). Middle:
Tunnelling path as a function of p. Lower: Difference between the tunnelling path calculated by BSMPTv3 and CosmoTransitions as a function of p.

4.2.1. The models

The presented benchmark points are points of the CP-conserving 2HDM and CxSM. We briefly introduce the models to set our notation. For
further details, we refer to [18,19].

The CP-conserving 2HDM In the 2HDM [234,235], the Higgs sector consists of two SU (2); Higgs doublets @, and ®,. The tree-level potential with
a softly broken Z, symmetry, under which the doublets transform as ®; - ®;, ®, - —®,, is given by

1 1
Viree = M3, @ @) +m2, @], — |m?, @ d, + h.c.] + EAI(CI)J{CI)I)Z + 5/12@;@2)2

(4.2)
+ 1
+ 13(@1 D) )(@]D,) + 44(@] D)@ D)) + [Ezs(qﬂ%)z + h.c.] .
The mass parameters m%l s mgz and m%z and the couplings 4, ... A5 are real in the CP-conserving 2HDM. Allowing in general for four VEV directions,

given by the CP-even VEVs o, , of the scalar components of the Higgs doublets, the charge-breaking VEV wcp and the CP-breaking VEV wcp, they
can be parametrised in terms of the real fields p;, #;, {;, and y; (i =1,2), as

p2+wCB+in2 ) . 4.3)

¢_L< pr+im > q)_L(
1 \/5 C1+w1+i1//1 ’ 2 \/5 §2+w2+i(u/2+wcp)

At zero temperature, phenomenology requires that

{wcp, w1, Wy, 0cp}|r_y =1{0,v1,0,,0}, with
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Table 2

Results for the benchmark points BP1-BP3 (input parameters given in the main text) when tracing phases in a temperature range T' €
{0, Thyign } GeV with MinimaTracer and calculating characteristic temperatures with CalcTemps as well as for CosmoTransitions,
here short-named Cosmo. For all three benchmark points we set Ty;,, =400 GeV. Indices of phases and phase pairs found by BSMPTv3 are
given following the conventions of the output described in Sec. 3.6. The indices of the phases that coexist in a phase pair are given in square
brackets in the format [igy,e = iyye]- Temperature ranges for the phases and pairs are noted in curly brackets, {7}, =0GeV, Ty } in units
of GeV. Calculated characteristic temperatures are given for each phase pair, the nucleation temperature 7, from BSMPTv3 is reported
being calculated via Eq. (3.33) (first number) as well as Eq. (3.32) (second number). history comments on the transition history of the
point, specifying the hierarchy of transitions that take place for this point. We also show runtimes for MinimaTracer, ty; ;. rtracer» and for
CalcTemps, /gy cTenps» aS Well as the runtime for CosmoTransitions, fgog,, and the respective results. Runtimes are measured on one core
of an Apple M1 Pro. The timings for CosmoTransitions cover the initialisation of the model and running findAllTransitions (),
where we decrease the epsilon used by numerical gradients x_eps in case the algorithm does not converge. The function also determines
all transitions, calculates their critical and (approximate) nucleation temperatures and stores them in self.TnTrans.

BP1 BP2 BP3
phases;qypr 0: {216, 400} 0: {0, 400} 0: {118, 400}
1: {0, 237} 1: {0, 264} 1: {0, 133}
pairsygpr 0: [0 — 1]{216, 237} 0: [0 — 1]{0, 264} 0: [0 — 1]{118, 133}
IyinimaTracer 41.47s 52.39s 31.98s
T, 226.3 231.0 127.0
T, {222.9, 222.9} {202.2, 203.5} {122.2, 122.3}
T, 222.6 199.0 121.8
T, 2226 198.4 121.8
ICa1cTemps 6.87 min 3.58 min 1.45 min
history 0-(0)—>1 0-(0)—>1 0-(0)—>1
phases ., {0, 206} {0, 212} {0, 135}
T. — — —
T, - - -
Tosmo 3.95s 5.44s 2.07s

- 2, 2., 2 2
Ogw|roo = \/wl + 5 + Wiy + 0,

=ﬂv%+v§zu=246GeV. (4.4)
T=0

The ratio of the zero-temperature CP-even VEVs is given by the mixing angle § as

Uy
tanf=—. (4.5)
U1
After EWSB the Higgs spectrum consists of two scalar, H ,, and one pseudoscalar, A, Higgs bosons as well as a charged Higgs pair, H*. By convention
H, is to be taken as the lighter of the two CP-even Higgs bosons, i.e. my < my_ . In order to avoid tree-level flavour-changing neutral currents, the
Z, symmetry is extended to the Yukawa sectors, leading to four different types of 2HDM. The here presented benchmark points are those of the
2HDM type 1, where the doublet @, couples to all quarks and leptons.

