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Artificial intelligence (AI) systems increasingly support decision-making across a broad range of domains.
The complexity of real-world tasks, however, introduces uncertainty into the prediction capabilities of these
systems. This uncertainty can manifest as aleatoric uncertainty arising from inherent variability in outcomes
or epistemic uncertainty stemming from limitations in the AI system’s knowledge. While prior research has
investigated uncertainty as a monolithic concept, the distinct effects of communicating aleatoric or epistemic
uncertainty on humans and their reliance behavior remain unexplored. In this work, we present two behavioral
experiments that systematically examine how participants rely on AI advice when faced with different types of
uncertainty. While the first experiment manipulates the source of uncertainty, specifying it as either aleatoric
or epistemic, the second decomposes uncertainty into its individual components, presenting aleatoric and
epistemic uncertainty simultaneously. This work contributes to a deeper understanding of the multifaceted
impact of different uncertainty types on human–AI interaction.
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1 Introduction
Imagine you are about to purchase a luxury urban home and seek advice from your aunt, a real estate
agent, who is familiar with pricing homes in rural areas. She expresses uncertainty about the value of
the property you are interested in and provides a broad price range rather than a specific estimate. To
what extent would you rely on your aunt’s advice, given the uncertainty expressed via the price range?
Would your reliance change if she attributed her uncertainty either to a lack of experience with luxury
urban properties like yours or to the general variability in housing prices?

When making decisions subject to uncertainty, individuals frequently seek guidance from experts
or other sources they deem knowledgeable [37, 81, 82], such as your aunt. The degree to which
individuals then rely on the provided advice typically carries over from their perception of the
advisor’s reliability [13, 104].This, in turn, is closely tied to the uncertainty (or confidence) expressed
by the advisor [76].Whereas this uncertainty is usually not further decomposed, it actually may arise
from two different sources—from the limitations in the advisor’s knowledge (epistemic uncertainty)
and the inherent variability in the outcomes being predicted (aleatoric uncertainty) [10, 31, 39].
In the home-buying example, your aunt’s lack of experience with luxury urban homes represents
epistemic uncertainty, while the inherent variability in observable real estate prices introduces
aleatoric uncertainty.

The growing capabilities of artificial intelligence (AI) across a broad range of tasks result in
humans increasingly seeking advice from AI [81, 82]. As with human advisors, the reliability of
AI advice can vary due to accompanying uncertainty. While insufficient training data similar to
the current instance can result in epistemic uncertainty, the inherent variability of the observed
process can introduce aleatoric uncertainty [39]. Therefore, quantifying the AI’s uncertainties and
presenting them alongside the AI advice may open up new possibilities for supporting human–AI
decision-making processes [10, 34] by allowing humans to calibrate their reliance on AI advice [61,
82] and better interpret model outputs [98]. As a consequence, it is important to understand how
different sources of uncertainty affect humans’ reliance on AI advice.

However, reliance on advice under uncertainty is not solely determined by the source and degree
of uncertainty expressed. Cognitive biases, such as prior beliefs, often influence how individuals
process and incorporate uncertain information [43, 96]. These prior beliefs, i.e., individuals’ existing
knowledge, expectations, and judgments that are formed even before receiving advice, play a crucial
role [2, 77]. In the housing example, an existing belief about the property’s valuemay anchor the final
estimate, potentially leading to varying reliance on the aunt’s advice. While the influence of prior
beliefs has been demonstrated across several AI-assisted decision-making scenarios [2, 16, 77], their
interaction with uncertainty and its different sources remains underexplored. Yet, understanding
this interaction is crucial for designing AI systems that can effectively communicate uncertainty
while accounting for humans’ cognitive biases.

Previous research in AI-assisted decision-making has already explored various aspects of
uncertainty, including its impact on trust, reliance, and decision quality [6, 15, 26, 51, 56, 62,
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63, 106, 107] as well as the effectiveness of different visualization techniques [62]. However, these
studies have typically focused on presenting a “monolithic” view of uncertainty: Either aleatoric or
epistemic uncertainty was considered in isolation [6, 15, 26, 106], or the overall uncertainty was not
decomposed into its epistemic and aleatoric components [62, 63]. Thus, human decision-makers
were left with incomplete information, limiting their ability to calibrate their reliance on AI advice
[61, 82].

Despite the potential benefits of differentiating and presenting both sources of uncertainty,
the distinct impacts of aleatoric and epistemic uncertainty on human reliance behavior remain
underexplored [10, 34, 52]. The question of whether and how humans assimilate information about
aleatoric and epistemic uncertainty and how this information might impact their reliance behavior
remains unanswered. Given the importance of understanding how humans interpret and rely on
different sources of uncertainty for designing effective AI systems [25, 34], addressing this gap is
crucial. Therefore, we formulate the following research questions (RQs):

RQ1: How does human reliance on uncertain AI advice change when the uncertainty is specified
as either epistemic or aleatoric?

RQ2: How does human reliance on uncertain AI advice changewhen the uncertainty is decomposed
into its aleatoric and epistemic components?

RQ3: How does human reliance on uncertain AI advice differ between aleatoric and epistemic
uncertainty when the overall uncertainty is decomposed into its components?

RQ4: How do prior beliefs influence human reliance on uncertain AI advice across different sources
and degrees of uncertainty (aleatoric vs. epistemic)?

To address these RQs, we conduct two behavioral experiments using a real estate price estimation
task. Our first experiment examines how framing uncertainty as either aleatoric or epistemic
influences human reliance on AI advice. Building on these findings, our second experiment explores
the effects when uncertainty is decomposed into its aleatoric and epistemic components. Across
both experiments, we investigate how prior beliefs interact with different sources and degrees of
uncertainty to shape reliance behavior. Our study contributes to the field of human–computer
interaction (HCI) and AI-assisted decision-making in four ways: First, we provide empirical
evidence to understand how humans digest different sources of uncertainty when relying on AI
advice; second, we explore the strategies adopted by decision-makers when relying on varying
degrees and sources of uncertainty; third, we examine how prior beliefs interact with uncertainty
source and degree to influence reliance behavior; and, fourth, we apply these insights to derive
practical design implications for AI-assisted decision-making systems to communicate uncertainty
effectively.

The remainder of this article is structured as follows: In Section 2, we establish the foundations
of uncertainty and review related work on uncertain AI advice in human–AI decision-making.
We then develop our research model in Section 3 and detail the procedures and results of our
two experiments in Sections 4 and 5. Subsequently, we analyze and interpret our findings, discuss
implications, and suggest future research directions in Section 6. Finally, we conclude in Section 7.

2 Background and Related Work
Next, we provide an overview of the foundations of uncertainty and its sources. Afterward, we
cover the related work on uncertainty in human–AI decision-making.

2.1 Foundations of Uncertainty
Uncertainty is an inherent aspect of many decision-making contexts [76, 81] and refers to the lack
of knowledge or comprehensive information about a situation or outcome [10]. This concept is
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closely related to, yet distinct from, confidence [76, 88, 90]. While confidence pertains to the degree
of belief that a given prediction is correct, uncertainty encompasses beliefs about the range of
possible outcomes [73].

The sources of uncertainty in advice can be categorized into two main types: aleatoric and
epistemic uncertainty [10, 39]. Aleatoric uncertainty, also known as statistical or data uncertainty
[31, 62, 97], stems from the inherent randomness or variability in the system being observed or
predicted [10]. In the housing price prediction example, aleatoric uncertainty might arise from
random variations (like market fluctuations or variations in buyer preferences) or from variability
in factors that are not captured in the data (e.g., unique features of an individual house being
priced). For a fixed set of variables, this source of uncertainty cannot be reduced by gathering
more data, i.e., more examples [31]. However, adding additional relevant variables could potentially
reduce this source of uncertainty [39]. Epistemic uncertainty, also referred to as systematic or
knowledge uncertainty [30, 97], arises from insufficient training data (i.e., examples) or overly
simplistic models that limit the ability to learn the underlying relationships. When data is scarce or
models lack complexity, advice becomes less reliable due to gaps in knowledge [39]. In the context
of real estate prices, this might include uncertainty due to limited historical data on similar houses
or limitations in the model used, i.e., models with too many or too few parameters. Unlike aleatoric
uncertainty, epistemic uncertainty can potentially be reduced by collecting more examples, but
generally increases with the addition of variables [39].

The computation of epistemic and aleatoric uncertainty in AI models requires specialized tech-
niques to provide accurate estimates of both components. Several methodological frameworks
have emerged to address this challenge, ranging from classical probabilistic approaches to modern
deep learning techniques [30, 50]. These methods typically involve explicitly modeling uncer-
tainty distributions or employing architectural modifications that enable uncertainty estimation.
Specific implementations vary by context: Classification models might leverage probability dis-
tributions over class predictions [33], regression models often estimate prediction intervals or
output distributions [85], and Bayesian approaches model parameter uncertainties directly [33]. For
neural networks, techniques include dropout-based sampling, ensemble methods, or specialized
architecture designs with dedicated uncertainty estimation components [30, 33, 50]. However,
raw uncertainty estimates often require additional calibration to ensure their reliability through
post-processing methods or specialized loss functions during training [33, 85].

Understanding the concepts of uncertainty is critical for decision-making. By recognizing the
presence and nature of uncertainty, decision-makers can make more informed choices by acknowl-
edging the limitations of available information and the range of possible outcomes [10]. However,
how humans perceive and process uncertainty can significantly impact their decision-making
abilities.

