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Disclaimer

Algorithm development and data analyses in high-energy physics such as the work presented
in this doctoral thesis are a collaborative effort. The SuperKEKB particle accelerator which
provides the particle beams essential for all studies at Belle II was built and is operated
and maintained by the SuperKEKB accelerator group. The Belle II detector was built
and is maintained and operated by the Belle II collaboration. The Belle II collaboration
also creates the centrally provided simulated and recorded datasets and maintains the
computing infrastructure necessary to process them. The software environment necessary
for studies with Belle II data plays an important role and was created and is maintained by
the collaboration. I have been a part of the Belle II collaboration since 2020 and performed

all studies detailed in this thesis except for the following:

e The implementation of the GravNet layer in QKeras described in Section 6.2.1, which

was done by Marc Neu;

e The hardware implementation of the preprocessing, the GNN-ETM) network, the
condensation point selection algorithm and the postprocessing of the |GNN-ETM
module, including the development of the C Simulation, described in Section 6.5.

This was done by Marc Neu and Valdrin Dajaku.

This thesis employs the use of Artificial Intelligence (AI) tools to help with grammatical
or stylistic improvement of text, and program code creation.

Grammarly | is used throughout the thesis for spell and grammar checks, as well as for
paraphrasing individual, selected sentences to improve clarity and precision in academic
writing. I have approved all suggested changes.

ChatGPT! is used to aid the development of C++ and Python code, in particular code
restructuring and optimisation that do not constitute the core scientific work of this thesis.

I have approved and tested all suggestions to provide robust and reliable results.

“Grammarly: An Al writing assistant. See https://app.grammarly.com/| (Access Date: 2025-06-03).
TChatGPT: A virtual Al assistant based on large language models. See https://openai.com/chatgpt/
(Access Date: 2025-06-03).


https://app.grammarly.com/
https://openai.com/chatgpt/
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Chapter 1

Introduction

The Belle II experiment has a unique position in the measurement of the Standard Model
of particle physics (SM) and deviations from it, as it is sensitive to heavy new physics
appearing in loops and feebly coupled light new physics |1] due to its very high luminosity
provided by the [SuperKEKB] electron-positron collider. With its rather clean environment
and precisely known Center-of-Mass (CM) energy, Belle II)is ideal for probing rare decays
that might show discrepancies to |SM| predictions. Measurements of rare processes such as
BY - K"wo [2] are sensitive to a wide array of physics beyond the SM phenomena, such

as leptoquarks [3|, axions [4], or dark-sector mediators [5].

With a bunch crossing rate of 250 MHz at Belle Il storing all detector hits at each
bunch crossing, while leaving the filtering of interesting events to later stages in analyses,
is unfeasible due to the limitations of both bandwidth and storage. A simple solution is
the storage of each bunch crossing if the overall number of detector hits or the amount of
deposited energy in different subdetector systems crosses a threshold. This is not possible
in Belle II, as the high instantaneous luminosity of SuperKEKB) comes at a cost: As
most bunch crossings do not result in electron-positron collisions, the detector response is
dominated by beam-induced background, originating from particles of the beam interacting
with material or other particles outside the interaction point (IP). Higher beam background
levels call for more sophisticated filtering algorithms to avoid the storage of events without
collision data. While SuperKEKB has reached new world records with an instantaneous
luminosity of 5.1 x 10** em 257! [6] and has seen already unexpectedly high beam-induced
backgrounds, the increase to the design luminosity by more than yet another order of
magnitude will magnify this problem.

The event filtering at [Belle I} employs a two-step filtering procedure, which has been
used at many High Energy Physics (HEP) experiments: a hardware-based |Level 1 Trigger
(L1 trigger) system |7] on Field-Programmable Gate Arrays (FPGAs), which reconstructs
the event with hard latency constraints and high throughput, and a subsequent software-
based High Level Trigger (HLT) [8]. At Belle II, the L1 trigger system has a latency
constraint of 5us and a throughput requirement of 8 up to 32 MHz, which is challenging



for complex reconstruction and event interpretation algorithms.

For the current L1 trigger at Belle II, the Electromagnetic Calorimeter (ECL)
subdetector trigger system is one of the main trigger systems, alongside the Central Drift
Chamber (CDC)-based track trigger system and the K% and Muon Detector (KLM) trigger
for muon detection. In combination with the track trigger, it provides a full event trigger for
both neutral and charged particles. The ECL trigger is especially important for processes
with a low number of tracks, where the track trigger is less efficient. Additionally, the

*e (v) and e"e” — y7(7) is one of the main purposes of the

identification of eTe” — e
ECL trigger, as these processes are used to provide exact measurements of the integrated
luminosity of Belle II. The current ECL| trigger relies on a simple, but very fast and
efficient isolated cluster detection algorithm [9].

The development of trigger algorithms, especially for hardware-based trigger systems,
will be increasingly important with each step towards higher luminosities and higher energies
in HEP. The usage of Machine Learning (ML) techniques for such trigger algorithms
widens the possibilities but increases the challenges for implementations on [FPGAs due to
the high number of multiplications in the matrix-vector calculations in the forward passes of
neural networks. Standard ML architectures, such as fully connected networks, are already
in use in the Belle II] L1 trigger |10] and in development for other HEP| experiments
[11], [12], |[13]. More complex architectures such as Graph Neural Networks (GNNs) have
been implemented on firmware [14], but so far not reached the requirements necessary for
deployment in a realistic environment.

In this work, I will show the development and implementation of a GNN based on
dynamic graph building for cluster reconstruction for the [Belle II] ECL| L1 trigger. The
network, in this thesis called GNN-ETM, is based on the GravNet |15| dynamic graph
building and predicts and reconstructs an unknown number of clusters with the Object
Condensation (OC) algorithm [16]. The GNN-ETM is designed in a hardware-software
codesign process to optimize performance while keeping the design within the hardware
requirements. In Chapter 2, I will first give an overview over the experimental setup for data
taking and describe the ECL detector in detail. Chapter 3 explains the [Belle IT .1 trigger
setup, with a focus on the current ECL|trigger algorithm, the ICN-ETM. The training
data, including the training target design, and the evaluation datasets will be shown in
Chapter 4, while Chapter |5 focuses on the evaluation metrics to test the performance of
the |GNN-ETM]| especially in comparison to the ICN-ETM. Chapter |6 shows the overall
network design process, including architecture, network optimizations for implementation,
and the actual implementation on hardware. In Chapter |7, the evaluation on the technical
datasets is shown. The evaluation of the performance on physics processes for both Monte
Carlo (MC) data and collision data is described in Chapter 8. A summary and an outlook

for future work will be given in Chapter 9.



Chapter 2

SuperKEKB and the Belle 11

Experiment

2.1 The SuperKEKB Accelerator

The SuperKEKB accelerator |17] is a double-ring electron-positron collider with asymmetric
beam energies, namely 7 GeV for the electron beam, also called |high-energy ring (HER),
and 4 GeV for the positron beam, also called low-energy ring (LER). SuperKEKB) operates
at a CM energy of 10.58 GeV, which is the energy of the Y(4S) resonance. This resonance
is chosen as it decays in over 96 % of cases to a pair of B mesons, making the accelerator a
so-called B-factory. The asymmetric beam energies result in a Lorentz boost 8y = 0.28,
which applies a boost to all produced particles in the direction of the electron beam and
allows for precise measurements of B decays.

The accelerator is designed to achieve an instantaneous luminosity of up to 6 x
10* cm ™2 sfl, which is 40 times higher than its predecessor KEKB. An overview of the
accelerator complex including Belle II can be seen in Fig. 2.1\

To reach this luminosity, higher beam currents, larger vertical beam-beam tune-shift
parameters, and smaller vertical beta functions at the IP|of Belle II are needed. The final

luminosity £ can be calculated via

L x <1 + J?z) <Ii£fi) (RL> , (2.1)

Oy Ba Re,
with I being the beam currents, I,.§,+ the tune-shift parameters and By the beta functions
at the [P. a;y are the beam sizes at the [[P. As an increase of the beam currents of
more than a factor of two to reach the target luminosity is very difficult due to hardware
feasibility and operating costs, SuperKEKB| employs the so-called nanobeam collision
scheme [18]. The beam bunches with small U;y collide at a large horizontal crossing angle

and (3, can be squeezed to much smaller values.

Additional changes from KEKB include the decrease of the beam asymmetry, changing
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electron-positron
injector linac

Figure 2.1: Overview of the SuperKEKB| accelerator complex, including linear accelerator
and the collision point with the Belle II detector. The ring has a circumference of about
3km. The figure is taken from [17].

the energy of the electron beam from 8 GeV to 7 GeV and respectively increasing the energy
of the positron beam from 3.5 to 4 GeV. The increase of beam energy for the positron beam
was to improve the Touschek beam lifetime and suppress emittance growth due to intrabeam
scattering, while the decrease of energy for the electron beam reduces synchrotron radiation
and horizontal emittance. All four effects are also effects that lead to beam background hits
at Belle II, which will be explained in detail in Section 4.1.3. Mitigating beam background
at Belle II}is one of the main challenges in comparison to Belle with the KEKB accelerator.

So far, the [SuperKEKB accelerator was able to reach a world-record instantaneous
luminosity of £ = 5.1 x 10** ¢cm s in December 2024 [6].

The main processes, their corresponding cross sections and the process rate at an

257! are shown in Table 2.1. The most probable

instantaneous luminosity of 6 x 10% em ™
process is Bhabha scattering, at a cross section of 74.4nb, if at least one of the particles is

in the acceptance of the Belle II detector.

2.2 The Belle II Detector

The Belle II] detector [20] is the upgrade of the Belle detector [21] taking data at the
SuperKEKB]| accelerator since 2018. Due to the higher background levels at the upgraded
SuperKEKB accelerator, which come with the higher instantaneous luminosity, the Belle 11
detector was designed to maintain the physics performance of the Belle detector while

mitigating the difficulties of the additional background detector hits.
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Table 2.1: Total production cross sections from collisions at /s = 10.58 GeV and production
rates at 6 x 10%° cm ™ % s luminosity at Belle II. W}; is the minimum invariant secondary
fermion pair mass. Processes and cross sections are taken from [19].

Process Selection Cross Section (nb) Rate (kHz
et e (v) et ore in ECL 74.4 44.6
et e et e Wy > 0.5GeV/c” 39.7 £ 0.1 23.8
etem ot Wy, > 0.5GeV /c? 18.9 + 0.1 11.3
vy () 1y in ECL, E,>0.5GeV 3.30 1.98
wout () - 1.148 0.69
T(48) - 1.110 =+ 0.008 0.67
1T (%) - 0.919 0.55

The detector is a 47 detector centered around the IP|in a cylinder shape. The design
is slightly asymmetric, with the [P not being in the center of the detector in the z
direction, but with a larger detector region towards the forward direction. This is due to
the asymmetry of the beam energies, where the particles created in the collision are boosted
in the direction of the electron beam. In x and y direction the IP sits at (0, 0) with the
different subdetector systems positioned in layers around the beam pipe.

The coordinate system of Belle II]is a right-hand coordinate system with the origin at
the nominal [P| with the z-axis pointing approximately in the direction of the electron
beam. The z-axis points horizontally outwards from the center of the storage ring and
the y-axis points vertically upwards. The polar angle 6 is defined from 0 to w, with § = 0
pointing parallel to the z-axis in the forward direction. The azimuthal angle ¢ is defined
from —m to 7, with ¢ = 0 pointing parallel to the xz-axis at y = 0.

As can be seen in Fig. 2.2, Belle IT consists of seven subdetectors for different purposes:
the Pixel Detector (PXD), Silicon Vertex Detector (SVD) and |(CDC, which make up
the tracking detectors of Belle IT; the Time-Of-Propagation counter (TOP) in the barrel
and the Aerogel Ring-Imaging Cherenkov detector (ARICH) in the endcaps for particle
identification (PID); the ECL for neutral particle identification and energy reconstruction;
and the KLM) for long-lived particles. In the following, I will give a quick overview of the
different subdetectors, besides the ECL, which will be described in detail in Section 2.3.

The PXD) Detector

The PXD) detector [23] at Belle II is the innermost detector and consists of two layers
with a silicon-based Depleted Field Effect Transistor (DEPFET)| technology [|24]. The
positioning of this detector directly around the beam pipe leads to a very high occupancy in
the detector, where silicon strip detectors cannot be utilized any more, as the number of hits
per channel would make a reconstruction of B vertices impossible. The [PXD) is therefore
made up out of 250 x 768 sensors on each module, with each sensor being approximately 50

by 50 pm, with 16 modules in the inner and 24 modules in the outer layer. The layers are
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Pixel Detector (PDX)
Silicon Vertex Detector (SVD)

Central Drift Chamber (CDC)

Time-Of-Propagation counter (TOP)
Aerogel RICH detector (ARICH)

Electromagnetic Calorimeter (ECL)

K?/ Muon Detector (KLM)

Figure 2.2: Overview of the [Belle II detector with the marked subdetector systems. The
I[P is in the center of the PXD detector. The figure is taken from [22].

very thin with a material budget of 0.21 % X, per layer to minimize multiple scattering.

PXD| 1 was deployed in Belle II| from the start of data taking in 2018 until the start
of long shutdown 1 in 2022. For |[PXD) 1, the outer layer was non-functional besides two
modules, which were installed to cover a non-functioning inner layer module. During the
shutdown 2022 - 2023, PXD|2 was installed with two functioning layers.

The SVD| Detector

The SVD detector [25] is a silicon strip detector positioned around the PXD) detector and
consisting of 172 strip sensors in four layers. It covers an angular acceptance of 17° < 6 <
150°, which is achieved by slanted sensors in the forward region of the detector.

The |SVD| can perform standalone tracking, which is especially important for low-
momentum particles that do not reach the CDC, and reconstruct vertices from K(S) decaying
outside the [PXD. Additionally, tracks from the |[CDC can be extrapolated to the PXD
with the help of the SVD.

The CDC Detector

The CDC |[26] is the main tracking detector of Belle II. It is designed as a cylindrical
wire chamber with approximately 15000 sense wires to track charged particles and measure
their momenta in the magnetic field. Additionally, particle identification can be done by
using the energy loss within the CDC volume. It is also one of the main detectors used for
the L1 trigger. To decrease multiple scattering, the CDC is filled with a mixture of 50 %
helium and 50 % ethane, which both have low atomic numbers to reduce the scattering

probability.
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The design of the |CDC splits the sense wires into layers along the z-axis. 32 axial layers
have wires that are parallel to the z-axis, while the sense wires in the 24 stereo layers are

tilted by up to 74 mrad to provide both transversal and longitudinal tracking information.

The TOP| Detector

The TOP) detector |27] is the main PID detector in the barrel region of Belle II and is
designed to improve the K /7 particle separation capabilities. Its design is based on the
principle of total reflection of Cherenkov light within a quartz bar. 16 quartz bars with a
length of 125 c¢m are positioned around the detector parallel to the beam pipe. Charged
particles traverse a quartz bar and emit Cherenkov light within that bar. The emitted
photons are propagated within that bar due to total reflection on the inner sides until they
reach one of the ends. A mirror is attached to one end of the bar, reflecting the photons
again and a photomultiplier at the other, which measures both the position and the time of
the arriving photon. These hit patterns can then be transformed into a likelihood value for
the different particle types.
The TOP)|detector can additionally provide timing information for the [L1 trigger!.

The ARICH Detector

The ARICH detector [28] provides PID information in the forward endcap region to
distinguish kaons and pions, as the particles in [Belle II] are boosted in the forward region
because of the beam energy asymmetry. It is built out of a silica aerogel radiator, in which
charged particles, when traversing this radiator, emit Cherenkov photons. These photons
are then detected by a photo detector. Through this measurement, the emission angle of
the Cherenkov light can be reconstructed, which is proportional to the mass of the charged
particle and can therefore be used to identify the particle type. The detector is composed
out of 248 aerogel tiles, with each being 17 x 17 cm? and 2 cm thick. Two different aerogels

with different refractive indices are used to improve the angle resolution.

The KLM Detector

The KLM detector [29] is the outermost detector at Belle II designed to detect K% mesons
and muons, that did not get stopped in the inner detector regions. It consists of 14 layers
of 4.7 cm-thick steel plates which make up the flux return for the solenoidal magnetic
field. These plates are interspersed with active particle detection modules, made up out
of plastic scintillators for the endcaps and the first two layers in the barrel, and resistive
plate counters for the remaining 13 barrel layers. The steel plates of the flux return add
additional stopping power for hadrons, increasing the material budget to 3.9 interaction
lengths in addition to the 0.8 interactions lengths of the KECL.

When charged particles pass the KLM) they generate scintillation light in the scintillator

strips, which can then be used for the reconstruction of K% decays by clustering 2D points
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and muons, which are reconstructed by extrapolating charged tracks in the (CDC to the
KLM [30].

Belle II Analysis Software Framework

For the simulation, reconstruction, and analysis of the |Belle Il data, the collaboration
provides the core software framework Belle II Analysis Software Framework (basf2)
(131] [32]). This framework enables the interface to event generators for MC|simulation,
simulates the detector response with GEANT4 33|, unpacks raw data, and reconstructs objects
such as particle tracks and clusters from detector hits. For analysts, these reconstruction
objects can be combined to particle hypothesis with custom cuts to dynamically adapt to

every analysis setup.

2.3 The Electromagnetic Calorimeter

The Belle IT |[ECL is a scintillation crystal based, single layer electromagnetic calorimeter
used mainly for the detection of photons, identification of electrons and detection of K%
together with the KLM [20]. Photons are one of the most common final-state particles in
B decays, with about a third of the decays having at least one photon originating from o
or other particles. These photons cover a wide energy range between 0.02 and 4 GeV, while
processes such as eTe” — 47 () commonly result in photons up to 7GeV. The ECL is
also one of the main detectors to issue L1 trigger signals, with the detection and veto of
ete” = efe” (7) processes being solely the responsibility of the ECL. The calorimeter
hardware was taken from the Belle experiment [21], with a major electronics upgrade to
improve performance for the higher backgrounds at Belle II.

The ECL) consists of 8736 Thallium-doped Cesium-Iodide (CsI(T1))| crystals for the
forward endcap, the barrel region and the backward endcap, covering the angular region
between 12.4° and 155.1° and weighting 43 tons in total. There are two 1° gaps between
the barrel region and the respective endcaps. The crystals are arranged such that they
point almost to the IP. A slight tilt of approximately 1.3° in 6 and ¢ avoids the escape of
photons between the gaps of two crystals. In Fig. 2.3, a technical overview of the crystals in
the barrel, forward and backward endcap can be seen with their positioning in relation to
the [P at the Belle experiment. The hardware was taken as is for the Belle II experiment.

For the barrel, 6624 crystals are positioned in a cylindrical shape at an inner radius of
1.25m. The forward endcap consists of 1152 crystals at z = 1.96 m, while the backward
endcap has 960 crystals at z = —1.02m. The crystals in the barrel have in total 29 distinct
shapes, but are of an average size of 6 x 6 cm? for the cross-section and 30 cm long, which
corresponds to 16.1 X. The crystals in the endcap have a high variation in geometry, with a
total of 69 different shapes, in order to form a stable structure without gaps, with the surface
dimensions facing the [P varying between 44.5 to 70.8 mm. The length of approximately

30 cm is the same for all crystals to reduce the effect of the longitudinal leakage. Longitudinal
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BELLE Cs| ELECTROMAGNETIC CALORIMETER

|BUU<WGfd Endcap Calorimeter Forward Endcap Calorimeter

Barrel Calorimeter

N - |
é ¢ ¢ / ‘(ié gé ///
1| | “ gl
// ‘\\\\ =
TSNS

Figure 2.3: Schematic overview of the Belle ECL|detector, with all crystals located in the
barrel, forward and backward endcap. The center part depicts the ECL in a cut through
the y-z axis, while the left and right parts show a cut through the x-y plane with the barrel
view in the upper half and the backward and forward endcap in the lower half, respectively.
For Belle II; the Belle ECL was taken without changes to the crystals or their positioning.
The figure is taken from [21].
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leakage is the term for the longitudinal energy loss when the electromagnetic shower of
high-energetic particles is not fully contained in the length of the crystal but exits the
back of the calorimeter. The size of the crystals is additionally chosen such that a photon
entering at the center of the front-facing side creates a shower, where approximately 80 %
of the photon energy is contained in this crystal. The remaining 20 % are contained in the
surrounding crystals and have to be reconstructed as one cluster. Smaller crystals would
improve the position resolution but worsen the energy resolution due to an increase in gaps
and inactive material.

Each crystal has two attached photodiodes glued to the rear surface with an attached
preamplifier. These two outputs provide independent measurements of the light yield within
that crystal and are summed up in the later positioned shaper board. The photodiode sends
the signal to a Shaper-Digital Signal Processor, which digitizes the signal and fits 16 points
of the signal to a signal shape function F'(t) = Ay x f(t —ty), with A, being the pulse height
and t( the event time [34]. One improvement over the Belle readout electronics is the higher
sampling frequency at 0.5 us. This allows a much more efficient beam background cluster
rejection through the better determination of ¢5. Additionally, the digitized waveforms of
crystals with an energy deposit above 30 MeV are recorded in the raw data to enable an
offline pulse-shape analysis for the discrimination between hadronic and electromagnetic
showers [35|. The fast shaper for the trigger signal, explained in Chapter 3, is located on
the same board.

The amplitude, time, quality of the fit, and for higher-energetic crystals the digitized
waveform are stored in raw data for later reconstruction. The reconstruction algorithm of
the ECL implemented in the Belle II Analysis Software Framework is explained in
Section 4.1.2.



Chapter 3

The Existing First Level Trigger
Setup at Belle II

The current trigger setup at the Belle II Experiment consists of two steps, the |[L1 trigger and
the HLT. The L1 trigger uses optimized reconstruction algorithms for event reconstruction
on [FPGAs to make a first decision to keep the event with very high throughput and latency
requirements. The HLT then runs the full reconstruction with [Belle II Analysis Software
Framework (basf2) on CPUs and makes a second decision if an event, that already passed
the |L1 trigger, will be kept. Only if both the L1 trigger and the HLT decide to keep the
event, the data is written to disk and permanently stored.

As this thesis shows an improved algorithm for the [ECL [L1 trigger, in the following I
will provide an overview of the current L1 trigger setup and a detailed explanation of the
ECL trigger.

3.1 The Level 1 Trigger

The L1 trigger| at Belle II is designed for fast decisions with a high throughput rate and
fixed latency. For the current trigger setup the CDC, ECL, KLM, and TOP) are used to
make the final trigger decision. The L1 trigger system is designed for a maximum output
rate of 30 kHz. Additionally, due to the reduced amount of buffer available, the decision
has to be made within a timeframe of 5ps. The restricting factor for the latency budget for
the L1 trigger system is the size of the front-end buffers of the subdetector systems. The
smallest latency of these buffers determines the maximum L1 trigger latency, as the data is
otherwise lost before the L1 trigger has made its decision. In Table 3.1, an approximation
of the different maximum subdetector latencies is shown. The current |L1 trigger| latency is
determined by the |[SVD. This latency requirement is a requirement for the whole trigger
decision chain from data taking to Global Decision Logic (GDL)| decision, which puts even
more stringent limits on each subdetector reconstruction algorithm.

At Belle II the bunch crossing rate, as explained in Chapter 2, is 250 MHz. For the most

11
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Table 3.1: Maximum allowed L1 trigger| latency for the different subdetector systems due
to the buffer of the detector front-ends. Values are based on internal communication with
Taichiro Koga.

Subdetector Max. Latency (ps)

PXD ~ 10ps
SVD 5ps
CDC 15 s
TOP 9pus
ARICH up to 1015 s
ECL 100 s
KLM 9.2 118
probable process ete” — ete” (7) at an instantaneous luminosity of 6 x 10* cm ™2 S_l,

if at least one of the particles is emitted at an angle that is in the acceptance of the

*e” — T(4S) happens at a rate of

ECL, the process rate is 45 kHz, while the process e
~ 1 kHz. More high-rate processes and their respective rates can be found in Chapter 2|
Table 2.1. This means that for the requirement of 30 kHz, a reduction of at least 50 % of
all collision events is necessary, not counting false triggers due to beam background (see

*te” — eTe () have to additionally

more in Section 4.1.3). High-rate processes such as e
be suppressed with high efficiency to achieve the required ~ 100 % trigger efficiency for
ete” = BB and e"e” — ¢g(y) events. Furthermore, Belle II is an ideal experiment

77" [36], which can help

to measure low multiplicity final states such as efe” o>
measure the et e~ hadronic cross section, and lepton flavour violating 7 decays such as
T — U /ﬁ p |37]. High trigger efficiencies for these and similar processes improve the
measurements drastically. Additionally, ideally unbiased trigger decisions based on single
tracks or energy sums without clustering improve searches for new physics such as dark
matter searches [38] [39)].

The throughput and latency requirements make an implementation on FPGA necessary.
FPGASs are equipped with logic gates and RAM blocks for complex digital computations
and can implement the same logical functions as ASICs. In comparison to ASICs, FPGAs
can be reprogrammed to serve several functions while an ASIC is designed and optimized
for one specific use case. Due to this, ASICs have high development costs and cannot be
exchanged or adapted easily. The generic processing units, such as CPUs or GPUs for
fast processing of parallelizable tasks, do not achieve the needed latency and throughput
requirements necessary for the Belle I |1 trigger| system. |[FPGAs are significantly faster
than CPUs or GPUs for specific tasks due to their high ability to parallelize and custom
optimizations for each application.

To achieve both reasonable cost requirements and the latency and throughput required
by the trigger setup, [FPGA implementations have been chosen for the design of the L1
trigger| system. Besides Frontend and Merger chips, the current modules either use the

Universal Trigger Board 3 (UT3) for the implementation of their algorithms, which features
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a Xilinx Virtex-6 FPGA, or the Universal Trigger Board 4 (UT4) board featuring a Xilinx
Ultrascale XCVUO080/160. For each different subdetector trigger system, one or several
FPGASs are used in parallel to process and reconstruct the data of the different subdetectors.
The overall |[L1 trigger system is without deadtime and processes the data in a first-in

first-out pipeline [7].

2D track info

NN track

Axisl ¢
| coc| | Merger
GRL
trigger
Stereo TS condition

| ECL H 4x4 Trigger Cell |—>| Merger _

TOP hit

TOP trigger condition
KLM hit

KLM trigger condition

Figure 3.1: An overview of the Belle II L1 trigger| system. The data from the |CDC,
ECL, KLM and TOP, subdetectors is taken, reconstructed and sent to both the Global
Reconstruction Logic (GRL) and \GDL| which then outputs the final trigger decision. The
figure is taken from [40].

ECL cluster info

ECL trigger condition

In Fig. 3.1 an overview of the L1 trigger dataflow can be seen. Data is taken by each
subdetector separately with different rates and detector deadtimes. The entire |L1 trigger
system operates on a common clock with a frequency of 127.216 MHz, which is the global
SuperKEKB) clock of 508.9 MHz divided by 4. Additionally, a revolution signal with a
period of 10 s is distributed among the different subdetector systems. Both clocks assure
a synchronization of all detector systems and the L1 trigger.

The CDC trigger provides information of charged particles by reconstructing charged
tracks in the |CDC|and reconstructing their momenta, z0, which is the distance between the
start of the track and the [IP|in z-direction, and the 8 angle. The |CDC]| trigger currently
consists of three different track reconstruction algorithms, the 2D, 3D and NeuroZ tracker.

In the [ECL trigger system, clusters for energy reconstruction are found by identify-
ing connected energy depositions in the [ECL. A more in-depth explanation is given in
Section 3.2l

The KLM]|trigger finds clusters in the KLM] system to improve muon identification and
give approximate direction estimates. It additionally calculates back-to-back information
for clusters in the KLM.

For the [TOP)|trigger system, event timing is calculated from hit signals given by the 16
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Figure 3.2: Total and selected output bit trigger rate for the last month of data-taking,
December 2024, in Exp. 35. On the left the total trigger rate in kHz is shown, on the right
the rate for the hie, stt and mu_ b2b trigger bits. This three trigger bits are output bits
for the ECL, CDC|, and [KLM respectively, with no requirement of other subdetector
information, each being the bit with the highest output rate of all bits of the respective
subdetector.

quartz bars of the TOP)| detector. The TOP)|trigger is currently not involved in the trigger

decision to keep the event.

The inputs from the different subdetector systems are combined on the global trigger
boards, the GRL/and GDL. The subdetectors send reconstructed objects such as tracks
and clusters to the |GRL|, where they can be matched and combined to improve event
interpretation and reduce false triggers due to beam background. The information is
condensed into so-called trigger input bits, which require set conditions to be true and are
then set to 1. The \GDL receives already calculated trigger input bits from the |GRL| and
the subdetector systems and combines them into trigger output bits by using AND, NOT,
or OR operations. A trigger signal is issued if at least one output trigger bit equals 1. In
Fig. 3.2, the full L1 trigger output rate for the last month of data-taking (Dec. 2024) and
the output rates for the hie, stt and mu_ b2b output bit are shown. hie, stt and mu_ b2b
are output bits with information only taken from the ECL, CDC| and [KLM respectively.
These three bits are the bits with the highest trigger rate of the all bits of the respective
detector. The hie bit is the sum of energy in the inner calorimeter (more explanation in
Section 3.2.1). The stt bit is the single track trigger, which requires one track given by
neural network track reconstruction (|10]). For the KLM bit, the mu_ 52b bit requires two
hits in the [KLM that are on opposite sides of the detector.

To reduce the rates of trigger output bits, a separate prescale for each output bit can
be set. An exemplary prescale of 100 reduces the trigger rate of one bit by 100. This works
by setting a counter of the prescale value and increasing the counter by one every time
the output bit is 1. If the prescale value is reached, the counter is set to 0 again. The
output bit only contributes to the trigger decision if the counter is at 0. These prescale
values can be tuned individually and changed for different runs. The raw output trigger bit

information is called the Final Trigger Decision Line (FTDL) value, while the value after
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the prescale is called the Pre-Scale And Mask (PSNM)| value.

The event timing can be determined by the ECL, CDC|and [TOP) trigger systems. In
practice, the ECL trigger provides the trigger timing in over 99 % of cases with the CDC

trigger as a fallback option in past data runs.

3.2 The Calorimeter Trigger Setup at Belle II

Other
Subdetectors

x 1 FPGA

Global
Decision

8736 Crystals x 52 Boards Logic
x 576 Boards «7 Boards x 1 FPGA 9
ShaperDSP FlashADC Analog Module —_— ICN-ETM
. . Trigger Merger = )
Analog Energy Sum £ Analog to Digital Waveform Analysis Module X 7 K ———
of ot Crystals | 23| | ™ Gomverter | | for Energy sTiming | 1X-52,} (L FEEEEL fx [EventTime Finder| | oo
wows P 100 MeV Energy Cut 1. Isolated Cluster Logic [ Trigger Bit
b ) to Triggercells .. 2. Cluster Determination | | Determination Global

Reconstruction
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L1 Trigger Input
Full ECL

-

Other
Subdetectors

Figure 3.3: An overview of the current ECL Trigger Chain. All crystals are read out,
analogously summed into Trigger Cells (TCs), and an energy cut of 100 MeV is applied.
All incoming TCs are merged on the Trigger Merger Module and sent to the ICN-ETM,
where we perform clustering, event timing, and trigger bit determination. This decision is
sent both to the GRL and |GDL, where the trigger decision is made.

The ECL| L1 trigger| consists of four different stages with a total of 636 modules, where
each module consists of a board including an FPGA and a large Input-Output unit with
optical transceivers. An overview of the different stages with the number of boards per
stage is shown in Fig. 3.3l The data of all 8736 crystals in the ECL|are read out and then
sent to 576 ShaperDSP modules located around the detector. These modules contain both
a slow shaper for offline data (see Section 2.3) and a fast shaper for trigger information. On
each ShaperDSP, usually 16 crystals are merged into one [T'C|and this data is transmitted
to the FlashADC Analog Module (FAM). On this module, a digitization of the data is
performed and the energy and timing of the TCs are analysed. This data is then sent to
the Trigger Merger Module (TMM) which forwards the merged data to the ECL Trigger
Master Module (ETM), where the main clustering logic and trigger bit determination is
implemented. To avoid confusion, in this thesis the default ETMis called the ICN-ETM
based on the implemented logic. The following sections will explain each step in more
detail.
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Figure 3.4: Overview of the Belle II |ECL with the single crystal outlines of the 8736
CsI(Ti) crystals in black and the TC outlines in green.