The CxSM  The Higgs potential of the CxSM [20,22,236-239] is based on the extension of the SM Higgs potential by a complex scalar singlet field
S. The tree-level potential with a softly broken global U (1) symmetry is given by

m? . Sy . b d b
T Aratay2 92 o 2,0 q2, 2,4 12
V=Lo'o+ 2 (0F0) + Z20fo|S)P+ 2S)2+ 2SIt + [ — +ec :
) 4( ) 2 |S| 2|§| 4|§| <4§ +a;S cc), (4.6)
where

S= L (S+iA) 4.7)

2

is a hypercharge zero scalar field. Because of the hermicity of the potential, all parameters in Eq. (4.6) are real, except for b; and q,. In our presented
benchmark point, the parameters of the soft-breaking terms, written in parentheses, are set to zero, b; = a; =0, so that the global U(1) symmetry
is exact. Denoting the electroweak VEV by wgy, and the VEVs of the CP-even and CP-odd singlet field components by w, and ®,, respectively, the
doublet and singlet fields can be parametrised as

1 Gt
(D_% <wEW+h+iG°>’ (4.8)
1
V2

where G+ and G° denote the charged and neutral Goldstone boson, respectively, and 4 is identified with the discovered SM-like Higgs boson. At
T=0

S=— (s+o,+i(at+w,)) . (4.9

{0, 05, 04} |7 =1{v, V5, v,},  with v=246 GeV. (4.10)

The input parameters used by Scanners are the SM VeV v, the real and imaginary parts of the complex singlet VEVs, v, and v,, respectively, and
the potential parameters a,, m?, by, by, A, 65, ds.
In Table 2 all results are summarized for each benchmark point. In the following paragraphs, we show plots and discuss the points in detail.
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Fig. 6. BP1: Found phases as a function of the temperature T € {0, 400} GeV with MinimaTracer (left) and CosmoTransitions (right). High-temperature phase
(magenta) and low-temperature phase (blue) for the three VEVs w, (solid), w, (dashed) and w (dotted). The forth VEV wg, is found to remain zero for all found
phases and temperatures. Inside the low-temperature phase (in blue) found by BSMPTv3 a second-order phase transition takes place into the electroweak phase that
contains the electroweak minimum v =246 GeV at T =0GeV.
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Fig. 7. BP2 : Found phases as a function of the temperature T € {0, 400} GeV with MinimaTracer (left) and CosmoTransitions (right). Colour/Line code same
as in Fig. 6. Inside the low-temperature phase (in blue) found by BSMPTv3 a second-order phase transition takes place into the electroweak phase that contains the
electroweak minimum v =246 GeV at T =0GeV.

4.2.2. Benchmark points BP1 and BP2: multi-step phase transitions with four field directions

Our first two benchmark points BP1 and BP2 are taken from [87] and are points of the CP-conserving 2HDM type 1. For both presented benchmark
points, we find a multi-step phase structure in agreement with [87], and moreover, we can calculate a bounce solution and transition temperatures.
The benchmark point BP1 is defined by the following input parameter set,

BPI: type=1, 4; =6.931, 4, =02631, 4;=1287, A, =4.772, As =4.728,
m?, =1.893x 10* GeV?, tan f =16.578.. (4.11)

As can be inferred from Fig. 6, it features a first-order phase transition from a high-temperature neutral (magenta) to a charge-breaking (CB) phase
(blue), that then transitions in a second-order phase transition back into a neutral minimum. The nucleation, percolation and completion temperatures
lie close together slightly below T' = 223 GeV and a transition history 0 — 1 is reported, meaning that the universe will end up in phase 1 that contains

the EW minimum v = \/a)f + a)g =246GeV at T =0GeV, after the transition from the initial phase 0. CosmoTransitions agrees with the

T=0
found low-temperature phase until around 7' = 206 GeV and fails to trace any minima for higher temperatures. The code then terminates after

Ioosmo = 3-95s with no transitions found. By increasing the upper temperature by hand, CosmoTransitions might, however, successfully find a
transition and reproduce the phase structure found by BSMPTv3. E.g. we find that for Ty, = 900 GeV CosmoTransitions confirms the results of
BSMPTv3, however, with an increased runtime by a factor of almost 17, compared to the runtime of CalcTemps which also includes the calculation
of the nucleation, percolation and completion temperatures.°