2.2 Human Perception and Processing of Uncertainty
Human perception and processing of uncertainty are fundamentally constrained by cognitive
limitations and systematic biases [96]. Individuals generally exhibit an aversion to uncertainty,
preferring known probabilities over ambiguous ones [24, 28], and often struggle with interpreting
statistical and probabilistic information [10, 32, 47]. This can manifest as either overconfidence or
underconfidence depending on their perceived expertise [65].

A particularly influential factor in uncertainty processing is the role of prior beliefs—knowledge
structures established through past experiences that serve as cognitive anchors when evaluating
new information [2, 36, 77]. These prior beliefs create systematic biases in how individuals process
uncertain information [67, 96]. When confronted with uncertainty, people tend to rely on these
prior beliefs as reference points, often weighing information that confirms their existing beliefs
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more heavily while discounting contradictory evidence [67]. This manifests through mechanisms
such as anchoring, where initial judgments disproportionately influence final decisions, and se-
lective attention to confirming evidence [22, 67, 96]. These biases together often lead to selective
interpretation of advice and consequentially suboptimal decisions [9, 65, 96].

To address these cognitive challenges, researchers have developed various approaches for com-
municating uncertainty more effectively. These include verbal descriptions [4, 12], visual represen-
tations such as probability distributions, confidence intervals, and graphical displays [20, 27, 40, 49,
58, 79], and hybrid approaches that combine multiple modalities [68]. The overarching goal of these
methods is to facilitate informed decision-making and appropriately calibrate trust in prediction
systems [10, 21, 70, 106].

Recent empirical work has begun to examine how these communication strategies interact with
the outlined cognitive factors. Prabhudesai et al. [75] provided qualitative evidence that displaying
uncertainty information can prompt humans to shift from heuristic-based to more analytical
reasoning processes. Building on this, Cao et al. [16] demonstrated that presenting uncertainty
through probability scores can help mitigate the influence of prior beliefs and reduce confirmation
bias. However, this emerging research has primarily focused on monolithic representations of
uncertainty. One interesting exception is from Padilla et al. [68], who demonstrated that humans
can simultaneously process multiple sources of uncertainty, suggesting that humans may be capable
of distinguishing between different sources of uncertainty when appropriately presented. This
finding points toward important questions about how different uncertainty sources might interact
with cognitive biases like those involving prior beliefs.

These advances in uncertainty communication represent significant progress in bridging complex
probabilistic information with human cognition. However, a critical gap remains in understanding
how different sources of uncertainty (aleatoric versus epistemic) are processed and interact with
humans’ prior beliefs to influence reliance behavior, which warrants further exploration.

2.3 Uncertainty in AI-Assisted Decision Making
The discussed cognitive challenges and biases in uncertainty processing become particularly
interesting in AI-assisted decision-making contexts, where the opacity of AI systems compounds
existing human limitations. Central to these challenges is how humans exhibit reliance behavior,
the observable action of following AI advice [82]. This behavior directly determines decision quality,
yet humans often exhibit overreliance on AI advice, assuming higher accuracy than warranted, or
under-reliance, dismissing correct AI advice due to mistrust or misunderstanding of the system’s
capabilities [82].

Understanding and measuring reliance requires domain-specific approaches. In classification
tasks, reliance is often operationalized as binary agreement with AI recommendations or the
frequency of switching initial decisions to align with AI advice [82]. For regression tasks, researchers
measure the weight of advice (WOA), which quantifies how much humans adjust their initial
estimates toward AI predictions [38, 44, 46]. Prior research has revealed that reliance emerges
from complex interactions between individual factors such as self-confidence [57, 94], contextual
elements like task difficulty [89], and procedural aspects including whether decisions follow one-
stage or two-stage paradigms [82, 84]. Particularly relevant are the prior beliefs discussed earlier,
which create systematic biases through confirmation bias and anchoring effects, leading humans
to more readily accept advice aligning with existing beliefs while discounting contradictory AI
suggestions [6].

Recent research has begun exploring how different presentations of AI uncertainty can address
these reliance challenges, examining effects on human confidence [17, 35], trust and reliance
[5, 6, 15, 16, 18, 51, 56, 63, 78, 106, 107], and decision quality [26, 51, 62, 80, 91]. However, these
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studies have yielded mixed results, highlighting the complexity of uncertainty communication
in AI systems. For instance, Cau et al. [17] showed that human uncertainty affects reliance on
uncertain AI advice. Kim et al. [51] further found that displayingmodel uncertainty in large language
models reduced participants’ reliance on AI while improving their performance, suggesting that
uncertainty information can promote more critical engagement with AI outputs. Similarly, Zhang
et al. [106] demonstrated that showing AI confidence scores resulted in calibrated trust, though
without significant performance improvements. In contrast, Marusich et al. [62] showed that
providing uncertainty information significantly improved performance across three experiments,
while Vasconcelos et al. [100] found that visualizing uncertainty through highlighting potentially
erroneous tokens improved programmer efficiency, whereas highlighting based on generation
uncertainty showed no benefits.

Despite these advances, a critical limitation persists: Most studies have focused on presenting
only one source of uncertainty or aggregated uncertainty [62], potentially limiting humans’ ability
to make informed decisions. As established in the previous section, humans can process multiple
sources of uncertainty simultaneously [68], yet current AI systems typically neglect the distinction
between different uncertainty sources. Decomposing uncertainty into aleatoric and epistemic
components could support decision-makers by enabling tailored reliance strategies [83], but research
on simultaneously presenting both uncertainty sources and their impact on human reliance behavior
remains limited [10, 34, 54]. This represents a critical gap in understanding how different sources of
uncertainty interact with the cognitive biases and prior beliefs outlined earlier to influence reliance
behavior in AI-assisted contexts.

3 Theoretical Development
Building upon the foundations of uncertainty in decision-making and the challenges of communi-
cating uncertainty, this study explores the effects of specifying uncertainty as either aleatoric or
epistemic (RQ1), decomposing uncertainty into its sources (RQ2 and RQ3), and how prior beliefs
interact with different sources and degrees of uncertainty (RQ4) with regard to human reliance
behavior.

The presence of uncertainty in AI advice may influence decision-makers’ reliance on it, a behavior
rooted in ambiguity aversion [28]. This principle, first demonstrated by Ellsberg [24] and further
developed by Fox and Tversky [28], suggests that individuals prefer advice with known probabilities
over that with ambiguous or uncertain ones. In the context of AI advice, ambiguity aversion leads
decision-makers to favor their own judgment, with its familiar uncertainty, over the AI’s advice. As
uncertainty in AI advice increases, decision-makers perceive it as less reliable, as prior literature
has shown [13, 87], further inclining them toward their own judgment. Therefore, we formulate
the following hypothesis:

Hypothesis 1: Decision-makers rely less on AI advice as its uncertainty increases.

As prior research demonstrated that reliance on advice decreases with increasing uncertainty
[13, 87], the varying effects of aleatoric versus epistemic uncertainty on reliance behavior remain
unexplored [10]. The fundamental differences between these uncertainty sources may influence
how decision-makers perceive and rely on them. Aleatoric uncertainty, being inherent to the
problem and unavoidable or stemming from unmeasured variables, represents a natural limitation
of predictability. In contrast, epistemic uncertainty reflects a gap in knowledge due to limited
similar examples, indicating an incomplete understanding of the underlying relationships. These
distinct characteristics in the nature and source of uncertainty could affect reliance behavior
differently. To explore this potential difference systematically, we consider potential reliance
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Fig. 1. Three potential reliance strategies for decision-makers when faced with aleatoric (yellow) and epistemic
(purple) uncertainty in AI-assisted decision-making: (a) Generic strategy: Both uncertainty sources lead
to identical decreases in reliance as uncertainty increases. (b) Uniform differentiation strategy: The two
uncertainty sources maintain parallel slopes but differ in baseline reliance levels throughout all uncertainty
levels. (c) Level-dependent differentiation strategy: Both uncertainty sources start with similar reliance at
low uncertainty levels, but diverge with different slopes as uncertainty increases, with one source showing
steeper decline in reliance than the other.

strategies decision-makers might adopt when faced with aleatoric and epistemic uncertainty in
AI-assisted decision-making:

—Generic strategy: Decision-makers might rely on aleatoric and epistemic uncertainty in the
same way, reducing their reliance on AI advice as uncertainty increases (see Figure 1(a)).
This strategy could be a result of decision-makers perceiving both sources of uncertainty as
equally detrimental to the AI’s reliability, not understanding the distinction between the two
sources of uncertainty, or experiencing cognitive overload when processing the additional
information of both sources of uncertainty [42, 92].

—Uniform differentiation strategy: Decision-makers might weigh aleatoric and epistemic uncer-
tainty differently in their decision-making processes, as they represent different sources of
uncertainty (see Figure 1(b)). This differentiation may manifest in varying reliance behaviors
as decision-makers adjust their reliance based on their perception of the impact of the AI
advice’s uncertainty.

—Level-dependent differentiation strategy: Decision-makers might only differentiate between
aleatoric and epistemic uncertainty as uncertainty increases (see Figure 1(c)). At lower levels
of uncertainty, they may react similarly to both sources, but as uncertainty increases, they may
adjust their reliance differently depending on the source of uncertainty present, resulting in a
steeper decline in reliance for one source of uncertainty, as suggested by Fox and Ülkümen [29].

