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Spatially-resolved modeling enables optimal design of
catalytic monolith reactors for emission control!

Motivation: Catalytic monolith reactors for EC :
= Improved emission control (EC) systems essential for Harmful pollutants _ _

the transformation to a greener industry ﬁ (CO.NO CH, NH, Catalvtic conversion
» Reduced performance of catalytic monolith reactors

due to heat and mass transport limitations

VOCs) ‘
Goal:

= Better understanding of the interplay of chemical reaction (@)

R

Clean
exhaust gas

and transport phenomena to improve monolith and
washcoat design

= Tracking the way from the bulk to the active site

= Developing a spatially resolved, hierarchical multiscale
model

= Model based optimization of monolith and washcoat design Inert

Catalytic monolith
washcoat
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Catalytic monoliths are hierarchically structured and
contain multiple scales!

pm nm mm m Length scale
I I I I >
ns uS S h Time scale
Mesopores Macropores Monolith § Focus of this

2 : £ work:
= 8 Model for spatially
2 & resolved
8 &  simulations at the
E GOSNy | &/ | Oy 8§ mesopore scale!
70} -

Predominant

transport Knudsen Molecular Forced convection
mechanism: Diffusion Diffusion

Model Kinetic Boltzmann equation

equation: Navier-Stokes-Fourier equations
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Continuum assumption breaks down in pore-resolved
simulations of mesoporous systems!

Kn < 0.01 Continuum models (Navier-
. " Stokes-Fourier equations)
D, . ' Describing transport in terms of
Z’J transport coefficients
‘ ‘ / mean free
path
q«:j‘. Kn: — Ai
o @ I
“. Y characteristic
length
- Kinetic Boltzmann equation
N (Xj’t’ CJ) Describing evolution of the
ft(x*,t,c*) distribution function f in space

and time for every molecule

Transport mechanism in mesoporous washcoat:
0.01 < Kn; < 2.00

10nm < (L =d,) < 200nm

Multicomponent diffusion (no forced convection)

Diffusion is affected by molecule-molecule and
molecule-wall collisions

Transition regime between Knudsen and molecular
diffusion (since characteristic length is small)

Continuum assumption breaks down

and Navier-Stokes-Fourier equations A
cannot describe transport within the

porous catalyst
N\ 04
O

‘ Model needs to be based on
kinetic Boltzmann equation



Recent advances in catalyst synthesis and characterization
allows catalyst desigh at mesopore scale!

Recent advances in experimental methods enables to measure and modify the pore structure:

Spatial information by high resolution X-ray [1]: Nanotomogram of a VPO Chemical imaging of a Ziegler-
catalyst for selective oxidation [2] Natta catalyst particle [1]
= Morphology (3D geometry of the porous "y .

catalyst)

= Location of active sites (chemical imaging)

Pulsed field gradient NMR [3]:

= Measuring self diffusion in
meso-porous media

[1] Das et al. (2022) Chem. Ing. Tech., 94, 11, 1591-1610.
[2] Gao et al. (2021) Sci. Adv., 7, 24, eabf6971.
[3] Karger et al. (2021), Adsorption, 27, 3, 453-484.

# Simulating transport in a multicomponent mixture o
coupled with surface reaction in spatially resolved

mesopores based on kinetic Boltzmann equation.
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The kinetic Boltzmann equation

Boltzmann equation from the total derivative

of the distribution function with respect to time: __

d
ciH=2

of of \ dzq of \ dcg
C)= (8t)dt+(8:ca) di +(8ca) i

of of of _
E +Caa’£a ‘|‘ga\§ C(f)
Neglecting

external forces

Evolution in Movement in
time physical space

v

Y et =c()

Ca
ot ' 0:177
Collision operator: Change
due to molecule interactions

...or shorter;

atf + Cozaaf:af =C (f)

Multicomponent case: For gas mixtures the
equation needs to be defined for each component i

of L of .
Ot + ca Or, (f 2 )
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What's there? Methods for solving the Boltzmann equation