The second benchmark point BP2 is defined by

BP2: type=1, 4; =6.846, Ay =0.2589, 43 = 1466, 4, =4.498, 45 =4.450,
m?, =6.630x 10 GeV?, tan # =45.320. (4.12)

As can be inferred from Fig. 7, we find a first-order phase transition from the high-temperature phase (magenta lines) into the neutral low-temperature
electroweak phase (blue lines) that contains the electroweak minimum at 7' = 0GeV. This first-order phase transition happens around the same
temperature as the second-order phase transition from the CB to the neutral phase, resulting in a transition history that unlike for BP1 can never
result in BP2 undergoing a CB intermediate phase. Due to T, — T, = 30GeV, the true minimum cools down during the CB phase and enters the
neutral phase before the phase transition happens. BP2, similar to BP1 can also not be traced with CosmoTransitions for Tyg, = 400GeV, but
for a choice of Ty, = 600GeV and a runtime of 4.80min it finds a transition with 7, =233 GeV and T, = 206 GeV. These temperature results are
then not only off by a few GeV's from the BSMPTv3 results, but with this modified choice of Ty, CosmoTransitions also identifies three instead
of two phases in the range of T € {0, 400} GeV. Even though, compared to BP1, CosmoTransitions reproducibly finds a transition for Bp2 if

30 Note that CosmoTransitions is numerically not stable enough to be able to consistently reproduce this result.
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Fig. 8. BP1: Left: Slice of the effective potential from @, t0 @y at the critical temperature T,, displayed via the coordinate of the EW VEV wgy =1/ X1 2 cp.cp w?.
Middle and right: Two-dimensional contour slices at 7, in the @, — @, (middle) and wqg — @¢p (right) planes. The position of the false (true) minimum is denoted
by a white dot (asterisk). Bottom: Same, but at the percolation temperature 7,,. All contour plots are made with data-grids generated by Pot Plotter. The potential
is shifted such that V,g(@gee. T) = 0GeV (left column) as well as V_g(@gye, T) = 1 GeV (middle and right column), respectively. The field directions which are not
displayed in the two-dimensional contours are set to their global minimum coordinates.
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Fig. 9. Same plot as Fig. 8, but for BP2.

Thigh = 600GeV, the phase tracing seems numerically unstable: CosmoTransitions is either observed to trace saddle point directions, or cannot
trace the low-temperature phase around its second-order PT, resulting in it finding two unconnected phases.

To further illustrate the benchmark points, in Figs. 8 and 9 we illustrate selected potential contours at the critical and percolation temperature 7,
and T, respectively, for BP1 and BP2. Note that because both points have 1, ~ A5, the potential almost exhibits an SO(2) symmetry in the charge
and CP-breaking VEV directions {wcp, wcp}, visible in Fig. 8 (right) as well as in Fig. 9 (right) by the circle in the {@wcp, wcp }-plane which is dented
in the wgp-direction inducing a non-zero wcy coordinate of the global minimum.

4.2.3. Benchmark point BP3: dealing with flat field directions in three field directions
For BP3 we illustrate a point of the complex singlet extension of the SM (CxSM). In terms of the CxSM input parameters, the point is defined by>!
BP3: 0=24622GeV, v, =0GeV, v, =0GeV, m* =-15650GeV?,
b, = —8859GeV?, 1=0.52, 6, =0.55, d, =0.5, (4.13)
a,=0GeV>, b, =0GeV?.

Since b; = a; =0, the global U(1) symmetry is exact and the potential is invariant under U? + vﬁ, respectively a)? + wz at non-zero temperature.
In the language of BSMPTv3, this means that there is a flat 2-dimensional direction in the potential. BSMPTv3 recognizes this flat direction and
without loss of generality sets w, = 0. The resulting phase structure is shown in Fig. 10, and the point is further illustrated with contour slices

in Fig. 11. We find a first-order phase transition between a high-temperature singlet phase (red) with y/®? + 2 # 0 and the electroweak VEV in

31 We took this benchmark point from [239], where it is benchmark point S2.
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Fig. 10. BP3: Phase structure |w;| (i = EW,s,a) as a function of the temperature 7 identified with MinimaTracer (left) and CosmoTransitions (right) for
T € {0, 300} GeV. The low-temperature phase (blue) contains the electroweak minimum (solid line) at 7' = 0 GeV; the high-temperature phase (magenta) contains
the singlet phase (dashed) and is only found by MinimaTracer.
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Fig. 11. BP3: Left: Slice of the effective potential from &g, to @y, at T, (solid line) and T, (dashed line), displayed via wgy. Middle and right: Two-dimensional

contours at 7, (middle) and Tp (right) in the 4 /wf + wﬁ — wgy plane. The position of the false (true) minimum is denoted by a white dot (asterisk). The potential is
shifted such that V g(@ge, T) = 0GeV (left) as well as Vg (@gyse. T) = 1 GeV (middle and right), respectively.