Given these potential strategies, we propose the following hypotheses:

Hypothesis 2: Decision-makers attribute different weights to varying sources of uncertainty (aleatoric
vs. epistemic) when relying on AI advice.
Hypothesis 3: The source of uncertainty (aleatoric vs. epistemic) moderates the effect of increasing
uncertainty on decision-makers’ reliance.

Prior HCI research has emphasized the importance of considering humans’ characteristics when
collaborating with AI systems [14, 23]. In particular, researchers have investigated the role of
cognitive biases in advice-taking [96, 105], demonstrating how prior beliefs shape decision-makers’
reliance behavior. These prior beliefs remain relevant in the context of decision-support from
AI systems and warrant further investigation [9, 36, 93, 102]. Of specific interest is how these
prior beliefs interact with decision-makers’ perception of uncertainty, potentially amplifying or
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Fig. 2. The research model for our experiments.

mitigating their effects on reliance behavior. More specifically, the source of uncertainty itself
may play a crucial role in this interaction, i.e., the distinction between aleatoric and epistemic
uncertainty may have varying effects on how humans interpret and rely on AI-generated advice.
Given these considerations, we propose the following hypotheses:

Hypothesis 4: Decision-makers’ prior beliefs influence their reliance.
Hypothesis 5: The interaction between type and degree of uncertainty moderates the effect of decision-
makers’ prior beliefs on reliance.

These hypotheses constitute our research model (see Figure 2), which explores how decision-
makers rely on uncertain AI advice stemming from varying sources, specifically aleatoric and
epistemic. We investigate this through two complementary experiments: experiment 1 answers RQ1
by examining how reliance behavior changes when uncertainty is classified as either aleatoric or
epistemic. Building upon these findings, experiment 2 investigates the effects of decomposing overall
uncertainty into these components to answer RQ2 and RQ3. Both experiments then together help
us answer RQ4. Through these experiments, we aim to understand how uncertainty specification
and decomposition influence human reliance on AI advice.

4 Study 1—Understanding Reliance Behavior When Specifying Uncertainty as
Aleatoric or Epistemic

In our first experiment, we aim to understand whether decision-makers’ reliance behavior varies
when the uncertainty of AI advice is specified as either aleatoric or epistemic to answer RQ1 and
how prior beliefs interact with these different uncertainty specifications (RQ4).

4.1 Research Method
4.1.1 Experimental Design. Next, we outline the core elements of our experimental design,

including the selected task and dataset, how we simulate the AI advice, and our evaluation measure
for reliance on AI advice.

Task and Dataset. We selected housing price estimation as our experimental task, as it naturally
incorporates uncertainty and frequently prompts advice-seeking behavior while requiring no expert
knowledge from participants [38]. This task is well-established in HCI research [11, 38, 74, 75] and
inherently exhibits both aleatoric and epistemic uncertainty through factors such as incomplete
property information (aleatoric) and varying expertise among real estate agents (epistemic). For
our study, we utilized a US real estate dataset from Kaggle [53], which we simplified by reducing
the number of features presented to participants, following previous HCI studies [11, 38]. Based on
random forest feature importance scores, we selected four features that are interpretable without
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prior knowledge: number of bedrooms, bathrooms, living space, and median household income in
the zip code area.

Advice Communication. We present AI advice using a structured text-based approach with
prediction intervals, following the findings of Van Der Bles et al. [99] on effective uncertainty
communication. Previous research has shown that this format reduces the effects of prior beliefs
and promotes thoughtful consideration of advice [93], enabling us to systematically examine how
participants react to varying levels of uncertainty. For each house, the AI provides a price estimate
accompanied by a prediction interval representing its uncertainty (e.g., for a house valued at
$100, 000, a 3% uncertainty results in a prediction interval of $97, 000 to $103, 000). The uncertainty
is specified as either aleatoric or epistemic (see Figure A4(a) in Appendix A.3).

Simulating AI Advice. We simulate AI advice for a sub-sample of 120 houses from the dataset
[53]. For each house, we generate price estimates with varying levels of uncertainty, ranging from
3% to 90%, in increments of 3%-pts, with four houses assigned to each uncertainty level. To simulate
realistic AI behavior, we ensure predictions are not perfectly centered on true values by randomly
shifting each interval’s midpoint away from the ground truth. For each house, we randomly choose
the shift direction and set its magnitude to 0.75 times the uncertainty level—a parameter chosen to
create noticeable but plausible deviations in the AI’s predictions. Finally, we impose a constraint
that no advice can be less than 0 to maintain realistic predictions.

Treatments. We employ a between-subjects design with two conditions, where the uncertainty
of advice is specified as either aleatoric or epistemic.

Evaluation Measure. To analyze participants’ reliance on AI advice, we employ the judge-advisor
setting [87], where participants first make an autonomous decision before receiving advice and
having the opportunity to revise their estimate, a setting widely adopted in HCI research on
human–AI decision making [38, 61, 66, 82, 106]. This allows us to observe participants’ WOA, an
established metric in HCI (e.g., [44, 45, 81]) to measure reliance in regression tasks [3, 13]:

WOA =
Revised Estimate − Initial Estimate
Advisor’s Estimate − Initial Estimate

.

Given that participants receive an interval rather than a point estimate, we utilize the midpoint
of this interval as the advisor’s estimate to calculate WOA. Consequently, WOA represents the
degree of human reliance toward the center of the interval advice. Consistent with prior research
(e.g., Bailey et al. [3]), we constrain WOA to prevent the analysis from including scenarios where
participants either move further away from the advice or excessively overshoot the advice, which
likely represents random responses or outliers. While previous studies typically restricted WOA to
the range of 0 to 1 when providing point estimates, we slightly expanded this range from the upper
bound of WOA to 1.2 to account for minor overshoots, as participants are not explicitly given the
midpoint of the intervals. Decision instances where WOA is outside of this interval are excluded
from the analysis.

4.1.2 Procedure. The first experiment explores how humans adjust their reliance on uncertain
AI advice when the uncertainty is specified as either epistemic or aleatoric. The experiment is
approved by the university’s institutional review board. An overview of the experiment’s procedure
is depicted in Figure 3.

Uncertainty Tutorial and Comprehension Check. After giving consent to our study’s terms, partici-
pants are randomly assigned to one of our two conditions. In the beginning, participants receive an
introductory tutorial on a single source of uncertainty, either aleatoric or epistemic uncertainty. As
the terms are difficult to understand, we use established translations of these terms for participants
[31]: data uncertainty (describing aleatoric uncertainty) and knowledge uncertainty (describing
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Fig. 3. Procedure of experiment 1.

epistemic uncertainty). To further ease the understanding of the concepts, we carefully design
tutorials for each source of uncertainty that describes its source, how it can be reduced, and its
consequences on the AI’s advice. The interface of the tutorials for both treatments is shown in
Figure A2 in Appendix A.3. After explaining the uncertainty sources, we employ a thorough com-
prehension check to ensure that participants understand the key characteristics of the uncertainty
source (see Figure A3 in Appendix A.3). If participants answer incorrectly, the correct answer is
explained to them, and they can repeat the comprehension check once. Only participants who
answer all questions correctly can proceed to the main study.

Main Task. After the comprehension check, participants are introduced to the task. We explain
each feature and mention the average house price. After two example instances, participants
proceeded to the main part of our study, where they needed to estimate the prices of 12 houses (for
the task interface see Figure A5(a) in Appendix A.3). The instances are randomly selected from the
total set of 120 houses and presented in a randomized order to ensure that effects are neither based
on the specific instances nor the order in which they are presented. Due to this randomization,
individual participants may experience different levels of uncertainty (e.g., one participant might
encounter houses with on average higher uncertainty than another). However, we ensured that the
average uncertainty level was similar across both treatments (44% in the aleatoric treatment and
45% in the epistemic treatment).

Post-Task Questionnaire. After successfully estimating 12 housing prices, participants conclude
with a post-task questionnaire, where we gather demographics and allow for additional feedback
via open-ended questions.

4.1.3 Participants. We recruited participants through Prolific, a platform demonstrated to be a
reliable source for research data [69, 71]. Participants were required to be US residents and fluent
in English. Following Abbey and Meloy [1], we implemented two attention checks and excluded
participants who failed either the attention or the comprehension check from the analysis. The
final sample comprised 40 participants per treatment, totaling 80 participants (51.25% male; average
age: 32.55 years, SD: 10.57; median time: 13.5 min). Participants received a base payment of $2 and
the best-performing 10% earned an additional bonus payment of $1.3.

4.2 Analysis and Results
The next section presents a statistical analysis of our experimental findings on how aleatoric
versus epistemic uncertainty specifications affect participants’ reliance behavior in individual
decision scenarios. This detailed analysis aims to uncover how specific variables—such as the level
of uncertainty in AI advice, the participants’ prior beliefs, and the framing of uncertainty—interact
to shape reliance behavior, addressing both RQ1 and RQ4.