Direct Simulation Monte Carlo (DSMC) Moment methods:
- Computationally intensive especially Quadrature Based Moment Method (QBMM):
for dense gases as used in catalysis + Computationally efficient calculation using FV mesh to

| .
Chapman-Enskog expansion (CE): solve moment transport equations

+ Results in Euler equation (0 order

expansion) and Navier-Stokes-Fourier Available code:
equation (18t order expansion) in No open-source or commercial QBMM code available
continuum limit for solving kinetic Boltzmann equation of

= Results in Burnett/ super-Burnett multicomponent mixtures

equation beyond continuum limits,
Developing a 1D and 2D model to test if

which are hard to solve [4]
% QBMM can describe multicomponent
n_ diffusive transport in the continuum
limit and transmission regime

[4] Struchtrup, Macroscopic transport equations for rarefied gases, Springer, 2005.
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Moments of the

distribution function
and the 1D moment
transport equations

KIT



Definition of moments

General: 3D

Moments:

M():m/fdc, M o :m/cafdc

M o5 = m/ca05fdc, Ms o~ = m/cacﬁcq,fdc
to be continued...

with m as the molecule mass
Central moments:

Replacing the particle velocity with the relative
velocity ¢ and dividing with M, results in the

central moments C

with the mean velocity v,

Per definition: Co =1, Cio =0

Simplified: 1D

Moments up to order k:

M, :m/fckdc

Central moments up to order k:

Cr = %/f(c—v)kdc

Relation between central moments and moments

k>2:ChL

k

(

k

1

)(

M,
My

)

k—i M,
My’
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Some moments can be related to macroscopic properties!

Macroscopic properties of component i:

Density:
pi = M;

Momentum density:

. 7
PiVia = Ml,a

Velocity:

2
| Mi
/U'l. (83 L

& M

Partial pressure:

Total energy density:

1
3D: pPi€; = §M¢/C§’afdc

1
1D: piei = §M§

Internal Energy density:

1
3D: piu; = im@/éiafdc
Lo
1D: piu; = 2 0C5
Kinetic Energy density:

. . 2
M(z) Mi&,o: Pi 2
PiU; = 9 ( Mé ) - 5 (U%,Cﬂ)

Macroscopic properties of the mixture:

Density:
P = Z Pi

Velocity:
Vo = Z (Pivia) p~

1
Pressure:

p:ZPi
i

Total Energy density:
pe = Z Pi€q

Kinetic Energy density:

_ P 2
PU = 9 (Va)
Internal energy density:
puU = pe — pv
Temperature:
dk i m;

with d as dimension
(1,2,3)
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Deriving 1D moment transport equations from Boltzmann
equation

Multiplying the 1D Boltzmann equation with the molecule mass and the particle velocity and subsequently
integration results in the moment transport equations of component i:

—_

In vector form: Moment transport equations

i i 0 | | .
8tMO. N ali. =4 OMs,, + 0,F(Ms,,) = Q3, should form a hyperbolic system
O, M} + 0, M: = QF, with: of 1t order PDEs!

i i A i \T
M2n pu— (MOJMl""MQTL) U
. o y T nclosed moment flux vector
O M, + 0p M, 1 = Q" F (Ms,) = (M, My....M,, 1) describing advection of the moment

. . . . T
Q5. = (926,9Q7....95,,) Moments of the collision operator

Tasks:
= Closure of the unclosed flux vector (Quadrature!)

= Modeling the collision operator and calculate its moments

&

= Numerical solution which guarantees realizability of the moments
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Kinetic model for the
collision operator and
its moments
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Kinetic models: A simplification of the collision operator

Best known and widely used kinetic model: Bhatnagar-Gross-Krook model (BGK)

Concept of the BGK: Limits [4,5]:
Collision relaxes moments towards equilibrium = Reflects moments of the hard spere model only up
_ to 2nd order
One component:
1, .. = Poor approximation if distribution function is far
C=~(f—) .
T away from equilibrium
Binary rlnixture: . Moments of the collision operator:
C’ = — (fer0 — ) + — (fer®t — f%) — kthorder moment of the collision operator
00 o results from the moments of f and fe94:
Multicomponent mixture with N species: Ny
i ed,t,] _ afi
) Y 1 eq,,] 7 Qk N Z Tf,;’j (Mk Mk)
C =30 () f
. 1,7