Table 3

Scan ranges for the CP-conserving 2HDM type 1 in the input parameters used by Scanners.
my [GeV]  mpy [GeV]  m,[GeV] my. [GeV] Chvy tanf mfz [GeV?]
125.09 [30, 1500] [30, 1500] [150, 1500] [-0.3,0.3] [0.8, 25] [1x1073,5x%10%]

the SM field direction wgy =0 (corresponding to v at T' = 0), and the low-temperature electroweak phase (blue) with wgy # 0 and w, = @, =0.
The corresponding critical temperature is given by 7, = 127 GeV and the nucleation, percolation and completion temperatures lie close together at
122GeV. CosmoTransitions cannot identify flat directions and is therefore forced to trace phases in all three dimensions. The code fails to find
any phase above T' = 135GeV in the requested range of T € {0, 300}, cf. Fig. 10 (right).

We end this section by noting that here we of course compared only three benchmark points, and in a broader comparison there may be scenarios
where the comparison of the performance of the two codes BSMPTv3 and CosmoTransitions may reveal different features. To get a broader view,
we therefore performed a comparison based on a larger parameter sample, which we will present in the following section.

4.3. Parameter scan

For a broader comparison between BSMPTv3 and CosmoTransitions, we performed a randomized parameter scan for the real, i.e. CP-
conserving, 2HDM (R2HDM) type 1 by using ScannerS-2.0.0 to check for theoretical and experimental constraints. Details can be found in
[240]. Note, that for the check of the Higgs constraints in Scanners the link has been updated to the recently released program packages Hig-
gsTools [108]. For the scan, we chose the input parameters as those allowed by the code. They are given by the masses of the five Higgs states,
the EW VEV v, the ratio of the CP-even VEVS, tan § = v, /v,, the coupling ¢y, )y of H, to two massive gauge bosons V' = W*, Z, and the squared

mass parameter mfz. The parameter ranges of our scan are given in Table 3.

The thus obtained theoretically and experimentally valid parameter points are then checked with respect to their phase transitions with BSMPTv3
and independently with our Python-code that uses the methods of CosmoTransitions and traces the RZHDM potential in the full four-dimensional
field space of the R2HDM that is also used in BSMPTv3, {@¢g, @}, @3, ®cp }-

In Fig. 12 (left) we show a histogram of the runtimes of BSMPTv3 versus CosmoTransitions. The points taken into account are a subset of the
full parameter sample, for which both codes find the same transitions.>? Runtimes are measured by running the codes on a mixture of Intel Xeon
and AMD EPYC processors with Python 3.6.15 for CosmoTransitions. The runtime for BSMPTv3 is derived for running CalcTemps which
traces all found phases and determines their critical temperatures, bounce solutions, nucleation, percolation, and completion temperatures for all
found phase pairs. The runtime of the CosmoTransitions routines is for initializing the model and running the findAl1Transitions () method
that calculates the critical and approximate nucleation temperatures for all found transitions. We find BSMPTv3 to be up to 103 faster with a mean
(median) runtime of 4.15min (3.47 min). For CosmoTransitions we find a mean (median) runtime of 41.46 min (5.61 min). If we only take into

32 If the number of found transitions differs between the two codes, the runtime comparison gets biased towards the code that finds less transitions. In that case, a
direct runtime comparison would be biased towards the potentially less accurate code.
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Fig. 12. Left: Two-dimensional histogram showing the runtime of BSMPTv3 versus the runtime of CosmoTransitions for the sample for which both codes identify
the same phase transitions. Right: Two-dimensional histogram of the relative difference in £ at the nucleation temperature determined via the approximate condition
of Eq. (3.33) versus the relative difference in the approximate nucleation temperature for the same sample. The colour of the bin indicates the proportion of the
points falling into it.

account points for which BSMPTv3 and CosmoTransitions each only find one transition, their mean (median) runtimes are 4.10 min (3.28 min)
for BSMPTv3 and 3.89 h (5.60 min) for CosmoTransitions.