To account for the repeated measures design of our study, we employ a mixed-effects regression
model to test our hypotheses. The model includes a random effect for the participants to address
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Table 1. Mixed Effects Model Analysis on Human Reliance on AI Advice

Dependent Variable WOA

Coeff SE p-Value
Intercept 0.876*** 0.038 <0.001
Treatment [Epistemic] −0.003 0.051 0.95
Uncertainty −0.338*** 0.075 <0.001
Prior Beliefs Confirmed −0.574*** 0.046 <0.001
Uncertainty × Treatment [Epistemic] −0.170 0.098 0.08
Uncertainty × Treatment [Epistemic] × Prior Beliefs Confirmed 0.444*** 0.093 <0.001
Uncertainty × Treatment [Aleatoric] × Prior Beliefs Confirmed 0.372*** 0.096 <0.001
Participant ID (random effect) 0.018 0.015 —
Log-Likelihood −190.3258
Scale 0.0815
Converged Yes

***p < 0.001.

the nested structure of our data. As outlined earlier, we use reliance (measured by WOA) as
the dependent variable. Our study incorporates three independent variables: the magnitude of
uncertainty (operationalized as the width of the AI-generated advice interval); the prior beliefs
(operationalized by a binary variable denoting whether the participant’s initial estimate falls within
the interval advised by the AI); and the source of uncertainty presented (aleatoric or epistemic).
To capture the interplay among these factors, we include two interaction terms in our analysis as
hypothesized in Section 3. First, we examine the interaction between treatment conditions and
uncertainty magnitude to explore the potential differential effects of uncertainty across treatments.
Second, we investigated a three-way interaction among uncertaintymagnitude, treatment condition,
and the binary variable of initial estimate placement. This interaction allows us to explore how
the relationship between uncertainty and treatment might moderate the effect of prior beliefs on
reliance behavior. A comprehensive overview of the regression model’s results is presented in
Table 1.

The model’s intercept is positive and significant (V = 0.876, p < 0.001), indicating that when all
other variables are at their reference levels or zero, participants, on average, rely on the AI advice
for about 87.6% in their final estimate. Regarding the random effects, the model shows a group
(participant) variance of f2 = 0.015, suggesting some individual differences in reliance behavior
across participants.

Looking at the factors influencing WOA, the model reveals several significant predictors. We find
a significant negative effect for uncertainty (V = −0.338, p < 0.001). This indicates that reliance on
AI advice decreases as uncertainty grows. This finding aligns with the notion that decision-makers
tend to perceive more precise information as more valuable and, thus, may place less weight on AI
advice when associated with higher uncertainty. Therefore, we find support for Hypothesis 1.

Our analysis reveals no statistically significant effect for the treatment condition (V = −0.003,
p = 0.954). This finding suggests that the source of uncertainty does not significantly influence the
relationship between uncertainty and reliance. In other words, participants do not weigh aleatoric
and epistemic uncertainty differently when relying on AI advice. Thus, we do not find support for
Hypothesis 2.

Next, we observe a non-significant trend suggesting a potential interaction between the degree
of uncertainty and the treatment condition (V = −0.17, p = 0.081). This interaction might indicate
that the negative effect of uncertainty on reliance could be more pronounced when the uncertainty
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Fig. 4. Interaction effects between uncertainty level, uncertainty source (epistemic vs. aleatoric), and prior
beliefs on reliance (WOA). The left plot shows the reliance behavior when the human’s initial estimate falls
outside the AI’s advised range. The right plot depicts the reliance behavior when the human’s initial estimate
is confirmed through the AI’s advised range.

is framed as epistemic rather than aleatoric uncertainty. While not statistically significant, this
directional trend suggests participants may be more sensitive to increases in uncertainty when
presented as a limitation in the AI’s knowledge rather than as inherent randomness in the task or
data. This trend aligns with the notion that epistemic uncertainty might be perceived as a more
concerning limitation of the AI system, possibly leading to a stronger reduction in reliance on AI
advice as uncertainty increases. However, we do not find statistical significance on an U-level of
0.05 to support Hypothesis 3.

Finally, the confirmation of prior beliefs—indicated by the participant’s initial prediction falling
within the AI’s advice interval—significantly reduces WOA (V = −0.574, p < 0.001). This suggests
that when participants’ prior beliefs align with the AI’s advice, they perceive less need to adjust
their estimate, resulting in lower reliance. This finding supports Hypothesis 4. With regard to
Hypothesis 5, we observe that the interaction between uncertainty degree and source moderates
the effect of prior beliefs on reliance. Specifically, when prior beliefs are confirmed, the decrease in
reliance with increasing uncertainty is present under both uncertainty sources, with interaction
coefficients of V = 0.444 (p < 0.001) for epistemic and V = 0.372 (p < 0.001) for aleatoric uncertainty.
This means that the effects of increasing uncertainty on reliance are partially offset, when prior
beliefs are confirmed. However, a linear contrast test reveals no statistically significant difference
between these interaction effects (C = 0.89, p = 0.373), indicating that both uncertainty sources do
not show statistically different moderating effects. Therefore, the results provide partial support
for Hypothesis 5: While the uncertainty degree moderates the effect of prior beliefs on reliance,
this moderating effect does not differ significantly between uncertainty sources. These findings
suggest that uncertainty level moderates how prior beliefs influence reliance, with this moderating
relationship operating equivalently across both epistemic and aleatoric uncertainty framings (see
Figure 4). When the human’s initial estimate falls outside the AI’s advised range, reliance decreases
as uncertainty increases for both uncertainty sources. Conversely, when the initial estimate falls
within the advised range, reliance on the AI advice is both lower and decreases less as uncertainty
increases, again with similar patterns across uncertainty sources. These findings address RQ4 by
demonstrating that prior beliefs do influence reliance behavior, with this influence being moderated
by the degree of uncertainty, though not differentially by uncertainty source (epistemic vs. aleatoric).

Summary. Our findings address RQ1 and RQ4 by revealing how uncertainty specification affects
human reliance on AI advice and how prior beliefs interact with different sources and degrees
of uncertainty. We find that reliance generally decreases as uncertainty increases, with a non-
significant trend suggesting that this effect may be more pronounced when uncertainty is framed
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as epistemic rather than aleatoric. Participants also show significantly lower reliance when their
initial estimates align with the AI advice, independent of the uncertainty source. Regarding the
interaction between uncertainty and prior beliefs, we find that uncertainty degree moderates how
prior beliefs influence reliance behavior. However, this moderating effect operates equivalently
across both uncertainty sources, indicating that while prior belief confirmation consistently affects
how people respond to increasing uncertainty, this relationship does not differ meaningfully
between epistemic and aleatoric uncertainty framings. Taken together, these patterns suggest
that participants may adopt a level-dependent differentiation strategy when exposed to a single
source of uncertainty—showing a tendency toward greater sensitivity to increasing levels of
epistemic uncertainty. However, when considering how prior beliefs interact with uncertainty, the
differentiation between uncertainty sources becomes negligible, suggesting that belief confirmation
effects operate similarly regardless of uncertainty framing.

5 Study 2—Understanding Reliance Behavior When Decomposing Uncertainty into
Aleatoric and Epistemic

Building upon the insights gained from experiment 1, our second experiment examines the effects
of decomposing uncertainty into its aleatoric and epistemic components, as opposed to providing a
single monolithic measure. This extension addresses RQ2 and provides a deeper understanding of
how different representations of uncertainty impact decision-making in AI-assisted tasks. Further-
more, we examine how human reliance differs between aleatoric and epistemic uncertainty when
the overall uncertainty is decomposed into its components to answer RQ3. Finally, we investigate
how prior beliefs shape reliance based on different degrees and sources of uncertainty, thereby
answering RQ4. This approach allows us to explore how decision-makers integrate and weigh
multiple sources of uncertainty in their reliance strategies, potentially revealing more complex
interactions between uncertainty sources and human cognitive processes.

5.1 Research Method
5.1.1 Experimental Design. Following, we outline the components of our experimental design,

including the task structure, dataset selection, and the process for generating AI-assisted advice.
Task and Dataset. For our second experiment, we retain the housing price estimation task and

dataset used in the first experiment.
Treatments. Our study employs a mixed between- and within-subjects design with two treatments

to address our RQs. Between subjects, we compare overall reliance behavior when providing either
a combined uncertainty estimate or decomposing the uncertainty into its aleatoric and epistemic
components (RQ2). Within the decomposed treatment, we then analyze how these different sources
of uncertainty influence individual decisions (RQ3 and RQ4). This design allows us to examine both
the overall effect of decomposing uncertainty and the specific influences of different uncertainty
sources.

Advice Communication. To investigate the effects of different sources of uncertainty on advice-
taking behavior, we simulate AI advice consistent with the textual approach in experiment 1.
Participants in both treatments receive the AI’s advice through a prediction interval representing
the overall uncertainty. While participants in the first treatment only receive this interval, those in
the second treatment additionally receive information about how this uncertainty is decomposed
into its aleatoric and epistemic components. Following the framework of Van Der Bles et al. [99], we
communicate each uncertainty source using categorical levels (very low, low, high, very high) based
on quartiles rather than exact percentages or proportional contributions to total uncertainty. This
categorical approach offers several advantages: It reduces cognitive load compared to numerical
expressions and helps individuals with low numeracy better assess uncertainty [72]. However,
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Fig. 5. Procedure of experiment 2.

this verbal communication approach also introduces challenges like interpretive variability among
individuals, as uncertainty terms can carry different connotations for different people. Additionally,
the categorical approach may influence how participants weigh different uncertainty sources in
their decision-making process, potentially affecting the relative importance they assign to aleatoric
versus epistemic information. Despite these potential effects, our design choice aligns with our
research objective of understanding how humans respond to relative changes in model uncertainty.
The categorical levels are based on the relative distribution within each uncertainty source rather
than their proportional contribution to total uncertainty. In a well-calibrated AI system, these
relative levels provide meaningful signals about the model’s confidence and limitations within
each uncertainty source, independent of their proportional contribution. For instance, “very high”
epistemic uncertainty indicates a gap in the model’s training data for that specific prediction
context, providing actionable information regardless of how it compares proportionally to the
aleatoric uncertainty.