J —

with the collision time 7 and the
ST . . . eq,i,j [4] Struchtrup, Macroscopic transport equations for rarefied gases, Springer, 2005.
eqU|I|br|um distribution f [5] Marchisio, Fox, Computational Models for Polydisperse and Multiphase Systems, Cambridge, 2013.
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Compute equilibrium distribution and its moments from the
moment of the distribution function!

In the 1D case equilibrium distribution is defined Feaid (o)) — i ( (i — Ui’j)z)

as an univariant Gaussian: v N b 20 j

Calculation of p;, v; ; and o; ; as well as the N

collision time 7 from moments of f and the Moments of 4%/

particle mass m and diameter d according to Using p;, v;; and o; j moments of the Gaussian
Marchisio and Fox [5]: equilibrium distribution can be calculated analytical

(e.g., via standardized moments of a Gaussian,

=  Only the moments of f from 0 to 2" order , )
moment generating function)

and 2"d order central moment are required

= Fori =j moments of fi and d; are needed : ' N
7 o ‘ Q5 = func ( ZQnMQ'n,)
= Fori # j moments of f*, f/ and d;, d;, m;,
m; are needed ‘ No additional unclosed moments

[5] Marchisio, Fox, Computational Models for Polydisperse and Multiphase Systems, Cambridge, 2013.
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Numerical implementation of BGK model: Evolution of
moments due to collision

Neglecting moment advection results in 0D , Noq . .
it oM, = > — (M53* — My, )

moment transport equation: 2n

~ Tij
j 2]

—At —At o
For N = 1 analytical solution is straightforward: Moa,, 1A = Moy, ¢ €xp ( ) + (1 — exp ( )) M,

T T

For N > 1 analytical solution or higher order moments becomes complicated

' ' ' icit 4th i i At i i i i
‘ Numerical solution using an explicit 4 G rinr = Mb,, + — + (K& + 2K + 2K} + Ki+)
order Runge Kutta (RK4) method

Get k! _, for all components i by At = min (7; ;)
—> : " : i i itoN | Al i
evaluating collision operator four times ks = Q5 (Mzn,t 7k1>
v A
: t
i i ito N I
Preform time step for all components i Ks = fan (Mz’””t 2 k2)
V= tham ki = 5, (M) + Atks)
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BGHK collision model is conservative!

po = p1, Vo F V1t

|_ ref. 0 RK4 (At= Tmin) [Tmin. Tmax]
1.050 —: o
] O p
o 1.025 -+
£ i
e‘C-le.O('JO 0 D S S S S
20,975 1
0.950
-,
x1072
1.0 H o wlE 5.0
E o v E
. 0.5 1 F 2.5
0 ] :
é 0.0 H S r 0.0
S ] ;
-0.5 A -2
-1.0 E —5.
S —
_+2.84264 x 104 x104
] e i
-0.10 r
- ] - 2.9
2-025 4/ 0 o 6 6 6 6 6-0-o6-o—-o—o]
3 ] [ 28
—-0.40 + [
] O wol|l
] o wunm|f
T A —————
0.0 0.5 1.0 1.5 2.0
t/s le-9

po # p1, Vo F U1

|—ref. © RK4 (At=Tmin) [ Trin: Tmax]
10 49 S —— —o—o
".‘E 0.8 :
0] O po
g O ;
3
0.6 1
- —o—o—6—6—o—o—0—6—0
x101
1.0
1 o v
o vg [ 52
L 0.5 1
Ilh
E 0.0 —= - 5.0
5 ] -
-0.5 o
] - 4.8
-1.0 I
———————————————
+2.84264 x 104 x10%
-0.10 :33%9—9—9—9—9—9—9'
- 2.9
-0.25 S ——E—E—
¥
—-0.40 [
O up
O wn L 55
—-0.55 T LA B T L | T '
0.0 0.5 1.0 1.5 2.0
t/s le-9