Data Acquisition and Merging into Trigger Cells

As explained in Section 2.3, the ECL| consists of 8736 CsI(Ti) crystals divided into the
forward endcap, the barrel and the backward endcap. Each crystal is equipped with a
PIN photodiode and a pre-amplifier to collect the light yield of the electromagnetic shower
within the crystal. The crystal data is sent to 576 ShaperDSP modules, DSP meaning
Digital Signal Processor in this case.

Each ShaperDSP module consists of two shapers, a slow shaper for more exact infor-
mation used in offline data (more details in Section 2.3) and a fast shaper for the trigger
data. In the fast-shaper circuit, up to 16 analog crystal signals given by the preamplifier
are merged into one TC| with a shaping time of 200 ns [9]. This is done to reduce the
number of input signals to the cluster finding algorithm on the ICN-ETM. In Fig. 3.5,
all TCs| within the ECL| are shown. The 8736 crystals result in 576 [I'Cs. Each [TC
receives a 0 ID ranging from 1 to 17 and a ¢ ID ranging from 1 to 36, both proportional to
the 6 and ¢ angle. The mapping of the IDs to the corresponding angles can be found in
Appendix A. In most cases, one [T'C consists of 16 crystals. Exceptions are several TCs|in
the endcaps due to the irregular crystal geometry, where the TCs then consist of 14 or 15
crystals. Additionally, the TCs in the barrel region closest to the backward endcap only
have 8 crystals. Fig. 3.4 shows the CsI(Ti)s with their corresponding TC outline. The
pulse height of each crystal signal is corrected before merging. This correction is needed
due to the different light yields depending on the crystal properties. The correction factors
are determined using cosmic data [41]. After merging, each ShaperDSP module sends the
TC signal to the FAM.
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Figure 3.5: |TC placement in the ECL. The current TC setup consists of 576 TC, shown
here with their corresponding TC ID. The color of the TC denotes the 6 ID, going from 1
in the innermost forward endcap to 17 in the innermost backward endcap. Each TC also
has a ¢ ID, which ranges from 1 to 36 with 1 starting at ¢ =0° (not depicted in this figure).

Each [FAM) receives 12 [T'C|input signals. The analog data is digitized by a [Fast
Analog-to-Digital Converter (FADC) and the digitized data is passed to an FPGA to
evaluate it [42]. To measure energy and timing of the TC, a waveform analysis is applied

on the FPGA. Every 125 ns, 12 data points are used as input to the following X2 fit:

2 —1
X =D (i = Af(t; = 0t —to) = P)Sjj" (y; = Af(t; =6t —to) = P)  (3.1)
i’j
with y; being the data points and S;; the noise covariance matrix for the sampled data.
The fit function consists of a pedestal function for the first four points and a signal function
for the following 8 data points. P denotes the pedestal. The fit is performed to measure A
and ty, which correspond to the signal amplitude and the starting time of the signal. In

Fig. 3.6 an example of the data and the fit window is shown.

On the FAM| an additional 100 MeV energy threshold is applied to each digitized signal
of the incoming [T'Csl This reduces the amount of inputs to the clustering algorithm further
and, more importantly, minimizes the amount of beam background energy depositions
being forwarded to the ICN-ETM. The threshold value is set on the hardware and could
be adjusted to lower or higher values. However, an analysis of the noise level of the
pedestal variation evaluated the noise to be 11.5 MeV for one standard deviation, which
is significantly lower than the 100 MeV energy threshold [20]. Without any or with a
substantially lower threshold, this pedestal variation would introduce more noise in the

calculation of the amplitude of the [TC| signal.
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Figure 3.6: Example for data points used for the waveform analysis on the FAM. The fit
function consists of a pedestal function for the first 4 points and a signal function for the
following 8 data points. This is done for timing intervals of every 125ns. The figure is
taken from [43].

All 576 [TCs are then sent to the [TMMsl Each [TC signal consists of a hit bit, which
is 1 if the energy is above 100 MeV, 7 bit timing information, and 12 bit energy information.
The timing is in 1 ns steps, representing the timing of a [TC within one fit window (125 ns).
The energy information is transmitted as ADC counts, where 1 ADC count corresponds to
5.25 MeV.

3.2.1 ICN and Clustering Logic

The cluster finding logic, called ICN logic, on the ICN-ETM is implemented based on the
well-tested logic at the Belle Experiment (|44]). The ICN logic is based on the detection of
isolated clusters by finding regions of connected TCs and combining those regions into one
ICN hit. ICN stands for number of isolated clusters. After finding all ICN hits, these hits
are then input to the actual clustering algorithm to find the correct energy and position of
the clusters.

In Fig. 3.7 the full ICN logic of the ICN-ETM]|is shown. The ICN-ETM receives all
TCsq with their corresponding hit flag, energy, and timing from the TMMs modules. The
logic then scans the entire ECL in 3x3 TC|windows. In each window, the center column
and the lower two TC of the left column are input to a decision algorithm (see Fig. 3.7
(b)). The ICN logic decides that a window of TCs with energy depositions are a cluster

when three conditions are fulfilled:
e The center TC (|TC 0) has to be hit.
e Neither the top center TC (TC 1) nor the middle left [TC ( TC 2) are hit.
e Not both of the left [T'C of the lower row, [TC 3 and [T'C 4, are hit.

The ICN logic returns an ICN hit if all three conditions are true.
Due to limited resources available on the [CN-ETM| the clustering algorithm following
the ICN logic cannot be performed on all ICN hits. Therefore, a reduced number of ICN
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Figure 3.7: Isolated Cluster Logic. The algorithm evaluates a field of three by three TCs
at once (as shown in (a)) and checks all TCs| that have an energy above threshold. If the
condition written in (b) is fulfilled, the algorithm returns an ICN hit (case (c)). For this
ICN hit, in the clustering algorithm the energies of all TCs is checked (see (d)). If the
highest-energetic 'TC is not the center, the window is moved once to fulfill this condition
as seen in (e). The cluster energy is then calculated as the energy sum of all TCs in the
window and the cluster position is the center position of the highest-energetic TCs.

hits is chosen, in the case of Belle IT only six ICN hits. Early tests within the collaboration
on simulated samples showed a negligible reduction of the trigger efficiencies if only six
instead of all ICN hits were selected, this is another limitation of the TCN-ETM.

The selection of ICN hits to perform the clustering algorithm on is given by the [T'C
ID. As the barrel region of the ECL contains less background hits on average, and it is the
biggest region, ICN hits are first taken from the barrel (' TC IDs 81-512). If there are less
than six ICN hits within the barrel region, the selection algorithm moves to the forward
endcap (' TC IDs 1-80), which has significantly less background energy depositions than
the backwards endcap. If the number of ICN hits is still below six, then ICN hits from the
backwards endcap (TC IDs 513-576) are added to proceed to the clustering algorithm.

The input to the selection decision is 576 x 1 bit (1 if the ICN algorithm fired on this
TC, 0 if not). The output is 12 bits per cluster, which contains 1 bit for cluster existence
and 11 bits for the position of the cluster, which is a mapping to the different detector
regions and 6 and ¢ IDs. Due to the restriction to six clusters, 6 x 12 = 72 bits are returned

by this decision. This is then used as input to the clustering algorithm, which finds energy
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Figure 3.8: Bugs for the ICN cluster finding logic. In both cases, the ICN logic returns two
hits even though there should be only one. In the case on the left, the two results might
have different energies and positions, while in the right case both results are identical.

and position of the cluster.

For the energy and position of the cluster, the position of the highest-energetic [TC
within the evaluation window is checked. If this [T'C|is already at the center of the window,
the cluster energy is determined by summing up the energies of all hit TCg within the
window. The cluster position is then the position of the highest-energetic TC|, which is
defined as the center of the TC front facing the interaction point. If the highest-energetic
TClis not located at the center of the evaluation window, the window is moved, so that this
TC is at the center. The energy is then again calculated as the sum of all TC| energies
within the window, while the position is the position of the TC|that now is at the center of
the evaluation window. In the case of a higher-energetic 'TC|which is part of the evaluation
window after it has been moved once, this procedure is not repeated and the position is
still set as the position of the center of the evaluation window.

Due to the very fast, but simple design of the algorithm and the rather large 3x3 window,
multiple cases arise where two clusters with the exact same information are returned. In
Fig. 3.8, both cases yield two ICN hits, with the right case always returning the same cluster
energy and timing information. In the left case, if either of the two TCs, which are not
the ICN centers, have the highest energy deposit, the algorithm also returns two duplicate
clusters. This is a known limitation of the current logic and leads to a double-counting of
energy depositions.

The precision of the output values is 12 bits for the cluster energy in ADC counts from
0 to 4096, where 1 ADC count corresponds to 5MeV, 7 bits for the cluster 6 angle (0 to
180°) and 8 bits for the cluster ¢ angle (0 to 360°), which results in a 1.406° precision.

3.2.2 Trigger Window Decision and Trigger Timing

The sampling of TCgs happens at an 8 MHz rate, corresponding to new [T'C| information
every 125ns. This means that the full clustering logic of the ECL L1 trigger| also has
to run at this frequency, resulting in a high throughput requirement on the clustering
algorithm. One 125ns window is called an ECL-TRG data window. The input to the ICN

algorithm and then subsequently to the clustering and trigger bit determination is done in
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Figure 3.9: Comparing two adjacent trigger windows. The trigger windows A and B are
comprised of the energy sum of the two corresponding data windows and have as timing
the timing of the highest-energetic 'T'C in the higher-energetic data window.

250 ns windows, using two adjacent ECL-TRG data windows as input. The 250 ns window
is called the ECL-TRG trigger window.

The ECL-TRG event timing within the trigger window is given by the highest-energetic
TC. For both data windows within the trigger window, data window 0 and data window
1, the T'C|with the highest energy within this window is determined, TC, and TCj,
respective. If E('TCy) > TC,, the ECL-TRG event timing is the timing of TC,. If

TC, < [TC}, the ECL-TRG event timing is T( TC;). If two or more TCsl in one data

window have the same energy, then the ordering is given by the ordering of the [FAM
crates. Due to this hardware configuration, the order by 'TC number is: 81-512, 76-80,
1-75, 573-576, 513-572.

Additionally, due to requirements determined by the GDL| no two consecutive ECL-
TRG trigger windows should be triggered. This is achieved by looking at three adjacent
data windows, window 1, 2, and 3. Each window has the energy Ej/5/3, which is the
energy sum of all TCs within that window, and a timing T 5,3, which is the timing of
the highest-energetic TC. With those three data windows, two trigger windows could
be chosen, trigger window A, corresponding to data windows 1+2, and trigger window
B, corresponding to data windows 24-3. This can be seen in Fig. |3.9. To decide, the
event timing is determined for trigger window A, following the algorithm described in the
preceding paragraph. If the event timing is given by T, trigger window A is chosen as
the actual trigger window and no trigger signal can be sent out for trigger window B. If
the event timing is given by Ty, the energy sum of trigger windows A and B is compared.
If EA = E; + E5 > Eg = Ey + Eg, then trigger window A is chosen as the actual trigger
window. Whereas, if E, = E; + E5 < Eg = E5 + Es, then trigger window B is chosen as

the actual trigger window.
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3.2.3 Trigger Bit Determination on ICN-ETM

Most trigger input bits are calculated on the GRL|as they contain information given by
several subdetectors. These input bits are then sent to the |GDL| where they are combined
into the trigger output bits and the final trigger decision is made. Additionally, pure ECL
trigger input bits, which only need information coming from the [ECL trigger, are calculated
directly on the ICN-ETM and then sent to the |GDL for the trigger decision. Those input
bits that are at the time of this work actively used in trigger decisions and calculated on
the ICN-ETM) are listed in Table 3.2.

For correct selections of relevant physics processes, such as e

ete” — ,u+ i (), which, for particles with an angular direction outside the barrel region,

te” = eTe (y) and
are mainly triggered by the ECL trigger, the cluster energies and positions have to be
converted from the laboratory frame to the |CM frame. This is done by a |Lookup Table
(LUT), which, given the input TC ID, returns the (CM values for § and ¢ and a conversion
factor for the energy. The values for the LUT|are set by running a simulation for a 1 GeV
~ in the lab frame and calculating the correct conversion factors for this cluster.

To reduce higher trigger rates given by beam background energy depositions, a lot of
the current input bits only take TCs or clusters into account that are within a certain
range. This is due to the fact that the TCs that lie closest to the beam pipe and therefore
have a very low or very high 6 angle, have the highest rate of beam background energy
depositions due to their positioning. In Fig. 3.5 the corresponding 6 IDs of each TC is
shown. Input trigger bits like ehigh or clst X, for example, remove the innermost ring of
the forward endcap with # ID = 1 and the backward endcap entirely, with 8 ID 16 or 17.

3.2.4 Output Data

The output data of the ICN-ETM consists of general event information, clustering infor-
mation, and calculated trigger bits. The ICN-ETM]|sends information both to the GDL
and a subset of this information to the (GRLL The information sent to both boards consists

of the following:
e Active bit: if there is any [TC|hit in the ECL,
e Event timing information given by the highest-energetic TC timing,
e The number of clusters,
e The bha_weto input bit,
e All cluster information.

The |GRL additionally receives information on which clusters have a |CM) energy above 1

and 2 GeV, and which clusters are part of the bha_veto determination.
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Input Bit Definition

ehigh Eiot > 1.0 GeV, E;; in 6 ID = 2-15

elum B > 3.0 GeV, Eyp in 0 ID = 2-15

clst_ X bit X (X € [0, 1, 2, 3]) of the number of clusters in § ID = 2-15
ecl oflo ICN hits > 6
bha veto 165° < > Oy < 190°,

160° < Adgy < 200°,
E(CL1, CM) > 3 GeV & E(CL2, CM) > 3 GeV,
E(CL1, CM) > 4.5 GeV | E(CL2, CM) > 4.5 GeV

ecl bhapur 160° < > Oy < 200°,
140° < Agpey < 220°,
E(CLL, CM) > 2.5 GeV & E(CL2, CM) > 2.5 GeV,
E(CL1, CM) > 4 GeV | E(CL2, CM) > 4 GeV

ecl mumu 165° < > 0oy < 190°,
160° < Ay < 200°,
(E(CL1, CM) < 2 GeV & E(CL2, CM) < 2 GeV)

ecltaub2b3 140° < Y 0cn < 220°
& 120° < Agey < 240°
& (E(CL1, Lab) > 0.14 GeV | E(CL2, Lab) > 0.14 GeV)
for 2 CL in 0 ID = 2-16 with E(CL, Lab) > 0.12 GeV,
no CL with E(CL, Lab) > 4.5 GeV,
Eiot(Lab) < 7 GeV in 6 ID = 1-17

Table 3.2: General Trigger Input Bits calculated on [ICN-ETM. These bits are calculated
using the clusters returned by the clustering algorithm or the energy information of the
TCs. CM stands for Center-of-Mass frame, while Lab is using the laboratory frame.

The |GDL receives additional timing information, specifying which detector part is the
source of the event timing information. Furthermore, the input bits specified in Table [3.2
and Table 3.3|are sent to the |GDL|to calculate output bits and generate the trigger decision.
The full number of TCsl hit within one data window is also sent to the (GDL! to be used in

the injection veto (see Section 4.1.3), combined with the number of wire hits in the CDC.
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Input Bit Definition

ecl Iml 0 N(CL) > 3,
at least 1 CL with E(Lab) > 300 MeV with 6 ID = 1-17,
not bha_veto

ecl Iml 1 At least 1 CL with E(CM) > 2 GeV with 0 ID = 4-14

ecl Iml 2 At least 1 CL with E(CM) > 2 GeV with
0 1D = 2, 3, 15 or 16,
not bha_veto

ecl lml 3 At least 1 CL with E(CM) > 2 GeV with
01D = 2, 3, 15 or 16,
bha veto

ecl Iml 4 At least 1 CL with E(CM) > 2 GeV with # ID = 1 or 17,
not bha_veto

ecl Iml 5 At least 1 CL with E(CM) > 2 GeV with 6 ID = 1 or 17,
bha_veto
ecl Iml 6 Exact 1 CL with E(CM) > 1 GeV with 6 ID = 4-15,

no other CL with E(Lab) > 300 MeV with 6 ID = 1-17

ecl Iml 7 Exact 1 CL with E(CM) > 1 GeV with 6 ID = 2, 3 or 16,
no other CL with E(Lab) > 300 MeV with 6 ID = 1-17

ecl Iml 8 2 CL with 170° < A¢cy < 190°,
E(CL1, Lab) > 250 MeV & E(CL2, Lab) > 250 MeV,
no CL with E(CM) > 2 GeV with § ID = 1-17

ecl Iml 9 2 CL with 170° < Agcy < 190°,
E(CL1, Lab) < 250 MeV & E(CL2, Lab) > 250 MeV,
no CL with E(CM) > 2 GeV with 6 ID = 1-17

ecl Iml 10 2 CL with 170° < Agcy < 190°,
160° < > Oy < 200°,
no CL with E(CM) > 2 GeV with 6 ID = 1-17

ecl lml 12 (N(CL) > 3,
at least 1 CL with E(Lab) > 500 MeV (with 6 ID = 2-16),
not bha_veto

ecl Iml 13 Exact 1 CL with E(CM) > 0.5 GeV with 6 ID = 6-11,
no other CL with E(Lab) > 300 MeV with 6 ID = 1-17

Table 3.3: Low Multiplicity Trigger Input Bits calculated on [ICN-ETM. Low multiplicity
trigger bits are used to find events that do not result from the e"e” — Y (4S) decay. These
bits are calculated using the clusters returned by the clustering algorithm. CM stands for
Center-of-Mass frame, while Lab is using the laboratory frame.



Chapter 4

Monte Carlo Data Simulation and

Preparation for Training

The training and evaluation of supervised machine learning algorithms require labeled data
which ideally contains all possible signatures later present in collision data. For this, several
technical datasets are simulated using the [MC|method. The overall simulation of the
ECL| and the L1 trigger|in basf2 is explained, along with the use of beam background
samples to create a realistic scenario. The design of the technical datasets for training of
the GNN-ETM, alongside the definition of training targets, is shown. Finally, the datasets

used to evaluate the (GNN-ETM) performance are explained.

4.1 Simulation and Reconstruction

HEP) generally has access to very good and fast simulations of both the particles’ decays
and interactions, as well as the detector response [45]. This means that the standard way
of developing new tools and analyses is done using simulated MC|data, while verification is
then done on collision data. In this thesis, simulated datasets are used to train the network,
provide a definition for the signal /background classifier, and evaluate the network’s general
performance and its performance on different processes.

The particle generation is simulated with different event generators (see Section 4.2),
the interactions of the particles with material are simulated with GEANT4, and the detector
response is simulated with basf2.

After a full simulation of a process in [Belle II, the simulated samples are then recon-
structed. Reconstruction is done in the same way for both collision data and MC| data and
transforms detector hits in the different subdetectors into reconstructed particle candidates.
A few steps differ between collision and [MC| data, for example, the calibration of the
detector response for collision data. These reconstructed particle candidates and their
properties are then available for analysts, whereas the raw detector hits are not stored in

the user-available format at Belle II. This means that for this thesis, no centrally-produced
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samples were available, as they do not contain the data objects necessary to build the

trigger objects necessary for this study.

4.1.1 ECL Trigger Simulation

The simulation package for the [Belle II trigger in basf2 is called [Trigger Simulation
(TSIM) and it creates the trigger objects from the simulated detector responses, in the
ECL case the ECL| hits. These hits include the detector response for both the particles
generated by the event generator and the energy depositions due to beam background. A
further explanation of beam backgrounds at Belle Il will be given in Section [4.1.3.

The [ECL crystal detector response is simulated for a time of + 4 s with the simulated
collision happening at t = 0s. For the correct trigger simulation, the T'Cs have to be built
out of the |[ECL|hits. For this, all detector hits are first binned into bins of 200ns. The
timing of the detector hits includes the time of flight of the particle generating that hit,
as well as the time needed to measure the electromagnetic shower at the photodiode. For
each [T'C and for all timing bins, the energy of crystals belonging to that 'TC|and that are

within the respective timing bin is summed up:

E™(T) = Z E;YR(T, (4.1)

with ET° (T') and EicryStal(T) being the reconstructed energy of a TC| and the i-th ECL
crystal in that TC in the respective timing bin. The timing of the TC is derived by an
energy-weighted average of the timing of the crystals within that [TC:

Crystal Crystal
S IO ) - B
Zj Eerystal(T>

TTC(T) (4.2)

with T79(T) and T°V*(T) being the reconstructed time of a TC and the i-th ECL
crystal in that T'C in the respective timing bin. For each TC|in each timing bin, an
approximation of the digitization process is performed and the fit of the digitized signal on
the FAM is simulated. After this fit, the energy threshold of currently 100 MeV is applied.
Because the energy cumulation and the digitization process are performed for each timing
step separately, simulated TCs| can appear multiple times in the resulting data array, if
the crystals within one T'C|fall in different timing steps.

After this simulation, a timing window has to be chosen to emulate the 250 ns decision
window of the real ICN-ETM. For this, the entire event time window of —4000 ns to 4000 ns
is separated into 125 ns bins. Only three center bins around 0 are taken into account, with
the middle bin starting at t = Ons. These three bins are then shifted to the left by a
random time between 0 and 125 ns to simulate the offset of the timing window to the true
event timing. The energy of all TCs within 250 ns from the start of the respective bins is

then summed up and compared for the three bins. The starting time of the bin with the
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Figure 4.1: Schematic description of the trigger window selection in simulation. The start
positions of the three bins are each 125ns apart. The start of bin 2 is chosen to be the
same timing as the event time = 0 and all three windows are then shifted to the left by a
random time between 0 and 125 ns. Each window is 250 ns wide and the window with the
highest energy sum of all 'TCs within that window is chosen.

highest energy sum is then the starting time of the simulated trigger window. A graphical
description of this process can be seen in Fig. 4.1l Only the [TCg with a timing within this
timing window are then used for clustering and calculation of the trigger bits.

The ICN calculation, as well as the clustering and the trigger bit determination, is done
with the same algorithms as described in Section 3.2 The same restrictions in terms of the
number of clusters and the order in which they are taken from the detector hold for the
simulation as well. For the conversion to the CM frame, the same LUT as the one used

on the hardware is applied to mimic the behavior as closely as possible.

4.1.2 Reconstruction of Offline ECL Clusters

To be able to run the same evaluations on collision data and IMC! data and to reduce MC
effects, the (GNN-ETM]|is trained on offline [ECL| clusters. The reconstruction algorithm
for the ECL| is run on the HLT and in the processing of the full data and returns offline
ECL clusters with their corresponding energy, timing |46, pulse-shape discrimination [35],
if applicable, and various shower shapes to help the particle identification. The description
of the reconstruction algorithm is based on [47] and [31].

The ECL reconstruction algorithm starts by building the so-called Connected Regions
(CRs). For these CRs, all crystals with a reconstructed energy above an energy threshold,
called seed threshold, are used as seeds for a |(CR. Starting from these seed crystals, the
energy of the neighboring crystals of each seed crystal is checked. If the energy is higher
than the growth energy threshold, this crystal is added to the |[CRL When encountering a
crystal already belonging to another (CR/ during that process, the two |CRs are merged
into one.

The purpose of building these CRs is that offline [ECLJ clusters should always be
contained in only one |CR) and not span several (CRs, which simplifies the clustering

algorithm in the next step. For the clustering, seeds for offline [ECL clusters, so-called
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Local Maximums (LMs), are identified in each |CR. A LM is a crystal with a reconstructed
energy above the [LM]| threshold and with no direct neighboring crystal with a higher
reconstructed energy. Each LM will become one offline [ECL cluster with only rare
exceptions. If a |CR|does not contain at least one LM, the highest-energetic crystal within
that |(CR) is set as an additional LM, If a |CR) contains more than 10 LMs, then only the
10 highest-energetic [LMs are chosen as offline [ECL cluster candidates and the remaining

are removed from the list.

If a |CR) contains only one LM, the energy of the offline ECL cluster corresponding to
this [LM is determined by the sum of energies of the LM|and a set number of neighbors
around it. The optimal number of neighbors is determined by the region of the LM (forward
endcap, barrel, backward endcap), the energy of the LM, and the background level in
the event, choosing the number of crystals for the offline ECL cluster within the 5x5 grid
around the LM In most cases, all crystals in the 5x5 grid excluding the outermost corners,

are used for the clustering.

If a |CR| contains more than one LM, the energy in each crystal can be split between
several offline [ECL| cluster. The algorithm tries to split the offline ECL clusters by
iteratively finding a stable center position for each offline ECL cluster, called a centroid
(CD). As a first step, the centroids are assumed to be the LMs. All crystals within the
same |CR|are assigned a weight for each centroid in this |CR|according to their energy and

their Euclidean distance d to the centroid:

exp(=C - d(P(CD), B)/Ry)

w; cp = E(CD) - S By - exp(—C - d(P(CD), P,))

(4.3)

In this case, i denotes the crystal for which the weight is calculated, ¥ and P are the
energy and the position, respectively, for either the crystal or the centroid. C' is a constant
factor set to 2.5 and Ry is the Moliére radius of CsI(Ti) crystals [48]|, which describes
the transversal expansion of an electromagnetic shower within a material. The sum in the

denominator is over all centroids within the |CR.

For each offline ECL cluster, the new centroid position of the assumed offline ECL
cluster, is calculated using the weights and positions of all crystals with a non-zero weight
within the (CR. This procedure is repeated until the positions of all centroids within the
CRl are stable within 1 mm.

There are two reasons a LM/ cannot become a offline [ECL cluster in this algorithm.
The first is if the position of the centroid has moved so much that it is now outside the
original |LM) crystal. The second reason is that by weight splitting, a crystal, which is
not the LM) has now more energy assigned to the hypothetical offline |[ECL] cluster than
the [LM]itself. In both cases, the [LM is removed from the list of [LMs. In this case, the
algorithm repeats the full iterative centroid calculation again until no further |[LMs| will be

removed.

After this, the offline [ECL) cluster’s energy and position are calculated by using the
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optimized number of crystals. The same algorithm as in the single LM case is used for
determining the optimal number of crystals. The energy of the offline [ECL| cluster is then
the sum of the products between the weight and the reconstructed energy of all crystals
belonging to this LM and the position is the centroid position of the reduced number of
crystals for this offline ECL cluster. The timing of an offline KCL| cluster is the timing
of the highest energetic crystal within that offline [ECL|cluster. The energy of the offline
ECL cluster is then additionally corrected to account for longitudinal energy leakage (see
Section 2.3).

In bast2, the offline ECL| clusters found by the reconstruction algorithm so far are
called |[ECL showers. For the actual offline [ECL clusters available after reconstruction,
two thresholds are applied. No shower below 20 MeV is kept. Additionally, if a shower is
below 50 MeV, a timing threshold is applied. If the shower has timing outside the 99 %
interval, that all showers within that energy range fall into, it is also not converted into
offline [ECL clusters. As for the ECL| [L1 trigger, we have an energy threshold of 100 MeV
per TC| these cuts do not make an impact.

For the current standard Belle II reconstruction, the energy thresholds used are 10 MeV
for the LM, seed and growth threshold. The current reconstruction is optimized for high
efficiency with moderate beam backgrounds and has performed very well for past data-
taking periods. However, with very high beam background levels, these thresholds lead to
very large (CRs spanning up to 3000 crystals. Due to this, the iterative centroid calculation
algorithm becomes unstable, as every crystal within one (CR]is used for the calculation
of every |[LM|in that [CR. In Fig. 4.2, the same event reconstructed with 10 MeV and
20 MeV for all three thresholds is seen. Especially in the backward endcap for the 10 MeV
reconstruction, many |[LMs are not converted into showers due to the algorithmic instability
in finding a stable centroid position. Even high-energetic [LMs| are removed in this case.
For future uses, based on findings during this thesis, the official ECL reconstruction will
be adapted to include a distance threshold, increase the energy thresholds, and allow the
centroid positions to move outside the original [LM. For this thesis, I increased the energy
for all three thresholds to 20 MeV. This greatly reduces the size of the |(CRs in high beam
background events, while not removing any offline [ECL| clusters of interest for the trigger

as we apply the energy threshold of 100 MeV for each [TC| on trigger level anyway.

4.1.3 Beam Backgrounds at Belle II

Currently, one of the main challenges at the Belle II experiment is the increasing beam
background rate when going towards higher instantaneous luminosity at the SuperKEKB
accelerator. Beam background originates from beam particles that do not follow the nominal
orbit and can therefore hit the beam pipe or other structures. In doing so, they generate
shower particles which, if the original loss happened close to the Belle II detector, can travel
into the active detector region and induce hits within the different subdetectors. These hits

can mimic signatures coming from the actual collision at the interaction point and lead to
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Figure 4.2: Crystal energy depositions with reconstruction objects for one event with Exp.
0 beam background. All crystals with a reconstructed energy > 1 MeV are shown with
their size proportional to the reconstructed energy. The colors of the crystals show their
CR. Crystals with a green circle are [LMs, the red triangular shapes show the positions
of reconstructed ECL showers. Each [LM| has the ID of its |(CR|annotated as well. The
upper plot is reconstructed with 10 MeV energy thresholds, the lower plot with 20 MeV.
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either a wrong interpretation of the event or a worsening of the correct reconstruction due
to smearing of the energy or tracking resolution, for example.

The measured beam background in the detector is a result of several background
components, where some, but not all, are proportional to the luminosity. The main sources

of beam background in Belle II [49] are explained in the following.

Touschek Background The Touschek effect is the effect of an exchange between trans-
verse and longitudinal momentum of a particle due to the Coulomb scattering of two
particles within the same bunch. When two particles scatter, one of them loses energy
while the other gains energy, making both of them deviate from the nominal beam energy.
The nano-beam scheme at SuperKEKB reduces the beam size and therefore increases the

rate of Touschek scattering, which is inversely proportional to the beam size.

Beam-gas Background As the vacuum within the beam pipe is not perfect, beam
particles can either interact via Coulomb scattering with Beam-gas particles, thereby
changing direction, or emit Bremsstrahlung in the presence of Beam-gas particles, which

results in an energy loss of the beam particles.

Luminosity Background This background source results from beam collisions at the
IP and is therefore proportional to the luminosity. One major source is radiative Bhabha
scattering, e'e” — e+e_fy, where the beam particles lose energy by emitting photons.
These beam particles can then be lost inside the detector. Additionally, photons emitted
along the beam pipe can travel further outside [Belle II and hit the accelerator magnets
downstream of the IP. This interaction can then result in neutrons via the giant photo-
nuclear resonance, which can be scattered back towards the detector. These neutrons
then hit the outer [ KLM]| and increase the hit occupancy there. Another source can be

ete™ = eTe"eTe™, where the beam particles lose energy by emitting an electron-positron
pair. In addition to the beam particles becoming a source of background, the emitted

charged particles can curl within the magnetic field and leave hits in the tracking detectors.

Synchrotron Background The synchrotron radiation, especially emitted by the HER
electron beam due to its higher energy, is a background source especially for the inner

tracking detectors. The synchrotron photons can leave hits in both PXD|and SVD.

Injection Background So-called top-up injections are performed for both the LER and
HER beams in a continuous injection scheme. This injection is done at a maximum of
25 MHz. Bunches that have been newly injected oscillate around the main beam for a short
time after injection. This increases the beam background rate by a high factor. Therefore, a
special injection veto is applied by the trigger to veto all events that would pass the trigger

for several milliseconds after injection. This avoids Data Acquisition (DAQ) dead time
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and read-out saturation. While for past data-taking periods, a so-called passive injection
veto has been used, which vetoed a set time after injection, in the most recent data-taking
period an active injection veto was tested. This relies on measurements of the CDC and

ECL trigger to gauge the amount of beam background and reduce the veto time.

Beam Background Overlays for MC Simulation

For simulated samples, beam background hits have to be included to correctly model
the experimental conditions at the [Belle II detector. For this, [basf2 can be provided
with so-called beam background overlays. These are either simulated beam background
overlays, called run-independent (ri) background samples, or overlays taken from data,
called run-dependent (rd) background samples.

For samples taken from data, a dedicated trigger is employed to get the rd background
overlays. As this trigger should be proportional to luminosity, a delayed Bhabha trigger bit
is used. This trigger bit fires after a set time after the Bhabha trigger bit has triggered.
The delay time is set to the time it takes the bunch, which has been at the IP at the time
of the Bhabha trigger, exactly five revolutions around the accelerator ring. These triggered
events are then stored with full detector information, including full waveform data for all
ECL crystals. This information is needed for their usage as background overlays. Due to
this, these events are much bigger in terms of data size and the total output rate of the
delayed Bhabha trigger has to be limited to about 5 Hz.

The beam background files for rd overlays are available for every run in Belle II. For
analyses, the MC| datasets are usually simulated for every run with the corresponding rd
beam background overlays.