Simulating AI Advice. Our simulated advice is based on an actual AI model trained on a real-
world housing dataset (see Appendix A.1 for details), which grounds our simulation in realistic
patterns of uncertainty while allowing for systematic variation of the advice characteristics. The
technical details of the advice simulation procedure are provided in Appendix A.2, and the advice
is illustrated in Figure A4(b) in Appendix A.3. In total, we generate 160 advice instances, with
each combination of aleatoric and epistemic uncertainty levels represented equally. The total
uncertainty of the simulated instances ranges from 0.05 to 0.9, and every level of each uncertainty
source appears at least five times. This systematically generated set of simulated advice enables
a controlled examination of the effects of different sources and levels of uncertainty on advice
utilization.

Evaluation Measures. As with experiment 1, we analyze the reliance behavior by observing the
participant’s WOA and restrain WOA between 0 and 1.2.

5.1.2 Procedure. Experiment 2 investigates how humans adjust their reliance on AI advice when
both epistemic and aleatoric uncertainty are present, either combined into a single estimate or
decomposed into its sources. The university’s institutional review board approved the experiment.
Figure 5 provides an overview of the experimental procedure.

Uncertainty Tutorial and Comprehension Checks. After providing informed consent, participants
are randomly assigned to one of the two conditions and receive an introductory tutorial on
uncertainty in AI advice and its two sources, similar to experiment 1. Afterward, participants also
receive guidance on integrating the information on uncertainty into their decision-making. To
avoid providing too much information simultaneously, we scaffold the tutorial into four parts
and employ comprehension checks after each tutorial to verify participants’ understanding of the
relevant concepts (see Figures A6 and A7 in Appendix A.1). Participants must answer all questions
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correctly to proceed. If participants answer incorrectly, they receive an additional explanation and
another opportunity to complete the check. Failure to pass the comprehension check after this
second attempt results in exclusion from the study.

Task. The main task involves estimating the prices of 16 apartments that are randomly drawn
from the pool of simulated advice such that each combination of aleatoric and epistemic uncertainty
is presented once (very low, low, high, very high). Again, we employ the judge-advisor paradigm
[87] to measure WOA. During the task, participants can access the tutorials on uncertainty at any
time (see the task interface in Figure A5 (b) in Appendix A.3).

Post-Task Questionnaire. After completing the price estimation task, we collect basic demographic
information and provide space for any additional comments.

5.1.3 Participants. For experiment 2, we follow the same procedure as for experiment 1. After
excluding participants who failed attention or comprehension checks, our final sample consisted
of 80 participants (57.7% male; average age: 37.23 years, SD: 12.76; median time: 25.5 min). All
participants were US residents fluent in English, recruited through Prolific. Participants received a
base payment of $4, with the top 10% performers earning an additional $1.3 bonus.

5.2 Analysis and Results
The following presents a statistical analysis of our findings from experiment 2. We begin by
examining the impact of uncertainty decomposition on participants’ global reliance behavior to
answer RQ2 before delving into a more granular analysis of reliance across different levels of
aleatoric and epistemic uncertainty to answer RQ3 and RQ4.

5.2.1 Impact of Uncertainty Decomposition on Reliance Behavior. To assess whether decomposing
uncertainty into aleatoric and epistemic components influences participants’ average reliance on
AI advice, we calculate the mean WOA for each participant across the decision instances and
compare the two treatment groups. A Shapiro-Wilk test of normality indicates that the average
reliance follows a Gaussian distribution in the combined uncertainty treatment (p = 0.988) but not
in the decomposed uncertainty treatment (p = 0.032). Given these results, we proceed with a Mann-
Whitney U test to compare the mean reliance between treatments. The test reveals no significant
difference in average WOA between the combined uncertainty treatment (` = 0.4752) and the
decomposed uncertainty treatment (` = 0.4464, p = 0.315). This finding suggests that decomposing
uncertainty into its aleatoric and epistemic components does not significantly influence participants’
overall reliance on AI advice.

Exploratory Analysis on the Role of Uncertainty Presentation in Advice Rejection. As an exploratory
analysis, we investigate whether presenting uncertainty information in different formats affects
how participants process and respond to high levels of uncertainty. This comparison allows us
to understand whether making uncertainty sources explicit influences participants’ decisions to
reject AI advice. Our analysis focuses on high and very high uncertainty levels, where advice
rejection is most relevant due to the increased risk these situations present. We employ Mann-
Whitney U tests, appropriate for our non-normally distributed data, to compare rejection rates
between the presentation formats. To control for multiple comparisons, we apply the Benjamini-
Hochberg correction [8]. The results reveal that participants more frequently reject advice when
high uncertainty is presented in its decomposed form compared to when it is combined, both
for aleatoric (?03 9 = 0.026) and epistemic uncertainty (?03 9 = 0.053). This suggests that making
uncertainty sources explicit enables participants to more critically evaluate the AI’s advice, leading
to more selective rejection when either source of uncertainty is high.
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Table 2. Mixed Effects Model Analysis on Human Reliance on AI Advice

Dependent Variable WOA

Coeff SE p-Value
Intercept 0.826*** 0.046 <0.001
Prior Beliefs Confirmed −0.384*** 0.081 <0.001
Aleatoric [Low] −0.134** 0.045 0.003
Aleatoric [High] −0.217*** 0.046 <0.001
Aleatoric [Very High] −0.267*** 0.067 <0.001
Epistemic [Low] −0.033 0.046 0.471
Epistemic [High] −0.179*** 0.047 <0.001
Epistemic [Very High] −0.244*** 0.059 <0.001
Prior Beliefs Confirmed × Aleatoric [Low] 0.082 0.078 0.294
Prior Beliefs Confirmed × Aleatoric [High] 0.077 0.078 0.320
Prior Beliefs Confirmed × Aleatoric [Very High] 0.051 0.090 0.569
Prior Beliefs Confirmed × Epistemic [Low] 0.008 0.075 0.919
Prior Beliefs Confirmed × Epistemic [High] 0.126 0.075 0.095
Prior Beliefs Confirmed × Epistemic [Very High] 0.152 0.082 0.063
Participant_ID 0.028 0.028 —
Log-Likelihood −165.9715
Scale 0.0869
Converged Yes

***p < 0.001. The table shows the results of the mixed effects model with reliance (WOA)
as the dependent variable. Columns include coefficient, standard error, and exact p-value.
Significance is indicated based on conventional thresholds.

5.2.2 Factors Influencing Individual Reliance Decisions. Building on our global analysis, we
now examine how different levels of aleatoric and epistemic uncertainty influence participants’
reliance on AI advice when explicitly presented with both components. Thus, we focus our anal-
ysis exclusively on the decomposed treatment, where participants received distinct information
about aleatoric and epistemic uncertainty levels, to test our hypotheses and answer RQ2, RQ3,
and RQ4.

Mixed Effects Model Analysis. To investigate these effects, we fit a mixed effects model similar
to experiment 1. We include reliance, measured by WOA, as the dependent variable. The model
includes fixed effects for aleatoric uncertainty level (very low, low, high, very high), epistemic
uncertainty level (very low, low, high, very high), and a binary variable describing whether prior
beliefs were confirmed, i.e., whether the participant’s initial estimate fell within the AI’s prediction
interval. Further, we add an interaction between aleatoric and epistemic uncertainty and the binary
variable of the placement of the initial estimate. Participants are included as a random effect to
account for the repeated measures design (see Table 2).

Our analysis reveals significant main effects for aleatoric and epistemic uncertainty. For aleatoric
uncertainty, compared to the baseline (Very Low), we observe progressively stronger coefficients
as uncertainty increases: Low (V = −0.134, p = 0.003), High (V = −0.217, p < 0.001), and Very
High (V = −0.267, p < 0.001). Similarly, for epistemic uncertainty, we find increasing negative
coefficients: Low (V = −0.033, p = 0.471), High (V = −0.179, p < 0.001), and Very High (V = −0.244,
p < 0.001). To explicitly test whether each incremental increase in uncertainty leads to a statistically
significant reduction in reliance on AI advice, we further conduct pairwise comparisons between
adjacent uncertainty levels. Given the violations of normality (Shapiro-Wilk tests, all p < 0.001)
and homogeneity of variance (Levene’s test for aleatoric: p = 0.007; for epistemic: p = 0.004), we
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perform Mann-Whitney U tests (see Table 3). For aleatoric uncertainty, we find significant decreases
in reliance between all adjacent uncertainty levels: from Very Low to Low (p < 0.001), from Low
to High (p = 0.009), and from High to Very High (p < 0.001). Similarly, for epistemic uncertainty,
we observed significant decreases between all adjacent levels: from Very Low to Low (p = 0.033),
from Low to High (p = 0.027), and from High to Very High (p = 0.003). These pairwise comparisons
confirm that each incremental increase in uncertainty, whether aleatoric or epistemic, result in
a statistically significant reduction in participants’ reliance on AI advice. These findings provide
support for Hypothesis 1, demonstrating that decision-makers rely progressively less on AI advice
as its uncertainty increases.