Seilkg™!
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Closure of the moment
flux vector and moment
advection
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Quadrature to close the flux vector

Goal: .
Calculating the unknown moment M%..., from the known moments M}, ﬂ Four nodes quadrature:
Concept: ’— Gaussian % Quadrature|
= Approximation of the moments by quadrature: ‘h 0.4 4
N 03 ]
_ ¢k ]
M), = szfi “ $02
(2 i
0.1 1
= Calculating weights w; and abscissas ¢; from the known moments (non- §
0.0 +

linear systems of equation) and calculate the unknown moment using the T
quadrature approximation & c

—— Log-normal X Quadrature

Computation of the closure: :
0.8 -
Relating the recurrence coefficient a,, and b,, of orthogonal polynomials to o |
the moments enables fast closure calculation [5] S §
0.4 1
Poi1(6) = (€ —an)Pn(&) — by Pr_1(&§) n=0,1,2... 0_2.2 )
[5] Marchisio, Fox, Computational Models for Polydisperse and Multiphase Systems, Cambridge, 2013. 0.0 (-) ——— 5 —— -1-0- -
& C



Chebyshev algorithm enables direct calculation of the
unclosed moment from recurrence coefficients [0]

Given moment set: M, = (M, M;....M3,)
Calculating recurrence coefficients a, to a,,_; and b, to b,, from M, using Chebyshev algorithm

closure condition assuming

-1
. » 1
A — — a - c - -
Using closure condition to calculate a,,: an - kE_O k Calssa e

reversed Chebyshev

Perform backward recurrence and calculate M. from a, to and b, to b
2n+1 aO a’Tl 0 n algorithm

Closed flux vector: F (M},) = (M7, Mj...M3, ;)

[6] Fox, Lauren (2022) SIAM J. APPL. MATH., 82, 2, 750-771.
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Using Finite Volume Method to numerically solve moment

advection

Neglecting collision results in the collisionless moment transport
equation:
oM, + 0,F'(Ms,) =0

Numerical implementation of the equation in Finite Volume
Method (FVM):

7 2 At ) 2
M2n,j,t—|—At M2n3 t ALE (F (MZT} j—‘rz t) - F (Mzn j—i T))

# Using Harten, Lax, van Leer (HLL) Riemann to calculate flux at
the interface based on the left and right state of the interface

Reconstruction of the left and right state at the interface from
the centroids using a 2"9 order Modified Upwind Scheme for
Conservative Law (MUSCL) with minmod slop limiter to prevent
unrealizable moments

interface interface
i3 j+3
] 1
) o
| j |
-| o |
: | centroid | |
é“:.)’é'-[) : : F (M;Hj—l—%.’)
e
T
1
7 —l— 5
Left state I Right state
i | )
2n,j+1,L : M2n,]+ 3R
1
]
(M;n j+1 L) : F (M?é’n, j-l— R)
1

HLL:F (M, )

Reconstructed: M;n,j—t—%,L’ M;M+ R
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Put all together using operator splitting!

Operator splitting technique allows to evaluate moment advection and collision separately [9]!

N

O, +0,F' (Ma,) = >~ — (M52 — M, ) | Initialize M, ; for all components i and cells

o *

8 Mb,, + 0, F (Ma,) = 0 Close flux vector and advancing M5, j by At,qv by advection N

i
2n,j,adv l

Control realizability of MY, jiadv DY checking positivity of Hankel
determinates of standardized moments

v

ML, = 1. (Mg‘;ﬁ’j —Mgn) —> Advancing M}, Jjady BY Atcor (if Ateo) < Atagy) OF Atagy (if Ateo) > Atagy)

1

steady state/ M0, col

No Atoo1= Atagy Yes le2 _Mé ol
n,j n,j,co

[9] Glowinski, Osher, Yin, Splitting Methods in Communication, Imaging, Science and Engineering, Springer, 2016.