For Iri samples, the beam background simulation is done using both the Strategic
Accelerator Design (SAD) framework [50] to simulate the Beam-gas interactions, both
Coulomb scattering and Bremsstrahlung in the presence of Beam-gas particles, and Touschek
scattering, while the luminosity background is simulated using event generators within
basf2. For the luminosity background, radiative Bhabha events using the event generators
BBBREM [51] and BHWIDE [52] and di-photon processes using AAFH [53] are simulated.
In the case of the SAD simulation, the framework is initialized with beam optics parameters
and machine apertures and tracks beam particles around the ring for 1000 machine turns.
The beam currents and the beam-gas pressure are also input to the framework. For the
simulation for Belle II, a refined description of the collimators is added as well as a new
simulation of the beam particle interaction with the collimator materials. Additionally,
the SAD to GEANT4 interface has been improved to correctly model the curvature of beam
pipes and the collimator shapes. The simulated region, in which lost particles are passed to
GEANT4, is extended up to 30 m outside the IP along the beampipe.

All simulated components are then mixed to produce the i background overlays. The
mixing factors, which determine the relative strength of each background component in the

overall beam background, are tuned to optimize data/MC agreement [49]. Belle Il provides
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different i background samples for different detector and accelerator conditions. The
sample for Exp. 1003 uses the detector and accelerator conditions in the data-taking period
between 2019-2022, before LS1. These conditions are also called low beam background, as
the average occupancy of the sub-detectors was significantly lower than after LS1 due to the
lower instantaneous luminosity.Exp. 0 is used for the extrapolated accelerator and detector
conditions after LS2, and uses a much higher instantaneous luminosity at 6 x 10% cm 257!
and therefore significantly higher beam background than current conditions and especially

Exp. 1003.

Effects of Beam Background and Measurements of Beam Background Levels

Most reconstruction algorithms are dependent on the amount of beam background visible
in the detector, as for example tracking efficiency, photon energy resolutions and trigger
efficiencies suffer under high beam background conditions. For this, beam background can
be monitored with several variables, the two most common within Belle Il are the number
of out-of-time crystals in the [ECL| and the number of offline [ECL] clusters in the ECL.
Out-of-time crystals are all crystals that have a timing [¢| > 110ns relative to the event
timing and an energy above 7 MeV.

In Fig. 4.3 a comparison for out-of-time crystals and number of offline ECL clusters
for five different simulated samples with 10000 events each can be seen. All detector hits
can be attributed to the different beam background overlays used. Four samples with rd
overlays from different runs are shown, and one sample with [ri overlays from Exp. 1003.
The Exp. 22, Run 26 data was taken at the beginning of Belle Il data-taking in 2021, Exp.
26, Runs 898 and 1485 were taken at the end of the first full data-taking period in 2022,
and Exp. 35, Run 2902 was taken in December 2024. The beam background conditions
rise significantly with later runs, due to higher instantaneous luminosities.

The simulated beam backgrounds of Exp. 1003 have similar hit occupancies in the

ECL as Exp. 26, which has medium to high beam background conditions.
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Figure 4.3: Number of out-of-time crystals and offline ECL| clusters for simulated samples
with different background overlays. The amount of beam background rises with later runs
due to higher luminosities.
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Figure 4.5: Number of TCs per 6 ID (left) and ¢ ID (right). The rightmost ¢ IDs are only
present in the barrel region.

Additionally, the number of [TCs and ICN-ETM  clusters can be seen in Fig. 4.4 for
the same runs. These "fake" clusters can mimic depositions made by particles originating
from the collision and worsen purities or increase trigger rates. As the ICN-ETM) does
not distinguish between signal or background clusters, rising rates of clusters due to beam
background increase the probability of events being triggered.

To see the impact of beam background in the different detector regions, Fig. 4.5/ shows
the number of TCs per 8 and ¢ ID. The 8 ID distribution shows the large percentage of
beam background energy depositions in the backward endcap, specifically in the inner ring,
which corresponds to 8 ID = 16. In general, the number of background energy depositions
rises towards the backward endcap. The distribution in ¢ is more uniform. The significantly
lower contributions in ¢ IDs above 33 is due to the fact, that this ¢ IDs only appear in the
barrel region as the endcaps have less TCs. This is also the reason for the visible repeating
peaks, which correspond to the ¢ IDs existing in both barrel and the endcaps.

To classify the impact of beam background for the overall trigger, trigger rates are
estimated for different beam background conditions. For an approximate calculation of

trigger rates due to beam background, the presence of beam background is assumed to be
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Figure 4.6: Estimated trigger rates for simulated samples with different background overlays
for pure ECL| trigger bits. The plot shows the [F'I'DL trigger rate, which is the non-
prescaled rate for the corresponding trigger bits.

constant at all times instead of using a cross-section as in the case of a specific process.

The rate of a trigger bit for beam background can therefore be calculated by

Ry = (4.4)

N(all)  250ms’
where N is the number of simulated events, bit is the chosen trigger bit and 1 / 250 ns is the
time frame of one trigger window. As described in Section [3.2] in the actual implementation
two adjacent windows cannot both generate a trigger signal, but this can still be taken
as an estimate. In Fig. 4.6, an estimation of the trigger rate due to the presence of only
beam background is shown for the different samples. This figure visualizes two things: first,
that the Exp. 1003 [ri background simulation is a good approximation for past background
conditions in mid-2022, outside of runs with very high backgrounds. Two, that the trigger
rates rise significantly already with beam background levels in the last runs of Belle II.
If increasing the luminosity by an order of magnitude more, the overall rate will quickly
exceed the maximum allowed rate of 30 kHz. Due to this, the development of adjustable or
robust reconstruction algorithms in changing beam background conditions is necessary for

the Belle II experiment.

Beam Background Overlays for Training and Evaluation Datasets

For [M(C|simulation, the detector hits originating from the simulated signal particles are
overlaid with hits coming from either ri or rd background overlays for all subdetectors.

The overlay strategy differs for each subdetector.
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Figure 4.7: Number of [TCs with MC| energy deposition from an 80 MeV photon in 30000
events. The number of TCg with MC energy deposition is shown for events with i
overlays, rd overlays from Exp. 26, Run 1485, and no overlays.

For |rd| background, the information is directly taken from the measured TCg in data
and not reconstructed from ECL crystals. As the energy threshold for the TCsglis set as a
hardware threshold, this information already has the 100 MeV threshold applied. While
this is, of course, an accurate modeling of the detector response for the randomly triggered
events, this underestimates the actual amount of background energy in the calorimeter,
if used as background overlays. This is due to the fact that for rd| background overlay
the energy threshold of 100 MeV is applied separately on signal and on background energy
depositions due to the usage of the measured TCs| from data. In Fig. 4.7 an example
comparison of the number of TCs with [MC| energy depositions for 30 000 MC| events
with a single 80 MeV photon with ri background overlay, rd|background overlay and no
background overlay is shown. For i background overlays, if the MC photon deposits
its entire energy with 80 MeV in one [I'C, 21 MeV beam background energy deposition
is enough to surpass the 100 MeV cut. In comparison, for rd background overlays either
the MC energy deposition or the background energy deposition separately have to exceed
100 MeV.

As the presence and possible increase of beam background energy depositions in the
ECL| are key reasons for developing this algorithm, an underestimation of beam background
in simulation can significantly impact the algorithm’s performance in real data-taking. The
background overlays are centrally produced from events triggered by the delayed Bhabha
trigger within Belle II, which means that a reproduction of rd/ beam backgrounds to
reconstruct the [T'Cs from |[ECL| crystals instead of taking them from data was not feasible
within the scope of this thesis. Additionally, as can be seen in Section 4.1.3 the Exp. 1003
ri background overlays approximate beam background conditions of the data-taking period

in 2022 well and can therefore be used in the context of this study.
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4.2 Training Inputs and Targets

Training the network and performance evaluation of the different trainings is done on both
"technical" simulated datasets, meaning that they do not obey any conservation laws or
follow decay chains, and on datasets consisting of simulated processes et Jre_(’y) or
ete” = ,qu,Lf(v). This section describes the inputs to the network, the definition of truth

e —e

labels and the selection of events for training. The technical datasets are then described in

Section 4.3, while the physics evaluation datasets are described in Section 4.4.

4.2.1 Inputs

Input nodes for the network are all TCs|that have an energy deposition above 100 MeV
and are within the timing window of 250 ns of the trigger decision. These [T'Cs|are taken
from the |basf2 TSIM) as well as the start of the timing window, which is determined by
basf2| as described in Section 4.1.1. For each [TC, I read out the TC ID, the energy in
GeV and the timing in ps. As the absolute timing is arbitrary and not comparable for
MC| and data, I use the difference of the T'C time to the highest energetic T'C within the
timing window as an input. Using a set |[LUT for the center position of each [T'C| I map
each TC with its TC ID to its Cartesian position (x,y,z) in m. The input variables and
their approximate range can be seen in Table 4.1. In general, the input variables are not
normalized or scaled to any range.

As explained in Chapter 6, due to hardware constraints, the network is restricted to 32
input [T'Cs. If a timing window contains more than 32 [T'Cs, the input is truncated at 32.
In Fig. 4.8, the number of TCs per trigger decision window (see Section 3.2) is shown for
Exp. 35, Runs 2882 - 2896, for events with at least one [T'Clabove 100 MeV, corresponding
to 2596050 events in total. The threshold of 32 [TCsis shown. Very few events are above
this threshold, even though these runs have high beam background levels.

The ordering of the [TCs for the GNN-ETM) is arbitrary, which results in an arbitrary
cut-off in the case of too many TCs per timing window. An ordering based on more
relevant detector regions is a possibility for future work, but has to be additionally feasible

for the hardware implementation.

Table 4.1: Input variables for each TC to the network. These variables are available in
both |[MC data and collision data.

Input variable approx. Range Unit
Reconstructed Energy [0, 12] GeV
Relative Time [-0.25, 0.25] ms

x Position [-1.27, 1.27] m

y Position [-1.27, 1.27] m

z Position [-1.05, 1.97] m
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Figure 4.8: Number of TCs in the trigger decision window per event for collision data
taken in December 2025. Only events are shown that have at least 1 [T'C|over 100 MeV.
The red line corresponds to the cutoff of 32 [T'Cs.

4.2.2 Training Targets

As T use a supervised learning strategy for this work, correct training targets (also called
labels) are required. The GNN-ETM is a node regression network, where each input TC
is a node in a graph and will have several prediction values given by the network. Each
node receives one truth value for all variables which should be predicted by the network.
To reduce the dependency on MC]| truth values, the network is trained on the offline [ECL
clusters given by the offline reconstruction (see Section 4.1.2). For this thesis, the network
output consists of the object condensation targets 5 and the latent coordinates, explained
in Section 6.2.1, and the offline ECL cluster targets. The offline ECL cluster targets are
the offline ECL cluster energy in GeV, the position in m and a signal /background label.

offline [ECL| cluster energy and position are taken from the offline ECL clusters.

Signal /Background Label

One network output value is a signal/background classifier label between 0, meaning
background, and 1, meaning signal. This can help in trigger decisions to determine if an
event should be kept or if the clusters are mainly caused by beam background. Therefore,
every offline [ECL cluster target has to have a signal or background label, which the network
can then attempt to learn. offline ECL clusters should be classified as signal if they are
caused by a particle that was produced in the original collision or decay products of these
particles and as background if they originate from beam background.

For this study, the offline [ECL showers are used to avoid the cut for low-energy offline
ECL clusters. This has no impact on the results and will be used interchangeably.

In MC| data, for each offline [ECL|cluster, the percentage of signal energy deposition is
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calculated as well, to determine the true signal /background label. Two values are relevant
in this context, the MC Ratio, which is the ratio of MC| energy deposited in the shower
by a given MC]| particle over the full energy of the MC particle and the Cluster Ratio,
which is the ratio of the deposited [MC| energy in the offline [ECL| cluster over the full
offline [ECL| cluster energy:

Cluster Cluster

MC Ratio = —MCParticle )4 Cluster Ratio = w : (4.5)
. uster
MC Particle E

with Eﬁ{%i};;tide being the energy of a |[MC| particle deposited in a offline ECL| cluster,
EST the offline ECL cluster energy and Eyjcparticle the generated MC particle energy.
These values can be calculated for each [MC| particle and for each offline [ECL| cluster. In
the standard MC matching of basf2; a offline KCL|cluster is then matched to an MC
particle if the MC Ratio exceeds 0.3 and the Cluster Ratio exceeds 0.2.

In Fig. 4.9, the distribution of the Cluster Ratio over the MC Ratio for 11000 events
from the technical category-one dataset described in Section 4.3.1 is shown. Each offline
ECL cluster is only shown once, even if it has energy depositions from different MC
particles. The Cluster Ratio and MC Ratio is then shown for the MC| particle with the
highest MC Ratio. The four plots depict the different detector regions, where the offline
ECL cluster are categorized in by their reconstructed 6 angle. The red dotted lines show
the |basf2 MC| matching cuts of 0.3 for the MC Ratio and 0.2 for the Cluster Ratio. The
offline [ECL clusters that would be MC| matched in |basf2 are located in Region II. As
shown in Fig. 4.9, offline ECL clusters located in the barrel are primarily in Region II, with
over 99.6 % of all offine ECL clusters. These offline ECL clusters are usually signatures
where a single photon has hit the ECL directly and deposited most of its energy directly
at its hit location. These are classified as signal.

For all three detector regions, a higher amount of entries can also be found in Region IV,
at (0.0, 0.0). These offline ECL clusters are "true" background, without any MC energy
deposition, and are therefore classified as background. A rather small number of entries are
in Region III. These usually occur, when a low-energetic MC]| particle has deposited a high
percentage but a small absolute amount of its MC| energy in a offline [ECL cluster. This
offline [ECL cluster is then either a higher-energetic true background offline ECL| cluster
or a offline [ECL cluster with a higher amount of absolute MC]| energy from another MC
particle, which has not deposited a high percentage of its total energy in this cluster. In the
second case, these offline ECL] clusters are in Region III due to the sorting by highest MC
Ratio. offline |[ECL clusters in either Region III or Region IV are classified as background.

A non-negligible percentage of offline [ECL clusters, especially located in the forward
or backward endcap, are sorted into Region I. offline ECL clusters in these regions have
almost always a Cluster Ratio close to 1. In the standard definition of basf2, these would
not be classified as signal, even though the energy in these offline ECL clusters is almost

exclusively deposited by MC]| particles.
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Figure 4.9: Cluster Ratio over MC Ratio for offline ECL showers with energy depositions
from particles originating from 11000 events of the technical category-one sample (see
Section 4.3.1). The top left plot shows the distribution for offline ECL cluster ECL showers
in the full [ECL detector, top right for the barrel part, lower left for the forward endcap,
and lower right for the backward endcap. The red lines indicate the basf2|standard cuts of
0.2 and 0.3 to label a offline ECL shower as MC matched.
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Figure 4.10: Euclidean distance of all offline [ECL clusters to the closest other offline ECL
cluster for all four regions of cluster MC matching for the full [ECL|detector. The colors
indicate if the closest other offline [ECL cluster has the highest MC Ratio to the same MC
particle as the tested offline [ECL cluster, to a different MC| particle or to no MC]| particle,
which tags it as a beam background offline ECL| cluster. On the top left the tested offline
ECL clusters are in Region I, top right in Region II, in lower left in Region III and lower
right in Region IV.

The reason for the low MC Ratio of these clusters can be seen in Fig. 4.10. In these
plots, the Euclidean distance for all offline [ECL| clusters to its nearest neighbor is shown.
The tested offline [ECL clusters are separated into the four regions for the four plots, while
the closest offline [ECL cluster can be in any region. The distributions are separated into
three categories: 1, if the MC| particle with the highest MC Ratio for the closest other
offline [ECL cluster is the same MC| particle as in the original offline [ECL| cluster; 2, if
the [MC]| particle with the highest MC Ratio for the closest other offline ECL cluster is a
different MC)| particle as in the original offline |[ECL cluster; and 3, if the closest other
offline [ECL cluster does not contain any MC particle energy depositions. As can be seen
in the top left plot in Fig. 4.10, the offline |[ECL clusters in Region I are predominantly
close to a offline [ECL cluster assigned to the same MC particle. This is not visible in
other regions, indicating a splitting of one particle’s energy into several offline ECL| clusters.
Due to this, each of the offline [ECL|clusters from the same particle is not reaching the 0.3
threshold of the MC Ratio, while still having a majority of the total energy in that offline
ECL cluster originating from an MC particle.
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Figure 4.11: Euclidean distance of all offline ECL clusters to the closest other offline
ECL cluster for Region I of cluster MC| matching for the forward endcap (left) and the
backward endcap (right). The colors indicate if the closest other offline ECL cluster has the
highest MC Ratio to the same [MC particle as the tested offline [ECL| cluster, to a different
MC particle or to no MC| particle, which tags it as beam background. Additionally, the
distributions are split up into the trigger 6 1D of the position of the tested offline ECL
cluster.

One main factor of this effect is the interaction of photons with detector material at
the edges of the detector. In Fig. 4.11, the distance to the next offline ECL] cluster for
all offline ECL| clusters in the forward endcap (left plot) and the backward endcap (right
plot) is shown. The distributions are again split up by the different categories of the closest
offline [ECL cluster. Additionally, a split into the TC|# IDs of the position of the tested
offline [ECL cluster is done (see 6 IDs in Fig. 3.5). Most of the offline ECL clusters are
located in the innermost 6 ring in both endcaps, which corresponds to TC|8 ID 1 in the
forward endcap and TC # ID 17 in the backward endcap. This indicates that photons
interact with the material between the beam pipe and the inner rings of the ECLL Due to
this material interaction, the electromagnetic shower started by the photons can already
begin outside the ECL|instead of in the crystals. This leads to a much wider shower spread
and to a reconstruction of multiple offline [ECL clusters instead of a single offline ECL

cluster for the original photon.

Nevertheless, these offline |[ECL clusters are products of MC particles originating
from the primary interaction. For the network training, these should be tagged as signal.
A further argument is the analysis of offline [ECL| clusters from other MC| particles
than photons. In Fig. 4.12, the distribution of MC Ratio and Cluster Ratio in 10000
ete” — B'BY decays for different primary MC| particles is shown. The particles, which
deposited energy in the offline ECL|cluster, are again sorted by MC Ratio, and only the
particle with the highest MC Ratio is kept. If this particle is a primary |[MC photon,
electron, muon, or pion, the offline ECL cluster is shown in one of the plots. On the top left
plot, the distribution for primary photons is shown. As primary photons in ete” — B’B°
decays mainly originate from neutral pion decays, the energy and position distribution is

very different in comparison to the technical sample. Additionally, the offline [ECL clusters
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Figure 4.12: Cluster Ratio (y-Axis) over MC Ratio (x-Axis) for offline ECL clusters with
energy depositions from primary particles originating from 10000 ete” — B'BY decays.
One offline ECL cluster only appears in a single plot, as it is assigned to the particle with
the highest MC Ratio. The top left plot shows the distribution for primary photons, top
right for primary electrons, lower left for primary muons and lower right for primary pions.
The red lines indicate the basf2 standard cuts of 0.2 and 0.3 to label a offline [ECL cluster
as | MC matched.

of these photons often overlap, which can explain the wide spread of the distribution in y
for values close to MC Ratio == 1. The offline [ECL clusters assigned to primary electrons
(upper right plot) behave very similar to the photon distributions of the technical sample.
In comparison to that, offline [ECL| clusters assigned to primary muons and pions are very
often located in Region I. This is due to the fact that muons as minimum ionizing particles
in most cases only deposit 200 MeV in the ECL, regardless of their total energy. Pions
as hadronic particles interact hadronically with the ECL and also only deposit a fraction
of their total energy in the [ECL. In both cases, offline [ECL clusters in Region I should
still be classified as signal, as in the ECL |L1 trigger we do not have access to tracking or

KLM]| information at the time of clustering.

As a result, for this work, offline ECL clusters in Region I and Region II are classified

as signal, regardless of their MC Ratio.
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Building of Target Clusters

For each TC| the corresponding target cluster is the cluster, whose energy is the highest
percentage of energy within the TCL As described in Section [4.1.2 the energy of an [ECL
cluster is calculated by summing up the weights of the crystals belonging to that cluster.
To now determine the percentage of energy of a given cluster within a [TC| I build Pseudo
TCs out of the |[ECL crystal energy depositions. This is necessary as the TSIM TCs do
not contain the reconstruction information of the underlying ECL] crystals.

Each [ECL crystal has several energy values, the reconstructed energy E... in this
crystal, the partial energy E; belonging to the i-th offline [ECL cluster in this crystal, and
the background energy Eyy,, which is calculated by

Ebkg = Erec — Z E; . (46)

To construct the Pseudo TCs, I add up the energies of all crystals that belong to one TC.
Each TC then also has the energy values E,.. ", E;, and Epyg. For each Pseudo TC, I
check which E; has the greatest absolute value in this TC and assign this Pseudo TC the
corresponding offline ECL cluster i as a truth value. If Ey,, is greater than every E;, the
Pseudo TC does not have a truth label. For every input TC|given by TSIM, I now find
the corresponding Pseudo TC and the assigned offline ECL| cluster. The reconstructed
energy, position and signal /background label of this assigned offline ECL cluster is then
the truth label for this TCL

4.3 Training Datasets

To train the network, the datasets should represent different cluster signatures equally and
contain all structures that the network should learn and be able to distinguish. For this

network, which should improve the ECL| L1 trigger, two focus points are set:

e Signal/Background Classification: With increasing beam backgrounds, a higher
number of offline |[ECL clusters, even above the 100 MeV but not originating from
the primary interaction, will be reconstructed in the ECL. The network should
be able to distinguish between clusters from beam background and clusters from
particles generated by the collision. Beam background clusters are predominantly
low-energetic, but many low-multiplicity or dark sector processes also have only
low-energetic clusters as their signature. To avoid the network learning a simple
energy or timing cut, the so-called Category-One sample is constructed and explained
in Section 4.3.1.

e Overlapping Clusters: The ICN-ETM) can by design not separate clusters, which

*Ideally, E,. is the same value as the energy for that [TC|as given by TSIM, but due to the modeling
of the hardware in T'SIM, the values might differ.
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hit adjacent TCs due to the ICN algorithm. This is one major point of improvement to
increase trigger efficiencies for signatures that can be, when two adjacent particles are
not resolved, mistaken for eTe” — eTe” () or simply suffer from efficiency decreases.
This problem is addressed by the construction of the so-called Category-Two Sample

in Section 4.3.2.

In general, the network should not learn biases that are introduced by the construction
of training samples. To avoid this, the training samples are technical samples, disregarding
any conservation laws or physical constraints given by the original collision. For both
the Category-One and the Category-Two sample, 1-6 photons are generated by using the
ParticleGun module of basf2. For simplifications, and as the [ECL]is the only detector
reliable for photons, the generated MC| particles are solely photons. For the training
samples, the photons are generated with a starting position at (0,0,0), with a timing of
Ons. The energy is sampled from a uniform distribution between 0.05 and 7 GeV. The ¢
angle is sampled uniformly between 0 and 360°, covering the full ¢ angle of the detector.
The # angle is sampled uniformly between 5° and 175°. This covers a larger region than
the ECL acceptance, which is between 12.4° and 155° to also include signatures, where
particles from the collision are emitted very close to the beam pipe.

For the training of the networks deployed during data-taking at Belle II (see Sec-
tion 6.5.2), ri Exp. 1003 beam background overlays were used.

4.3.1 Category-One Sample

For the Category-One sample, the goal is the mitigation of the bias for low-energetic beam
background offline [ECL clusters. As the energy distribution of the base dataset is uniform
over the entire energy range, the beam background offline ECL clusters heavily dominate
in the low energy region. Therefore, the sample is enriched with additional, low-energetic
MC photons to model the energy distribution of the beam background offline ECL clusters.

Fig. |4.13 shows the number of offline ECL clusters per event and the distribution of
offline ECL| cluster energies for events with only beam background energies (as described in
Section 4.1.3). The number of offline ECL clusters is modeled with a Poisson distribution,
whereas the energy distribution is approximately modeled via an exponential fit, as shown
in the plots.

While it is difficult to know the original energy of particles that are the cause of the beam
background offline [ECL clusters, they can be modeled via photons with the same energy
as the offline |[ECL cluster. Low-energetic photons deposit in most cases their entire energy
in the [ECL and have only a small amount of leakage. Therefore, I generate additional

ParticleGun photons following the distributions obtained from the fits in Fig. |4.13:

Exp.1003: P(N,)="—e®, P(E,) = 07305 (4.7)
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Figure 4.13: The number of offline ECL clusters (left) and the energy distribution of these
offline [ECL| clusters (right) in events with only beam background energy depositions. The
energy distribution is approximately modeled via an exponential fit. The beam background
overlays used are i Exp. 1003 overlays. The fit parameters are indicated on the plot.

If a generated photon energy is below 50 MeV, I redraw from the distribution until the
generated energy is above 50 MeV. The 6 and ¢ angles are chosen as explained before in
a uniform way over the whole detector. This of course does not model beam background
distributions perfectly, as they are more prevalent in the backward direction. One possible
task for future work is to study the impact of an improved modeling of the angular
distribution on the signal /background classifier.

In Fig. 4.14, the number of offline |[ECL|clusters and the energy distribution of offline
ECL clusters is shown. In both plots, one distribution is from events only consisting of
energy depositions from beam background overlays. They are compared to events where no
beam background overlays are used, but the energy depositions come from ParticleGun
photons following the Poisson distribution and the exponential fit in terms of the number
and energy of the photons. The plots show a good agreement between distributions. As
this should only avoid an imbalance between true signal and true background offline ECL
clusters, only similar distributions are necessary. For the energy distribution, offline ECL
clusters below approximately 80 MeV will not be visible on trigger level due to the 100 MeV
threshold. Therefore, the larger disagreement for low energies is acceptable.

For the Category-One sample, the 1-6 photons are simulated as explained in the previous
section, and additional photons, following the energy and number distribution depending
on the beam background overlay used, are added. This leads to the distributions in terms
of generated MC particle energies and angles shown in Fig. 4.15 and offline ECL cluster
energies and angles shown in Fig. 4.16. While the 0 distribution for the generated particles
is uniform, an excess in reconstructed offline ECL|clusters in the backward endcap is visible.

This is due to beam background, which is more prevalent in the backward endcap.
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Figure 4.14: The number of offline ECL| clusters (left) and the energy distribution of
the offline ECL clusters (right) in events with only beam background energy depositions
compared to the number and energy of offline |ECL clusters in events with only MC|particles
generated following the approximated distributions. The beam background overlays are ri
Exp. 1003 overlays.
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Figure 4.15: Energy (top left), 6 (top right) and ¢ (bottom) distribution of the generated
MC| photons for the Category-One and Category-Two training sample. The red lines in the

0 plot indicate the ECL| acceptance, including the gaps between the barrel region and the
endcaps.
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Figure 4.16: Reconstructed Energy (top left), reconstructed energy for the low-energy
region between 0.01 and 1 GeV, 6 (bottom left) and ¢ (bottom right) distribution of all
reconstructed ECL clusters for the Category-One and Category-Two training sample.

4.3.2 Category-Two Sample

For the Category-Two sample, the network should learn to distinguish overlapping clusters.
While there is no requirement for the original 1-6 simulated photons to have a minimum
angular separation, on average the photons will hit the ECL| with a wide enough distance

to have clearly separated clusters.

To mitigate this, for this sample two additional photons are generated with the
ParticleGun module with an opening angle between the generated direction of the two
particles between 0.05 and 0.2rad (= 2.8° - 11.2°). The generated energy values for photons
are drawn from the same distribution as for the 1-6 photons. For 8 and ¢, the first photon
values are drawn from the original distributions. For the second photon, the opening angle
between both particles is drawn from a uniform distribution between 0.05 and 0.2 rad, and
the momentum vector of the first particle is first rotated by the opening angle and then by
a randomly drawn value between 0 and 27. The distributions for energy, § and ¢ of the
generated |MC)| particles can be seen in Fig. 4.15, The energy distribution is flat over the
whole energy region in comparison to the Category-One energy distribution. The tails of
the @ distribution outside the original generated range in comparison to the Category-One
sample can be explained by the creation of the second, close-by particle with the rotation

of the momentum vector.
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Figure 4.17: FEuclidean Distance to the nearest cluster in the Category-One and the
Category-Two dataset. For each reconstructed ECL| cluster, the nearest neighbour in
Euclidean distance is found and plotted here. The number of clusters with a small distance
to their next neighbouring clusters dominate in the Category-Two dataset.

The overall distribution in energy, 8 and ¢ for the reconstructed showers in the Category-
Two sample can be seen in Fig. |4.16. Due to the two additional particles, the average
number of higher-energetic offline |[ECL clusters is higher for the Category-Two sample,
while the low-energy offline [ECL clusters dominate in the Category-One sample.

In Fig. 4.17, the minimum distance for each cluster to the nearest other cluster in
the baseline 1-6 photon dataset and the Category-Two sample is shown. The peak for

close-together clusters is noticeably increased.

4.4 FEvaluation Datasets

The evaluation of the network is done on test datasets for both the Category-One and
Category-Two simulations. To further test the performance of the network on overlapping
clusters and to reduce the uncertainty due to other effects, a fixed-energy overlap sample is
simulated as well. In this sample, two photons with an opening angle between 0.05 and
0.2rad are simulated with the ParticleGun module. Both photons have the same energy
to simplify the evaluation. This does not necessarily cause two offline ECL| clusters with
the same energy but reduces the effect of energy imbalance.

Additionally, several physics samples are simulated to evaluate the network’s performance
and calculate trigger efficiencies. Collision data, not simulated samples, with which the
algorithm is evaluated, will be explained in Chapter |8.

For the physics evaluations, the following datasets are simulated:
ete” — ete” (7v) As this process is the process with the highest production rate at
Belle 11, the trigger rates have to always be monitored to avoid strongly increasing rates.

Due to the favored low-angle emittance of the outgoing electrons and positrons, 10 Million
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Figure 4.18: Generated energy and 6 angle for the electron, positron and any radiative
photons from the e e” — eTe™ () process.
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Figure 4.19: Sum of the electron and positron energy over the photon energy (left) and the

electron @ angle over the photon 6 angle for particles from the eTe™ — eTe” () process.

samples with a requirement of the 6 angle for the outgoing e/ et between 10° and 170° in
the generator are simulated with BABAYAGAGNLO ([54]). This results in a cross-section of
295.4nb. After the event generator, further cuts on the generated particles are added, with
6 for the electron and positron between 12.4° and 155.1° and at least two charged particles

in the generator. This reduces the 10 Million events to 2.5 Million events.

Fig. 4.18 shows the generated distribution of particle energy and 6 angle for the electron,
positron and any additional, radiative photons. The two leptons have very high momentum
and are peaked into the forward and backward direction, for the electron and positron,
respectively. The photons are preferably emitted alongside the beam axis. Fig. |4.19|shows
the sum of the lepton energies over the photon energy in the left plot, which is clearly
anti-correlated. To select events without high-energy photons, requiring the two tracks to
have high momentum suffices. Additionally, the right plot shows the 6 angle of the photon
over the # angle of the electron. The angles are either positively correlated, so that the
photon is emitted alongside the electron, or negatively correlated, so that the photon is

parallel to the positron.
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Figure 4.20: Generated energy and 6 angle for the p u+ and any radiative photons from
the e e™ — pp (v) process.

ete” — u+u_ () This process has a rather high cross-section at 1.15nb and can be

selected as a very clean sample for data- MC| comparisons. As muons in Belle II] are
minimum ionizing particles, they deposit only an average of 6 MeV em ™' in CsI(Ti) crystals
[55]. As the crystals in the ECL, as explained in Section 2.3, are approximately 30 cm long,
muons deposit around 200 MeV in the ECL|with the energy deposition being contained in
one crystal usually. This leads to clean selections and lower-energetic ECL clusters, which
pose a challenge for the trigger. For this sample, 1 Million events are simulated with the
KKMC generator (]56]) without any generator cuts.

Fig. 4.20 shows the generated energy and 6 angle for the u u+ and any radiative
photons. In contrast to e e” — e+e7(7), there is no clear energy or # distinction between
the p= and ,u+, but they are both nearly uniformly distributed in 6 over the entire range.
For the generated energy, the two peaks at 4 GeV and 7 GeV are visible, corresponding to
the [HER] and [LER|beam energy. Any radiative photons are preferably emitted along the

beam axis.

Pure Beam Background As the maximum trigger rate cannot get above 30 kHz even
in high beam background conditions, the performance of the network has to be checked
on samples only containing beam background to ensure a small false trigger rate. This is
of course only an approximation of the real conditions during [Belle II data-taking. For
this, 500000 events containing only hits from ri Exp. 1003 beam background overlays are
produced.