Table 3. Pairwise Comparisons of Reliance on AI
Advice between Adjacent Uncertainty Levels

Uncertainty Comparison Aleatoric Epistemic
(Adjacent Levels) p-Value p-Value

Very Low to Low p < 0.001 p = 0.033
Low to High p = 0.009 p = 0.027
High to Very High p < 0.001 p = 0.003

To evaluate Hypothesis 2, we conduct a comparative analysis of the mean WOA across the
different levels of uncertainty. Specifically, we compare very low epistemic uncertainty instances
with very low aleatoric uncertainty and extend this comparison across all uncertainty levels using
post-hoc Tukey-HSD tests. The results, as presented in Table 4, indicate no statistically significant
differences between the sources of uncertainty at any level examined, thus providing no support
for Hypothesis 2.

Table 4. Tukey HSD Test Results for Different Uncertainty Levels

Level Group 1 Group 2 Mean Diff p-Adj Lower Upper
Very Low Aleatoric Epistemic −0.0735 0.1130 −0.1646 0.0175
Low Aleatoric Epistemic 0.0029 0.9509 −0.0893 0.0951
High Aleatoric Epistemic 0.0249 0.5467 −0.0562 0.1059
Very High Aleatoric Epistemic 0.0515 0.2502 −0.0365 0.1395

The table shows the results of the post-hoc Tukey HSD test. In the columns, the groups,
differences in mean, and adjusted p-values are presented.

Regarding Hypothesis 3, we examine whether aleatoric and epistemic uncertainty have different
effects on reliance as uncertainty levels increase. For aleatoric uncertainty, compared to the baseline
(Very Low), we observe progressively stronger negative coefficients: Low (V = −0.134, p = 0.003),
High (V = −0.217, p < 0.001), and Very High (V = −0.267, p < 0.001). Similarly, for epistemic
uncertainty: Low (V = −0.033, p = 0.471), High (V = −0.179, p < 0.001), and Very High (V = −0.244,
p < 0.001). As the coefficients suggest potentially different magnitudes of effect on reliance behavior
between uncertainty sources, we conduct linear contrast tests to directly compare the slopes
between uncertainty sources across the ranges (see Table 5), i.e., from Very Low to Low, Very Low
to High, and Very Low to Very High. These tests reveal no significant differences for any slope:
Low (C = −1.54, p = 0.125), High (C = −0.559, p = 0.576), or Very High (C = −0.259, p = 0.796). This
indicates that both uncertainty sources do not have statistically different moderating effects across
the full range of uncertainty levels. Accordingly, we do not find support for 3.
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Table 5. Linear Contrast Tests Comparing Slopes
between Uncertainty Sources

Uncertainty Level Comparison C-Value p-Value

Very Low to Low −1.54 0.125
Very Low to High −0.559 0.576
Very Low to Very High −0.259 0.796

Fig. 6. Interaction effects between uncertainty level, uncertainty source (epistemic vs. aleatoric), and prior
beliefs on reliance (WOA). The left panel shows reliance when human estimates fall outside the AI’s advised
range, while the right panel shows reliance when estimates fall within this range.

Addressing RQ4, our mixed-effects model reveals a significant negative effect when participants’
prior beliefs align with the AI’s advised range (V = −0.384, p < 0.001).This indicates that participants
rely less on the AI advice when their initial estimate falls within the AI’s prediction interval. This
finding supports Hypothesis 4, suggesting that participants’ prior beliefs shape their reliance
behavior.

We further find non-significant trends between participants’ prior beliefs and high levels of
epistemic uncertainty (High: V = 0.126, p = 0.095; Very High: V = 0.152, p = 0.063; see Figure 6).
These findings suggest that when prior beliefs are confirmed, high epistemic uncertainty may
moderate and weaken the tendency for participants to favor their initial judgments, contrasting with
the results from our first experiment. Interestingly, this leads to reliance on AI advice remaining
nearly constant as epistemic uncertainty increases. However, no significant interactions were
observed with aleatoric uncertainty. These results provide partial support for Hypothesis 5 and
underscore the need for further investigation into the complex relationships between uncertainty
source and degree, prior beliefs, and AI reliance.

Exploring Reliance across Uncertainty Levels. To further examine how different levels of aleatoric
and epistemic uncertainty influence participants’ reliance on AI advice, we calculate the mean and
median WOA for each combination of uncertainty levels in the decomposed treatment.

We observe a general trend of decreasing mean WOA as the overall level of uncertainty increases
(see Figure 7). The highest mean WOA (0.8826) occurs when the uncertainty is lowest, while the
lowest mean WOA (0.1849) is observed when the uncertainty is highest. Upon closer inspection,
we notice that the mean WOA decreases more rapidly as aleatoric uncertainty increases compared
to epistemic uncertainty. This pattern indicates that participants may be more sensitive to changes
in aleatoric uncertainty than epistemic uncertainty when the sources of uncertainty are explicitly
presented alongside each other.

To get a more in-depth picture of reliance behavior across uncertainty levels, we next examine
the median WOA. The right part of Figure 7 presents the median WOA for each combination of
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Fig. 7. Heatmaps depicting the mean (left) and median (right) WOA across levels of aleatoric and epistemic
uncertainty in the decomposed treatment.

uncertainty levels in the decomposed treatment. The median WOA values follow a similar overall
pattern to the mean values, with a general decrease in reliance as uncertainty increases. However,
the median values reveal some additional insights into the distribution of reliance behavior. The
median WOA exhibits a more dramatic drop as uncertainty levels increase compared to the mean
WOA. This indicates that a significant proportion of participants relied very little on AI advice
in high-uncertainty scenarios, pulling the median value down. In the most extreme case, when
both aleatoric and epistemic uncertainty are very high, the median WOA equals 0, i.e., participants
reject the advice entirely, while the mean WOA is 0.1849. This comparison shows that mean and
median WOA values demonstrate similar decreasing trends as uncertainty increases, but differ
more substantially at higher uncertainty levels. This suggests that reliance behavior becomes more
skewed in uncertain conditions, with many participants showing very low reliance on AI advice.

Summary. Our findings address three RQs about uncertainty decomposition and human reliance
on AI advice. Regarding RQ2, we find that decomposing uncertainty into its components does not
significantly affect overall reliance levels compared to presenting combined uncertainty. However,
our exploratory analysis revealed that decomposition leads to more frequent advice rejection when
either uncertainty source is high, suggesting more critical evaluation of AI advice. Addressing
RQ3, we find that both uncertainty sources negatively impact reliance as they increase. However,
we observe no statistically significant differences between how humans respond to aleatoric
versus epistemic uncertainty, indicating a generic strategy that contrasts with the findings from
experiment 1. Finally, we find that prior beliefs play a significant role in shaping reliance behavior
thereby addressing RQ4. Participants exhibit lower reliance when their prior beliefs align with the
AI’s prediction interval, whereas we find a non-significant trend that high epistemic uncertainty (but
not aleatoric) moderates this effect. These findings emphasize that while decomposing uncertainty
may not alter overall reliance levels, it can influence how humans process and reject advice in
high-uncertainty situations, highlighting the importance of thoughtful uncertainty communication
design in AI systems.

6 Discussion
Our study contributes to the field of HCI and, more specifically, to the growing body of research on
uncertainty in AI-assisted decision-making. As motivated in our related work section, previous
studies have primarily focused on monolithic uncertainty, presenting a single source or aggregated
uncertainty measures (e.g., [51, 62, 106]). While these works have provided valuable insights into the
effects of uncertainty on human perceptions, trust, and decision quality, they have not investigated
the complexity of the uncertainty’s distinct sources [10, 54]. Our research addresses this gap by
examining how humans respond to uncertainty in AI advice—investigating responses to individual
uncertainty sources (RQ 1), the effects of decomposing uncertainty into its components (RQ 2),
potential differences in reliance between uncertainty sources when presented together (RQ 3),
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Fig. 8. Overview of hypothesis support across studies. Study 1/Study 2, where Ø indicates statistical signifi-
cance at p < 0.05; (Ø) denotes a non-significant trend (0.05 < p < 0.1); ◐ denotes partial support; G indicates
no support (p > 0.1).

and how prior beliefs interact with different uncertainty sources and levels (RQ 4). While not
statistically significant, we observe a trend that suggests that humans adopt a level-dependent
strategy when presented with either source alone, but switch to a generic strategy when faced with
both sources of uncertainty simultaneously. These insights provide a more nuanced understanding
of how humans process and integrate different sources of uncertainty in their decision-making,
contributing to the limited body of work examining the distinct effects of aleatoric and epistemic
uncertainty in HCI research [10, 54, 68].

6.1 Empirical Findings on the Influence of Aleatoric and Epistemic Uncertainty on
Human Reliance Behavior

Through our two-experiment study, we uncover complex patterns in how humans interpret and
utilize different sources of uncertainty information in AI-assisted decision-making, revealing distinct
reliance strategies depending on how uncertainty is presented. Figure 8 provides a consolidated
overview of our hypothesized relationships and the corresponding empirical support across both
studies. As shown, some effects were robust across both studies (H1 and H4), while others showed
partial (H3 and H5) or no support (H2), highlighting the nuanced role of uncertainty source and
prior beliefs in shaping reliance behavior.

The Role of Uncertainty. Our study examines the complex relationship between uncertainty
presentation and human reliance behavior in AI-assisted decision-making. Across both experiments,
we analyze the effects of specifying and decomposing uncertainty into its sources to address
RQ1–3. This builds upon previous research showing that uncertainty presentation can affect human
perceptions, trust, and decision quality [6, 15, 26, 51, 56, 62, 63, 106, 107]. However, these studies
have primarily focused on the effects of monolithic uncertainty or a single source of uncertainty
rather than considering the potential differences between aleatoric and epistemic uncertainty. Our
study goes further by examining the distinct effects of these uncertainty sources, addressing a
relevant gap in current HCI research [10, 54, 68].