Testing model and
validation with
continuum-model
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Test case Diffusion in an infinitesimal slab

Setup:

0,F'(Ms,, ) =0 Periodic
wall

Moment initialization:

" Wileft» Wiright

" Teft = Trighta Pleft = Pright
(constant overall number
density)

= V; = 0

=

|deal gas, molecule diameters
from Bird [10]

S—

Using macroscopic
properties to initialize
moments assuming
Gaussian distribution

my = ——— n

Continuum model:

Solved
by FVM

BC: 5:13Yn—1,$:0 ~ 6af;yn—1,:c=L =0

51& (CYn—l) = 6mfln—1

IC: Reflecting macroscopic initial
condition of kinetic equation

Molar fluxes n,,_;calculated using
Maxwell-Stefan model

Binary diffusion coefficients D; ; from 1st
order CE approximation [10]:

- 3(2rkT/m,)"”
" 16m0.5 (ds + dj)

m@'mj P

mz-+mj :k’—T

[10] Bird, Molecular gas dynamic and the direct simulation of gas flow, Oxford, 1994.
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Second order MUSCL reconstruction enables mesh
convergence at industrial relevant conditions!

Self-diffusion of Argon at a temperature of 273 K and various pressures:

p =23 x 10°Pa, Dy =3.64 x 1074 m3s! p=1x10*Pa, Dy =1.09 x 1074 m3s™! p=1x10° Pa, Dy =1.09 x 1079 m3s™!
0.040 -
0.035 0.12 7 1.2 ]
~ 0.030 m 0.10 - n 1.0 1
£ £ E
2 g g
<0025 S 0.08 5 0.8 7
0.020 ] ]
0.06 - 0.6
0.015
TT T Tt 0-04-""I""I""I""I""I"" 0.4 L
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.15-0.10 -0.05 0.00 0.05 0.10 0.15
x/m x1073 x /m x1073 x/m x1073
—— Ax=7.50x10"°m — Ax=1.88x10"°m —— Ax=7.50x10"5m — Ax=1.88x105m ——Ax=7.50x10""m ——Ax=188x10"°m —— Ax=0.47x10°m
—— Ax=375x10"5m —— Ax=0.94 x 10-¢ m —— Ax=375x10"5m —— Ax=0.94x 105 m —— Ax=375x10"°m — Ax=0.94x10"°m Ax=0.23x10"°m
Convergence reached at Ax = 3.75 x 107*m  Convergence reached at Ax = 1.88 x 10™°m Convergence reached at Ax = 0.47 x 107

required resolution for mesh convergence

diffusion speed
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Within continuum limit, the solution is less dependent on
humber of moments!

Self-diffusion of Argon at a temperature of 273 K and pressure of 10° Pa:

—_

BGK collision operator Collisionless (.Qén =0),A1 > 00, Kn - o0
7
5] \ / 1o ] The higher the
Knudsen number (the
o 1.0 1 . » 10 1 farther the distribution is
e i - Po e .
g t=5.0 us -—py 2 ___away from a Gaussian),
§ 08 g 08 7 the more moments are
_ necessary for a
0.6 ; 0.6 - .
; k ] converged solution [4]
'l
N x4
0.4 — T T T 0.4
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
x/m 1072 x /m x1073
|—NM=5—NM=11—NM=21| |—NM=5—NM=11—NM=21| —

Number of moments change [4] Struchtrup, Macroscopic transport
. . . equations for rarefied gases, Springer, 2005.
partial density profiles

KIT

Only small influence of the
moment number




Self diffusion Argon: Good agreement between kinetic
equation and continuum model

p=3x10°Pa, T=273K, p=1x10°Pa, T=273K, o 5 o .
D0,1=3.64X 10—4 mZS—l D0'1=1.09X10_5 mZS—l p — ]. X ].0 Pa, T —_— 273 K.