While improvements of the runtime are of course desirable, the determined temperatures of the phase transitions are the quantities interesting
for physics. In the following, we compare the values of the temperatures and of the VEV-to-temperature ratios found by the two codes, as well as the
associated runtimes. This can be done in a meaningful way only for parameter points where both codes find reliable results. Defining the respective
relative difference in the critical and approximate nucleation temperatures found by BSMPTv3 and CosmoTransitions as (i =c,n)

(TiBSMPTVS _ TiCosmc>

AT, =

! TiBSMPTVS ’ (4.14)

we find for the subset of points, in which both codes find the same transitions, a maximal relative deviation of 2.7 % in the critical temperature
with mean (median) relative differences of 0.07 % (0.003 %). We define the ratio between the electroweak VEV v(T}) at the temperature 7; and the
temperature 7; as &;,

V 2k wi(Ti)

&= — with @, € {wcp, @, ©,, Ocp}, (4.15)

1

and the relative difference A¢; in &; found by BSMPTv3 and CosmoTransitions as

(g?SMPTVS _ éfosmc)
1
In Fig. 12 (right) we show the relative differences A&, versus the relative differences AT, in the found approximate nucleation temperature. We
find mean and median for both relative differences below 1 %, however, we see outliers of up to 4.1 % in AT, as well as of up to —20.7 % in A¢,.
The outliers in A¢, are correlated with a rapidly changing potential in a small temperature interval. Small AT, in that case can lead to larger A&, if
the position of the electroweak minimum changes significantly in small temperature ranges.

5. Conclusions

The detection of gravitational waves from first-order phase transitions during the evolution of the universe combines cosmological observation
with particle physics in an exciting way that may answer some of our most urgent open questions: What is the true theory underlying nature? And
how can we explain the observed matter-antimatter asymmetry? For this to be meaningful, we need to go through the whole chain from a particle
physics model to the possible detection of gravitational waves sourced by FOPTs at future space-based interferometers like LISA, taking into account
the state-of-the-art approaches to the various involved steps along this way. At present, there exists no public code that is able to perform this task.
With the publication of the C++ code BSMPTv3 we close this gap. It is the first publicly available code that performs the whole chain from the particle
physics model to the gravitational wave spectrum.

The code BSMPTv3 is based on the extension of the previous versions BSMPTv1 and v2, which calculate the loop-corrected effective potential at
non-zero temperature in the on-shell renormalization scheme, including thermal masses, for extended Higgs sectors, to search for FOPTs. The new
release BSMPTv3 is able to trace vacuum phases as functions of the temperature for complicated vacuum histories, involving also multi-step PTs. It
is able to treat multiple phase directions, discrete symmetries and flat directions and to identify EW symmetry non-restoration at high temperature.
After tracing the minima, the bounce action is computed and the bounce equation is solved for phase pairs exhibiting a critical temperature. This
then allows to evaluate the tunnelling rate from the false to the true vacuum and to determine the nucleation temperature, and thereby to decide
if the universe is trapped in a vacuum or if a phase transition actually takes place. In this case, the code also calculates the percolation and the
completion temperature. Subsequently, the latent heat release and the inverse time scale characteristic for a phase transition are evaluated at the
transition temperature, which by default is set to the percolation temperature, but can also be chosen by the user. Together with the wall velocity,
for which various approximations are implemented among which the user can choose, the thermal parameters are used to calculate the GW spectrum
sourced from bubble collisions and highly relativistic fluid shells, sound waves and turbulence. Lastly, the signal-to-noise ratio at LISA is evaluated.

We compared our code with CosmoTransitions and found good agreement between both codes, but showed that BSMPTv3 not only can be
significantly faster, but also is more powerful in dealing with higher-dimensional potentials.

The code is publicly available and can be downloaded at:

https://github.com/phbasler/BSMPT.
It will constantly be upgraded to include new developments in the field and newly published improved calculations related to the various steps.
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Fig. 13. Derivative J’ (x?) of the bosonic thermal function as a function of x. We compare the implementation of BSMPTv2 (blue line) and BSMPTv3 (orange) as well
as a precise numerical evaluation of the integral (green dashed line). The blue vertical lines, at x> = 0 and x? = —9.4692, are the positions where we patch different
implementations of J_(x?) together, cf. [18] for more details.

With the C++ code BSMPTv3 we provide an important contribution to the reliable derivation of gravitational wave signals from FOPTs of BSM
Higgs sectors with several vacuum directions. Its application to the broad new physics landscape will provide an exciting field for the exploration
and understanding of the Higgs vacuum structure and will advance our knowledge on the true model underlying nature.
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Appendix A. Improvement of the bosonic thermal function J_(x?)

To solve the bounce equation, it is very important for the potential and its gradient to behave properly, without any discontinuities and/or
unexpected behaviours. In the previous versions, BSMPTv1 and BSMPTv2, where all observables were calculated without the use of the gradient, its
behaviour was not critical.