While we find a trend that participants demonstrate distinct behaviors when presented sepa-
rately with aleatoric and epistemic uncertainty—aligning with the level-dependent differentiation
strategy—this distinction seems to diminish when both sources of uncertainty are jointly presented,
resulting in a generic strategy. This shift in strategy between experiments highlights the critical role
of the way uncertainty information is presented in shaping human reliance on AI systems. When
epistemic uncertainty is presented alone, as in our first experiment, it seems to be interpreted as
a direct indicator of the AI system’s knowledge and capabilities. This, in turn, appears to lead to
a steeper decline in reliance on AI advice as uncertainty increases. In contrast, the simultaneous
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presentation of both uncertainty sources in our second experiment seems to diminish the perceived
significance of epistemic uncertainty. Here, participants may view epistemic uncertainty as just
another component of overall uncertainty rather than a distinct signal about the AI’s limitations.
As a result, they may respond similarly to both sources of uncertainty when making their decisions.

These findings advance the field of HCI by providing a deeper understanding of how humans
process complex uncertainty information in AI-assisted decision-making contexts. While previous
HCI research, such as studies by Bansal et al. [6] and Buçinca et al. [15], has shown that uncertainty
presentation can affect trust and reliance, our work extends this knowledge by demonstrating how
the specification and contextualization of different uncertainty sources can lead to distinct reliance
strategies highlighting the need for more sophisticated approaches to uncertainty communication
in human–AI collaboration.

The Interplay between Prior Beliefs and Uncertainty Levels. A key aspect of our investigation (RQ4)
concerns how prior beliefs interact with different sources and degrees of uncertainty to influence
reliance behavior. Across both experiments, we find evidence of prior beliefs shaping participants’
decision-making processes, aligning with existing research on how prior beliefs can lead to se-
lective interpretation of uncertain predictions [9, 36, 93, 102]. Interestingly, the manifestation of
these prior beliefs interacts with the degree of uncertainty presented, but not with its source.
Linear contrast tests in the first experiment reveal that while uncertainty degree moderates the
effect of prior beliefs on reliance, this effect does not differ significantly between epistemic and
aleatoric uncertainty sources. In the second experiment, we observe only marginal trends between
participants’ prior beliefs and high levels of epistemic uncertainty, with no significant interactions
for aleatoric uncertainty.

This interaction between prior beliefs and uncertainty levels creates complex dynamics in reliance
behavior that have important implications for human–AI decision-making. As uncertainty increases,
the AI’s prediction interval widens, increasing the likelihood of alignment with the human’s initial
estimate. This alignment can paradoxically lead to both overreliance on the overall AI assessment
(due to perceived confirmation of the human’s estimate) despite expressing greater uncertainty and
under-reliance on the specific advice within the AI’s prediction interval. Both experiments reveal
a consistent pattern where participants do not meaningfully differentiate between uncertainty
sources when integrating their prior beliefs with AI advice. This indicates that cognitive processes
underlying reliance decisions may be driven more by the overall magnitude of uncertainty rather
than its conceptual source. These findings challenge the assumption that theoretical distinctions
between uncertainty sources translate into practical differences in human–AI interaction and
highlight the need for more sophisticated approaches to uncertainty communication that account
for these complex psychological dynamics. For HCI practitioners, these findings suggest that
uncertainty quantification, while essential for informed decision-making, can inadvertently amplify
the effects of prior beliefs, requiring careful consideration of how uncertainty visualizations might
reinforce existing cognitive biases rather than mitigate them.

Synthesizing Insights across Experiments. By designing our second experiment to extend the find-
ings of the first, we uncover interesting patterns in human interpretation of uncertainty information.
The progression from isolated presentation of uncertainty sources to combined presentation reveals
how the context of uncertainty information shapes its interpretation and use in decision-making.
This progression in our experimental design allows us to observe how humans adapt their decision
strategies based on the complexity and presentation of uncertainty information. These findings
collectively demonstrate the need for careful consideration of how uncertainty is communicated in
AI systems and suggest that the effectiveness of uncertainty communication may depend not just
on the source of uncertainty present but also on how it is presented alongside other information.
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6.2 Implications for Designing Systems for AI-Assisted Decision Making
Our findings have implications for the design of AI-assisted decision support systems, particularly
in terms of how uncertainty information is communicated to humans and how these systems can
be improved over time. Based on our results, we propose the following implications for system
design and implementation:

Present Uncertainty Information Carefully. The way uncertainty is presented and contextualized
significantly influences human perception of its relevance and subsequent reliance on AI advice.
Our experiments reveal that humans adopt different strategies when faced with isolated versus
combined presentations of uncertainty sources.This suggests that system designers need to carefully
consider not just what uncertainty information to present, but also how to frame it within the
broader context of the decision-making task.

Our study further demonstrates that the contextualization of uncertainty plays a key role in
shaping human reliance on AI systems. In our first experiment, participants utilized information
about the uncertainty’s source and adapted their reliance behavior accordingly, effectively adopting
an level-dependent strategy. However, when we extend the uncertainty setting in our second
experiment by decomposing uncertainty into its sources, participants shift to a generic strategy.
They no longer distinguish between the two sources of uncertainty and, instead, rely similarly to AI
advice from a single, unspecified source. The only difference in participants’ reliance behavior when
uncertainty was decomposed was their reduced reliance when any source of uncertainty was high
or very high—information not available without decomposing uncertainty into its components. This
finding highlights the need for two critical areas of further research: (1) investigating the underlying
reasons why decision-makers alter their reliance strategies when presented with different forms of
uncertainty and (2) developing effective methods for communicating multiple sources of uncertainty
simultaneously that preserve their distinct interpretation.

Given these observations, designers should carefully evaluate the potential consequences of
presenting epistemic uncertainty in isolation or in combination with aleatoric uncertainty. In cases
where a holistic overview of possible outcomes is unnecessary or where there are high risks when
facing cases unknown to the model, presenting epistemic uncertainty alone might be preferable. For
example, in medical diagnosis systems, presenting only epistemic uncertainty might be preferable
when the AI encounters a rare condition in which it has only limited training data on [7, 19, 59].
This approach would alert clinicians to the model’s knowledge gaps, prompting them not to rely
on AI advice and, instead, consult other experts. Conversely, in real estate pricing, presenting
both aleatoric and epistemic uncertainty could be relevant [55] as the aleatoric uncertainty would
capture inherent market volatility or missing information, while epistemic uncertainty would
indicate the model’s uncertainty in its predictions based on historical data.

One approach to balancing these considerations might be to use a layered method, where
humans are first presented with high-level uncertainty information and can then drill down into
more specific sources of uncertainty as needed [86]. This could help maintain the salience of
epistemic uncertainty as an indicator of system reliability while still providing detailed uncertainty
information when required. By helping humans understand these different sources of uncertainty
and their implications, designers can support more informed decisions about when and how to
rely on AI recommendations.

Mitigate Effects of Prior Beliefs through Design. Our findings on the interaction between prior
beliefs and uncertainty levels underscore the need for systems that actively encourage humans to
challenge their assumptions and consider alternative perspectives. This is particularly relevant in
high-uncertainty scenarios, where humans aremore prone to overreliance on their initial judgments.
Therefore, designers should incorporate features that emphasize the increased range of possible
outcomes and prompt humans to explore multiple scenarios before making final decisions.
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Interestingly, this consideration is closely tied to the challenge of uncertainty presentation. By
presenting uncertainty information in a way that highlights both the AI’s limitations (through
epistemic uncertainty) and the inherent variability in the data (through aleatoric uncertainty),
designers can create systems that naturally encourage humans to think more critically about their
decisions. For example, a system could use visual cues to highlight discrepancies between a human’s
initial estimate and the AI’s advice [21, 101], especially when the human’s estimate falls within
a high-uncertainty range. Interactive visualizations could allow humans to explore how varying
features affect AI advice and, consequently, levels of epistemic and aleatoric uncertainty [75],
thereby increasing decision-makers’ engagement with the full spectrum of possibilities. These
approaches not only provide transparency but also actively encourage humans to grapple with the
complexities of AI-assisted decision-making. Other works have adapted the uncertainty presented
to human decision-makers to account for existing biases [103].

To summarize, our findings emphasize the need for careful selection and presentation of uncer-
tainty in AI-assisted decision-making systems. By carefully considering how to present different
sources of uncertainty, and encouraging critical thinking, designers and organizations can create
more effective and trustworthy human–AI collaborative environments.

6.3 Limitations and Future Research
While our study provides valuable insights into the effects of uncertainty decomposition on
human–AI decision-making, it is essential to acknowledge the limitations of our work and identify
avenues for future research.

Presentation of Uncertainty Information. While our study used textual presentation of uncertainty
to make it more accessible, HCI research has explored various graphical methods for communicating
uncertainty [20, 27, 40, 49, 58]. Future research should explore alternative methods of communi-
cating uncertainty, such as visualizations, which may improve participants’ understanding and
interpretation of the uncertainty associated with AI advice. For example, graphical representations
of uncertainty, such as confidence intervals or probability distributions [40, 41, 68], could be used
to provide a more intuitive depiction of the uncertainty while emphasizing the range of possible
outcomes. Besides the actual communication method, understanding of uncertainties could also be
supported by visualizations that resemble SHAP-like explanations [60], attributing uncertainty
to specific features. This approach would allow humans to see not only the AI’s confidence in its
predictions but also how uncertainty results from individual feature values and influences the final
decision. These visualizations could complement the framing of epistemic uncertainty as the AI’s
confidence in its predictions, potentially enhancing participants’ comprehension of the distinct
nature of epistemic uncertainty.