|— po — pr —p|

L75 3 = Good agreement of
. 20 kinetic equation and
= 1.25
E 12> 7 Maxwell-Stefan
< 1.00 1
& : model for self
0.75 4 . .
050 ] diffusion of Argon
— 5 - = 5 = ' E . . .
Do1= 194 x 107 me s s 356 % 105 st ————————————— = Kinetic equation can
Vi Vq v . .
: describe the impact
o1 t= 5.0 us of temperature and
o] pressure on
£ 0.0 ] diffusion over a wide
> o ] range correctly
-0.1 0.0 0.1
—— pp ---- p1 — kin. eq. —— Maxwell-Stefan x/m x1073
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Good agreement between kinetic equation and continuum
model for diffusion in a binary mixture!

0.035 1

0.030

pilkgm~3

0.015

0.010

p=3x103Pa, T=273K,
Dar,co =3.99 x 107 m?s~!

p=1x10°Pa, T=273K,
Darco=1.20x 107> m?s7!

p=1x10°Pa, T = 273 K:

|[— oar — pco — 1|

0.025

= 0.020 1

p=1x10°Pa, T=400K, p=1x10°Pa, T=600K,

Dar,co=2.13x 107> m?s~! Dar.co=3.90 x 107> m?s~!

t=50us

v;/ms~!

<

—01

x/m ><10 -3

Good agreement with
Maxwell-Stefan
diffusion model

Small numerical
oscillation in 1st, 3rd
order moment and 2
order central moment
at small times

v # 0 due to different
total densities at the
left and right side
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Kinetic equation is capable for simulation of
multicomponent diffusion in the continuum limit!

p=3x10Pa, T=273K p=1x10%Pa, T=273K p=1x10°Pa, T = 273 K:
ooas N o] |
] ] ; ; = (Good agreement with
;000 1.25 Maxwell-Stefan V
éo.ms—i 7100 diffusion model
" oot0 ] 2075 = Implemented model
s | " 050 enables computation of
' 0.25 1 diffusion in
0.6 ] ' VA ' VCO ' vo — v'| | multicomponent
0 - 03 mixture
] 0.2 - t=50us
T 04 . Solving kinetic Boltzmann
e 2 0.1 1 equation with QBMM can
02 - S 00 describe diffusive species
. 0.1 V transport in

————————————  Mmulticomponent mixtures
-0.1 0.0 0.1
X /m x1073
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Summary

For the first time we showed: 1D kinetic equation with BGK collision model solved by QBMM
using a Chebyshev algorithm for closure of the moment flux vector can describe diffusive species V
transport in multicomponent mixtures within the continuum limit (Maxwell-Stefan diffusion model)

= Description of diffusion under industrial relevant conditions possible!
= |n the continuum limit a small number of moments (5) results in an accurate solution

= Transport depends only on molecule diameter and molecule mass! No transport coefficients are

required. " —
g Kn < 0.01 Kinetic Boltzmann equation solved
_ 3 __ with QBMM can describe I
i; g /' multicomponent transport in the ®
m = & macropore and bulk regime

q Kn > 0.01
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Future steps

Next steps:

= Extending the presented concept to a 2D model to study, if the
kinetic Boltzmann equation solved with QBMM can reflect
diffusion in the transition regime between molecular and
Knudsen diffusion

= Reflecting wall boundary condition for molecular-wall collisions

= Implementing of Boltzmann collision operator with hard sphere ®
potential o
Reflecting wall §

t =t
0 ~ t =t =

..0.0: .".o: » ‘.0..: ..o‘.:
\

Reflecting wall
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Thank you for your attention!
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Calculation of properties of the equilibrium distribution

2
Equilibrium (univariant Gaussian): f°%*7 (¢;) = _Pi exp | — (ci —viy)
\/27’('0'@',3; 20'2',3'

Calculation of p;, v; ; and o; ; as well as the collision time 7 from moments of f and the particle mass m; and
diameter d; according to Marchisio and Fox [5]:

pi = M

i # J v = func (miﬂmsf’Mng’Mf’Mg)
i=7j: 0;,; =func (C’%)
3+t 38
i=j: 71;,; =func (di,Cg)

i #j:7; = func (di,djacgacgvMli?MS’Mf’Mg)