The biggest problem arises from the evaluation of the bosonic thermal function J_(x?) at negative input values. In the previous versions, the
function values at x = {0,—1, -2, ---,—3000} were hard-coded, and to calculate the function value at a negative x-value a linear interpolation
between the two closest nodes was used. In the past, this was more than enough as the derivative was never used and this interpolation produced a
continuous J_(x?) function. To solve the bounce equation we also need the derivative to be well-behaved. Our solution for this is the construction
of a cubic spline using the same hard-coded function values shipped with the previous versions. We also imposed that the spline derivative at

x? = 0 matches the analytical value of J’ (0) = —’IT—;. The result can be see in Fig. 13 where we plot the derivative of J_(x?) at negative values
for BSMPTv2 (blue) and BSMPTv3 (orange) as well as a numerical derivative calculated with high precision (green dashed). The new solution in
BSMPTv3 approximates the derivative of the function at negative values much better.

It is important to check that this change does not completely alter the results found in previous calculations. We therefore re-scanned some points
of the R2HDM and its CP-violating version, the C2HDM, applying both implementations of J_(x?). We found that the difference is a few per-cent
only. Overall, the critical temperature calculated before is above the critical temperature calculated in BSMPTv3. In the old version, &, = wgw(T.)/T,
is slightly lower (by at most 0.1). The previously obtained results were hence a little bit more conservative.
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Appendix B. Comparison with Espinosa-Konstandin analytical solutions

Recently, a way of finding an analytical solution for the bounce equation was developed in [241,242]. The potentials/solutions used throughout
this section assume an (O(4) symmetry although similar expression can be constructed for O(3)-symmetric solutions. The method consists on defining
the tunnelling potential

V=V @ - 247, ®.1)

where the subscript “b” indicates bounce, to clarify that the tunnelling potential is only defined along the tunnelling path. The tunnelling potential
is simply the negative value of the energy that is not conserved, hence

d 1 ;, ] 3

Pl ey A 74 =—Z¢° <0, B.2

d [2¢b () pqﬁ,, < (B.2)
so that the tunnelling potential describes how energy is dissipated by the drag term. The Euler-Lagrange equations provide a differential equation,

@/ =3 v =6(v,-v)v/, (B.3)

where the prime denotes the derivative w.r.t. ¢p. The Euclidean action of the bounce solution can then be calculated as

¢
S [V}] = 547> L/ _ V')2d¢ (B.4)
E "t (th)3 ’ :
%o
where ¢ = ¢(p =0) and ¢, is the false vacuum. The Euclidean action can have an analytical expression provided that V' and V; are simple enough
for the integral to be solvable but, even if the integral is not solvable, it can usually be calculated numerically with sufficient accuracy.
This method provides a way to produce analytical solutions. To solve the bounce equation one would use V'(¢) to calculate V;(¢), but we can
start with V;(¢) and calculate the V' (¢) that solves Eq. (B.3), something that is far easier to do. The potential can be calculated from the tunnelling
potential as

o _
V,’((ﬁ)z/ d¢

Vig)=Vi(d)+— —.
V!(#)

(B.5)
%o

Therefore, given a tunnelling potential V;(¢) and a wanted solution ¢, one could construct the potential V' (¢) that has this solution. This method
allows one to manufacture potentials, and their respective solutions, that then can be used to test other methods. With this in mind, we compared
the examples provided in Ref. [242] to verify the accuracy of our code. The results are provided here below.

B.1. Example A

We consider a tunnelling potential given by

V(@) =¢"2h -3), (B.6)
which produces the following potential

V= | 2=+ 01— pr10p LD 3.7)

= - - og—— .
(11— ¢p)>¢?
with 0 < ¢y < 1 and ¢ = ¢(p = 0) being the solution for the bounce. The value for the action is given by
72 ) é
Sy =-% [‘i’o +1i ( 7 = )|- (B.8)

where Li,(x) is the dilogarithm. For the value of ¢ = 0.99, the result of BSMPTv3 matches the analytical result with a 0.0007% error. For the value
of ¢y =0.50, the result of BSMPTv3 matches the analytical result with a 0.07% error.