Appropriate Reliance and Performance. A limitation of our study is its focus on reliance behavior
without examining whether this reliance was appropriate or led to improved decision-making
outcomes. While previous HCI researchers have investigated the concept of “appropriateness of
reliance” in human–AI collaboration [6, 61, 82], our study specifically focused on understanding
how uncertainty decomposition affects reliance patterns. This focus on reliance behavior provides
valuable insights into how humans cognitively process and respond to different presentations of
uncertainty information. Our findings suggest that decomposed uncertainty may be particularly
valuable in high-uncertainty situations, where we observed increased advice rejection compared
to combined uncertainty presentation. Building on these behavioral insights, future work should
investigate how uncertainty decomposition influences the appropriateness of reliance and overall
decision-making performance. Such research would help determine whether and how different
approaches to presenting decomposed uncertainty can actually improve the quality of human–AI
collaborative decision-making.
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Simulated AI Advice. While our simulated AI advice was grounded in a real AI model trained on
housing data (see Appendix A.1), we systematically varied the uncertainty levels to examine their
effects on reliance behavior. This controlled approach allowed us to systematically study human
behavior across different uncertainty combinations, which would be difficult with real-world model
outputs. However, a limitation that arises from this design decision is that both uncertainty sources
are independent in our presentation. In practice, these uncertainty sources are often interdepen-
dent: when a model encounters data points that significantly differ from its training distribution
(i.e., having high epistemic uncertainty), its ability to accurately estimate aleatoric uncertainty may
also become less reliable, as limited model knowledge can impact the ability to accurately capture
the variability of data. Future work should, therefore, use real-world AI models with analytically
computed uncertainties to investigate both how natural uncertainty patterns influence reliance
behavior and how the interaction between different sources of uncertainty affects human trust and
decision-making.

Task Selection, Domain Expertise, and Confidence. The task of estimating housing prices is well
established in HCI research and well suited for studying human reliance on AI under uncertainty.
This setup allowed for a controlled investigation of uncertainty communication effects; however, it
represents only one source of AI-assisted decision-making scenario. The generalizability of our
findings to domains with different risk profiles, cognitive demands, or decision consequences—such
as medical diagnosis, legal judgment, or financial investing—remains an open question. Additionally,
we did not control for participants’ domain expertise in housing price estimation, which may have
influenced how they interpreted and responded to uncertainty information. We focused exclusively
on the behavioral measure of reliance (WOA) and deliberately excluded subjective measures of
confidence and perceived expertise due to the study’s considerable cognitive load: participants were
introduced to the complex concepts of aleatoric and epistemic uncertainty and processed numerous
decision instances. Future work could explore how domain-specific factors as well as participants’
self-assessed uncertainty or expertise interact with uncertainty communication strategies across
various high-stakes contexts.

To summarize, while our study provides valuable insights into the effects of uncertainty decom-
position on reliance, further research is needed to address the limitations of our work and explore
alternative methods of communicating uncertainty to identify effective strategies for integrating
uncertainty information into human–AI decision-making processes.

7 Conclusion
This study investigates the effects of uncertainty framing and decomposition on human reliance in
AI-assisted decision-making through two experiments using a housing price estimation task. Our
findings yield several insights into human–AI collaboration under uncertainty, demonstrating that
the framing and presentation of uncertainty influence humans’ reliance behavior.

First, we observe a general uncertainty effect, where decision-makers consistently rely less
on AI advice as uncertainty increases. Second, we find a level-dependent differentiation strategy
when presenting a single source of uncertainty: participants show a more pronounced decrease in
reliance for epistemic uncertainty compared to aleatoric uncertainty. Surprisingly, this distinction
diminishes when both uncertainty sources are presented simultaneously, resulting in a generic
differentiation strategy. We also observe a complex interplay between the degree and source of
uncertainty and prior beliefs, creating a tradeoff between confirming prior beliefs and decreased
reliance on specific AI advice as uncertainty increases.

These findings have important implications for the design of AI-assisted decision-making sys-
tems, emphasizing the need for thoughtful uncertainty communication strategies. Our research
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suggests that system designers must carefully consider how to present different sources of uncer-
tainty and mitigate the effects of prior beliefs. Future research should explore alternative methods
of jointly communicating aleatoric and epistemic uncertainty and examine how uncertainty decom-
position affects decision quality and performance outcomes. By addressing these challenges and
opportunities, we may create more effective human–AI collaborative environments that support
informed decision-making across domains.
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A Appendix
A.1 Training of AI Model for Advice Generation
To simulate the AI advice, we train an AI model and base our recommendations on the model’s
predictions and uncertainty estimates. The data preprocessing and feature selection are performed
differently compared to features shown to participants to enable the estimation of meaningful
uncertainties.

Data Preprocessing. First, we preprocess the data by creating a new feature, rooms, which combines
the beds and baths features. Additionally, we use the city as a categorical variable and convert it into
binary features using one-hot encoding. In contrast to the advice, we omit the living space feature
to facilitate the calculation of meaningful uncertainties. The dataset is split into in-distribution
(IID) and out-of-distribution (OOD) subsets based on the number of rooms, with data points
having more than five rooms considered OOD. The IID data is further divided into train (80%),
validation (10%), and test sets (10%), while the OOD data is added to the test set to evaluate the
model’s performance on unseen data. Numerical features are scaled to ensure consistent scaling
across the datasets.

Model Training and Evaluation. The model training process involves exploring various hyperpa-
rameter configurations, including the network architecture, regularization techniques, and learning
rates. The model’s performance is evaluated using the R2-score during training and on the IID and
OOD test sets during evaluation.

The best-performing model for each hyperparameter configuration is saved and analyzed to
inform the advice. We design a custom neural network architecture with varying depths, consisting
of fully connected layers and dropout for being able to calculate epistemic uncertainty. To quantify
aleatoric uncertainty, we employ a distribution layer at the end of the network that predicts the
standard deviation alongside the mean of a normal distribution. As a loss function, we use the
beta-NLL loss as proposed by [85], which improves the stability of standard deviation estimates. To
finally estimate aleatoric and epistemic uncertainty, we perform 25 forward passes while randomly
dropping neurons in each pass. The mean of the standard deviations then represents the aleatoric
uncertainty while the standard deviation of the means resembles the epistemic uncertainty [50].
We find that epistemic uncertainty is usually higher for instances that are rare and are further away
from the majority of instances, i.e., small houses in high-income areas or large houses in low-income
areas (see Figure A1). At the same time, aleatoric uncertainty is more equally distributed across
instances compared to epistemic uncertainty.

Fig. A1. Distribution of aleatoric and epistemic uncertainty across income and number of rooms.
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A.2 Advice Generation Procedure
For our second experiment, the AI advice presented to participants is generated based on the
trained AI model described in Appendix A.1. However, we simulate the advice to allow for a
systematic exploration of how different uncertainty levels and decomposition affect user reliance
on AI recommendations. The simulation process follows these steps:

—The proportion of total uncertainty attributable to epistemic versus aleatoric sources is sampled
from a truncated ([0,1]) normal distribution N(0.5, 0.2). This ensures that the proportion is
normally distributed with a mean of 0.5.The complementary proportion is assigned to aleatoric
uncertainty.

—Total uncertainty levels are generated from 0.05 to 0.9 in increments of 0.05, covering a range
from very low to very high uncertainty. The absolute magnitude of each uncertainty source is
calculated by multiplying the total uncertainty by the proportion attributable to that source.

—Four levels (very low, low, high, very high) are defined for each uncertainty source based
on the quartiles of its magnitude distribution. Given the unipolar scale and the ambiguity of
midpoints observed in questionnaire items, we omit the middle level, i.e., medium uncertainty
[48, 64]. This ensures that all possible combinations of uncertainty levels for each source are
represented in the simulation.

—To mirror the patterns observed in the trained model, epistemic uncertainty is assigned to
be higher for OOD instances (e.g., very high-income areas or large houses in low-income
neighborhoods), while aleatoric uncertainty is evenly distributed across features.

—To induce a realistic correlation between epistemic uncertainty and error magnitude, the AI
estimate is shifted by a random amount drawn from N(0, 0.1) plus an additional term that
scales with epistemic uncertainty by a correlation factor [95]. This also avoids the midpoint of
the advised interval always reflecting the true price.

—The simulation generates 160 total instances, with each combination of aleatoric and epistemic
uncertainty levels equally represented (10 instances each).

Based on these instances, we then generate the visualization for both treatments.
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A.3 Tutorials, Comprehension Checks, and Advice

Fig. A2. Tutorials and comprehension checks utilized in the first experiment.

Fig. A3. Comprehension checks utilized in the first experiment.
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Fig. A4. Advice presented to participants across experiments.

Fig. A5. Interface presented to participants across experiments.

Fig. A6. The first three steps of the scaffolded tutorial on uncertainty and its sources, together with the
associated comprehension checks employed in the second experiment. These steps are shared for both
treatment conditions.
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Fig. A7. The final step of the scaffolded tutorial on uncertainty and its sources, together with the compre-
hension checks. This step differs between treatments.
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