[5] Marchisio, Fox, Computational Models for Polydisperse and Multiphase Systems, Cambridge, 2013.
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Calculation of moment fluxes using Harten, Lax and van
Leer Riemann solver

i+
: v 2 ;
Harten, Lax, van Leer (HLL.) ngmann solve.r Left state | Right state Si /g are the
calculates fluxes by approximating the solution of : . maximal speeds of
. . 1 1
a Riemann problem at the interface [7]: - (Mzn,j—o—%,L) ! = (MZn,H%,R) molecules of
. i | g 7 . .
St My, i1 VSg My, ;.1 r component i going
t| si st I to the left/ right
i) >0: F (M, ) =F (M, )
A
x> st s
o @. 1. SRF (M, 00 0) = SEF (M, s ) +SRSE (MG, 00 0~ M, )
R L >
X
if Sp < 0: F (M, 2 ) =F (M, s p)
> [7] Toro, Riemann Solvers and Numerical Methods for Fluid Dynamic, Springer, 2009.
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Calculation of maximal speeds by using eigenvalues of the

Jacobian

Quasilinear form of the moment transport equations: 9,M5_+

DF (M)

With the Jacobian .
DM,

The maximal speeds can be calculated from the
maximum A% .. and minimum 1., eigenvalues of
the Jacobians at both sides of the interface:

Si = min( ?r:nin,Lﬂ fnin,R)

Sk = max (A} ! )

max,L?* ‘max,R

Stability of the solver is guaranteed by specifying the
advection time based on the maximal absolute speed
of all components S, :

Az CFL

Smax

[6] Fox, Lauren (2022) SIAM J. APPL. MATH., 82, 2, 750-771.

At with: 0.5 < CFL <0.9

DF (M)

2nlH ML =0
DM, 2n

( ag \/E \
Vo ar Vb
Kn—l—l — : :
bn—l Ap—1 E
\ /Bn an)
with: 8, = 2”; 1bn

Maximal speeds can be
- calculated from M5,

Maximal and minimal eigenvalue of the Jacobian
are equal to the maximal and minimal eigenvalues
of the recurrence coefficient matrix K,,,; [6]
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Interface Reconstruction of the moment vector

The states at left and right side of the interface are not a-priori given: [ 27 order W 1% order, 2 order MUSCL
: 1.2
= States needs to be reconstructed from centroid values 5 > o celcemar
1.0 7 B interface righ
= Only the moment vectors needs to be reconstructed (all states are 1o oeaeq o TI0
, i 0.8 - :
function of M3,,) _ o : 4
j—1 35 Jj+1 0.6 1 :
st . = ] :
1st order: ° ° ° 0.4 1 :
i Y i — N : =
M2n,j+%,L - 2n,j M2n, —1 R 2n,g 0.2 1 !
] p-eo <t o <P -o—P>
0.0 o
2d order Modified Upwind Scheme for Conservative Law (MUscL)g: ., 1. =<
. . 1 —— ) . 1 —— -0.4 0.2 0.0 0.2 0.4
MQn,j—}—%,L = MZn,j + §AM7’J M2n,j—%,R = M2n,j — §AM7’J x/L
. | | . _ | Standard higher order
Unllmlted SlOpeS AM?H—% = M%n,j+1 - M?én,j AM;—% = M32n,j _ M?én,j—l SChemeS add|ng new

extrema, and may lead to

Limited slope: AM¢; = minmod (AM;+%,AM;%) unrealizable moments

[8] Knight, Elements of Numerical Methods
for Compressible Flows, Cambridge, 2006.
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First order interface reconstruction results in non-
acceptable numerical diffusion!