Chapter 5

Metrics

To evaluate the performance of the different network trainings and make them easily
comparable, several metrics have to be implemented. While the network’s loss is a good
indicator if a network will perform reasonable or not, due to the high complexity of the
OC loss, explained in Section 6.2.2, the overall loss value does not necessarily translate to
good performance in all metrics. One of the important performance metrics is the Receiver
Operating Characteristic (ROC) curve, explained in Section 5.2.3, to measure the signal
classifier performance of the model. In Fig. 5.1, shows the comparison between five trainings
with an identical training setup for the validation loss as well as the ROC curves. Even
though the loss is equivalent, for three out of five networks, the signal/classifier performance
is not better than random guessing.

There are several, very important tasks for the network to accomplish. It should find
up to 100 % of all offline ECL| clusters, not overpredict the number of offline ECL clusters
heavily to not increase the trigger rate unreasonably, achieve good resolutions for the energy
and position predictions and have a high background rejection for a good signal retention
rate. Additionally, the trigger rate has to be evaluated, which is the end result and a
combination of the performances of all other metrics. How the performance of the network

is evaluated for these different tasks will be described in the next section.

5.1 Matching to Offline ECL Clusters

For the overall trigger evaluation, the total trigger rate and the trigger rate per bit are the
main performance metrics. While this gives an upper bound to the overall performance, using
only the rate as a metric makes it difficult to evaluate the network’s performance in detail
for different cluster signatures or varying physics processes and compare different trainings.
As the network is trained on offline ECL clusters given by the offline reconstruction (see
Section 4.2), the predicted clusters of the network are matched to the offline |ECL clusters
for a better evaluation. The same matching is applied to the ICN-ETM] clusters to correctly

compare the network to the existing trigger algorithm.

52
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Figure 5.1: Comparison of the overall validation loss (left) and the output of the signal /back-
ground classifier as a [ROC| curve (right) for five trainings with the identical training setup.
A ROC curve with a straight slope of 45° is the same signal /background performance
as random guessing. As can be seen in the left plot, the overall validation loss between
trainings does not differ significantly.

Matching trigger clusters to offline [ECL| clusters is based on the position difference and
the energy ratio between the two clusters. While the network predicts the position of a
cluster directly, the position of an ICN-ETM] cluster is the center position of the highest
energetic TC|of that cluster (see Section 3.2). This position can be taken from a mapping
of TC/ID to cartesian coordinates in |basf2, which uses a fixed LUT for this mapping.
The positions have been calculated from the crystal positions, using the center of the side
facing the [P|, and then calculating the center of all crystals in one [TC. In comparison to
that, the offline position reconstruction uses the center in all three dimensions for a crystal
to calculate the position of an offline [ECLJ clusters. Additionally to this difference, there is
a mistake in mapping the positions of the crystals to the [TCs in |basf2, where the positions
have an offset in the ¢ direction. In Fig. 5.2, the outlines of the [T'Cs can be seen with
their center position according to basf2 in green, their center positions at the side facing
the [IP in purple and their center positions when taking the center of all three dimensions
in black. As the outlines are drawn using the center of the crystals in all three dimensions,
the black markers align with the visual center. The offset in ¢ between the [I'SIM| [T'C
positions and the calculated positions can be seen in all three detector regions.

For a correct comparison between [[CN-ETM) cluster and the network’s cluster, the
positions at the center of the crystals is used for the position of the highest energetic TC
in an ICN-ETM! cluster.

For the matching between trigger and offline [ECLJ clusters, two conditions have to be
fulfilled. The energy ratio between the trigger clusters and the offline [ECL clusters has to
be between 1% and 200 %, whereas the Euclidean distance between both has to be equal

or less than 40 cm. The two conditions are calculated with

E

2 2 2 <

Apos = \/ (TTRG — Tofine)” + (UTRG — Yofiine)” + (2TRG — ZOffine)” and R = Eo% ’
me
(5.1)
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Figure 5.2: Comparison of the differently calculated center positions for the TCs in the
ECLL The green x marks the center positions of the TCg as given by basf2 while the
purple cross marks the positions if calculated from the center of the crystals. Both of these
positions are taken at the front-facing side of the crystals. A shift in ¢ between purple and
green can be observed over the full detector. The black marker shows the position when
calculated in the center instead of the front face of the crystals. The € position agrees with
the purple markers, as the crystals are pointing towards the [PL
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and the requirements are then Apos < 40cm and 0.01 < R < 2.0.

For a justification of these matching boundaries, the minimum distance between offline
ECL clusters and trigger clusters is tested in the left column of Fig. 5.3, while the best
energy ratio is crosschecked in the right column. Every offline [ECL| cluster is compared to
every [[CN-ETM) or network cluster in the same event and for the left column, the distance
for the closest trigger cluster is shown. In the right column, I again compare every offline
ECL cluster to every ICN-ETM or network cluster and take the energy ratio, where |1
- Etre/Fomine| 1s the smallest. The trigger clusters for the same offline shower are not
necessarily the same in the left and right column. The figure shows offline |ECL clusters in
the three detector parts, barrel, forward endcap and backward endcap, from top to bottom
in that order. The thresholds for the matching between offline [ECL clusters and trigger
clusters are shown in red dotted lines. As can be seen, the thresholds do not cut into the
distributions apart from singular outliers. This guarantees that the matching does not
affect the resolutions and treats both ICN-ETM clusters and network clusters the same.

For the case of a trigger cluster being matched to several offline ECL| clusters, I take
the match with the lowest distance.

After this matching step, there can be several trigger clusters matched to the same
offline [ECL cluster. This does not play a role in the efficiency calculation but for all other

metrics, the match with the best energy ratio (closest to 1) is taken.

5.2 Evaluation Metrics

Most of the evaluation metrics are based on the matching between trigger and offline ECL
clusters to check the performance of the network and to validate the training. All evaluation
metrics are calculated in bins of the true or predicted energy and separated into detector
parts to correctly gauge the performance of the algorithms for all regions. Additionally,

trigger bits and trigger rates are also calculated.

5.2.1 Efficiency and Purity

Efficiency and purity are defined by using the offline ECL clusters, that can be used as a
target (see Section 4.2), as a baseline. The offline ECL| clusters which have very low energy
or are outside the trigger timing window can never be found and would arbitrarily lower
the overall efficiency. Every offline [ECL cluster that is assigned to one node as a target is
a offline ECL clusters that both the ICN-ETM algorithm and the network have to find.
These offline [ECL clusters are denoted as true offline [ECL| clusters. Efficiency and purity

are then defined as

N (matched)
N (true)

N (matched)

Efﬁciency = m y

Purity = (5.2)
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Figure 5.3: Minimum distance and closest energy ratio to 1 of each target offline ECL
cluster to any [ICN-ETM) or network cluster. The network was trained on the combined
training dataset described in Section [4.3 and evaluated on a test Category-One sample.
The evaluation of the ICN-ETM) performance was done on the same sample. The top row
shows target offline |[ECL clusters located in the barrel part, the center row depicts the
forward endcap and the bottom row the backward endcap. The red dotted lines show the
thresholds of the matching requirements.
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where matched clusters are ICN-ETM)| or network clusters which have been matched as
described in the previous section to an offline ECL cluster. TRG clusters are all clusters
predicted by the network or given by ICN-ETM) regardless if they are matched to an offline
ECL/ cluster or not.

Efficiency is a measure to check the algorithms’ performance in returning the correct
cluster, while a good purity ensures that the overall trigger rate will not rise massively by

overpredicting the amount of clusters.

5.2.2 Energy and Position Resolution

To estimate the performance of the prediction for energy and position, the width of the
resolution distribution is used as a metric. The resolution for energy is taken as the ratio
between the absolute difference between the trigger energy and the offline ECL cluster
energy over the offline [ECL cluster energy. This results in a percentage value for the
resolution to ensure that higher energy clusters don’t dominate the resolution. For the
position resolution, the difference between trigger position and offline [ECL| cluster position
is taken. The resolutions can then be calculated with

g = M§ Nx = TTRG — Toffline 1Or X,¥,2 . (5.3)

offline

This results in a positive value if the trigger algorithm, both ICN-ETM)| and the network,
have a higher position or energy prediction than the offline [ECLJ cluster value and in a
negative value if the trigger prediction is lower than the offline prediction. The resolution
is therefore more easily interpretable.

For the width of the resolution, one standard way is to fit the resolution with a Gaussian
or a Crystal Ball function [57] to then estimate the Full Width Half Maximum of the
distribution. While this has been done in studies of energy resolution improvements for
ECL offline reconstruction such as [47], the restrictions of the trigger energy and position
reconstruction due to energy thresholds and very coarse inherent resolution due to the size
of the [TCg result in very unstable fits and make a correct parametrization difficult.

A Gaussian fit is applied nevertheless to correct for biases in the resolutions. The fit
range is estimated by using the interval of one standard deviation in both directions around
the mean. The mean p of the fit is then used as a multiplicative correction factor f..., = 1

- p for the predicted energy or position:

Erpe — Eo Erne: - foore — Bog
ng = TR% offline N NEbe = TRG f;orr offline ) (54)

offline offline

The mean g can also be used as a measure for the bias of the resolution.

Then, the width of the resolution, denoted by r, is calculated analogously to |58]:

TE/pos = P68%(’77E/pos,bc - PBO%(nE/pos,bc)D ) (55)
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where P, stands for the g-th percentile of the distribution. This can be used for comparisons,
but is not very sensitive to outliers or unwanted shapes of the resolution. Therefore, the

overall resolution distributions have to be checked in tandem.

5.2.3 Signal Retention and Background Rejection

For the background rejection evaluation, all predicted clusters that are matched to an offline
ECL cluster are taken into consideration, whereas unmatched clusters are discarded in this
evaluation. The network predicts a floating point value between 0 and 1 for each trigger
cluster, with 1 being signal and 0 being background. For the [ICN-ETM| no such value is
given, so there is no background rejection calculation for the ICN-ETM]| clusters.

First, a [ROC| curve can be calculated. For the ROC]| curve, the cut for the predicted
signal classifier value is varied. For each cut value, where each cluster with pggn,; > cut
will be classified as signal, a signal retention rate Rg and a background rejection rate Rp

can be determined:

N (matched & signal & (pgigna1 > cut)) R N (matched & bekg & (Pgignal < cut))
N (matched & signal) 5= N (matched & bekg)

Rg =

(5.6)
An exemplary ROC]| curve can be seen in Fig. |5.4. The points in the plot are for different
cut values for the signal classifier output, with Rp shown on the x-axis and Rg on the
y-axis. A perfect classifier output would be in the top right corner with 1.0 for both rates.
A classifier, which would randomly guess a signal or background value, would have a ROC

curve at 45° from top left to bottom right.

For an easy comparison between different trainings, I calculate the background rejection
rate for a fixed signal retention rate of 95% for each of the different detector parts. As the
amount of background offline [ECL] clusters in the different detector parts varies, with the
backward endcap having the highest occupancy of background hits, the cut value for each
detector part can be determined separately. For simplicity, for all evaluations in Chapter |8

a single cut value is set for all detector regions.

5.2.4 'Trigger Bits and Trigger Rate

To compare the final trigger rates between ICN-ETM]|and the network, the current used
trigger bits as explained in Section [3.2.3 are also calculated for the network. For the
transition from laboratory frame into the CM| frame, the |CM energies and positions are
calculated by using the Lorentz boost from ROOT [59]. The trigger bits for the ICN-ETM
are taken from basf2| TSIM.

These trigger bits can be calculated for each evaluation sample separately. Additionally,

the expected trigger rate Rppq for physics processes can be calculated by using the cross
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Figure 5.4: ROC]| curve for one network training for offline ECL clusters between 150 and
250 MeV. Each point in the plot is a different cut value for the signal classifier output. On
the x-axis, the background rejection rate Rp is shown, while the y-axis shows the signal
retention rate Rg. The ideal point of performance would be in the top right corner with
100 % signal retention and 100 % background rejection.

section and the trigger efficiency:

B N(bit = 1)
RTRG =L- aprocess : W ) (57)

with the instantaneous luminosity £, the process cross section op,ocess; the number of events
triggered by the respective trigger bit N (bit = 1) and the total number of events N (all).
For the beam background rate, the calculation explained in Section |4.1.3, where the trigger

rate is estimated by the size of the trigger window, is used.



Chapter 6
Network Design

The overall strategy of this work was to develop a Neural Network (NN)-based trigger
algorithm to test and demonstrate the development, implementation and usage of ML
algorithms in a realistic environment with high throughput and latency requirements.
Improvements to the current |[ECL L1 trigger algorithm will be necessary when increasing
the instantaneous luminosity towards the design luminosity of [SuperKEKB]| and in the
case of an update to the hardware which would result in finer granularity for the TCs.
In this chapter, I will explain the requirements to the network imposed by the hardware
requirements, the overall architecture of the network and the algorithm itself, and the

improvements towards implementation.

6.1 Software/Hardware Co-Design

The implementation of the network is done on a [UT4 board, which is used in the current
L1 trigger system and features a Virtex Ultrascale XCVU080/160 FPGA. Due to the
TCs geometry and 100 MeV energy threshold (described in Section 3.2), the input for the
network is very sparse, with less than 5% of all available TCs| being active per trigger
decision window on average. Additionally, the TCs are not given in a fixed order into the
network without manually sorting, which is often required in machine learning algorithms.

The optimization of the network design is a high-dimensional problem. The implementa-
tion platform, in this case the UT4 board, gives hard limits on the size of the network and
the number of multiplications possible due to the limited amount of resources. Additionally,
since the here-used GravNet layer is based on a k-Nearest-Neighbour (kNN) clustering
algorithm, the network input from different data windows has to be conglomerated at one
point and cannot be processed separately. This leads to additional limits on the network
design to reach a reasonable latency of O(1 us) and fulfill the throughput requirement of
8 MHz. After choosing a network design with a set number of parameters, choosing the
bit size of the weights and biases of the respective layers is a separate optimization step

to reduce resource usage on the FPGA. This step is called quantization and is done with

60
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QKeras, where the quantization values can be set separately for each layer. Additionally, a
method often employed to further reduce the number of parameters is called pruning. With
pruning, a set percentage of nodes with the smallest absolute weights in each layer of the
network is set to 0 after the backpropagation step. This is done during training and the
pruned nodes then do not have to be included in the calculation during the inference step.

With a set quantization and pruning setup, the network design can again be optimized
within the given restrictions. This is an iterative process and has to be done in very
close connection to the actual hardware implementation. In Section 6.3, the quantization
technique, pruning and the actual network quantization optimization is explained with the
final network architecture chosen for the implementation used for the results in Chapter 8.
In Section 6.4, the optimization of the network design within the quantization set in

Section 6.3 is shown.

6.2 Network Architecture

Due to the sparse, not-ordered input of the TCs and the variable geometry of the [ECL)
especially in the endcaps, a | GNN|architecture was used for this work. In earlier works
for improving clustering for the offline ECL| reconstruction[47|, the GravNet layer [15]
was applied and achieved improvements of up to 20 % in respect to the current clustering.
The learnable graph-building, as explained in the next section, can improve the network’s
performance by removing preconceived information given by the programmer. Other
GNN]| techniques have also been tested on offline clustering, but have not shown improved
performance to the GravNet algorithm [60]. Therefore, GravNet was also used for the
GNN implementation here. Testing different network architectures to improve performance

and implementation results is currently a work in progress.

6.2.1 Graph Neural Networks and the GravNet layer

The use of a |(GNN|as an algorithm necessitates the fact that the data has to be encoded
in graphs. Graphs consists of a set of objects, here called nodes, and their relationship
to each other, here called edges. Graphs are a non-Euclidean data structure, opposed to
for example Convolutional Neural Networks (CNNs), and can be applied to a widespread
number of use cases, as they are solely based on some kind of relational information between
the objects. |GNNg| are widely used in many different applications outside HEP, such
as antibiotic discovery [61], recommendation systems based on past interests [62], stock
market predictions [63] or preventing adversary attacks on online systems [64]. In HEP,
GNNs can be used for reconstructing tracks originating from charged particles [65], full
decay chain reconstruction [66], [67], anomaly detection |68]| or flavour tagging [69]. For
the reconstruction of clusters in electromagnetic or hadronic calorimeters, |GNNs are
often employed due to the sparsity and irregularity of the inputs. Early works used static
graph building using a kNN algorithm in Euclidean space and applied an EdgeConv [70]
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based GNN to predict edge labels to correctly cluster particles of different types [71].
In the Compact Muon Solenoid (CMS) experiment, the GravNet layer was introduced
in the context of calorimeter clustering, as well as the (OC algorithm [16]. The GarNet
layer, which was introduced in the same work as the GravNet layer |15], was used in an
algorithm for clustering in a toy calorimeter, which was then implemented in hls4ml 11|
for a proof-of-concept implementation for a Xilinx Kintex UltraScale FPGA. The resource
usage estimations for this work were taken from the HLS synthesis, which has been shown
to lack accuracy in estimating the number of [LUTS, time per clock cycle, and number of
Digital Signal Processors (DSPs) |72].

For a comprehensive overview of GNNs, [73| gives a detailed explanation into the
methodology of GNNs; while |74] gives an overview of |GNN-based methods used in
different areas at the [Large Hadron Collider (LHC). I will give a short summary of the

most important |GNN features related to this thesis.

The GravNet layer

The graph construction, which is defined by connecting nodes by an edge with relational
information between these nodes as features, is the underlying baseline in the use of (GNNs.
The number of connections each node can have to other nodes in the graph as well as
the edge features directly influences the learning through feature aggregation and message
passing. The GravNet layer learns the graph representation within a latent space, omitting
the need to build the graphs beforehand.

To do this, the input F,, to the GravNet layer, which is usually a point cloud input
after one or several dense layers, is put through two parallel dense layers, which can be seen
in Fig. 6.1 on the top left. The first dense layer learns a representation space for the input
points. The number of output nodes of this layer equals to the number of dimensions in this
representation space. The second dense layer transforms the input features into features
within the feature space Fyp, which are then the features used for the message passing.

In step 2, the graphs are built using the learned representation space S. In this space,
for each node, the k nearest neighbors are found by employing a kNN| algorithm. The
number of nearest neighbors is a hyperparameter, which can be optimized. For each of
these neighbors, an edge is defined with a strictly decreasing weight with a larger distance.

In step 3, the features for each node are aggregated from its neighbors. For each
neighbor, the feature of this node in the Fp g is multiplied by its weighted distance. The
features from all neighbors are then aggregated with different methods, such as the sum or
the average value of the features from all neighbors. This is the message passing step.

For each node, all aggregated features and the original input features are concatenated
in step 4 and put through an output dense layer. This dense layer transforms the features
into the output features F ;.

The number of dimensions in the representation space S, the number of features per

node in the feature space Fr,p, and the number of nearest neighbors for the graph building
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Figure 6.1: Overview of the GravNet layer algorithm. The input F,,, is transformed via a
dense layer into two latent spaces (1): The representation space S and the feature space
Frr. In the next step, the graphs are built via a kNN|algorithm with the distance in the
learned representation space S (2). Each node is connected to its N closest neighbors in
this space. For each node, a message passing step (3) with the features of the feature Frp
is applied, using predefined aggregation metrics such as the sum or the mean of all features.
The features are weighted by the distance in the latent space, with higher weights given to
those nodes that are closer in the latent space. All features per node are then concatenated
and put through another dense layer to be converted into the output features F,,; (4). The
figure is reproduced from [15].
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are hyperparameters for the overall network design.

6.2.2 The Object Condensation Algorithm

Conventional clustering algorithms in particle physics either start with a seed-finding
approach and then apply the clustering solely on the area around this seed or impose
boundaries on the number of objects in the calorimeter or the area of interest (|1], [75],
|76]). While the two-step approach of seed finding works very efficiently, in a low-latency
environment a one-shot approach to tackle both detection and reconstruction is beneficial to
reduce the overall runtime and resource usage. However, restricting the number of clusters

in total additionally reduces the generalization of the reconstruction algorithm.

While recognizing an unknown number of objects has been a task in computer vision,
where many solutions have already been found [77]| [78|, the algorithms usually work
on finding anchors within a picture and applying bounding boxes around those anchors.
Overlapping objects are then solved by analysing the union of two bounding boxes and
assigning pixels to different objects. In the case of clustering within a calorimeter, in
difference to computer vision, in many cases one hit is fractionally assigned to different

particles instead of a clear assignment to one.

OC was proposed as a one-shot approach specifically for calorimeter clustering in sparse
environments, where the possibility of overlapping, but still well-separable clusters is high
[16]. Each node in the input, which corresponds to a TC|in this thesis, is assigned a label
to belong to one object. This is described in Section 4.2 Nodes, which do not belong to

one object, are labelled as background.

The algorithm is based on the introduction of a learned potential in a latent space,
which draws nodes belonging to the same object close together and pushes points not
belonging to the same object further away. One representative point per object then
carries the prediction values, such as energy and prediction. To evaluate the algorithm, the
representative points have to be selected, where the number of nodes then corresponds to
the number of reconstructed objects, and their predictive values read out, which are then
the properties of those reconstructed objects.

The notation in the following is close to the original notation in [16]. The potential is
induced by a charge for each node. This charge is calculated by a so-called §-value, where
one representative node of each object is assigned a high S-value. This S-value is learned
by the network and bound between 0 and 1. The charge q is then defined by a function of

B, which has zero gradient at 0 and a pole at 1. This function is chosen to be

q= artanh(ﬁ) + Gmin (61)

with 3 being clipped between 0 and 1 - € (e = 10~" to avoid numerical instabilities. Qonin 18

a value > 0 to set a minimum charge per node. This avoids the local minimum of 5 =0
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everywhere. With this charge, the repulsive and the attractive potential can be defined:

Viepk (@) = 12— 20| qags Vager(@) = max(0,1— [[& — 24| )qar,  With oy, = max ¢; M.

(6.2)
In theory, the potentials have to be calculated from every point to every other point. Since
this can be computationally expensive, the potentials are approximated by the potential of
the point a with the highest charge for the object k, which is ensured by M, which is 1 if
the point i belongs to the object k and 0 otherwise. || - || is the L2-norm, while = are the

coordinates of each point in an n-dimensional learned representation space.
The overall potential loss can then be written as:

1 K

V=N > 4> (M Vagescly) + (1= M) Viep () (6.3)

j=1 1

1=

with N being the total number of points and K the total number of objects in that sample.
To avoid the local minimum g; = € Vi, a 5 and noise suppression loss term is introduced.
This loss additionally enforces one condensation point per object and none for background

vertices by requiring
L= 301~ fra) + Zm@ (6.4)

k

with Ng being the number of background points. The sum of the potential loss and the
[ and noise suppression loss makes up the |OC loss to determine condensation points.
Additional loss terms are introduced for each feature which should be predicted. For this
work, three feature loss terms are added, the signal loss, the energy loss, and the position

loss. For the signal loss, the loss term is calculated by

Lsignal = _tsignal : 1n(psignal) - (1 - tsignal) : hl(l - psignal)v (65)

with tgena being the true signal/background flag with a value of 1/0, respectively, and
Dsignal the predicted value between 0 and 1. The position loss is computed as the mean
absolute error between the predicted and true position.

For the energy loss, several loss terms have been tested. A mean absolute error loss has
been used for most experiments, also in the deployed model explained in Chapter 8. To
improve the energy prediction for low-energetic clusters, a logarithmic difference has been

tested with the loss term as
Lp =|ln(pg +€) —In(tg +e)| . (6.6)

Additionally, instead of predicting the energy of the cluster, the prediction of a scaling
factor on the energy of the [TC has also been tested.

The feature loss terms are weighted with the charge term so that they scale similarly
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with 8. Due to this, the importance for the representation points per object, those with
high 8 value, to carry the right prediction values is much higher than for all other points

per object. The total feature loss term is then

N

1
Z (LE,i + LPos,i + Lsignal,i) §, (6.7)

LF:
PORR T

with the scaling term
gi = (1 - nz) artanh(ﬁi) + Gmin (68)

where n; is 1, if the point is noise and 0 if it belongs to an object.
All loss terms are then added to the overall loss function for the network. Each loss
term can in theory be scaled with an additional factor to improve the performance of the

network in a specific area. For this work, all loss terms have equal weight.

Inference

The inference for the |OC is different than in usual network designs, where it is just a
read-out of the network’s prediction. For (OC, the correct condensation points have to
be selected and their predictive values have to be read out. In Fig. 6.2, an overview of
the selection algorithm, called condensation point selection algorithm, is shown. In the
first step, a cut on the [-value is applied. All points below this cut value, which is a
hyperparameter, are removed in the inference step. As a next step, the remaining points are
sorted by their S-value. The first point with the highest S-value in this list is chosen and
the distance to all other remaining points in the learned latent space is calculated. Every
point below a distance threshold is removed as well. The distance threshold is the second
tunable hyperparameter. This process is then repeated with the next, still remaining point
in the sorted list until the end of the list is reached. All remaining points are then the
condensation points. The number of condensation points corresponds to the number of
predicted clusters in this sample. Each condensation point also has predictive values for the
energy, position and signal /background flag. These are then the values for the respective
predicted clusters.

Both the cut on the g-value and the cut on the distance in the latent space are
hyperparameters. They are not part of the training process, which means that fully trained
networks can be optimized in terms of efficiency and purity afterward by changing the
cut values. Smaller cut values translate into more predicted clusters, which in most cases

increases efficiency but might lower the purity.

6.2.3 Overall Network Design

The implementation of the network has been done both in PyTorch Geometric |79|, which

is a library built on PyTorch [80], as well as in Keras [81], which uses Tensorflow |82] as a
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Figure 6.2: Overview of the inference step, also called condensation point selection algorithm.
In step 1, a cut on 3 is applied to only select those points with a high probability of being
a condensation point. In step 2, the remaining points are sorted by their S-value, and the
first point is chosen. Every other point in this list, which is within a set distance in the
latent space to this other point, is removed. Then the next remaining point is chosen and
the same process is repeated. All points left are then condensation points, as shown in step
3. In step 4, the predicted values on the condensation points are then the energy, position,
and signal /background flag for each predicted cluster. This figure is adapted from [65].
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backend. The Keras implementation is then adaptable to be implemented in QKeras [12], a
framework for quantization-aware training (see Section 6.3). QKeras is an extension to Keras
and offers drop-in replacements for many common layers and activation functions to create
quantized networks and perform quantization-aware trainings. Besides the quantization
specifications, the implementation between Keras and QKeras is identical and will be

treated as such in this text. Any differences will be specifically stated.

Initial tests and studies for this work have been done in Pytorch Geometric, whereas
the quantization studies and network trainings for implementation have been done in Keras.
One main difference is in the input format: Pytorch Geometric offers a data handling
that has been optimized for graph structures so that differently sized inputs can directly
be given to the dataloader of Pytorch Geometric. Internally, Pytorch Geometric builds
one sparse block diagonal adjacency matrix per batch, which encodes the edges between
the nodes, and concatenates feature and target matrices in the node dimension [83]. In
comparison to that, Keras can only work with same-sized inputs. To achieve this, for each
input event, the list of TCs is always padded to 32 or 64 nodes, with all features set to 0.
For everything else, the effective implementation between Keras and Pytorch Geometric

is the same.

The overall input to output chain in the inference can be seen in Fig. 6.3. The input is
transformed into a 32 by 5 dimensional matrix and sent through the network. The input to
the network has been described in detail in Section 4.2/ and consists of all [TCs above the
set energy threshold, which corresponds to 100 MeV for the current [ECL| trigger setup.
For each [T'C, the reconstructed energy, its position extracted from a [LUT| through the
TC ID, and the time relative to the highest energetic 'T'C|in this trigger decision window is
given to the network as input. The [T'Cs do not follow any specific ordering as this can not
be guaranteed on the hardware. This means that the model cannot use any information

given by the ordering of the [TCsl

For the overall network design, the network has three distinct layer types, dense layers,
batch normalization layers [84] and GravNet layers. In Fig. 6.4, a detailed view of the
model architecture is shown. The input nodes are passed into two layers, the first dense
layer of the first of the repeating blocks in blue, and a scaling layer. This scaling layer is
necessary due to the usage of skip connections |85]. Instead of a straight feed-forward pass
for the data through the network, the input as well as the output of each repeating block
additionally bypasses the rest of the network and is concatenated to the output of the last
repeating blocks. These concatenated values are then input to the last dense layer before
the output layers. These skip connections can help improve the network’s performance by
ensuring a more direct gradient calculation when performing the backpropagation step.
Very deep networks often create vanishing gradients in early layers due to the high number
of parameters beforehand, which can be mitigated with the help of skip connections. In a
standard neural network, the scaling layer would not be necessary, as the input could directly

be used as input to the last dense layer. In standard Keras, everything is calculated in
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Figure 6.3: Overview of the inference chain from detector hits to cluster output values,
including an overview of the model design. The input is provided in a matrix form and put
through the network in a feed-forward pass. The output is predicted per node and is then
input into the inference step, described in Section 6.2.2. The nodes remaining after the
inference step are then the predicted clusters.

32-bit floating point precision, which poses no problem. However, in the case of a quantized
network, the input does not necessarily have the same precision as the outputs of the
repeat blocks, which could result in unwanted behavior. In Section 6.3, I will show different
quantization implementations, where the scaling layer is used as an internal translation
from one quantized value to another.

For the repeating block, the architecture is always the same. A first dense layer is used
with an optional batch normalization layer afterward and a ReLu activation layer.

The batch normalization layer is a layer, which is used to normalize each batch by recen-
tering the batch to zero and rescaling it to a standard deviation of 1. Batch normalization
layers ensure more stable training and can help mitigate vanishing or exploding gradients,
especially when high learning rates are used. During training, the batch normalization layer

calculates the mean and the variance of each batch and calculates
(X —mean(X))

" ar(X) te+8

with X being the input to the layer and Y the output. 4 and [ are a learned scaling factor

Y

(6.9)

and a learned offset factor, respectively.

In inference, instead of calculating the mean and variance, a learned moving mean

and moving wvar is used. These learned parameters are updated in every training step by

moving _mean = moving _mean - M + mean(X) - (1 — momentum) (6.10)

moving _var = moving _var - M + var(X) - (1 — momentum)

with M being a hyperparameter for the batch normalization layer, here set to 0.99. A more
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Figure 6.4: Full layer overview of the network design used in this thesis. The GravNet layer
block is repeated N times. Each time, the output of one GravNet block is both input to
the next GravNet block as well as concatenated to an output list, which is used as input to
the last dense layer to employ skip connections.

typical network design is the ordering dense layer, activation function, batch normalization
layer, whereas in this work the activation function is placed after the batch normalization
layer. This is due to the necessary batch normalization fusing, explained in Section 6.5.

For all activation function layers besides the output layers, a ReLlu activation function
is used. This function is more easily implementable on hardware than other choices of
activation functions, such as the tangens hyperbolicus, and has shown very good performance
in a wide variety of machine learning models.

While the GravNet layer has a direct implementation in Pytorch Geometric, for Keras
and QKeras, the layer has to be implemented separately. In Fig. 6.4, the layers needed for
the full GravNet layer are shown in the right inset. A in-depth explanation to GravNet is
given in Section [6.2.1.

The output of the full GravNet layer is then put through another batch normalization
layer followed by a ReLu activation function. The repeat block finishes with a last dense
layer and a ReLu activation function. The output of the repeat blocks is concatenated to
the output list, together with the output of the scaling layer.

The number of times the repeat block is used within the network is a hyperparameter to
be tuned. Every repetition introduces a message-passing step, which can help in aggregating
knowledge per node. Nevertheless, for a hardware implementation, the overall size of the
network has to be considered.

The output list is then fed into the last output dense layer, which can gather all
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information used in the network in one layer. This is passed through a Relu activation
function and then distributed into the five output layers. The output layers are the outputs
for the S-value, the latent space of the (OC algorithm and the prediction values for the
energy, position, and signal classifier, respectively. The output values for 5 and the signal
classifier have an additional sigmoid activation function to constrain the output values

between 0 and 1.

6.2.4 Basic Training Setup

For training, an equal-size mixture of Category-One events (see Section 4.3.1) and Category-
Two events (see Section 4.3.2) are used. For each sample, 40 000 events are simulated for
1-6 baseline photons, resulting in 240 000 events. Events without a T'C| above threshold or
no reconstructed [ECL offline clusters are discarded, resulting in a total of 460 000 events.
The events are separated into a training and validation set, consisting of 90 % and 10 % of

the total dataset, respectively.