B.2. Example B

We consider a tunnelling potential given by

V,(¢p) = —sin ¢, (B.9)
which produces the following potential
tan
V= =1+ 2 cos? plog %o sin® ¢, (B.10)
3 tan ¢

with 0 < ¢ < /2. For the value of ¢, = 1.4, the result of BSMPTv3 matches the analytical result with a 0.002% error. For the value of ¢, = 1.54,
the result of BSMPTv3 matches the analytical result with a 0.0003% error.
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B.3. Example C
We consider a tunnelling potential given by
¢2
| Z = B.11
D=t Toes (B.11)
which produces the following potential
2 8p2(1 —1 2 1-1
Vig)y= —2 4 3O A 108D ()02 4 — 210g? g +log —22 ) | (B.12)
—1/24+1logg  3(1 —2logep)? 1 —log¢y

with 0 < ¢y < \/E. For the value of ¢ = 0.8, the result of BSMPTv3 matches the analytical result with a 0.004% error.
B.4. Example D

We consider a tunnelling potential given by

Vi(¢) =Ei2log ), (B.13)

which produces the following potential

2
V(g)=EiClogd) + L4 <1 - e 2¢°> , ®.14)
log” ¢

with 0 < ¢y < 1. For the value of ¢, = 0.8, the result of BSMPTv3 does not match the analytical solution. Instead, we find a tunnelling solution

around ¢ ~ 0.5323, that can be checked using the undershoot/overshoot algorithm around this point. From Ref. [242], the analytical solution for
this potential also has an explicit form for the ¢, = 0.8 solution, which is given by

bp(p. o) =& VP 3HE b (B.15)

If we use the analytical solution starting at a different starting point ¢, the Euler-Lagrange equations give

<\/ 3log*(dy) + p* + \/§> (o ggrn?

(log*(¢hy) — log*(dy)) e Vi =0, (B.16)
0 0 (3log2(d30) N p2)3/2

which is only realized for all p > 0 if ¢, = ¢,.>> This result indicates that there are two bounce solutions with different functionals, i.e. only one of
the solutions is given by Eq. (B.15).

B.5. Example E

We consider a tunnelling potential given by

V, = e*Ei(—2 + 2log ¢) — €* Ei(=3 + 3log ¢) , (B.17)

which produces the following potential

(1—¢)2¢?

Yy 2
81 _logg? ®-18)

V($) = e® Ei(—2 + 2log ¢) — e> Ei(=3 + 3log ¢) +
where r2(¢) is the bounce profile implicitly given by
+log? ¢ —log? ¢y +2Lis(1 — ) — 2Li, (1 — ¢y | - (B.19)
For the value of ¢, = 0.8, the result of BSMPTv3 matches the analytical result with a 0.0006% error.

B.6. 2-Dimensional example

There is a way to handle n-dimensional potentials. The method is described in detail in Ref. [242]. The tunnelling potential, that we consider
here is the same as in example A. The 2-dimensional potential is given by

Valids) =V (0(60) + W (#1) [r =@ (1)) +3 (2= 1) (63 -1 - 1)°, (8.20)

where @(¢;)=—iE [i Arcsinh(¢), 2] with E[¢, m] being the incomplete elliptic function of the second kind. The function W (¢,) is given by

33 There is another solution 1/¢, that fulfils the Euler-Lagrange equation but it lies outside the range 0 < ¢, < 1.
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21V (o)) =V, (0(d)] (B.21)

otcosh(d)l/ot)3

The parameter « is free and generates different tunnelling paths, we set it to « = 1/2 to match Ref. [242]. For ¢, = 0.8, the result of BSMPTv3
matches the analytical result with a 1.5% error.

W(p) =V’ (@) tanh(e, /a) +

B.7. 3-Dimensional example

The tunnelling potential is the same as in example A and in the 2-dimensional example. The 3-dimensional potential is given by

V3 (1,02, 83) =V (0 (d1)) + Wa (1) (2 — P2 (&) + Wi (1) (b3 — D3 (¢1)) (B.22)
+25 (s — D, (1)) +25 (5 — D5 (1)), (B.23)
where ®,(¢,) and ®;(¢,) are given by

(Dz(¢l)=psin<lp—;az¢l>, (O (¢1)=p—pcos<lp—;az¢l>, (B.24)
and the W)/, functions are given by
(91 =V o01) U 4211 o (0) - o o)) | 22 200 ®.29
¢ (¢1) o' (#1) @' (¢1)
W)= (0 00) 2L a1 (o (01)) =, (o 0) [‘Dg )2 (“bl)(”"fd")] ~ .26
o (&) o (d1) o' (¢1)

The parameters « and p are free and generate different tunnelling paths. We choose a = 1/2 and ¢, = 0.999 to match Ref. [242]. We chose two

values of p. When setting it to p = é, BSMPTv3 matches the analytical result with a 1.5% error. If we set it to p = %, the same value as in Ref. [242],
then BSMPTv3 converges to a different solution with an Euclidean action of .S = 55.6.