Self-diffusion of Argon at a temperature of 273 K and various pressures:

p =3 x 102 Pa, Dy = 3.64 % 1074 m?s! p=1x 10*Pa, Dy =1.09 x 1074m3s! p=1x10°Pa, Dy =1.09 x 107 m3s~!

o ;_:-; = ,’- — \; — 1-’-’-—_- =
oo el "
AR AV
0.12 A l;’,// ,/ 1.2 + f,,/ 7 7’
e ”,,/ . 'l, /7 ,/
f{,’l ,/ l“ /,
] ", ] G
n 010 1 | o 10 ii's
£ 4 ’ —l = 4 ;5’ —_—Po
o 1 t=5.0ups — o | t=5.0ps ) -—p
= 0.08 ] 4 = 0.8 ] P2
S 7 q v 8
S ¢/nt
/,I? 2 ]
1 //:, fr?' s /I f’l’ll
0.06 7 ///,’//’If/ 0.6 . /,,,’,,’Illll
T 4” /,///,’I r’lz’ / flI’
"’_r::2$/ --”‘,’ ’/,’//I
0.04 et 0.4 s N
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
x/m x1073 X /m x10~3 x /m x10-3

—— Ax=2.00x10"m — Ax=0.50%x10"m — Ax=0.13x10"%m
— Ax=1.00%x10"%m —Ax=0.25%x10"%m Ax=0.06x10"%m

—— Ax=2.00%x10"m —Ax=0.50%x10""m — Ax=0.13x10"%m
— Ax=1.00x10""m —Ax=0.25%x10"5m Ax=0.06x10"%m

—— Ax=2.00x10""m ——Ax=0.50%x10""m —— Ax=0.13x10"%m
—— Ax=1.00%10"*m — Ax=0.25%x10"°m

Convergence reached at Ax = 0.5 X 107 m Convergence reached at Ax = 0.125 x 107®m  Convergence reached at Ax < 0.0625 x 107°

Resolution required for mesh convergence is 8 to 20 times higher for the first order I
reconstruction than for the second order MUSCL reconstruction -
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Moment transport equations fulfill conservation laws

Po P1 P Vo Vi v x10% | Po€o p1€1 pe
1.75 3 : 51
: 1.0 E ] t= 0.0 us
1.50 3 : ]
" ] 0.5 + - 4
3 = 4 | 4
IE 1.25 ] 0 ] £ ]
[@)] 1 e 0.0 ] = 3 -
¥ 1.00 = ] TR
< ] " 05 1 <
0.75 3 ] 2 ]
0.50 3 -1.0 7
-ll'll[l'lllITIII'IIII'IIII'IIIIIII -lll'llllllII'IIIIIIIII'IIII'IIII'I 1 III'IIIll'l'llil'llll'll[l'llll'lll'l
—-0.15-0.10-0.05 0.00 0.05 0.10 0.15 —-0.15-0.10-0.05 0.00 0.05 0.10 0.15 —0.15-0.10-0.05 0.00 0.05 0.10 0.15
x /m x1073 x/m x1073 x/m x1073

# Total ,species mass, momentum and total energy are conserved!
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The Maxwell-Stefan diffusion model for multicomponent
mixtures

Species conservation of mixture with n components: §; (cyn—1) = 0,11

BC: 0:¥Yn—1,0=0 = 02¥n—1,z=1 =0 ‘ System of parabolic PDEs!

IC: Reflecting macroscopic initial
condition of kinetic equation

Total molar concentration: ¢ = M\Z; 7 Flux vector calculated using Maxwell-Stefan approach [11]:
A
: _ _.p-1
Concentration Vector: Yn—1 = (4o, Y1, yn_1)’  Bn-1= —CBy_ 1, 10cyn1
Flux vector: fi,—1 = (70, 721, «ves p—1) " With the transport matrix B,,_; ,_; € R~ D*(®=1):
n—1 n—1
Closure using unity condition: y, =1 — Z Yi Diagonal: B;; = Ji 4 Z yiD;J.l
=0 LT k=0, ki |
Solution is independent on the choice l Off-diagonal: B; j(i£j) = — Vi (ngl — Di—,;)
of the nt" component ®

[11] Krishna, Wesselingh (1997) Chem. Eng. Sci., 6, 2, 861-911.
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