The network is trained on the sum of all loss terms of the object condensation loss.
For the main training, no weighting of the different loss terms is done. The training is
logged and monitored via Weights&Biases [86], which is also used for the hyperparameter
optimization in Section [6.4.4. For the training, both a learning rate scheduler to reduce
the learning rate when reaching a loss plateau and early stopping to avoid overtraining
are employed. For the learning rate scheduler, a decay rate of 2 is used if the total loss
on the validation set did not improve over a set number of epochs, called patience. The
minimum value for the learning rate, {r;,, is set to 10™". To make use of the full strength
of the learning rate scheduler, early stopping is not activated before the minimum value is

reached. This number of epochs Ngg is calculated by

In(lrpi,)/ In(l
Ngg = | patience - a( Tmlril/o.lé( rStart)J, (6.11)
derived from I, = [rga/2", Where n is the number of reduction steps to reach the

minimum learning rate. After reaching this epoch, early stopping is triggered, when the

validation loss has not improved over a further 50 epochs.

6.3 Quantization Optimization

Calculations on CPUs and GPUs are usually done in either 32 or 64-bit floating-point
precision. This means a floating point number is represented by 32 or 64 bits in total,

separated into a sign bit, a significand and an exponent [87]. An exemplary representation



72 6.3. Quantization Optimization

of 0.1 as a 32-bit floating point number in python is

0.1= (—1)0 11,10011001100110011001101- 27* = 0.100000001490116119384765625.
—— ~~

sign

significand exponent

(6.12)
In single precision, 8 bits are allocated for the exponent and 23 bits are allocated for the
fraction, leading to a value range between £+ 1.175 x 107% and + 3.4 x 10%°.

While calculations on CPUs most of the time use double-precision floating point numbers,
which use a total bit width of 64 bits with 52 bits for the fraction and 11 bits for the
exponent, calculations on GPUs are done with single precision to maximize multiplication
speed. Therefore, frameworks such as Keras use single-precision numbers as default for
implementations of machine learning algorithms to optimize training and inference speed
on GPUs. For the multiplication of two floating point numbers, the two fractions have
to be multiplied, while the exponents have to be added. Afterwards, the result has to be

rounded and normalized to again be representable as a single-precision value.

For an implementation on FPGASs, the usage of floating point numbers leads to a very
high resource usage, both due to the high bit width of 32 bits per number and to the flexible
representation format of floating point numbers. For a multiplication of two single-precision
numbers on an FPGA| the multiplication of the fractions is a 24bit x 24bit multiplication.
This necessitates the usage of one or often even several DSPg slices. Additionally, the two
exponents have to be added, the sign bits have to be subjected to a XOR operation, the
result has to be normalized and rounded and overflows have to be dealt with. In general,
this leads to a high resource usage of DSPs/and LU'Ts and a reduction in processing speed
due to the number of steps needed per multiplication, which is often 3-6 pipelining stages.
In ML applications, where the number of multiplications is of the order of 10° or higher,

this is often prohibitively costly.

To mitigate this, implementations on FPGAs often use fixed point representations for
fractional numbers instead of floating point. In fixed point representation, the total bit
width of the number is separated into a fixed number of bits for the value before the decimal
point and a fixed number of bits for the value after the decimal point. As an example, in
32 bit fixed point representation with 10 bits before the decimal point including the sign
bit, often written as Q10.22, the value 1.1 can be represented by

1.1 = 0000000001 .0001100110011001100110 . (6.13)
integer (10 bits) fraction‘(r22 bits)

This is calculated by separating 1.1 into the value before the decimal point and after the

decimal point, which is 1 and 0.1 respectively. The first value, 1, is then represented in a
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10 bit wide bit string. For the value after the decimal point, 0.1, this is transformed via

0.1 — 0.1 x 2% = 0.1 x 4194304 = 1419430.4| = 419430 = 0001100110011001100110,,
(6.14)
where 22 is the bit width allocated for the values after the decimal point. A representation
in this format leads to a value range of [-512, 512) due to the leading bit necessary as a
sign bit, with a precision of 1/222 ~2.38-107". Multiplications of two fixed point numbers
with the same integer and fraction bit length on an FPGA!is an integer multiplication of
the entire bit length. Depending on the bit length, this either needs one DSP)slice or a

LUT|and can be done in one clock cycle.

While some FPGAs models include specific support for floating-point arithmetic
operations [88], algorithms deployed with fixed-point arithmetic still outperform floating-
point calculations even on those platforms [89]. As an implementation of a GNN for the
ECL L1 trigger| has very stringent throughput and latency requirements, moving from
floating point representations of weights, biases, inputs and outputs of neural networks to
fixed point representations on the [FPGA|is a necessary step to enable implementation.
Additionally, a reduction in number of bits per value is needed due to the limited availability
of [DSPs and [LUTS on the hardware. This means that the values of the network’s
parameters are quantized and have a limited precision and range in comparison to the

original single floating point precision used in offline reconstruction.

One method for quantization is post-training quantization, where the network is trained
with floating point precision values and evaluated with the quantized value ranges used on
the hardware. This is by definition lossy and leads to unwanted behaviour, especially if
the parameters exceed the quantization range. An evaluation of this loss in performance is

shown in Section 6.3.3.

An alternative is quantization-aware training, available through the QKeras framework
[12]. In quantization-aware training, the behaviour of limited fixed point precision values is
emulated. The network can then learn to stay in the boundaries of the quantization ranges,
as well as mitigate the loss in precision. QKeras offers a wide range of quantization methods
for the parameters which can optimize the performance of the network while staying within
the given bit width. Each layer or operation can be quantized using a different quantization
algorithm or different bit widths or value ranges for the parameters, making it highly flexible
and optimizable. Each parameter is quantized during the forward pass of the network, while
the quantization function is treated as the identity function in the backpropagation step
to ensure differentiability. Additionally, QKeras provides quantized functions for standard

activation functions such as the sigmoid function or the ReLu function.

While QKeras emulates the fixed point arithmetic as closely as possible as it is done in
actual hardware calculations, two main differences remain. The first one is the behaviour
when the result of a calculation exceeds the value range. In QKeras, the value is then

clipped to the boundaries of the quantization range, which is necessary especially in training
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to keep differentiability and to help the network learn the boundaries of the value range.
On hardware, as these are bit-wise operations, an overflow of the value range results in
a wrap-around as only the least significant bits of the result are kept. This can result in
undefined and unwanted behaviour and is not simulated in QKeras. The second difference,
which is less likely to result in great differences, is the treatment of value rounding. While
QKeras uses a straight-through estimator |90] to round to the nearest value in the specified
precision range to ensure backpropagation, in hardware every value is automatically rounded
towards negative infinity due to the cut-off of the least significant bits. This leads to slight
differences in values, which in the worst case can propagate through the network. While for
the first difference, a cross-check to keep all computed values away from the quantization
ranges can help avoid this problem, the second difference cannot be fixed within the
framework of QKeras. Due to this, the hardware behaviour cannot perfectly be simulated

on CPUs and has to be checked separately as well.

6.3.1 Input and Output Quantization

As both the input and output values on the FPGA|are quantized, the network has to be

trained and evaluated with quantized inputs and outputs as well.

Input Quantization

The GNN-ETM]|board, on which the algorithm is implemented, receives the [TC data from
the ICN-ETM) in a two-dimensional array with the first dimension being the TC IDs and
the second dimension the TC features in the order (hit, energy, timing). The ID is the
TC ID shown in Fig. [3.5, the hit flag shows if the energy is over 100 MeV, the energy is
the energy after the fit in ADC counts and the timing is the absolute timing of the overall
L1 trigger| clock. During preprocessing, the x,y,z position is retrieved from a [LUT|using
the [TC/ID, the energy is converted from ADC counts to GeV and the timing is calculated
relative to the timing of the highest-energetic [T'C|in that trigger data window. Due to
this preprocessing, the quantization of the inputs can be set from outside and implemented
within the given LUTS. This also ensures that no overflow can happen when exceeding the
quantization range due to clipping.

To simplify input value handling, all inputs are quantized with the same quantization
ranges. The network is trained with the quantized values. The quantization value is chosen
to be Q4.12, using 16 bits in total with 3 bits for the value range before the decimal
point and an additional sign bit. This leads to a value range of -8 to 7.9 with steps of
1/2_12 = 0.00024414. As can be seen in Fig. 6.5, this quantization has nearly no effect
on the input values. For the energy, a clipping of all energies above 8 GeV is visible. The
ICN-ETM]| provides the energy in ADC counts between 0 and 4096. One ADC count
corresponds to 2.25 MeV, leading to a range between 0 and 21.5 GeV. In practice, clusters
above 8 GeV are nearly never seen due to the total available energy of 10.58 GeV and should
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Figure 6.5: Distributions of input values with floating point single precision in comparison
to the same values with Q4.12 fixed point precision. All values are quantized with the
same fixed point quantization. The dataset is the Category-One test sample using 15000
events. The distributions are hatched to show the overlap. The top row shows the x, y,
and z distributions while the bottom row shows the energy and the relative timing. The
bins are chosen as multiples of the quantization step to make differences more visible.

result in a trigger decision regardless of their exact energy.

For future studies, the tuning of the input quantization is a point of optimization for
the overall implementation performance of the network. Decreasing the number of bits
needed for the inputs can result in lower latency and lower resource usage, but this has to
be studied in detail.

Output Quantization

The quantization of the output values can be optimized for the range of the output values
as well as for the needed precision. As the overall number of calculations with the output
values is small in comparison to the total number of calculations within the network, it is
feasible to allow large bit widths for the output values to guarantee no loss of information.
A different restriction for the output quantization is the maximum bandwidth allowed
by the overall L1 trigger system. Higher bit lengths of the output values increase the
maximum data size needed to be transferred via the Belle2Link, which should be taken into
consideration. A more detailed description of the bandwidth requirements can be found in
Section 6.5. Additionally, the output values are, especially in the development phase, not
solely used on the trigger system but also read out via basf2. Programming languages such
as C++, which is the main programming language of basf2, handle data in bytes instead of
bits. Handling output values in C++ that are not multiples of 8 bits is then error-prone and
leads to more complicated implementations of the unpacking code. Therefore, the output

values should be quantized in multiples of 8 bits as the total bit length. The same argument
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Figure 6.6: Distributions of the output values for the first and third dimension of the object
condensation latent space. Five networks with the same configuration and training setup
were trained and their output features on the Category-One test dataset evaluated. The
value ranges of the three dimensions vary significantly between different trainings. All
output values are shown here, regardless of the nodes being selected as condensation points
by the condensation point selection algorithm.

holds for the input values, as they are also stored in the raw data and read out by basf2.
For the input values, a downcast to lower bit lengths would be possible, whereas an upcast
to higher bit lengths for the output values would result in empty information.

Predicting value ranges for the output features is slightly more difficult than for the
input features. The output feature range for the energy and position predictions can be
determined by the range of the energy and position values of the offline [ECL| target clusters
(see Section [4.2.2). For the 8 value and the signal background classifier, the additional
sigmoid activation function after these output layers restricts the total value range between
0 and 1. The most difficult output value range to gauge is the coordinate ranges of the latent
space. While the network could in theory learn to stay within the given boundaries for
those features, the range should be chosen so that no overflow can happen to reduce the risk
of unwanted behaviour. Therefore, several networks without any quantization are trained
and their maximum output feature range is determined. In Fig. 6.6, the distributions for
all three latent space dimension outputs can be seen. The trainings were done with the
exact same configurations and datasets. As visible in the figure, the output distributions
vary significantly between different trainings. In addition, the value ranges for the latent
space are comparable to the value ranges of all other output features, which results in the
quantization range being determined by the latent space.

As the overall bit width should be in multiples of 8 bits and the same quantization
should be chosen for all output features, a total bit width of 8 is very difficult to achieve.
To safely encompass the latent space feature range, the number of bits before the decimal
point should be either 4 or 5, which results in a range of [-16, 16) and [-32, 32), respectively.
As one bit is reserved as the sign bit, this would lead to either 3 or 2 bits left for the value
after the decimal point, which results in steps of 0.125 or 0.25. Values like the £ value, the

signal /background classifier output or the energy scaling factor are either bound between 0
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and 1 or very close to 1, this would result in a loss of information.

Therefore, the overall bit width is chosen to be 16 bits. To ensure containment of the
latent space feature range, 5 bits are used before the decimal point, leading to an overall
quantization of Q6.10. While 4 bits would suffice for the ranges shown in Fig. 6.6, there is
no set restriction on these value ranges. Therefore, an extra bit is allocated to ensure no

overflow.

6.3.2 Quantization of Weights, Biases and Activation Functions

Deciding the quantization precisions for each layer and step of the network can be done in
two ways: first, through a hyperparameter optimization. This optimization has to take the
available hardware resources into account, making each layer’s quantization widths highly
dependent on the widths of the other layers and on other aspects, such as the pruning
percentage (see Section [6.4.1) and the exact network design. This creates a very high-
dimensional optimization problem, in which upper bounds for the overall parameter space
are challenging to calculate. Each configuration therefore has to be tested in implementation.
For this work, as the network is still in active development, the second design path was
taken, which is a bottom-up approach. The quantization is first set to small bit widths and
then increased or adapted, where necessary. For further development of this algorithm, the
quantization procedure can be optimized.

The final network design can be seen in Fig. 6.7. This contains all layers with their
respective quantization values for the model design that was used for implementation.

To reach this final design, the quantization is first defined as Q3.5 for all layers and
then increased for strategically important points to improve the network’s performance.
For all dense layers, the weights, biases, and outputs for one layer are quantized with the
same quantization width. In general, the output of the layers is not quantized itself if they
have a ReLu activation function following, which will then be quantized.

As the quantization precision of the output values has been set to 6.10, as described
in Section 6.3.1, the weights and biases of the output dense layers are also set to a total
length of 16 bit. However, as both the signal and 8 output values are to be between 0
and 1, the range of the corresponding layer weights is reduced to Q3.13 to allow for more
precision in the calculation of these values. For all other output layers, the weights and
biases are set to Q11.5.

Simplifications for the graph-building step, such as implementing the Manhattan distance
instead of the Euclidean distance (see Section 6.4.2), can decrease the precision of the overall
calculation. Therefore, more bits are allocated for the layers necessary for the GravNet
step. The dense layers for the coordinate space S and the feature space F g, as well as
the aggregated features used for message passing have a quantization precision of Q2.14
applied. In Fig. 6.8, the weights of the final training for these two layers, the coordinate
space layer (left) and the feature space layer (right) are shown. The values are all very

small and clustered around 0, for which a high number of bits after the decimal point can
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Figure 6.7: Network design including quantization for the overall model. The forward
pass of the network follows along the arrows with the core part repeated twice. The inset
describes the GravNet block. The coloring corresponds to the different quantizations.

help in increasing the calculation precision.

The distance calculation between the nodes in the coordinate space S is done via several
difference calculations. This can, as the coordinate values can be both negative and positive,
lead to up to double the value range for the output than for the input. The quantization
for the distance calculation is therefore increased drastically. This is a safety measure to
avoid overflow on the actual [FPGA implementation, as this is not modeled in QKeras and
can lead to unpredictable behavior.

In practice, the distances calculated in the graph-building steps are very small. In
Fig. 6.9, the distances for the first and the second GravNet block can be seen. Distances
to padding nodes, which are the 0-values appended to the input vector to have a fixed
32-length input vector, are set to 100. All valid distances are very close to 0. For next steps,
a reduction in range for the distance output is possible.

In general, the weights, biases, and outputs of each layer and calculation of the network
have to be checked for each new training. If a large number of values are saturated, the
quantization ranges have to be optimized.

Additionally, the difference between the behavior of QKeras and the actual implemen-
tation on an FPGA has to be taken into account. In Fig.|6.10, the output of the final
layer of the second GravNet block can be seen on the left, with the output of its ReLu
activation function on the right. The ReLu output is quantized with Q3.13, having a total
value range of [-4, 4]. The output of the ReLu is contained in this range, the output of the

dense layer, which is not explicitly quantized, exceeds this range in negative direction. This
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close to 0, where a high number of bits after the decimal point can help improving the
precision.
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Figure 6.9: Distance outputs of the kNN step of the GravNet block for the first GravNet
block (left) and the second Gravnet block (right) in the final, quantized training. The
distance to invalid nodes, which are the nodes added to the input vector to pad the input
to 32 nodes, is set to 100.
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Figure 6.10: Output of the output feature dense layer of the second GravNet block (left)
and the output of the following ReLu activation function (right) of the trained, quantized
network. The dense layer exceeds the quantization range of [-4, 4] in negative direction,
which is absorbed by the ReLu function.

does not pose a problem in QKeras, but will lead to an overflow and undefined values on
the hardware. A solution used in this work is the implementation of dense-saturate layers,
where the output of each layer on the hardware is clipped to its maximum values instead of

allowing overflows.

6.3.3 Post-Training Quantizations

Training quantization-aware is necessary to ensure good training performance, as shown in
Section 6.3.2. Nevertheless, not all operations can or need to be quantized during training.
During training, the differentiability of all steps of the network has to be ensured to correctly
apply the backpropagation algorithm. Additionally, some quantized functions introduce an
instability into the training procedure, which can be mitigated by quantizing them only

during inference.

Output Quantization of the Exponential Function

The GravNet algorithm, as described in Section 6.2.1, dynamically builds the graphs in
a learned latent space. The message passing between the connected nodes is done by
aggregating the features of a node and weighting these features by the exponential of
—A - Az, where A is a tunable factor. The quantization of the exponential function is
a quantization of the output value. Due to the nature of the exponential function, this
leads to very small values very quickly. Floating point numbers are able to represent very
small numbers up to 10738, whereas in comparison 32-bit fixed point numbers with all
bits after the decimal point can only represent 107'°. While in most practical use cases
numbers smaller than 107'° can be set to 0, during backpropagation this leads to a loss of
information when calculating the derivative at this point. Due to this, the quantization
of the exponential function in training leads to a complete efficiency loss for all values

below a varying energy threshold, often around 1 GeV and a very bad energy and position
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Figure 6.11: Comparison of the performance of five trained networks without quantization
of the exponential function (left column) and with Q0.8 quantization of the exponential
function. Both evaluations are done with the Category-One test dataset. The top row
exemplary shows the efficiency while the bottom row shows the energy resolution. All
plots are separated into the different detector regions and two energy points, 200 MeV and
500 MeV, are evaluated.

resolution for the entire energy range.

To mitigate this behaviour, the output of the exponential function is not quantized during
training but kept as a floating point value. This ensures a correct training performance.
In inference, the exponential function is then quantized with an unsigned quantization of
Q0.8, leading to a precision of 0.003906.

In Fig. 6.11, the evaluation of several networks without quantization of the exponential
function output versus the evaluation of the same networks with quantization of the
exponential function is shown. Exemplary, the efficiency and the energy resolution for all
different networks is shown, for all detector regions and for two energy bins, 150 - 250 MeV
and 450 - 550 MeV. The performance is identical, which shows the negligible effect of the

quantization of the exponential function in inference.

Substituting the Sigmoid Function

The sigmoid function defined as (1 + eiz)fl is a commonly used activation function for
output layers where the output is restricted to be in the range between 0 and 1. For this
work, the 8 and signal classifier output layers both use a sigmoid activation function to
enforce the value range. To calculate the output of the sigmoid function, an exponentiation
and a division is necessary. While an exponentiation in a restricted input range is possible

to describe on an [FPGA|via a [LUT, this is a very resource-intensive operation for the
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Figure 6.12: Comparison of the loss improvement for five trainings with a standard sigmoid
activation function (left) and a smooth sigmoid activation function (right). In the right
plot, several spikes and a higher overall value loss function can be seen, which hints at
unstable training due to non-ideal weight adaption.

entire value range. Divisions, especially with higher bitwidths such as the 16 bits for the

output values, are difficult to implement with smaller resource usage.

To improve this implementation difficulty, the sigmoid function can be replaced with
different linear approximations. In this case, I choose the by QKeras provided smooth
sigmoid approximation. This function is described by the linear function 0.1875x + 0.5 in

the center part and a clipping of the values to 0 as a lower bound and 1 as a higher bound.

Using the smooth sigmoid in training results in higher training instabilities. In Fig. 6.12,
trainings with a standard sigmoid activation function for § and signal output layers
are compared with trainings with a smooth sigmoid activation function. Both training
procedures are otherwise identical. The loss function of the training with the linear
approximation shows several high spikes and overall more erratic behavior. This is due to
the fact that the gradient vanishes in the flat regions that are below -2.67 or above 2.67,
which can lead to dying neurons [91]. If the gradient of a neuron vanishes, no updates will
be given to the weights of this neuron and no improvements to its prediction performance
are made. The network has to learn to stay within the range of the linear function, which

is an added difficulty during training.

To mitigate this behaviour, the network is trained with the standard sigmoid function
and only during inference the smooth sigmoid is used. This has no effect on the energy
and position prediction, but affects especially the signal classifier and in a lesser extent the

5 value.

The effect on the signal /background classification can be seen in Fig. |6.13. The smooth
sigmoid activation function has a very high probability of mapping values to exactly 0 or 1
in comparison to the standard sigmoid function. This leads to the high peaks at the edges
of the distributions for both true signal and true background clusters. In Fig. 6.14] the
ROC] curves for five different trainings with the standard sigmoid on the left and the smooth

sigmoid on the right can be seen. The signal classifier distribution in Fig. |6.13|is that of
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Figure 6.13: Comparison of the signal classifier output value for predicted clusters matched
to target clusters. The distributions are separated into true signal clusters, where the target
clusters are defined as signal, and true background clusters. The dataset is the Category-
One test dataset. The left plot shows the distributions with a standard sigmoid activation
function and the right plot with the smooth sigmoid activation function. The pronounced
peaks at 0 and 1 in the right plot are due to the clamping of the linear approximation.

training 3. As can be seen, while the effect of the approximation of the sigmoid function is
visible towards the left and right edges of the ROC curves, a high signal efficiency with
a high background rejection can still be achieved. Working points at 99 % or 95 % signal
efficiency have the same background rejection rate. This can of course change when the
signal classifier distribution changes and has therefore be monitored carefully.

A second implication is the loss of tuning probabilities for the OC]| algorithm. For the
OC] inference, two hyperparameters have to be set, the threshold for the 5 value for each
point to be considered a condensation point and the isolation criterion distance threshold.
In Fig. |6.15, the network prediction of the 3 value for all nodes is shown in the case of the
standard sigmoid activation function versus the smooth sigmoid. As the § output of the
network is also subjected to the sigmoid activation function, the same shift towards exactly
0 or 1 as in the case of the signal classifier can be seen here as well. In the case of the
smooth sigmoid inference, 36 % of all nodes have a value of exactly 0, which automatically
declassifies them as condensation points when setting any threshold cut besides 0. For the
standard sigmoid function, no value is exactly 0, but 27 % of nodes have a value below
10_67 which can be regarded as 0 in the context of setting a value for the 8 threshold. This

leaves a difference of up to 10 % of all nodes to potentially classify as clusters.
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Batch Normalization Layer Fusing

When using batch normalization layers for networks on FPGAs, for inference the calculation
of these layers should be fused into the dense layers beforehand to avoid extra multiplications.
To fuse the four parameters of a batch normalization layer, mean, 8, Var and €, as explained
in Section 6.2.3, into the dense layer beforehand, the following calculation has to be done

to store the new weights:

1 , b — mean

_w — 7_’_ ,
v Var + € 7\/Var+e p

w =~ (6.15)
with w and b being the original weights and biases of the dense layer and w’ and b’ the
updated weights and biases.

As this fusing happens after the quantization-aware training, the weight values can now
exceed the original quantization range. This is very difficult to mitigate beforehand and
can lead to undefined behavior on the hardware. For the final |(GNN-ETM]| network, batch

normalization layers have been omitted to avoid this behavior.

6.4 Architecture and Input Optimization

While quantization of all parameters used in the network is necessary for usage on hardware,
the overall size of the network has to be additionally restricted to fit within the hardware
constraints. As mentioned before, the depth of the entire network, the size of the layers,
the parameter bit widths and the percentage of pruning all have to be optimized in tandem
with the maximum upper bound being difficult to determine in absolute values. When
staying with the design of one GravNet block shown in Fig. 6.3 to limit the size of the
design space, an absolute limit of the number of blocks is two due to the routing and latency
constraints on the hardware.

In this section, the optimization on the overall number of parameters and on the input
and output scaling is shown. Low-magnitude pruning is explained in Section 6.4.1), the
impact of input scaling and the use of Manhattan distance instead of Euclidean distance
is shown in Section [6.4.2, and the optimization of the energy prediction is shown in
Section |6.4.3. For these sections, the final network design with the parameters shown in
Table 6.1 is used. A hyperparameter optimization including all quantizations, the final
pruning procedure, and the input and output scaling is shown in Section 6.4.4l

While every dense layer within the network, including the dense layers for the represen-
tation space S and the feature space F,g shown in Fig. 6.1, can be optimized separately, for

simplification, several hyperparameters are combined into one to make optimization easier.
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Table 6.1: Summarized model parameters, their descriptions, and final values used for the
evaluation. The final number of free model parameters is 4803.

Parameter Definition Final Value

Dim1 Size of the dense layer before the GravNet layer 16
and the layer before the final output layers

Dim2 Size of the dense layer after the GravNet layer 16

momentum  Momentum for the batch norm layers 0.6

Ng Size of representation space S

Nrir Size of the feature space Frr 8

k Number of nearest neighbours in the GravNet 8
graph building

fexp Scaling factor for the exponential weighting func- 10.0
tion

Nout Size of the dense output layer of the GravNet 32
algorithm

N(coordst,g) Number of coordinates for the OC latent space 3

6.4.1 Low-Magnitude Pruning

Low-magnitude pruning [92| is a model compression technique designed to remove less
salient connections from the network to increase model sparsity. The goal of pruning is
to reduce the overall number of parameters by setting the weights of a set percentage
of nodes to 0 during training. The model can learn to be robust against these missing
connections and have negligible loss in performance. Nodes with their weight set to 0 can
be skipped during inference and are not needed to be stored on the hardware, reducing
both the number of overall multiplications and the amount of needed storage.

In low-magnitude pruning, a binary mask is added for all layers subjected to the pruning
algorithm. In each pruning step, the nodes of all layers are sorted by absolute weight and
the mask value for each node is set to 0 from the bottom up until the required percentage
is reached. In the backpropagation step, the backpropagation is subjected to these binary
masks and the weights of the nodes are not updated in this step but kept at 0. For this
work, the Keras Constant Sparsity pruning scheduler was used. This scheduler sets a
given percentage of weights per layer to 0 at steps in a given interval during training.
Additionally, the start and end epoch of the pruning can be given to the scheduler.

The overall goal of pruning is to reduce the amount of parameters as much as possible
without a loss in network performance. For the given architecture and parameter settings
given in Table 6.1, pruning percentages above 40 % turned out to be difficult to achieve by
the pruning scheduler. Therefore, 40 % was used throughout this work.

The start of the pruning schedule is a hyperparameter and depends on the stability of
the model and on the current learning rate. When the learning rate is already at a very

small value, removing a high percentage of weights might mean that the updates due to the
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Figure 6.16: Comparison of the loss evolution of two networks trained with the same
configuration besides the start of the pruning scheduler. The start of the pruning is
indicated with the dashed vertical lines, with the same colours corresponding to the related
loss curve. The later pruning start results in a temporary increase of the loss function, but
the network still has enough learning capability to achieve the same loss after a recovery
period than the network where the pruning started at the earlier point. The markers are
connected by straight lines to guide the eye.

learning rate are too small for the model to recover from that loss of information. On the
other hand, when starting too early, the weights might not be optimized already and the
pruning removes necessary information for the further learning process. In Fig. 6.16), two
pruning start points are compared for the same network design and training setup. The
later start induces a temporary rise in the loss function, but the network can recover and
stabilize the training again. Both networks still have a learning rate of 0.0005 at this point.

A drawback with the usage of the pruning algorithm implemented in Keras is the
combination with the model checkpoint callback. When saving a model not at the end of
training, but every time a given metric, e.g. the validation loss, reaches a new minimum,
Keras does not guarantee the model weights being saved in their pruned state. This means
that every training has to be checked in terms of overtraining and terminated early enough

to avoid an increase in the loss function.

6.4.2 Input Scaling and Distance Optimization

Further optimizations can be tested to either improve the model performance or to facilitate

the implementation on hardware.

Input Scaling

ML algorithms usually converge better or faster when the inputs and outputs are normalized,
either to a range of |0, 1] or [-1, 1], to avoid large gradients. Additionally, all input features

should have the same scale to facilitate the learning process [93|. In Table 4.1} the input
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Table 6.2: Scale, offset and final value range for the normalization of the input variables for
each [TC| to the network. This is done for the entire dataset.

Input variable Offset Scale approx. Range
Reconstructed Energy 0 8 [0, 1.5]
Relative Time 0 0.25 -1, 1]
x Position 0 1.27 [-1, 1]
y Position 0 1.27 -1, 1]
z Position 0.46  1.52 [-1, 1]
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Figure 6.17: Comparison of the energy resolution for offline ECL clusters in the barrel
region with 0.15 < E mine cluster < 0-20 MeV. The left plot is a training trained with
unscaled inputs, the right plot with scaled inputs.

features with their expected range is shown. While all features are already in a similar
scale, encompassing an entire value range of -1.5 and 12, timing and energy can for example
be different by almost two orders of magnitude. Therefore, a comparison between network
performance for unscaled input features versus scaled input features is done.

The features are scaled by applying the operation (z — offset)/scale. In Table 6.2, the
offset, scale, and final value range for each feature are listed. While the energy can in theory
go up to 21 GeV as the maximum value for each TC| which would exceed the normalized
range, the network should focus on the lower energies. When setting the scale to much
higher values, the lower energies would lack resolution, which is an unwanted effect.

Fig. 6.17 shows an exemplary energy resolution for one training trained with nonscaled

inputs and one training trained with scaled inputs. There is no improvement seen by scaling

the inputs.

Manhattan Distance

The standard way to calculate the distance between two points in a multi-dimensional space
is by using the Euclidean distance or L2-Norm

dp(p.)=Ilp—dlp= > (i —a)" (6.16)

i
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For the here used network, a distance calculation is necessary at two points. In the GravNet
layer (see Section 6.2.1), the distance between two points in the representation space S is
used for the kNN algorithm to build the graphs, as well as a weight factor for the message
passing between two connected nodes in the graphs. Furthermore, the (OC| inference
calculates the distances between points in the latent space to select condensation points.

While the calculation of the square root is not necessary for these use cases, the
calculation of the square is quite resource-intensive due to the multiplication and the
necessary bit width increase in the accumulator. Therefore, instead of using the Euclidean
distance, I use the Manhattan distance to simplify the distance calculation on the FPGAL
The Manhattan distance or L1-Norm is defined as

dy(p.q) = llp =l = > _ Ipi — 4] (6.17)

and does not include any multiplications for the calculation.

All distances in the network are substituted by the Manhattan distance and the network
is trained with these distances.

Training a network with one distance and solely evaluating with the other does not
work, as especially the GravNet layer is finetuned on the absolute sizes of the calculated
distance. The steep slope of the exponential weighting function leads to large differences
when substituting the Euclidean distance with the Manhattan distance or vice versa and
results in unsuable models. Therefore, the used distance has to be consistent in both

training and inference.

6.4.3 Energy Prediction Optimization and Network Stabilization

While the OC prediction values, the 8 value and the latent space coordinates, are set
due to the algorithm design, which and how the cluster features are to be predicted is a
design choice. In the original design, the network predicts the absolute value of energy and
position and the loss is designed as the Mean Absolute Error (MAE) loss. In Fig. 6.18,
the energy resolution for 150 - 250 MeV and 450 - 550 MeV and the 6 and ¢ resolution for
150 - 250 MeV for a quantized network in comparison to the resolution of ICN-ETM is
shown. Both position and energy is predicted as an absolute value with the MAE loss.
As the figure shows, while the position resolution is the same for both TCN-ETM)| and
the | GNN-ETM]| network, the energy resolution of the network is significantly worse. As
explained in Section 3.2, the [CN-ETM] algorithm uses an energy sum for the prediction of
the energy and the center position of the highest-energetic TC| as the prediction of the
position. It is to be expected, that the network cannot improve especially the position
prediction in these low energy regimes, as the shower is entirely contained within one TC
and further position information is lost before the network receives the input. But while the
same argument holds also for the energy prediction, a worsening of the energy resolution

cannot be accepted if the network is to be used in the real trigger system.
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Figure 6.18: Energy resolution for clusters in the barrel region with 150 - 250 MeV (top
left) and 450 - 550 MeV (top right) and € (bottom left) and ¢ (bottom right) resolution
for 150 - 250 MeV for one training with the network design and quantization explained
in Section 6.3.2] and with an absolute energy prediction, compared to the resolution of
ICN-ETM, The resolutions are bias-corrected as explained in Section 5.2, The dataset used
is the Category-One test dataset.