Appendix C. Effective degrees of freedom for the energy and entropy

At the early stages of the Universe, when the temperature was larger than O(100GeV), the cosmic fluid was dense and hot enough that the
interaction rate of the particles with the fluid was much larger than the Hubble rate so that the Universe was fully thermalised [195]. Therefore, all
particles fulfilled their respective equilibrium distribution functions, i.e. the Bose-Einstein distribution for bosons and the Fermi-Dirac distribution
for fermions. The cosmic fluid energy density and the entropy density can hence be calculated just by knowing what type of particles is present in
the cosmic fluid. For each massless (relativistic) boson (b) and fermion (f) there is a contribution (in natural units) to the energy (p) and entropy (s)
density of

2 2
T 4 T 4
T)=g=T*, (T =287:T" c1
pp(T) 830 pe(T) 2530 (C.1)
2 2 7 2 2
sp(T) = g%T3, sf(T)=§g—4”5 T3, (C.2)

where g are the internal degrees of freedom of the particle. To obtain the complete energy and entropy density, respectively, one simply has to sum
over all particles in thermal equilibrium,

x? w7 » x?
Ty=2— UL )14 = Z g (T4, C.3
D=1 IS g Z g 308 M (€.3)
ie{boson} ie{fermion}
272 7 272
s =2 ( IR DY gf”) T3 = Tog . (C4)
ie{boson} ie{fermion}

As the Universe cools down and expands, particles gain mass which decreases their contribution to the energy/entropy density of the cosmic

fluid. Additionally, their interaction rate with the fluid decreases until the particle decouples from the cosmic fluid, which further decreases the
;’] /9) in Eq. (C.3) and Eq. (C.4) to temperature dependent
quantities and call the sum the effective degrees of freedom for the energy density and entropy density, respectively, i.e. g (T) and g®(T).

For the scope of this paper, we make the approximation that the effective number of degrees of freedom for energy and entropy is the same, i.e.

gP(T) ~ g¥)(T), which we then denote as g(T'). This should be a good approximation until T = 100keV [195]. In the end, we have that

energy/entropy density of the fluid. For this reason, it is customary to promote the g

ah= Y Pmal ¥ g, ©5)
i€{boson} i€{fermion}
where we assumed that the sum is the same for the energy and entropy degrees of freedom.

The effective degrees of freedom g(T) have been calculated for the SM in detail, but for a generic model, the temperature dependence is non-
trivial to compute. At high temperature, when we assume that all particles are thermalised and relativistic, we can calculate g(T' — o0) = g(o0), and
it is given by the sums in Eq. (C.3) and (C.4).

To incorporate this in our code, g(T) is calculated using an approximation by interpolating the SM effective degrees of freedom g™ (T') and
the correct value for a generic model in the relativistic limit g(c0). In our approximation, we assume that all additional fields decouple before the

42



P. Basler, L. Biermann, M. Miihlleitner et al.

Comp Physics Co ications 316 (2025) 109766
—_— ,(sM)
2 | gM(T)
10 g(‘zHDM)(T)
110‘,
100 "‘
[ \
= 90 \‘\
AN
Lot 106 10° 104 x\.___ ___________
“\
A\
o
10° 103 10! 107!
T [MeV]

Fig. 14. Approximation used by BSMPTv3 to estimate the effective degrees of freedom g(T') for a generic model, here the 2HDM. The blue line represents the SM
effective degrees of freedom g®™ (with g™ (c0) = 106.75), the orange dotted line represents the 2HDM effective degrees of freedom g™ (T') (with g@HPM)(o0) =
110.75), and the orange shaded region visualizes the change due to the additional degrees of freedom that the 2HDM has compared to the SM. The grey dashed
vertical line at 7 =214 MeV is the temperature of the QCD phase transition where we assume that all additional particles have decoupled and we fall back to gV,

QCD transition at Ty = 214 MeV, and we make a smooth interpolation between the QCD transition and T}, = 1 TeV, the temperature at which we
assume all particles are relativistic and thermalised. Explicitly, the approximation is given by

g(0), for T > Ty
8(T) =3 (T [ Toep) (88 Tw) /108(Ta/ Tocn) g SM(T),  for Ty, > T > Toep (C.6)
gD, for Toep > T

To show the effect of the additional degrees of freedom of the 2HDM, which has four more effective degrees of freedom at high temperature (one
for each spin-zero boson), in comparison to the SM, we plot both gM/2HPM) in Fig. 14 where the shaded area represents the change due to the
additional degrees of freedom of the additional fields.

Data availability

Data will be made available on request.
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