An additional drawback is the instability of the network training and the respective
network performance. In Fig. 6.19, the ROC| curves for the signal/background classifier
of five quantized networks trained with the identical setup described in Section [6.2.4 and
evaluated with the Category-One test dataset are shown. The |[ROC curves are drawn
for matched offline [ECL| clusters with a true energy between 150 - 250 MeV. As can be
seen, three networks do not learn anything in regards to the signal/background classifier,
while their overall efficiency indicated by the number of found offline [ECL| clusters in the
lower right corner is similar to the other two networks. This training instability means that
always several networks have to be trained with the same setup to increase the chances of

good training results.

To improve the energy resolution for low energies, the loss was changed from a MAE
loss to a logarithmic loss to heighten the impact of lower energies. The logarithmic loss
is calculated as an MAE] loss of the logarithm of both the true and the predicted energy.
Additionally, a ReLu activation function for the energy output is introduced, since the
energy prediction has to be strictly positive. As can be seen, the improvements to the

network are negligible.
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Figure 6.19: ROC curves for the signal /background classifier for the energy region between
150 - 250 MeV and the barrel region for five trainings with the identical training setup
and network design as in Fig. 6.18. As can be seen, only two out of five networks learn a
non-random signal /background classification.

A second improvement strategy is to predict the energy as a factor of the TC energy
instead of an absolute value. Especially for lower energies, the [T'C|energy is the best
energy prediction possible, as the entire shower is contained within one TC| the predicted
factor should always be close to one and therefore in a well-maintainable range for the
network. The loss is calculated as the MAE loss between the true energy and the prediction
multiplied with the T'C|energy of the prediction node.

In Fig. 6.20, the same energy and position resolutions as in Fig. 6.18 are shown. As
can be seen, the energy resolution of the network is now nearly identical to the one of
ICN-ETM, while the position resolutions have not changed. Additionally, in Fig. 6.21],
again five trainings with the same setup are shown, all trained with the prediction of a
correction factor for the energy instead of the absolute value. Now all five trainings show a
good signal /background separation ability.

The same study was repeated for with a correction factor on the [T'C position for the

position prediction, as well, but showed no improvement over the full position prediction.



92 6.4. Architecture and Input Optimization

2250

Belle Il Simulation (own work Barrel 1400 p— m
Run-Independent Background, Rel. 08 Ex Bel_le 1l Simulation (own work) Barrel
2000 8 1?9,%\/ < E < 0.25 GeV Run-Independent Background, Rel. 08, Exp. 1003 0.45 GeV < E < 0.55 GeV

1200 : !
1750
1000
1500
1250 F >
1000
400
s0f [ ICN-ETM o 3 ICN-ETM
1 GNN-ETM 1 GNN-ETM
0

Clusters / 0.02

Clusters / 0.02

]

g
s

95 o7 050 o3% 025 050 075 %0 075 050 —025 0.00 025 0.50 075
E - E E
Epred - Eshower / Eshower) (« pred shower)/ shower)
4000 3500
Belle Il Simulation (own work) Barrel Belle Il Simulation (own work) Barrel
o Run-Independent Background, Rel. 08, Exp. 1003 0.15 GeV < E < 0.25 GeV Run-Independent Background, Rel. 08, Exp. 1003 0.15 GeV < E < 0.25 GeV
3000
3000
2500
g- 2500 g
5] S 2000
= =
2000 o
L 2
@ @ 1500
2 =
O 1500 =]
1000
1000
500 CJ ICN-ETM o 1 ICN-ETM
[ GNN-ETM ] GNN-ETM
701 00 -0.75 -0.50 -0.25 075 Pl 00 =075 -0.50 -0.25 0.00 025 0.5 075
(9pred - Bshower) (pred - Pshower)

Figure 6.20: Energy resolution for clusters in the barrel region with 150 - 250 MeV (top
left) and 450 - 550 MeV (top right) and € (bottom left) and ¢ (bottom right) resolution
for 150 - 250 MeV for one training with the network design and quantization explained in
Section 6.3.2, but with the prediction of a correction factor for the TC|energy, compared to
the resolution of ICN-ETM. The resolutions are bias-corrected as explained in Section 5.2.
The dataset used is the Category-One test dataset.
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network design as in Fig. 6.20. All networks now have a good signal /background separation.
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6.4.4 Hyperparameter Optimization

To optimize the hyperparameters of a network, typically a grid or an optimized search
procedure is done by training the network with a number of different configurations of
hyperparameters to find the best-performing option. For this work, this has been done with
the quantized network shown in Section 6.3 and includes low-magnitude pruning, input
scaling, and the prediction of the energy as a scaling factor.

For the hyperparameter optimization, the Weights&Biases |86] sweep method was used.
This employs a Bayesian hyperband optimization |94] to find the best configuration for
the model based on a validation metric. For this work, the validation loss was used as a
minimizing target.

The hyperparameters varied for the search and their corresponding value ranges are
shown in Table 6.3. As the final network design utilizes approximately 100 % of the FPGA
when implemented (more details in Section 6.5.2), this parameter set is regarded as the

upper limit.

Table 6.3: Summarized model parameters and the range for the hyperparameter values for
the optimization.

Parameter Search Range
Dim1 4-16
Dim2 4-16
Ng 2.6
NrLr 2-8
k 2-8
forp 1-10
Nout 4-32
N(coords;g) 2-4
Learning Rate [107%, 107, 5 x 1072, 1077]
Batch Size [256, 512, 1024, 2048]

400 trainings were run and the 100 best-performing trainings with the best validation loss
below 1 were used for the calculation of the importance metric and the correlation between
the hyperparameter and the validation loss. Both metrics are provided by Weights&Biases.
The result can be seen in Fig. 6.22. While no hyperparameter has a very high importance
feature or correlation since both values can go up to 1, a high number of hyperparameters
are negatively correlated with the validation loss. This means a higher number of these
parameters should improve the performance. This strengthens the design choices presented
in Table 6.1, as these are the largest hyperparameter values possible while still staying
within the implementation requirements.

The positive correlation between the number of nearest neighbors for the kNN| and for

the exponential factor is a step to test in further development.
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Figure 6.22: Importance metric and correlation between the hyperparameters and the
validation loss. Both values are given by the Weights&Biases sweep framework and can
have a maximum value of 1. Most hyperparameters have a negative correlation to the
validation loss.

6.5 Implementation on Hardware

The final | GNN-ETM] network design was implemented and deployed on a [UT4] board and
included in the data taking of Belle I at the end of 2024 and operated successfully in a
realistic environment. The |GNN-ETM is not yet involved in any active trigger decisions,
as the current implementation does not yet meet the full latency requirements to do so.
However is able to operate with an 8 MHz throughput and perform the full clustering
inference online. The work of this chapter has been done in very close collaboration
with team members from the Institute fiir Technik der Informationsverarbeitung (ITIV).
Therefore, I will describe the implementation as a collaborative effort, as this has not been

done exclusively by me.

6.5.1 Setup and Requirements for Integration to the Level 1 Trigger
System

The setup of the (GNN-ETM]| board as part of the overall [ECL] trigger chain is shown in
Fig. 6.23. The |GNN-ETM) board receives a sparse two-dimensional array containing all
576 TCslfrom the ICN-ETM. For each TC| the energy, if it is above 100 MeV, the timing,
and a hit flag is transmitted. On the GNN-ETM board, preprocessing, network inference,
cluster condensation selection, and postprocessing are run and the output is written to a
ring buffer. When a trigger signal is being issued by the GDL, the output of the triggered
event is sent to the output stream of Belle II via the Belle2Link [95], [96].

The full integration of the GNN-ETM into the L1 trigger|system requires as a minimum

sending of the cluster information to the |GDL, so that this information can be part of
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Figure 6.23: Overview of the ECL L1 trigger| trigger scheme with the inclusion of the
GNN-ETM!. The GNN-ETM]|receives the TCsl from the ICN-ETM| runs the preprocessing,
the full network, and the post-processing, and stores the TCgl after preprocessing and the
clusters and predicted values after the post-processing in a buffer. When the GDL sends a
trigger signal, the values from the |GNN-ETM]| are read out and sent via the Belle2Link to
the readout system.

the trigger decision. This integration has a very strict latency requirement, as the whole
readout to |GDL decision can only take 5ps, as described in Chapter 3. With the current
design of the full [ECL| L1 trigger chain, the GNN-ETM)|implementation has a latency
requirement of approximately 1.5 ps. This is not currently achievable by the |GNN-ETM
implementation. Therefore, and to simplify the integration of the GNN-ETM) in the whole
L1 trigger system, a parasitic integration setup is used. The link from |GNN-ETM to |GDL
is omitted, so that the GNN clusters are not part of the GDL calculation and are only
written to data when a trigger signal is issued. This setup allows for a significantly higher
latency than 5ps. The necessary throughput of 8 MHz is a hard requirement also for the

parasitic implementation.

Additionally, when writing out the (GNN-ETM]| results via the Belle2Link, the total
bandwidth available for the full L1 trigger system cannot be exceeded. The maximum
bandwidth needed by |GNN-ETM depends on the amount of data sent per trigger signal and
the number of trigger signals issued in a given time frame. The number of trigger signals as a
function of time is non-uniformly distributed and highly depends on the machine conditions,
which makes it difficult to predict for future data-taking periods. To set an upper limit for
the implementation to the bandwidth for the GNN-ETM) readout, the readout size for the
largest single module readout, a track trigger module, is used. This module has a readout
size of 196 kbits, which is regarded as an upper limit for the |GNN-ETM]| as the data size

per event.
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6.5.2 Implementation Design and Results

The final hardware implementation is separated into four modules: The preprocessing, the
actual (GNN-ETM network inference, the condensation point selection algorithm, and the

postprocessing. In the following, a short description of the modules is given.

Preprocessing

The preprocessing module converts the sparse input matrix of 576 [T'Cs|to a matrix that
contains a maximum of 32 [T'Cs for one trigger decision window. If more than 32 TCs are
in one trigger decision window, the remaining TCs are dropped and not used as input to
the network. This dropping is random and has not been optimized yet. The number of TCs
in the data taken with the GNN-ETM can be seen in Fig. 4.8. In addition to the energy
and timing information of each TC| the TC/ID is also kept. This ID is used for adding the
Cartesian coordinates of the TC center to the input and to store the information in the
output data for later identification. The module also identifies the highest-energetic [TC
per trigger data window and calculates the relative time of all [TCs to the highest-energetic

TC in one data window. The preprocessing module runs at a frequency of 254 MHz.

GNN-ETM)| network

The GNN-ETM) network is implemented and deployed with the same structure as described
in Section 6.4/ and Section |6.3. Each dense layer is implemented with a subsequent clipping
of the output values to the ranges of the fixed point quantization for this layer. This ensures
that no overflow can happen in case the values after dense layers exceed the quantization
range, and mimics the behavior of QKeras more closely.

The dense layers are calculated for each T'C|in order without buffering, as the calculations
are independent of each other. In comparison, the GravNet layer relies on the information
of all points within one event for the dynamic graph building and message passing. For
the implementation of the GravNet layer, an |All-Nearest-Neighbour (ANN) algorithm
[97] is implemented followed by a hierarchical Top-K sorting algorithm. For the message
passing step, sorted features are taken from a Block RAM (BRAM) buffer and passed
through the exponential function. The values of the exponential function are stored in a

LUT optimized for the quantized values of the feature output.

Condensation Point Selection Algorithm

The inference of the [OC| algorithm, as described in Section [6.2.2 requires the sorting of all
output points by their 8 value and calculating the distances between points to apply the
isolation criterion.

For an optimized implementation, an ANN algorithm calculates the distances between

all points. Then, the isolation criterion is applied to these distances by applying the distance
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threshold, resulting in an array containing bitmasks of 0 and 1. In parallel, a candidate
selection using the 8 threshold is done, which creates a second bitmask of 0 and 1 depending
on if their 8 value is above the threshold. The array IDs of all points are sorted by their
[ value to ensure the condensation point selection is done according to this order. To
now calculate the condensation points, an array filled with 0 is initialized. Then, starting
from the point with the highest § value, a 1 is set at its position in the condensation point
array, and its ID is removed from the candidate list. To remove the points not fulfilling
the isolation criterion to this condensation point, an AND operation is done between the
isolation bitmask and the candidates bitmask. This sets all points to 0 that are within the
distance threshold of the current condensation point. This continues with the next point in
the sorted ID list. If this point has already been set to 0, its position in the condensation
point array is also left at 0. In Algorithm 6.1 this algorithm is written down in pseudocode

as well.

Algorithm 6.1
Condensation Point Candidate Selection (CPCS). Provided by Marc Neu.

1: procedure CPCS(isolations,candidates,ids)
2 cps — {0}

3 flags < candidates

4 for i <0, I;,;; —1 do

5: parallel for p+ 0, P — 1 do

[§

7

8

9

id <« ids.pop()
cpsfid] < flagsfid]
flags < flags & isolations[id]
end for
10: end for
11: return cps
12: end procedure

To encode the decision of the condensation point selection algorithm while avoiding
to add an extra feature to reduce bandwidth, outputs that get selected as condensation
points have the sign bit of the 8 value flipped. As the § value is strictly positive due to
the sigmoid activation function, flipping the sign bit is optimal for storing the decision

information.

Postprocessing

The postprocessing step ensures the merging of all [T'Cs used in the network and the output
clusters with their corresponding features.

Data Readout

The ICN-ETM)| module writes out the clusters and TCs|for eight trigger data windows:

The two data windows in which the trigger decision was made and the three windows
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Figure 6.24: Figure to show the relation between (GNN-ETM timing and ICN-ETM
timing. The ICN-ETM|module writes out eight data windows, with data windows 3 and 4
constituting the trigger decision window. The |GNN-ETM| module writes out three 250 ns
windows, where |GNN-ETM] window 0 corresponds to data windows 1 and 2, |GNN-ETM
window 1 to data windows 2 and 3 and |GNN-ETM| window 2 to data windows 3 and 4.
The alignment of windows between GNN-ETM and ICN-ETM is adjustable via a register.
This alignment is used in the runs in Table 6.4.

before and after. To reduce the amount of data sent via the Belle2Link and stored in
raw data, for the GNN-ETM]| data only five trigger data windows are written out. The
GNN-ETM module builds its own windows out of two data windows and writes out three of
these |GNN-ETM) 250 ns windows. In Fig. 6.24) the relation between the ICN-ETM) data
windows and the |GNN-ETM) windows can be seen. GNN-ETM) window 2 corresponds to
the trigger decision window of ICN-ETM) which consists of trigger data windows 3 and 4.

The |GNN-ETM module writes out three |GNN-ETM) windows with the corresponding
input TCs and the output clusters. Each window has a dynamic size depending on the
number of TCs|, with the information stored in the header of each window data packet. The
design of the data packet is shown in Fig. 6.25. Each TC has six features, each encoded
in 16 bits: ID, energy, relative timing, and (x,y,z) position, whereas each cluster has 10
features, also encoded in 16 bits: ID, g value, signal classifier, energy, (x,y,z) position and
three latent coordinates. TCsl or clusters are always sent in packets of two, so if an odd
number of clusters is in one window, an extra cluster with all features set to 0 will be added.
The packet size ranges from 1760 bits, when no TC|is in any data window, to 24800 bits,
if all three windows contain 32 [T'Cs. This is well below the maximum of 196 kbits. The
unpacker for this data, which reads out the dynamic information and stores the GNN-ETM
TCs| the clusters, and the header data in basf2 data objects, has been included in basf2.

The overall design is implemented on the UT4. The final implementation has a latency
of 3.2 us, with the split between the modules seen in Fig. 6.26. The |GNN-ETM  itself needs
approximately 2ps. The usage of the resources on the FPGA|is shown in Fig. 6.27. The
dense layers utilize the majority of the [DSPs| especially those with a 16-bit quantization.
8-bit dense layers are mapped to distributed logic. The implementation of the GravNet logic
significantly relies on Flip-Flop registers (FFs) and LUT. In total, 76 % of the configurable
logic blocks are utilized.

The |GNN-ETM network, the condensation point selection algorithm, and the postpro-
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Figure 6.25: Overview of the data packet design of the (GNN-ETM) module. The module
sends out three timing windows with the TCgl features and the cluster features in that
window. The packet size is dynamic and the window headers store the information of the
number of TCs and clusters within that window. The maximum data size of one packet is
24 800 bits, if each window contains 32 [T'Csl
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m CaloClusterNet
H Condensation Point Selection

0 500 1,000 1,500 2,000 2,500 3,000 3,500
Latency, L (ns)
Figure 6.26: End-to-end latency for the complete inference chain of the |GNN-ETM

including preprocessing and the condensation point selection algorithm implemented on the
UT4, featuring the AMD Ultrascale XCVU190. The GNN-ETM] itself needs the highest
amount of latency with almost 2 ps. Figure by Marc Neu.
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Figure 6.27: Utilization of system resources on the UT4, featuring an AMD Ultra-
scale XCVU190. The usage of FFs, [LUTs, DSPs/and BRAMSs separated for the base
firmware, the B2Link system and the different steps of the clustering is shown. The GNN-
ETM)| implementation is additionally separated into the dense layers and the GravNet layers.
The DSP usage is at 100 % and primarily used by dense layers with 16 bit quantization.
Figure by Marc Neu.

cessing all run at a frequency of 127 MHz. Running at a frequency of 254 MHz would very
likely approximately halve the latency but the high resource usage of the implementation
currently does not allow for this. Improvements to the network design, such as a reduction
of quantization ranges and calculations in general, are necessary for this step. This is
difficult due to the multi-step process of training, evaluating and implementing to get the

final results, as well as due to the large parameter space.

6.5.3 Evaluation Setup for Hardware Performance

The hardware implementation can be verified and crosschecked with both the results given
by QKeras as well as different steps in the implementation design. For this work, there are

three outputs to be compared:

e The output of the GNN-ETM]| and the condensation point selection algorithm in

QKeras;

e The output of the transaction-level C-simulation, which implements the GNN-ETM
and the condensation point selection algorithm in Vitis 2024.2 [98| without the

preprocessing and the postprocessing step;

e The hardware output of the GNN-ETM]| board when taking data with the [Belle II

detector.

The comparison between the C-simulation and the hardware output is useful to debug
implementation processes, as these should be bitwise accurate. In Fig. 6.28, this comparison
for a cosmic run taken with the GNN-ETM) board, exemplary for the energy and x output

values, can be seen. The values are identical.



Chapter 6. Network Design 101

Belle 11 2025 (own work) 2.0 Belle Il 2025 (own work)
7} Exp 36 Run 743 A Exp 36 Run 743
GNNETM v1.3 —~ 15| GNNETM V13
— c o 1
Sef 1 £
() > -
&) ’ 0 1l0p "_.-' B
=5l 1 o .
w Q. P
R ~ "y
C 4 1 . 0S5F P i
S < n
© 10* E=] i A~ 10° ]
= 3} ] © 0.0
] —_
£ 10° > -
&2k .S £ —osf 1025
O 10?2 3 7 3
i O ] @) @]
’_,-/ 1 R w0
&
of. 10° ]
Gl I I —-1.5 k" I I I M

0 2 z‘l 6 -1 0 1 2
Hardware, E (GeV) Hardware, TPosy (m)

Figure 6.28: Comparison between the C-simulation and the hardware energy output (left)
and the x output (right) for a cosmics run taken with the GNN-ETM) board. The TCs, as
written out by the GNN-ETM module in raw data, are used as input to the C-simulation.
The output values are identical. Figure by Marc Neu.

Consequently, for the comparison between the QKeras simulation and the final hardware
output, the C-simulation is used, which can be run locally. The training data is processed
via the C-simulation and the outputs are compared. In Fig. 6.29, a comparison of the
x and energy output values can be seen. The left plots show the comparison between
all output values, while the right plot only shows the comparison between output values
selected as condensation points by both algorithms. Except for the high energy region for
the energy output, the condensation points show a good agreement. This might be due
to the clipping of the input energy values at 8 GeV, which can worsen the performance
of the GNN-ETM] for high energies. The values of the non-condensation points behave
very erratically. While this does not affect the performance of the overall clustering, this
should still be improved in further work. One reason for this behavior might be that the
network learns to push non-condensation points to the edges of the quantization range and
therefore lead to quantization errors in the different implementations of QKeras and the

C-simulation.

A special case is the output agreement for the § value as well as the signal classifier
output due to the Smooth Sigmoid activation function (see Section 6.3.3). In Fig. 6.30,
the left plot shows the 8 value output comparison after the condensation point selection
algorithm. Points in the lower left quadrant have been selected by both algorithms as
condensation points, points in the upper right quadrant are not selected as condensation
points by either algorithm. A high discrepancy between the C-Simulation and the QKeras
output is visible, with differences up to the maximum value of 1. The reason for this is

shown in the plot on the right. This shows the output of the 8 dense layer before the
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Figure 6.29: Comparison between the QKeras simulation and the C-simulation for the x
(top) and energy (bottom) prediction values. The left column shows the output of all
points, while the right column shows the output of only points that have been chosen as
condensation points in both the QKeras and the C-simulation.
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Figure 6.30: Comparison between the QKeras simulation and the C-simulation for the
value. The left plot shows the final 8 value output after the condensation point selection
algorithm. Values in the lower left quadrant have been selected by both algorithms as
condensation points. A large discrepancy between QKeras and the C-simulation is visible.
On the right, the output of the 8 dense layer before the Smooth Sigmoid activation function
is shown. The red dotted lines mark the region, where the activation function is linear.
Everything outside this region is mapped to 0 or 1.

Smooth Sigmoid activation function for both the C-Simulation and QKeras. The red dotted
lines mark the region in which the activation function has a linear mapping, while points
outside this region are mapped to 0 or 1. The overall agreement of this curve is in the same
range as the agreement for the values in Fig. 6.29. The Smooth Sigmoid then acts as a
magnifying glass of the region inside the linear part and enhances the quantization error
significantly.

The differences in the [ value have a large impact on the selection of the condensation
points and subsequently on the predicted clusters. For future work, a different activation

function has to be chosen or the overall quantization error reduced.

6.5.4 Data Taken with GNN-ETM

The |GNN-ETM network has by now been parasitically running in Belle II] multiple times
during collision and cosmics data taking, and is the first real-time |GNN deployed in a
realistic environment. Due to the scheduled end of data taking of Belle II] at the end of
2024, deploying the GNN-ETM| in runs with collision data was only possible for a limited
amount of time.

In Table 6.4} all runs with collision data and an included |GNN-ETM module are shown.
The runs are color-coded with red indicating a run stop caused by the |GNN-ETM module,
orange indicating corrupted |GNN-ETM data without impacting the general data taking of
Belle II, and green showing runs, which had all subdetectors included and valid data from
GNN-ETM. The data corruption is due to an irregular data transfer between the ICN-
ETM|and GNN-ETM]|boards and not due to an error in the |(GNN-ETM| implementation.
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Because of yet unknown reasons, at irregular times some TCgl are lost in the transfer from
ICN-ETM|to (GNN-ETM. As the |GNN-ETM]| preprocessing is dependent on all TCs being
transferred in a fixed order, this leads to wrong data alignment and corrupted data packets.

In the runs in Table 6.4, we showed that the implementation of the |[GNN-ETM) algorithm
can successfully run |GNN-based clustering in a real-time environment with very high
beam backgrounds. The |GNN-ETM was also included in Run 2886 without any internal
difficulties, where SuperKEKB) delivered the world-record instantaneous luminosity [6],
showing that the algorithm can cope with high data rates. Both the preprocessed inputs and
the outputs of the network were written out to the official data of [Belle II] and can be read
out via basf2 with the implemented (GNN-ETM unpacker. We showed a full end-to-end
implementation including integration into the current L1 trigger setup of Belle II.

The data taken in these runs is additionally useful to test the preprocessing, postpro-
cessing, and the unpacker of the raw data packets. The full performance of the actual
clustering could not be tested. The weights deployed are weights taken from a trained
model but had several key components missing to perform correct clustering. This does
not change any of the implementation functionality but impacts the output of the network
in such a way that no performance analysis can be done for the clustering.

To test the preprocessing and in combination the unpacker in basf2, the preprocessed
input TCs to the network, which are written out into raw data, are compared to the
ICN-ETM TCs. To test this agreement, first the TCg|in the correct timing windows for
both TCN-ETM|and |GNN-ETM] are selected. As the most TCslare in the data windows 3
and 4 of ICN-ETM]| these windows are selected. The corresponding window for GNN-ETM
is window 2. In Fig. 6.31, the hit TCs with their ID are shown for both GNN-ETM
and [ICN-ETM, for the subset of events with a maximum of 32 TCs. The distributions
agree perfectly. Furthermore, the reconstructed energy per [TC|is shown in Fig.[6.32. The
cutoff due to the quantization range for the GNN-ETM [TCs can be seen at 8 GeV in the
left plot. The distribution below 8 GeV agrees very well, but small discrepancies can be
seen. These discrepancies are explained with the right plot, which shows the energy range
between 0.1 and 0.16 GeV with the bin size being 1/ 212, which is the quantization precision
for the GNN-ETM) inputs. The [ICN-ETM energy values are stored as ADC counts in
the raw data and converted to GeV with floating point precision afterward. In comparison,
the |GNN-ETM) conversion happens online in Q4.12 fixed point precision resulting in small
differences in energy values. In summary, this shows that the preprocessing of the input
values, the value merging in the postprocessing, and the unpacking of the raw data works

as intended.



Chapter 6. Network Design 105

Table 6.4: Runs taken with the GNN-ETM]| included into official Belle II| data taking
during the 26. and 27. December 2024. Physics runs have all subdetectors besides [PXD
included, while Debug runs additionally had the |[CDC and |SVD|detectors on standby
due to the very high beam backgrounds. Red columns show runs where the GNN-ETM
board threw an error that stopped data taking whereas orange runs are runs that have
corrupted |GNN-ETM data due to unstable links between the ICN-ETM and |GNN-ETM
boards. Runs with all subdetectors included and no problem with the | GNN-ETM) board
are marked in green.

Run  Type Duration L, (10" cm?s™") N(Events) [ Ldt (nb™')  Version

2476 Physics 8m 34s 2.25%10° 2249081 3.48x10° V25
2477 Physics  4m 23s 1.75%10° 175150 6.37x10° V25
2478 Physics  2m 23s 4.79%10° 479291 1.18x10% V25
2734 Physics 10m 52s 1.23x10* 1391497 6.91x10° V27
2880 Debug  16m 18s 4.89x10* 1642822 3.51x10* V31
2881 Debug  30m 35s 2.68x10" 2154924 4.30x10* V31
2882 Physics 31m 52s 4.33x10* 2229687 5.93x10% V3l
2883 Debug 17m 39s 4.58x10* 980574 3.21x10% V31
2884 Physics  8m 10s 4.06x10* 349826 1.03x10* V31
2885 Physics  4m 0ls 3.98x10" 230241 6.36x10° V31
2886 Debug  22m 25s 5.10x10* 2267967 4.54x10% V31
2887 Physics 13m 37s 4.25x10* 708037 2.04x10* V31
2888 Debug  39m 1s 4.72x10* 2017994 7.24x10% V3l
2889 Physics 09m 38s 3.25%10" 427369 1.08x10* V31
2800 Physics 10m 02s 3.35x10* 371138 1.09x10* V3l
2801 Physics 34m 22s 3.85%10" 2334215 6.35x10% V31
2802 Physics 0lm 24s 3.71x10" 93286 2.40x10° V3l
2804 Physics 42m 19s 3.84x10" 3047148 8.21x10" V31
2895 Physics 06m 47s 3.24x10* 201125 7.02x10° V31
2806 Physics 10m 15s 3.85x10* 564738 2.04x10% V31
2897 Physics 17m 26s 3.81x10* 731807 2.75x10* V31
2809 Physics 10m 43s 3.75%10" 626276 2.05%10% V31
2901 Physics 15m 32s 3.84x10* 894545 3.08x10 V31
2902 Physics 12m 15s 3.82x10* 976893 2.28x 10 V31
2903 Physics 04m 58s 3.71x10" 284071 8.95%10° V3l

2904 Physics 1lm 15s 3.77x10* 865036 2.11x10* V31
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Figure 6.31: TC IDs for the ICN-ETM and GNN-ETM| TCs in timing window 3 and 4
and window 2, respectively. The TCs are taken from Exp. 35, Run 2882, and the subset

of events with a maximum of 32 TCs is shown. The distributions are hatched to show the
agreement. Both distributions are identical.
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Figure 6.32: TC IDs for the ICN-ETM and GNN-ETM| TCs in timing window 3 and 4
and window 2, respectively. The [ICN-ETM) energy has been converted from ADC counts
to GeV. The TCs are taken from Exp. 35, Run 2882, and the subset of events with a
maximum of 32 TCs is shown. On the left side, the entire energy range is shown, with a
cutoff at 8 GeV for the GNN-ETM| TC due to the quantization range. The right plot shows
the range between 0.1 and 0.16 GeV. The mismatches are due to the offline floating point
precision conversion of the ADC values of the TCN-ETM| [TCs|, while the GNN-ETM TCs
are converted with fixed point Q4.12 precision online.



Chapter 7

Evaluation on Technical Datasets

To correctly gauge the performance of the |GNN-ETM, first an evaluation on technical,
simulated datasets is done. This allows for: A validation of performance metrics on special
datasets for overlapping particles; to compare the effect of different 8 cuts on the metric
values; and to test the signal/classifier discrimination performance.

In this chapter, first an overall evaluation of the metrics presented in Chapter |5/ on
the technical test datasets explained in Section 4.3 is shown. The variations inbetween
trainings is shown and the procedure to choose a final network is described. Then, one
model is selected and evaluated in depth, with a focus on the discrimination performance of
the signal /background classifier. Additionally, the effect of different 5 cuts is shown here.

As one major drawback of the [ICN-ETM]is the performance on close-by or overlapping
clusters, a dedicated dataset with two close-by particles with equal energies is being
evaluated as well. For this, the performance of the network is tested in dependency of the
distance between clusters.

At last, the performance of events with pure beam background simulation is evaluated.
For these samples, the overall trigger bit efficiencies and trigger rates are tested including a
test of the signal /background classification. Decreasing the trigger rate on beam background
hits can directly improve the data taking of Belle II due to a reduction in triggered, but
later discarded events.

For all evaluations, a 8 threshold of 0.04 and a latent space coordinate cut of 0.3 is set.

7.1 Comparison of Different Trainings

The variance in performance metrics between trainings with identical setups has been
significantly higher than the overall training and validation loss suggests. Due to this,
for every training configuration, at least five trainings are always performed to choose
the best-performing. In this section, first the differing performances of the five network
trainings with the overall configuration shown in Fig. 6.7 and the final parameter values in

Table 6.1 are evaluated. The final model design consists of 4803 trainable parameters, with
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Figure 7.1: Efficiency (left) and purity (right) for two energy ranges of offline ECL| clusters
for the efficiency and trigger clusters for the purity, 0.15 - 0.25 GeV and 0.45 - 0.55 GeV for
five trainings evaluated on the Category-One test dataset. For a direct comparison, the
ICN-ETM efficiency and purity is also shown.

40 % pruning applied, resulting in 2882 parameters. One model is chosen in the end for
implementation and evaluation. This model is then also used for evaluation in Chapter (8.

To choose the best-performing final model, all trained models are evaluated on the
Category-One test dataset and their efficiency, purity, energy and position resolution, and
the signal /background classifier performance is compared. This has to be done for different
offline ECL clusters energies and for the different detector regions to ensure consistent
performance of the final model overall. For a first evaluation, two energy regions are chosen,
0.15 - 0.25GeV and 0.45 - 0.55GeV. As the energy threshold for TCs is 100 MeV, an
evaluation bin starting at 150 MeV ensures no cut-off effects but still allows for a significant
amount of true background offline ECL| clusters. As the number of true background
offline [ECL clusters drops significantly with higher energies, to correctly evaluate the
signal /background classifier, the second evaluation point is chosen to be of higher energy
to show improvement in terms of efficiency and resolution but to still test the classifier
performance.

In this section, selected metrics for the different trainings are shown. The remaining
distributions can be found in Chapter |C.

In Fig. 7.1, the efficiency (left) and the purity (right) for five trainings in comparison
to the efficiency and purity of ICN-ETM is shown. The offline ECL| clusters in the
endcaps often show higher overlap due to possible interactions with inactive material before
the calorimeter, as shown in Section 4.2.2| and are therefore more difficult to reconstruct
separately, which is shown by the drop in efficiency in comparison to the barrel region. The
purity is shown dependent on the predicted energy of |(GNN-ETM or ICN-ETM) clusters
and is very close to 1 for all regions. Nevertheless, differences up to 5% can be seen in both
purity and efficiency for different trainings.

In Fig. 7.2, the energy and position resolution widths for x, y, and z, with the definition
shown in Section [5.2.2, can be seen. The here shown widths are calculated after correcting

the resolution distributions for any potential bias described later in more detail. As can be
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Figure 7.2: Energy (upper left), = (right), y (lower left) and z (lower right) resolution
widths for an offline ECL cluster energy between 0.15 - 0.25 GeV and 0.45 - 0.55 GeV for
five trainings evaluated on the Category-One test dataset. For a direct comparison, the
ICN-ETM  resolution width is also shown. All resolutions are after bias correction.

seen, the variations are very small. For the x resolution width, Training 2, which has one of
the higher efficiencies in Fig. 7.1, performs worse in the overall x prediction.

To evaluate for possible structures, biases and other effects, which cannot be detected
by the width of the resolution, the resolution distributions for offline [KCL cluster energies
between [0.15, 0.25] GeV for the z prediction and the energy prediction can be seen in
Fig. 7.3 and in Fig. 7.4, respectively. The bias towards smaller energy values for the
ICN-ETM is clearly visible, which can be attributed to energy deposited in crystals outside
of the main TCs. The GNN-ETM]|can directly learn this correction factor, which is visible
in the distribution centered around 0. Nevertheless, a more visible tail towards smaller
energy predictions is seen for all networks. For the z prediction, while the width of all five
trainings is nearly identical, as shown in Fig. 7.2 Training 0 shows a clear shift towards
smaller z values. While this is a small effect, this can have a visible impact on the efficiency
of trigger bits such as ecl mumu oder bha3d (see Table 3.2), which depend on position
cuts. The four distinct peaks for the ICN-ETM) are the distances of the center of a [T'C
to the crystal centers within that [TC. The crystal centers are favoured as positions for
reconstructed ECL clusters, while the ICN-ETM, as explained in Section 3.2, always takes
the center of the highest-energetic 'TC| as the position of the cluster.

For the signal/background classifier, the background rejection rate at 95% signal

efficiency can be seen in Fig. 7.5 The corresponding ROC curves for each separate detector
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Figure 7.3: Energy resolution histograms for five trainings evaluated on the Category-One
test dataset for offline ECL clusters with an offline KCLJ cluster energy between 0.15 -
0.25 GeV. For a direct comparison, the TICN-ETM]| resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure 7.4: z resolution histograms for five trainings evaluated on the Category-One test
dataset for clusters with an offline ECL| cluster energy between 0.15 - 0.25GeV. For a
direct comparison, the ICN-ETM) resolution is also shown in each figure. The resolutions
are before bias correction to see possible offsets within the predictions.
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Figure 7.5: Background rejection rate for 95 % signal efficiency for an offline [ECL| cluster
energy between 0.15 - 0.25 GeV and 0.45 - 0.55 GeV for five trainings evaluated on the
Category-One test dataset.

region and the two energy regions are shown in Fig. 7.6. The number of true background
offline ECL| clusters for an offline ECL cluster energy between 0.45 - 0.55 GeV is about 3 %
of the number of true signal offline [ECL] clusters in the backward endcap and significantly
less in the other detector regions. This causes the high variation in the background rejection
rate in Fig.[7.5/for the higher energy region. Nevertheless, it is important to still monitor the
classifier at higher energies to guarantee good performances. The nuances in performance
between the different trainings can be seen for lower offline [ECL| cluster energies. Training
0 has a slightly steeper slope in the |ROC| curve and therefore also a worse background
rejection rate at 95 % signal efficiency. Training 4 shows the overall best signal/classifier

performance.

In Table [7.1, the final values for clusters between 0.15 - 0.25 GeV for all five trainings
and ICN-ETM) in comparison are shown. The best training for each detector region and
metric value is marked in green. As can be seen, there is no single training that consistently
outperforms the others. Training 2 shows the best performance in terms of efficiency and
purity and good performances for the energy resolution and background rejection. While
position resolution is a factor for the calculation of trigger bits, differences in efficiency
up to 3% for other trainings significantly hurt the performance overall. Due to this, the

network resulting from Training 2 is chosen for further evaluations.

7.2 Signal/Background Classification Performance

The signal classifier is evaluated on the Category-One test dataset to check the separation

performance. Additionally, the performance on pure beam background samples is tested.
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Figure 7.6: ROC| curve for the signal /background classifier for the three detector parts.
In the upper row, clusters in the backward endcap are shown, the center row depicts the
barrel region and the lower row the forward endcap. In the left column, the offline KCL
cluster energy is between 0.15 - 0.25 GeV and in the right column between 0.45 - 0.55 GeV
for five trainings evaluated on the Category-One test dataset.
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T, efficiency purity Nenergy Ny My N, Bckg Rej.

0 0.692F9:9%5 0.04709% 0.1647099% 0.0767099F 0.0777390 0.02079:9%  0.651
1 0.719700%% 0.903739%% 0.16670:001 0.07670 001 0.07670:901 0.017F5:500  0.715
cod 2 0.71575:502 0.9457005% 0.165759:007 0.07970901 0.074 70001 0.01275000  0.685
3072070002 0.9247999% 0.1767395% 0.0777399% 0.07470 001 0.015700%  0.712
4 0.6997399 0.939759:00% 0.1717399% 0.079T000 0.0747 901 0.0177090  0.721

ICN 0.64070002 0.85710005 0.16670002 0.078 5001 0.07570001 0.0027000 -
0 0.94070 007 0.98170901 0.11373951 0.057739% 0.05570 00 0.091700%  0.620
1 0.92770002 0.96870901 0.11270:001 0.054F9:500 0.05770:090 0.09075:500  0.656
o2 0.940 0008 0.98370001 0.11175:001 0.05570900 0.056 70000 0.092F5:500  0.662
3 0.93970992 0.97770:00 0.111799%1 0.05670:999 0.0589:900 0.09173990  0.648
4093370002 0.97975:501 010970001 0.05270 000 0.057F090% 0.08970000  0.670

ICN 0.92610:005 0.918%0005 0.10670:001 0.05150000 0.04970:000 0.09276000 -
0 0.6847399% 0.94270:002 0.18710:5%2 0.108 0001 0.11375:901 0.024739%0  0.543
1 0.69470007 0.918705%% 0.18970002 0.11075:501 0.10779991 0.02375:0%0  0.577
N 0.7057009% 0.95870092 0.18979:092 (0.11370:00 .10979-99% 001579990 0.579
3 0.6787099% 0.95170:002 0.18170902 0.1137090 0.10279901 0.023739%0  0.565
4 0.6937050% 0.94070:092 0.19175:002 0.11073951 0.10970:00 0.02179590 0582

ICN 0.6517000: 0.9037 0005 0.19270 008 0.10970001 0.10875501 0.00410-500 -

Table 7.1: Values for the efficiency, purity, resolution widths for the energy and the position
predictions, and the background rejection at 95 % signal efficiency for the five trainings T;
in comparison to ICN-ETM] for an offline |ECL cluster energy between 0.15 - 0.25 GeV.
The results are separated for offline ECL) clusters in the forward endcap (FWD), the barrel
region, and the backward endcap (BWD), for purity the position of the predicted clusters
is used. For each metric value and each detector region, the best-performing training is
marked in green. The energy resolution values are bias corrected.
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Figure 7.7: Example event with TCs|and their reconstructed energies, the target offline
ECL clusters and the | GNN-ETM]| predictions. Only |[ECL clusters, which can be found
on trigger level, with the definition in Section 4.2, are shown here. The ECIL clusters
are colorcoded with green depicting true signal clusters and purple being true background
clusters. The |GNN-ETM] predictions are given a color value between purple, if the signal
classifier output is 0, and green, if the signal classifier output is 1. A more vivid color shows
a stronger confidence of the network in the prediction.

7.2.1 Category-One Dataset

In Fig. 7.7, an example event with several true signal and true background clusters and the
corresponding predictions of the network is shown. As can be seen, the two true background
clusters in the barrel region and the one in the backward endcap are also classified by the
network as background. On the other hand, the background cluster in the forward endcap
is misidentified as signal.

The overall output of the signal classifier value is shown in Fig. 7.8, separated into four
distinct energy regions. The number of true background clusters decreases with higher
energies, which the network learns and classifies clusters above a certain energy threshold
nearly always as signal. For lower-energetic clusters, the classifier output distribution is
flat in the case of true background clusters, with two peaks at 0 and 1. In comparison, the
distribution for true signal clusters has a rising slope towards one. The usual U-shape of
classifier distributions is lost due to the quantization of the sigmoid activation function, as
explained in Section 6.3.3.

Even though the reconstructed energy for the distinction between signal and background
clusters is one characterizing element, the network does not only learn an energy cut. In
Fig. [7.9, the classifier output versus the reconstructed energy of the offline [ECL| clusters is
shown. While an upper energy cut of approximately 0.5 GeV is seen, above which every

cluster is classified as signal, no further structure can be identified.
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Figure 7.8: The distributions of the signal classifier output for true signal and true
background clusters for four different energy regions. Top left shows the distribution for
clusters with a reconstructed energy between 0.0 and 0.2 GeV, top right between 0.2 and
0.4 GeV, lower left between 0.4 and 0.6 GeV and lower right 0.8 and 1 GeV. The number
of true background clusters drops significantly with higher energies. While the network
output shows a peak at 1 also for true background clusters, a clear separation between the
labels is visible.
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Figure 7.9: Output of the signal classifier versus the energy of the matched offline ECL
cluster. The left plot shows only true signal offline ECL clusters, while the right plot
shows true background offline [ECL clusters. Clusters above 0.5 GeV are almost exclusively
classified as signal. Below this energy, no significant structure is visible.
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Figure 7.10: The energy of the matched offline |[ECL| cluster versus its reconstructed 6
position. The left plot shows clusters with a signal classifier value > 0.5, so more likely
being signal, while the right plot shows clusters with a signal classifier value below 0.5.
While structures such as the gap in the ECL at 130° are visible, no evident structure of
the classifier output can be seen.

In general, a higher percentage of background offline [ECL] clusters can be found in the
backward endcap. In Fig. 7.10, the reconstructed 6 angle versus the reconstructed energy
of the offline [ECL| clusters found by the network is shown. The distributions are separated
in clusters with a signal classifier value > 0.5 and below 0.5. The distribution for clusters
predicted as background follows the overall distribution of true background offline ECL

clusters, but no further correlation is visible.

7.2.2 Evaluation of Trigger Rate on Pure Beam Background

Events simulated without any MC particles can mimic the behaviour of the trigger outside
of correctly triggered physics processes. Due to the high bunch crossing rate but low collision
probability at Belle II, the trigger rate on events not containing detector hits of particles
coming from the interaction is the driving factor of the overall trigger rate. These events
are then filtered out by the HLT. To avoid a total trigger rate above the capabilities of the
current L1 trigger| system, trigger bits have to be prescaled which leads to inefficiencies in
physics analyses. Reducing the overall trigger rate on beam background-induced events
with the help of the signal /background classifier can aid in loosening the requirements on
trigger decisions needed for analyses.

To test this, the simulated pure beam background sample explained in Section 4.4 is
used, which contains 500000 events with ri beam background. Out of these, only 8.9 % of
events have a simulated KCL|trigger response with at least one TC above the threshold
of 100 MeV. For the ICN-ETM), the trigger bits are taken from [T'SIM, while for the
GNN-ETM they are calculated by hand. The cut threshold for the signal classifier output
is set as 0.7, which is the threshold for the barrel region for the Category-One dataset for
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Figure 7.11: Signal/background classifier output value for all predicted |GNN-ETM clusters
in pure beam background samples. The clusters are separated into four different energy
regions, based on their predicted energies. The red dotted line marks the signal cut threshold
of 0.7.

200 MeV clusters.

The general output of the classifier for each predicted cluster can be seen in Fig. 7.11.
As already seen in the Category-One dataset, clusters above approximately 0.5 GeV are
always classified as signal. Below that, the probability of a classification as background
increases, with clusters in the two lower energy regions showing a peak at 0.

In Fig. 7.12, the FTDL rates for the beam background events are seen. The rates are
calculated according to Section 5.2, for the TSIM| ICN-ETM] bits, the (GNN-ETM  bits,
and the trigger bits using only |GNN-ETM clusters with a classifier output above 0.7. The
total bit is the inclusive sum of all other bits, counting each event only once, even if it’s
triggered by several bits. The highest rate is generated by the ¢2 bit, which is currently
not used as an active trigger bit due to this reason. Using the signal classifier with the
GNN-ETM, a rate reduction of 10 % for the ¢2 bit is seen. For the Iml0 bit, which requires
at least 3 clusters, the rate is decreased using the classifier threshold by nearly 1kHz. This
would have a significant impact on the overall data taking.

In summary, the signal/background classifier helps in reducing the beam background
trigger rate while showing a good signal/background separation for MC events. The total
rate of all ECL trigger bits is reduced by 10 % between the full GNN-ETM rate and the
rate with the applied signal threshold. In Section 8.4, a similar evaluation is done on data

as well.
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Figure 7.12: [FTDL rate for the |[ECL trigger bits and the inclusive sum of all shown bits
for the ICN-ETM, the GNN-ETM]|and the |GNN-ETM] using only clusters with a signal
output value above 0.7.

7.3 Performance on Overlapping Clusters

The TCN-ETM) can due to the algorithmic design not separate clusters that hit adjacent
TCs or have any overlap (see Section 3.2). This is one area of possible improvement for the
GNN-ETM. Particles such as 7r0’s7 which decay into two photons, often leave signatures
with close-by clusters. Separating those clusters opens up new possibilities in terms of

+

trigger bits. Additionally, processes such as e” e~ — a(— 77)v can mimic the signature

of efe” = efe” (7) and therefore be often vetoed by the L1 trigger Bhabha veto. Being
able to separate the decay photons of the ALP can increase the trigger efficiency for this or
similar processes.

To estimate the performance of the network in terms of close-by clusters, the fixed-energy
overlap sample is used as explained in Section 4.4. Two photons with a small opening
angle and the same energy are simulated. For the evaluation, only those events are used
that contain exactly two signal clusters that can be found on trigger level. Clusters, where
both only hit crystals in the TC| are indistinguishable and are therefore not used for this
study. For both the network and ICN-ETM] the finding efficiency of both clusters and the
resulting resolutions are evaluated.

In Fig. 7.13], the cluster finding efficiency in the barrel for an offline ECL cluster energy
between [0, 0.5] GeV, [1, 1.5] GeV, [2.0, 2.5] GeV and |3, 3.5] GeV is shown depending
on the cluster’s distance to the nearest other cluster. The efficiency of the network is
consistently higher than that of ICN-ETM, with a larger improvement for offline [ECL
clusters which are more than 20 cm apart.

The cluster finding efficiency for the different detector regions is shown in Fig. 7.14],

exemplary for an offline ECL cluster energy between |1, 1.5] GeV. Clustering in the endcap
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Figure 7.13: Efficiency of finding the two overlapping clusters in the barrel region dependent
on the distance between them. The clusters are separated into offline ECL cluster energies
between [0, 0.5] GeV (top left), [1, 1.5] GeV (top right), [2.0, 2.5] GeV (bottom left) and
[3, 3.5] GeV (bottom right) are shown here. Only if both offline ECL clusters have at least
one T'C| in which they contributed the highest percentage of energy, the event is used in
these plots. The network consistently outperforms the TICN-ETM)| by up to 20 %.
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Figure 7.14: Efficiency of finding the two overlapping clusters dependent on the distance
between them. The clusters have a reconstructed offline energy between 1 and 1.5 GeV.
The upper left plot shows the finding efficiency for the forward endcap, the upper right
plot for the barrel and the lower plot for the backwards endcap. Only if both clusters have
at least one TC, in which they contributed the highest percentage of energy, the event is
used in these plots.

is in general more difficult due to higher beam background energy depositions, higher
material budget, and irregular shape of the [TCs. This is visible as a worse separation
efficiency for both [ICN-ETM] and the network. While the network still improves the finding
efficiency in the endcaps, the improvement is less pronounced than in the barrel region.

A big factor for the efficiency on close-by offline [ECLJ clusters is their respective energy,
due to the matching done between ICN-ETM/ GNN-ETM clusters and the offline ECL
clusters. The [ICN-ETM returns in most cases one cluster instead of two with the energy
of all [TCg summed up. The requirement for the matching between trigger and offline
clusters described in Section |5.1| then favors the matching to the higher-energetic cluster.
This can be seen in Fig. [7.15. There the finding efficiency for the higher-energetic, the
lower-energetic, and both clusters is shown in terms of the energy of both offline ECL
clusters. The [ICN-ETM) algorithm has a significantly higher efficiency for the higher-
energetic cluster. This is also visible, but slightly less prominent for the GNN-ETM] cluster
efficiency. The |GNN-ETM) network has much higher efficiency for finding both offline ECL

clusters, especially for higher-energetic offline |[ECL| clusters.
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Figure 7.15: Efficiency of finding one of two offline ECL| clusters or both in bins of the
offline [ECL| cluster energy. The offline [ECL|clusters are sorted by energy with cluster 1
being the higher-energetic cluster. The left plot shows the |GNN-ETM ) finding efficiency
while the right plot shows the TCN-ETM) efficiency. In the upper row, the efficiency of
finding the higher-energetic cluster is shown, the center row shows the efficiency for finding
the lower-energetic cluster and the lower row shows the efficiency for finding both offline
ECL clusters. Especially the finding efficiency for both offline [ECLJ clusters is significantly
lower for the [ICN-ETM.



Chapter 8
Evaluation on Physics Processes

In this chapter, the performance of the GNN-ETM]| is evaluated on two high rate processes
at Belle I, ete™ — eTe (y) and e"e” — pp (7). For both channels, signal MC data
containing these processes, detector data taken in June 2022, called Exp. 26 data, and
detector data taken in December 2024, called Exp. 35 data, is used. The advantage of
using Exp. 35 data is the availability of the preprocessed [T'Cs provided by the deployed
GNN-ETM module described in Table 6.4, A disadvantage of this sample is the very high
beam background, which lead to a degradation of the tracking efficiency. A selection to
obtain a pure sample of the respective processes is applied, and the performance of the
GNN-ETM]| in comparison to the [ICN-ETM is shown.

Additionally, a background classifier test is performed on data, that has been triggered
by a Poisson trigger and on the events that are triggered to be used as beam background
overlays.

In this chapter, I will first explain the setup to analyze the performance of the |GNN-
ETM and TCN-ETM! on collision data in Section [8.1. Then I will show the results on
ete™ 5 efe” (7) in Section [8.2, including the selection, trigger metric performances and
trigger rates. Afterwards, I will show the same studies for e e™ — ;ﬁ;f(fy) in Section 8.3l

At last, the performance of the signal /background classifier will be shown in Section 8.4.

8.1 Data Evaluation Setup

8.1.1 Selection of ECL Clusters

To correctly evaluate the performance of the GNN-ETM]| on data, several selections have
to be applied that are not necessary for [MC| data. As described in Section 6.5, when a
trigger signal is issued by the |GDL, the GNN-ETM board not only writes out data in the
main (GNN-ETM] trigger window which corresponds to ICN-ETM) data windows 3 and 4
but also the data in the two windows before that. For a correct comparison to ICN-ETM]|
only the GNN-ETM] clusters in the main |GNN-ETM] trigger window are used.

While ideally the ICN-ETM] trigger decision window should consist of [CN-ETM] data

123
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windows 3 and 4, as described in Section 3.2, sometimes the trigger decision is made using
other ICN-ETM) data windows. To simplify comparisons, only events in which the trigger
decision window is correctly made up out of ICN-ETM] data windows 3 and 4 are used for
the comparison between GNN-ETM and ICN-ETM.

Furthermore, for ICN-ETM the here used unpacker in release-08 of basf2 writes out a
maximum of six clusters. Due to a bug discovered during my studies, the clusters written
out are not necessarily the clusters in the trigger decision window, which would be the
intended behavior. Instead, the unpacker returns the six highest-energetic clusters from all
eight trigger data windows of this event. Since this can worsen the result of ICN-ETM
when matched to offline clusters if clusters from the trigger decision window were lost in
the unpacking, but also improve the result, if additional clusters from other data windows
are present, all ICN-ETM clusters are used for comparison to the offline clusters with the
assumption of them being from the trigger decision window. A fix for this is implemented
and will be available in the next reprocessing of Belle II data.

To correctly compare the trigger clusters to the offline |ECL clusters, only offline ECL
clusters with a reconstructed time within the main |GNN-ETM trigger window are used for
the metric calculations. For this selection, several steps have to be applied. Fig. 8.1| shows
an overview of the timing relations between offline timing, ICN-ETM]|time and GNN-ETM
time. The timing of the offline ECL cluster is relative to the central timing position of the
event, the global Tj. This global T is determined by either the SVD, CDC, or ECL
subdetector in this order. This calculation provides EventT,, which is the offset between
the global Ty and the TriggerT,. TriggerTy is the T of the event determined online on
the trigger system as a first estimate. This is given by the ECL, |CDC, or [TOP)|trigger
system in this order. The ECL| trigger determines the TriggerT, in over 99 % of events,
where the time is given by the highest-energetic T'C|in that event. The [CN-ETM) data
window of this TC|is also returned by the unpacker in basf2.

To correctly select offline [ECL| clusters that are within the trigger decision window,
the start time of the trigger decision window relative to global T has to be determined.
This can be done via

T,

windowstar

: = 0 — EventT0 — TriggerTy. (8.1)

An offline ECL cluster which could be found by the trigger algorithms has to have a time

between [Twindowstarta Twindowstart + 250] ns.
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Figure 8.1: Relation between event timing, GNN-ETM) timing and ICN-ETM timing.
The upper line shows the timeline of one event, with the global Ty marked by the central
straight line. The offline [ECL cluster timing is determined relative to that. FventT0 is the
difference between the global Ty and the TriggerT,. TriggerT is determined by the trigger
and usually lies within trigger data window 3. \GNN-ETM]|data window 2 corresponds
exactly to [ICN-ETM data windows 3 and 4.

8.1.2 Data Samples

For this study, three datasets are used, simulated signal MC|data for each process as well as
two datasets consisting of different collision data. For the signal MC data, a dataset of 10
million events for e e™ — eTe” (), corresponding to an integrated luminosity of 0.034 fb_l,

and 1 million events for e

e~ — pp(v), corresponding to an integrated luminosity of
0.872 fb_l, is used for both the verification of the high-level selection as well as for the
evaluation of the GNN-ETM performance. Both are described in more detail in Section 4.4l
For the collision data, the high-level selection is done on centrally reconstructed files, which
are provided by the collaboration and contain already reconstructed objects such as offline
ECL cluster, tracks, etc. They do not have the necessary objects available that are needed
for the |GNN-ETM]| performance analysis. For this, non-processed detector data is needed,
of which only a subset is available for direct access. The two collision datasets used for this

work are:

1. Exp. 26:

a) Full dataset: Exp. 26, Runs 803, 849, 898; centrally reconstructed files, corre-
sponding to an integrated luminosity of 0.8660 fh!

b) Raw dataset: Exp. 26, Run 898; bhabha_ calib and mumu_ tight or_highm_ calib
skims for eTe” — eTe (y) and ete™ — put T (7), respectively,

2. Exp. 35:

a) Full dataset: Exp. 35, Runs 2817 - 2905; centrally reconstructed files, corre-
sponding to an integrated luminosity of 1.063 fh*
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b) Raw dataset: Exp. 35, Runs 2882, 2890, 2895, 2896; runs taken with GNN-ETM

module included.

The reasons for using two different collision datasets are twofold: firstly, the Exp. 35
dataset contains the preprocessed TCs returned from the GNN-ETM module as described
in Section [6.5.4. This can serve as the input to the GNN-ETM, emulating the performance
on the hardware as closely as possible. For the Exp. 26 dataset, the ICN-ETM| TCs
are used as input to the | GNN-ETM. Secondly, both datasets have very different beam
background conditions. As a comparison, Exp. 26, Run 898 has on average approximately
190 Out-of-Time ECL crystals (see Section 4.1.3), while Exp. 35, Run 2882 contains on
average 390 Out-of-Time KCL crystals. The performance of |GNN-ETM]|in both datasets
can be used as a robustness study against different beam background levels.

As a general comment, collision data taken in Exp. 26 has undergone an offline
luminosity calculation [99], making the integrated luminosity very precise. Collision data
from Exp. 35 has not been used in any [Belle II analysis yet and the integrated luminosity
is taken from the online luminosity measurement [100|, which can differ by 1 - 2% from the
correct integrated luminosity.

The selection and correction procedure for both processes is adapted from [99].

8.2 Analysis of the GNN-ETM performance for ete” —

eTe”(v) events

The process e e~ — e"e” (7) is the most common process at Belle II with a cross-section
of 74.4nb, if at least one of the charged particles is in the acceptance of the |[ECL detector.
The general signature and structure of this process in Belle II is shown in Section [4.4.
As explained in Section (3.1, one major task of the [ECL| |[L1 trigger| is to detect and
potentially veto these events. A pure selection of these events on trigger level can lead to
a precise rejection without losing efficiency for other processes. Additionally, an efficient,
downsampled sample must be triggered for luminosity measures and precision studies.
Therefore, the (GNN-ETM) performance is evaluated on these events to compare the
performance to the ICN-ETM.

As the |GNN-ETM is trained on [MC, the behavior on data is not necessarily the
same. To correctly compare the performance of the GNN-ETM)| between data and MC|
first, the selection procedure to obtain a clean sample for this process, independent of the
GNN-ETM, is explained. After this selection, a data/MC comparison between high-level

reconstruction objects is shown to show that a pure sample of efe” = el

e (v) events
is selected in both data and MC. This serves to remove additional effects introduced by
the selection when evaluating the |GNN-ETM) performance on both data and |[MC| and
instead allows a direct comparison of the performance of the GNN-ETM. To quantize the

agreement between data and MC, the pull per bin between both distributions is calculated
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via

N (data) — N(MC)

Pull =
\/(AData)? + (AMC)?

, (8.2)

with N(data) and N(MC) being the number of data or MC events in the respective bin,
and AData and AMC being the statistical error in one bin calculated with the quadratic
sum of weights of all events in one bin.

Then, the performance of the |GNN-ETM] on offline [ECL cluster level, in comparison
to the ICN-ETM] is shown for the selected events. The finding efficiency and purity for the
e and e offline ECL clusters is evaluated, as well as the energy and position resolution.
At last, the trigger efficiency for ete™ — et

bits for (GNN-ETM! are discussed.

e () is shown and improvements to the trigger

8.2.1 Selection Procedure and High-Level Data/MC Agreement

To obtain a clean sample of ete™ — et

e () events, the selection strategy is based on
selecting two tracks with a large opening angle. Additionally, each track has to have a
matched offline [ECL| cluster with an energy above 1GeV, which rejects muon tracks
efficiently. Selection criteria for both tracks and offline ECL cluster are used. Selections on
values in the |[CM) frame, such as the particle’s reconstructed energy E boosted from the

lab frame into the CM]|frame, are denoted by E , .
General Selections

The following selections are applied to reconstructed tracks in data and MC:

e the transversal momentum p, of each track must be p, > 0.2 GeV/c,

e the |CM) energy of all particle candidates E., has to be 2.5 < E.,, < 0.55 -
10.58 GeV,

o the cluster energy F e Of all offline [ECL] clusters matched to the tracks has to be
Ecluster > 1.0.

All selected tracks are then ranked by the CM] track momentum p.,, and the two
highest tracks are combined to an Y (4S) candidate, if they fulfil the following selections:

e the sum of the two polar angles in the CM system 6., has to be |0, ,, (el) + 6., (e2)
- 180°] < 5°,

e the absolute difference of the two azimuthal angles in the |CM|system ¢.,, has to be
||¢c.m.(el) - ¢c.m.(62)| - 1800’ < 50’

e the two tracks have to have opposite charges g(el)xq(e2) = -1.
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This results in both particles being back-to-back in the (CM system and of opposite
charge.
For a very tight selection, an angle selection for the offline [ECL| clusters matched to

the tracks to be only in the center barrel region is applied. This is done via the selection
e the offline ECL cluster angle 0. e has to be 37.8° < O.puster < 120.5°.

As for the trigger offline [ECL| clusters in the endcaps are of particular interest, as (CDC-
based track triggers have rather low efficiency in this region, this requirement will be

loosened for the evaluation of the (GNN-ETM]| performance.
HLT and L1 trigger| selections

To correctly compare differential distributions for data and MC, the same trigger lines

*e™(v) events, the HLT) trigger lines

have to be applied. For e'e” — ¢
e ce flat 30 35 = eeFlats & Imllpgny & bhapurprpr,
o ce flat 35 45 = eeFlath & Imllpgny & bhapurprpr,
e ce flat 45 60 = eeFlat6 & Imllpgny & bhapurprpr,
o ee flat 60 90 = eeFlat7 & Imllpgny & bhapurprpy,

e ee flat 90 180 = eeFlat8 & Imllpgny & bhapurerpr,

are used. The lines eeFlatX are selections based on HLT reconstruction, whereas Imi1
and bhapur are based on the |L1 trigger. The requirements of eeFlatX are one out of two

options:
1. Two tracks with:

e the two tracks have to have opposite charges g(el)xg(e2) = -1.,
e the reconstructed mass of the tracks must be My aas > 5.29 GeV/ 02,
e at least one offline ECL cluster matched to a track must be Egger(€2) >

1.5 GeV or Eger(€2) > 1.5GeV,

2. One track with a matched offline [ECL! cluster and one offline [ECL! cluster not

matched to a track with:

e the reconstructed energy of the offline ECL| cluster matched to the track must
be Ecluster > 1.5 GeV7

e the reconstructed mass of the track-cluster system must be M ek 15t > 5.29 GeV.
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The 6 angle of the negative track determines the corresponding HLT trigger line. If the
track in the single track case has a positive charge, the 6 angle of the non-matched offline
ECL cluster is used. So, for eeFlatj for example, the negative track has to have a 6 angle
in the laboratory frame between 30° and 35°. For Imllpgny, the input bit ecl Iml 1 is
required, which is defined in Table 3.3, and the [PSNM]|value, as explained in Section 3.1} is
used. For bhapurppr,, the input bit ecl  bhapur is required (see Table |3.2) and the FTDL
value is used.

For data, exactly one of the mentioned HLT]|trigger lines including prescale has to be
1, with the corresponding prescale factors listed in Table 8.1. For MC, the filters before
prescale are applied to not increase the statistical uncertainty by removing events. To
correctly compare data and |MC| distributions, each event in data is weighted with the
corresponding prescale factor. As the HLT trigger lines already require L1 trigger] lines,

no additional |L1 trigger requirement is added.

Table 8.1: HLT Lines used for the selection of e"e” — e'e”(v) and their corresponding
prescale values in the different data-taking periods of Exp. 26 and Exp. 35.

HLT Line Exp. 26 Prescale FExp. 35 Prescale

ee_flat 30 35 18 36
ee flat 35 45 15 30
ee flat 45 60 5 10
ee flat 60 90 2 4
ee_flat 90 180 1 2

HLT| and L1 trigger corrections

As trigger efficiencies can differ in data and MC, dedicated trigger efficiency studies
have to be made. For this, an orthogonal trigger line is used as a reference line and the
trigger efficiency of the test trigger line is calculated in relation to the reference line. The

trigger efficiency is then given as

N (Ref&Test)

€TRG = N(Ref) (8.3)

In this case, the efficiency of the HLT|lines eeFlatXX and the efficiencies of the LI
trigger lines Iml! and bhapur are tested separately. As both L1 trigger| trigger lines are
ECL trigger lines, the CDC trigger line bfyo is used as an orthogonal reference line. The
bfyo line requires two full tracks in the CDC| with an opening angle in the laboratory
system of more than 90°. A completely orthogonal trigger line for the HLT]lines is not
available due to their dependence on both the KECL| and |CDC. Therefore, the HLT
line Estargt? GeV _cluster is used as a reference bit, as its requirement is very loose in
comparison to the overall selection. This line requires at least one offline ECL cluster in
the ECL| with a |(CM]|energy above 2 GeV.
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Table 8.2: Trigger efficiencies for ete™ — ete” (7v) for the HLT and |L1 trigger lines used

in selection for MC, data taken in Exp. 26 and data taken in Exp. 35. The correction
factors are calculated as €gy1a/€nic-

Test Line EMC €Exp.26 €Exp.35 fexp26  TExp.35
eeFlatXX  1.0007000;;  1.000700006 0.997700052 1 0.997
Imll  1.00070 000  0.999100563 0.997 0005 0.999  0.997

bhapur ~ 0.998700011  0.99779:0015  0.992709022 0.995

In Table 8.2, the trigger efficiencies € for MC, data from Exp. 26 and data from
Exp. 35 are shown. Additionally, the correction factors €q,:./€nc are shown. Necessary
for this work is the understanding of the trigger efficiencies and the validation that the
simulation of the trigger is reasonable in comparison to the real behaviour. For a full
data/MC comparison, the correction factors are applied to each MC event. The trigger
efficiency for both data and MC is very good, with the highest inefficiency being 0.8 %
for Exp. 35 for the bhapur trigger bit. The |GNN-ETM]| has to be able to also reach this

+

performance on eTe” — e'e” (v) events.

Offline ECL Cluster Reconstruction Efficiency

As the evaluation of the ICN-ETM and GNN-ETM) performance relies on the existence
of offline [ECL cluster in the ECL, which for this analysis are matched to tracks, a study
of the offline [ECL cluster finding and reconstruction efficiency in both data and MC is
done. For this, a track-based selection is applied. This selection follows the selection shown
in Section [8.2.1, but removes the requirement of both tracks having matched offline [ECL
clusters and thereby also the selection on the offline [ECLJ cluster 6 angles. An angular

selection is applied to the tracks:
e the track angles 6, have to be 37.8° < 0 0 < 120.5° .

Again only the two tracks with the two highest momenta per event are used. The same
HLT and L1 trigger requirements as before are used.

As the HLT] filter requires at least one track matched to a offline ECL| cluster with
an energy above 1.5 GeV, the offline [ECL cluster reconstruction efficiency is evaluated by
testing the case of both tracks being matched to offline ECL clusters against only one

track matched to a offline [ECL cluster via

Nio

== 8.4
Ecluster Nl + N2 + N12 ? ( )

with N being the number of events, where E qer(€l) > 1 GeV and E e (€2) < 1GeV,

N, the orthogonal case and N5 the number of events, where both offline [ECL clusters have
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Euster > 1 GeV. The calculated reconstruction efficiencies and the respective correction
factors can be found in Table 8.3 The cluster reconstruction efficiency is very good, with a
maximum inefficiency of 0.05% for Exp. 26. Therefore, the GNN-ETM) will be evaluated
on these offline [ECLJ clusters.

Table 8.3: Cluster reconstruction efficiencies for ete™ — ete” (v) for MC, data taken in

Exp. 26 and data taken in Exp. 35. The correction factors are calculated as €g,,/€nc-

eEMC €Exp.26 €Exp.35 fExp.QG fExp.35

0.9997 09001 0.99570005  0.999 0000  0.996 1

After application of all selections and correction factors, the corresponding data/MC
comparisons can be seen in Fig. 8.2 for the CM energy of both tracks and Fig. 8.3 for
the offline |[ECL cluster opening angle. For the CM) energy, the two particles are sorted
according to their 6, ,, , with particle 1 having the larger angle. The signal MC| differential
distributions agree very well with both the Exp. 26 and the Exp. 35 data distributions.
While trigger effects and cluster inefficiencies result in scale factors for the [MC distributions,
these factors do not change the shape of the distributions at all. Especially the offline
ECL| cluster opening angle in both 8 and ¢ show remarkable agreement. While the angular
resolution for trigger clusters is worse than for offline |[ECL clusters due to the large TCs,

the opening angles in both 6 and ¢ are used for the detection of eTe™ — e

e () events on
trigger level. The agreement allows evaluating the |GNN-ETM) on both collision data and
MC| data and drawing conclusions on the performance of the (GNN-ETM]| on data, without
having to take additional effects into account. Performance differences can therefore be
attributed to different prediction capabilities or different beam background levels instead of

different process signatures.
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Figure 8.2: Center-of-Mass energy for the two reconstructed particles and their combined
distribution for the ete™ — eTe” (7) process. The particles are sorted by their center-of-
mass 6 angle, with particle 1 having the larger angle. |MC| events are scaled with the
corresponding data luminosity. The data in the upper row is taken from Exp. 26, Runs
803, 848 and 898, while the data in the lower row is taken from Exp. 35, Runs 2817 - 2905.
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Figure 8.3: ¢ (left) and € (right) offline ECL cluster opening angle for the two reconstructed
particles for the ete”™ — ete™ (7) process. The offline ECL cluster opening angle is the
relevant measure to reject e e~ — e+e_(’y) events in the |[ECL|trigger due to missing track
information. MC events are scaled with the corresponding data luminosity. The data in
the upper row is taken from Exp. 26, Runs 803, 848 and 898, while the data in the lower
row is taken from Exp. 35, Runs 2817 - 2905.
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8.2.2 Trigger Data Sample Selection

Two raw data samples are used for the trigger studies for |(GNN-ETM, as explained in
Section 8.1.2.

For Exp. 26, the bhabha_ calib skim sample of Run 898 is reprocessed and the ICN-ETM
TCs are used as input to the GNN-ETM. For this skim, three different event signatures

pass the selections:
1. Skim with two offline [ECLJ clusters:
e the ¢ difference between the two offline ECL cluster in the |(CM system has to

be 1650 < |¢c.m.,cluster(el) - ¢c.m.,cluster(e2)| < 178'507

e the sum of the 6 angles of both offline ECL cluster in the (CM]|system has to
be 1780 < ec.m.,cluster(el) + ec.m.,cluster(e2) < 18207

e both offline ECL|cluster have to have a (CM|reconstructed energy E , cluster(€1)/10.58 GeV
= 0.4 and E1_custer(62)/10.58 GeV > 0.4,

e at least one offline [ECLJ cluster has to have a |CM]| reconstructed energy of
Eem. cluster/10.58 GeV > 0.45 or Ej 1 cquster/10.58 GeV > 0.45,

2. Skim with 2 straight tracks:

e the number of tracks has to be > 2,

e the maximum 3D opening angle between two tracks in |(CM) frame has to be

o
Q3D max > 165 )

e at least one track with a matched offline [ECLI cluster has to have an offline
ECL cluster energy to track momentum ratio E /P > 0.8 and an absolute

momentum [p| > 1.85GeV/c,

e the tracks have to have opposite charge g(el) x ¢(e2) = -1,

e the sum of reconstructed energy of all tracks and offline |[ECL cluster in the
event has to be D . ass £ > 4GeV,

3. Skim for possible radiative Bhabha processes:

e Number of tracks = 2, with at least 1 CDC hit each and a valid dE/dx calculation,
e the tracks have to have opposite charge g(el) x g(e2) = -1,

e both tracks have an energy to momentum ratio 0.7 < E/p < 1.3

e At least one track has to have a dE/dx within 30 % of that expected for an

electron.

As not all data that passes this skim is needed for the calibration purposes of Belle II, a

prescale of 3 is applied as well before storing the raw data.



Chapter 8. Evaluation on Physics Processes 135

Table 8.4: Number of events for the full datasets used for the trigger study and after
selection. No angular selection on the offline [ECL clusters is made here.

MC sample Exp. 26 Exp. 35

Before Selection 107 633350 3366688
After Selection 146723 76648 70670

For Exp. 35, the full collision data taken in the runs 2882, 2890, 2895, and 2896 is

available and used for this study.

All selection criteria from Section [8.2.1 are applied to the full Exp. 35 dataset and to
the Exp. 26 bhabha_ calib skim dataset besides the angle requirement

o 37.8° < O uster < 120.5°

to also allow for particles to reach the endcaps.

The full and the remaining events for all three samples for the trigger study can be seen
in Table 8.4.

8.2.3 Trigger Cluster Efficiencies and Resolutions

+

ete” — et

e () often have high-energetic offline ECL clusters located in the endcaps
(see Section 4.4), where reaching a high finding efficiency of these offline ECL clusters is
by itself not a difficult task. The challenge for these events lies in the best possible energy
and position reconstruction to allow for a clear identification to achieve a pure veto. The
GNN-ETM is evaluated on the offline [ECL clusters matched to the electron and positron
particle candidates and compared to the performance of the ICN-ETM. The efficiency is
expected to be high for both algorithms, while the |(GNN-ETM should improve both energy

and position resolutions to improve the L1 trigger, Bhabha veto.

For each dataset, the electron and positron offline [ECL clusters are used to evaluate
the performance for both trigger algorithms, if they are within the trigger timing window
explained in Section [8.1.1 and fulfill the requirements of an offline ECL| cluster visible
on trigger level as described in Section |4.2.2. The GNN-ETM|and [ICN-ETM clusters
in the events after selection are then matched to those offline |[ECL clusters using the
matching requirements explained in Section 5.1. If a GNN-ETM|or ICN-ETM cluster is
matched to an offline [ECL|cluster, this offline ECL cluster is considered as found. The
relative difference between the reconstructed energy of the offline [ECL cluster and the
matched trigger cluster, and the absolute difference in position values is then evaluated in
the resolutions. This is done for the MC|data, Exp. 26 data and Exp. 35 data separately.
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Cluster Finding Efficiencies

Fig. 8.4 shows the finding efficiency for offline [ECL| clusters exemplary in the forward
endcap for the electron offline |ECL|clusters and in the backward endcap for the positron
offline [ECL| clusters. The finding efficiencies for the other detector regions can be found in
The ECL trigger is highly important for the endcap regions, due to the inefficiency of the
track trigger. The |GNN-ETM) outperforms the ICN-ETM for lower cluster energies, while

the efficiency for higher energies is for both algorithms very close to 1.

The |GNN-ETM efficiency for clusters around 4 GeV for electrons and 2.5 GeV is worse
than the ICN-ETM efficiency, which is inconsistent to the studies on the technical datasets
in Section 7.1, This and the fact that both algorithms show a large inefficiency for offline
ECL clusters below 4 GeV for electrons and 2.5 GeV for positrons, shows the effect of
Bremsstrahlung. Fig. 8.5/ shows the distribution for the number of offline ECL clusters
matched to the electron MC particle. The distributions are shown dependent of the energy
of the offline ECL cluster to which the electron particle candidate in the selection is matched
to. The MC| matching algorithm of basf2 attributes offline [ECL cluster originating from
secondary particles that do not stem from in-flight decays but from material interactions to
the primary particle. If the electron radiates a high-energetic bremsstrahlung photon, it
creates a second offline ECL| cluster in the |[ECL, often very close to the main electron
offline [ECL cluster. Two effects then lead to the inefficiency for the trigger algorithms,
which are shown as a schematic in Fig. 8.6: a) the trigger algorithm, either ICN-ETM] or
GNN-ETM] reconstructs one cluster instead of two, with the reconstructed energy being
the sum of energies. This cluster then fails the requirements from Section |5.1 to be matched
to the offline ECL clusters. b) The trigger algorithm reconstructs a cluster which can be
matched to one of the offline [ECL clusters. The cluster-track matching of basf2 uses the
offline ECL| cluster as the particle candidate cluster, which is closer to the extrapolated
track entry point in the [ECLL The trigger cluster is then matched to one of the other
close-by offline |[ECL clusters originating from the electron, either due to being a better

energy or better position match.

The effect can be reduced to a minimum by requiring all offline [ECLJ clusters in an
event to be isolated, i.e. having a minimum distance to the next offline |ECL clusters of
40 cm, which is the distance between two TC|centers. In Fig. [8.7, the efficiency for isolated
offine [ECL clusters is shown. Both algorithms now have an efficiency of nearly 1 for all

energy bins.

The higher efficiency for the |GNN-ETM]|in several of the lower-energy bins is due to
the |GNN-ETM) learning the existence of overlapping offline ECL clusters and separating
them in some cases. One example can be seen in the event display in Fig. 8.8, where the
GNN-ETM] predicts two clusters for two offline |[ECL| clusters, unlike the TCN-ETM.

However, there is also in the loss of efficiency for offline KCL|cluster energies around
4 GeV for the electron and 2.2 GeV for the positron. By design, the |GNN-ETM] should
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Figure 8.4: Efficiency for the electron offline ECL| clusters in the backward endcap (left)
and positron offline ECL clusters in the forward endcap (right) cluster for the GNN-ETM
and the ICN-ETM]|algorithm. The top row shows the efficiency on the MC dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset.
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Figure 8.6: Schematic of an electron emitting a Bremsstrahlung photon, resulting in two
offline |[ECL clusters for each particle. Both offline ECL clusters are MC matched to the
electron. The red dotted line symbolizes a trigger cluster.
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the top left part is matched to the electron. This is due to Bremsstrahlung, which produces
a close-by offline [ECLJ cluster due to the additional photon.
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Figure 8.9: Angular distribution of split-up offline ECL clusters not found by either
GNN-ETM or [ICN-ETM. The offline |[ECL clusters are always MC matched to particles
which have at least one other offline [ECL| cluster. The red dotted lines denote the gaps
between the two endcaps and the barrel region. The sample evaluated is the signal MC
sample for e e” — eTe (7).

always have a higher efficiency, when the electron or positron is split up into several
offline |[ECL clusters, as the ICN-ETM has no possibility of finding more than one of
these offline |[ECL clusters. To check this, the offline |[ECL clusters for these split-up
particles are evaluated. In Fig. 8.9, the 6 distributions of offline ECL|clusters not found by
either ICN-ETM or GNN-ETM, where the matched MC particle has made at least one
other offline [ECL cluster, is shown for both electrons and positrons. While the angular
distribution for the offline |ECL clusters not found by ICN-ETMis following approximately
the general angular distribution of the offline [ECL clusters of Bhabha events, the missed
GNN-ETM offline [ECL clusters are notably very likely close to the gaps between one of the
endcaps and the barrel region. This is a shortcoming of the (GNN-ETM| most likely due
to the training sample. Photons, which are the only particles used in the training sample,
are less likely to split up into multiple offline |[ECL clusters, but generate one offline ECL
cluster across the gap. This has to be mitigated in future trainings by adapting the training

sample.

The finding efficiency for electron offline ECLJ clusters for offline |[ECL clusters with
a reconstructed energy between 3 and 5 GeV and a reconstructed energy between 5 and
7GeV for the three detector regions can be seen in Table 8.5. For higher energies, the
efficiency is approximately 1 for both algorithms. The GNN-ETM]|can improve the finding
efficiency in the forward endcap, which is the favoured direction of the electrons, by up
to 10 % for all three datasets. For both algorithms, the finding efficiency in the forward
endcap is significantly lower for the Exp. 26 and Exp. 35 datasets, which can partly be
attributed to high beam background. Trainings with higher beam background datasets
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Table 8.5: Cluster finding efficiency €., for the GNN-ETM and ICN-ETM] for offline [ECL
clusters matched to the electron for the three datasets for the different detector regions.
The efficiency is shown for offline ECL|clusters with a reconstructed energy between 1 and
3 GeV and for offline [ECL cluster with a reconstructed energy between 5 and 7 GeV.

Dataset Region Algorithm ¢,y, E € 1.0-3.0GeV ¢yy, E € 5.0-7.0 GeV

Barrel VM 0.67990 0153 0.9996 +0:0001
ION-ETM 0.6228 75,0155 1.0000*3:995

CNN-ETM 08522509130 0.9983* 50001

T o 0.7865 50135 1.0000*3:9909
Bawel M 0.75867 g onis 09996756001
ION-ETM 07540750133 0.99990-0007

Exp. 26 FWD GNN-ETM 0'44441_8:8233 0.99831_8:8882
IONETM 0.35000 5706 0.9997 50003

Barrel  CN-ETM 0.6618 00113 0.9995+0-0001
ICN-ETM 0.641755011; 0.9999™ 99900

Exp. 35 Fwp oM 0410350 756 0.9989.13:0003
IONETM 03333700705 0.9999+5:0008

might mitigate this loss in efficiency. In the barrel region, the GNN-ETM] can improve the
finding efficiency for the [MC dataset, while being equal within errors for both Exp. 26
and Exp. 35.

Resolutions

The energy resolution ng for GNN-ETM|and ICN-ETM) clusters matched to either electron

or positron offline [ECL| clusters is defined as

E(trigger cluster) — E(offline ECL cluster)
E(offline ECL cluster) ‘

e = (85)
This is always calculated separately for GNN-ETM and [ICN-ETM and can contain offline
ECL clusters that have not been found by the other algorithm.

In this section, the resolutions for selected detector regions and offline ECL cluster
energies are shown. In Section D.1.1, the remaining resolutions for ICN-ETM|and GNN/
ETM) clusters matched to the electron are shown, while in Section D.1.1 the same is shown
for the positron.

Fig.8.10 shows the energy resolution for the electron for 4 < E(offline ECL cluster) < 4.5 GeV
on the left and 6 < E(offline ECL cluster) < 6.5 GeV on the right.
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For lower energies, both algorithms have a poor resolution distribution with a bias
towards higher energy predictions. This is due to the aforementioned split-ups, where the
trigger algorithms predict the energy deposition as one cluster, but the offline reconstruction
returns two clusters with approximately half the energy each. The ICN-ETM]|shows for all
three datasets a broad peak at around 0.5, which is due to an overshoot of the offline ECL
cluster energy to a maximum of 50 %. The ICN-ETM returns as trigger cluster energy the
sum of the TCslenergy and the truthmatching explained in Section |5.1 matches the trigger
cluster, if several offline [ECLJ clusters would be matched to one trigger cluster, to the offline
ECL cluster with the best energy agreement. Therefore, if a split-up into two close-by
offline |[ECL clusters happens, the ICN-ETM) will be matched to the higher-energetic one.

The GNN-ETM] for the MC data has a clear peak around 0, but also displays the tail
towards higher energies. For Exp. 26, this peak at 0 is significantly less pronounced, while
for Exp. 35 both (GNN-ETM]| and [ICN-ETM  consistently return higher energies than the
offline ECL| cluster. This worse performance is also consistent with the worse efficiency for
Exp. 26 and Exp. 35 data in Fig. 8.4. One cause is very likely the higher beam background
levels, as the MC data is simulated with the very low Exp. 1003 i background levels.

Training with higher beam background levels might improve this performance.

For higher energies, both ICN-ETM|and |GNN-ETM show a very narrow energy
resolution distribution. The GNN-ETM]|distribution is less biased and more likely to return
the correct offline |[ECL cluster energy, which can be used as an improvement for future

trigger bit designs. The distributions are also very consistent over the three datasets.

The position resolution, calculated as
n, = x(trigger cluster) — x(offline ECL cluster), (8.6)

for x, y, and z, respectively, is especially important for the calculation of trigger bits, as
they often depend on the position or region of the trigger cluster. In Fig. 8.11, the x and y
resolution for all three samples for offline ECL clusters matched to the et for 4 < E <
4.5 GeV in the backward endcap can be seen. For this offline ECL| cluster energy, most
e’ did not emit Bremsstrahlung photons, resulting in only one offline ECL cluster per
particle and removing additional effects in position resolution due to the split-ups. The
backward endcap has the highest beam background occupancy, resulting in worse position

reconstruction performance in general.

The x resolution for the (GNN-ETM has a bias towards smaller values. This can also be
seen in the technical dataset evaluation in Chapter |7/ and is a specific property of this model.
In future trainings, models can be chosen that do not show this bias. The y resolution for
the GNN-ETM is unbiased and centered around 0, with an additional smaller width than
the resolution distribution for ICN-ETM. The final values for the y resolution width r,
after bias correction for ICN-ETM and GNN-ETM] clusters matched to electron offline
ECL clusters can be seen in Table 8.7. The GNN-ETM) can improve r, over the [CN-ETM



Chapter 8. Evaluation on Physics Processes

143

q 2507 iie 11 Simulation (own work) Forward Endcap g B x;elle 11 Simulation (own work) Forward Endcap
S Babayaga@NLO : Babayaga@NLO
ete~ »ete~ O lete~sete-
=200 24l
OL) 2 5.00 < E(offline ECL cluster) < 7.00 GeV
& &
8150 EE!
@] @]
100 2t
50 1t [ ICN-ETM, e~
1 GNN-ETM, e~
D% ~05 0.0 05 10 %o —05 0.0 05 1.0
Ne Ne
q 30(getie (own work) Forward Endcap 8 6000 geite i (own work) Forward Endcap
S Exp.ge, Run §98 S E>§rp.726, Run §98
25 ete” »ete Z5000(e"e —sete
2 ¢luster) < 5.00 GeV 2 5.00 < E(offline ECL cluster) < 7.00 GeV
320 3 4000
n %]
= =
O 15 O 3000
10 2000
5 1000 [ ICN-ETM, e~
1 GNN-ETM, e~
il
—01.0 -0.5 —01.0 -0.5 0.0 0.5 1.0
Ne
S _|Belle I (own work) Forward Endcap I 300015 elie 11 (own work) Forward Endcap
o 20(Exp. 35, Runs 2882 - 2896 - Exp. 35, Runs 2882 - 2896
g ete~ -se'te 22500 ete »ete”
1]
5 3.00 < E(offline ECL cluster) < 5.00 GeV £ 5.00 < E(offline ECL cluster) < 7.00 GeV
+ 15 92000
[7;) -
3
@]
10
5 1 ICN-ETM, e~
1 GNN-ETM, e~
N
9% ~05 ~05 0.0 05 1.0
Ne

Figure 8.10: Energy resolution ng for |GNN-ETM and ICN-ETM] clusters matched to the
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shows the energy resolution on the [MC|dataset, the center row on the Exp. 26 dataset and
the bottom row on the Exp. 35 dataset. The resolution is shown for offline [ECL clusters

in the forward endcap.
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Table 8.6: Energy resolution width rg for the GNN-ETM|and [ICN-ETM) for offline [ECL
clusters matched to the electron for the three datasets for the different detector regions.
The efficiency is shown for offline ECL|clusters with a reconstructed energy between 3 and
5GeV and for offline [ECL| clusters with a reconstructed energy between 5 and 7 GeV. The
backward endcap is omitted due to low entries. The resolution width is calculated with

bias correction.

Dataset Region Algorithm NE1 ME,2
GNN-ETM  0.1013£0.0011  0.0231+£0.0001
Barrel
G ICN-ETM  0.1854+0.0027 0.0181+0.0001
GNN-ETM  0.2101£0.0039  0.0268-+0.0002
FWD
ICN-ETM  0.2020+0.0035 0.0135+0.0001
GNN-ETM  0.0468+0.0006 0.0300-+0.0002
Barrel
ICN-ETM  0.0493+0.0006 0.0252+0.0001
Exp. 26
FWD GNN-ETM  0.1332+0.0053 0.0378+0.0004
ICN-ETM  0.222740.0071  0.02254+0.0002
GNN-ETM  0.0454£0.0006 0.0265+0.0001
Barrel
ICN-ETM  0.0550+0.0008 0.0229+0.0001
Exp. 35
GNN-ETM  0.1955+0.0107 0.0375+0.0007
FWD
ICN-ETM  0.1971+£0.0072 0.0241+0.0003

consistently for both the barrel region and the forward endcap for all three datasets by up
to 30 %.

The final energy resolution widths rg, explained in Section 5.2, for ICN-ETM and
GNN-ETM] clusters matched to electron offline |[ECL| clusters is shown in Table 8.6, for
offline ECL| clusters with an energy 3 < E(offline ECL cluster) < 5GeV and 5 < E(offline
ECL cluster) < 7GeV. The backward endcap is omitted, due to the low number of entries,
as the electron flight direction is predominantly in the forward direction. The widths are
after bias correction. The |GNN-ETM can improve the energy resolution for lower energies
for the forward endcap for all datasets. For the higher energies, the GNN-ETM shows a
larger width due to larger tails towards lower energies.

In Fig. [8.12] the output of the classifier can be seen as a cross-check. As all clusters have
at least 1 GeV due to the selection, the classifier, as shown in Section |7.2.1, has learned to
classify them as signal.

To summarize, the GNN-ETM]| can improve the cluster finding efficiency for low-
energetic offline [ECL| clusters over the [ICN-ETM] and have equal performance for isolated
or high-energetic offline [ECL clusters. The GNN-ETM]|shows an inefficiency in predicting
multiple offline [ECL| clusters located around the gaps of the detector regions, which should
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Figure 8.11: n, and 7, for GNN-ETM and ICN-ETM clusters matched to the e’ offline
ECL cluster for 3 < E(offline ECL cluster) < 5GeV. The left column shows the 7,, while
the right column shows the n,. The top row shows the position resolution on the MC
dataset, the center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset.
The resolution is shown for offline ECL| clusters in the backward endcap.
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Table 8.7: y resolution width ry for the GNN-ETM and ICN-ETM for offline ECL
clusters matched to the electron for the three datasets for the different detector regions.
The efficiency is shown for offline ECL|clusters with a reconstructed energy between 3 and
5 GeV and for offline [ECL| clusters with a reconstructed energy between 5 and 7 GeV. The
backward endcap is omitted due to low entries. The resolution width is calculated without
bias correction.

Dataset Region Algorithm Ty 3-5 Ty 5-7

B ) GNN-ETM  0.045940.0003 0.038340.0001
arre
G ICN-ETM  0.0501£0.0004 0.050140.0002
GNN-ETM 0.06264+0.0010 0.061640.0002
FWD
ICN-ETM  0.069940.0010 0.085240.0002
GNN-ETM  0.03994+0.0003 0.036240.0002
Barrel
ICN-ETM  0.0506+0.0004 0.050540.0003
Exp. 26
FWD GNN-ETM  0.066340.0029 0.057340.0005
ICN-ETM  0.0771£0.0023 0.084440.0005
GNN-ETM  0.03914+0.0003 0.035740.0002
Barrel
ICN-ETM  0.051040.0004 0.049540.0003
Exp. 35
FWD GNN-ETM  0.06534+0.0036 0.0556+0.0006
ICN-ETM  0.074740.0036 0.086140.0008
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Figure 8.12: Signal classifier output for GNN-ETM) clusters matched to either an et ore”
offline [ECL| cluster. The distributions are shown for all three data samples. The black
dotted line shows the chosen signal cut.
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be improved in further trainings. The GNN-ETM]| can improve the cluster finding efficiency
by up to 10% in the backward endcap consistently for all three datasets and improve
the position resolution by up to 30 % while keeping the performance for different beam
background levels. The energy resolution is slightly wider than that of [CN-ETM]| but has

a reduced bias.

8.2.4 Trigger Bit Efficiency

For the final trigger performance, the most relevant metric is the trigger efficiency or
by relation, the trigger rate, often in dependence of the deposited energy or the angular

e~ — eTe () sample, in this case

distribution. Since the selection returns a very pure e
the overall trigger efficiency is evaluated. For ete” = efe” (7), the ECL trigger needs to
have a high trigger efficiency to be able to ensure a pure veto for these events.

In Fig. |8.13, the trigger efficiency for all current Belle II] ECL|trigger bits is shown.
The definition for these bits can be found in Table 3.2 and in Table 3.3. For the (GNN-
ETM, only clusters that have a signal classifier output above 0.7, which is determined
on the technical sample (see Section 7.2.1) are used for the trigger bit calculation. For
both algorithms, the efficiency for the bha3d bit is very high, which is currently used for
detecting ete™ — eTe” (7). For lower beam background levels, which are present in the
MC| data and to a lesser extent in the Exp. 26 dataset, the ICN-ETM) has a slightly higher
efficiency of 0.5 %. With high beam background levels however, for the Exp. 35 dataset,
the |GNN-ETM] has a minor increase in efficiency for the bha3d bit. This is likely due to
the improved energy resolution of the GNN-ETM over the ICN-ETM.

The current trigger bits however are optimized for the spatial [TC boundaries used by
the ICN-ETM. The bhad3d bit requires two clusters with a sum of § angles between 165°
and 190°, and a difference in ¢ angles between 160° and 200°, in the |(CM frame. As the
transformation between the laboratory and the CM) frame for the ICN-ETM) follows a
fixed LUT) the angle cuts are exactly in between two [T'C centers.

The GNN-ETM)|does not have the same boundaries, as the position prediction is allowed
to be a floating value and especially for higher-energetic offline [ECL| clusters improved
over the ICN-ETM position determination. In Fig. 8.14, the distributions for 3 65 and
Adgs, are shown including the selections of the bha3d trigger on those values. Both plots
only contain the |GNN-ETM| or ICN-ETM]| cluster, which are matched to an electron or
a positron offline [ECL cluster. The plots on the right show the [ICN-ETM) distribution
and the optimization of the boundaries for the veto are visible. They align with the edges
of the [TCs. Both |GNN-ETM and ICN-ETM) have nearly 100 % of events within these
boundaries. For the GNN-ETM) distributions on the left however, these requirements are
not optimized. Especially for the distributions for collision data, Exp. 26 and Exp. 35, the
upper ¢ requirements and lower 6 could be tightened to improve the purity of the bha3d
veto.

Additionally, an improvement of the |GNN-ETM) performance is the better energy
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Figure 8.13: Trigger efficiency for the different ECL trigger bits. The trigger efficiency is
shown for all three data samples and for GNN-ETM and ICN-ETM) in comparison. The
trigger efficiency is shown without any prescale factor applied.

resolution. This is also used in the calculation of the bha3d veto, as both clusters have
to be above 3 GeV and at least one of them above 4.5 GeV. A better energy resolution
allows for tighter cuts which improve the purity of the sample. In Fig. 8.15, the CM
energy distributions for ICN-ETM| and GNN-ETM) are shown including the two energy
thresholds and fractions of events that pass the respective cut. The energy distribution of
the |GNN-ETM is significantly closer to the energy distribution of the offline |[ECL cluster
and has a higher percentage of events within the given cut. A tightening of the cut value is
feasible with the GNN-ETM) performance.

As a summary, within the given boundaries of the current trigger bits, the |GNN-
E'TM]| performance is equivalent to the ICN-ETM) performance with a high efficiency for
this sample. Possible improvements in the trigger bit determination are a stricter energy
selection for the bhadd veto, to increase the purity of the sample. This has to be tested in

comparison to other processes, such as e e” — Yy (7).
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Figure 8.14: Comparison of the values of the sum of the |CM 6 angles and the difference of
the |CM ¢ angles between the two signal clusters. The upper row shows the distribution for
MC|, the center for Exp. 26 data and the lower for Exp. 35 data. The left column shows the
GNN-ETM] distribution, while the right column shows the ICN-ETM distribution. The
red dotted lines mark the requirements for the bha3d trigger bit. The fraction of events in
these lines is given in the plot.



150 8.2. Analysis of the GNN-ETM performance for ete” — eTe™ (v) events

x10% x10%
< [Belle 11 Simulation (own wpork) Se Belle Il Simulation (own wprk)
¥ 7iBabayaga @ “|Babayaga
9 +a= +a— o +a= +a-
= lete~ oete = |lete~ —ete
— 6 5
e S
N5 D4
9 [ ECL Cluster, e~ g [] ECL Cluster, e*
wn wn
8 4 Er’aﬁ‘tig?wwlr? g;r;gle; [ ICN-ETM, e~ S 3 E"’\a‘ﬁ‘t‘g%vilr_‘ oRaQ?)gGe3: 1 ICN-ETM, e*
3 ICN-ETM: 0.8578 1 GNN-ETM, e~ ICN-ETM: 0.8572 [ GNN-ETM, e*
2
2
1 1 1 /J
% 2 z 3 ] % 2 z
Eéix:gt'er (GEV) clusier (GeV)
. x10* . x10*
N Belle Il (own work) . N Belle Il Simulation (own work
8 2.5/Exp. 26, Run 898 8 Exp. 26, Run 898
= J|ete -sete- = ete  »ete~
2.0
— e
S20 g
4 o
g ] ECLCluster,e~ | 813 [ ECL Cluster, e*
87 faconn e U = B 1 (CN-ETH, &
ICN-ETM: 0.8761 1 GNN-ETM, e~ 1.0l ICN-ETM: 0.8174 [ GNN-ETM, e*
1.0
05 0.5 [
0.5 2 2 6 8 0.0 2 g 6 ]
Eilster (GeV) Efiltier (GeV)
. x10* . x10*
N Belle Il (own work) N Belle Il (own work)
g 2.51Exp. 35, Runs 2882-2896 8 Exp. 35, Runs 2882-2896
= J|ete " -sete- = ete” »ete-
2.0
— —
S20 g
4 o
9 [ ECL Cluster, e~ g 15 [ ] ECL Cluster, e*
[%) w
8 15 Erﬁﬁtig_?l\jln ORagq%eS: ] ICN-ETM, e~ 8 g’i’(\‘tig%jln 52%9736: [ ICN-ETM, e*
ICN-ETM: 0.9087 1 GNN-ETM, e~ 1.0] ICN-ETM: 0.8884 [ GNN-ETM, e*
1.0
0.5 0.5
I )
0.0y 2 2 3 8 0.05 2 2 6 3
Eilster (GeV) Efiltier (GeV)

Figure 8.15: |CM energy distributions for the energy of the ICN-ETM|and GNN-ETM
cluster matched to the electron offline ECL| cluster (left) and matched to the positron
offline ECL cluster (right), with the CM offline ECL cluster energy distribution shown
additionally. The top row shows the distributions for MC, the center row for Exp. 26 data
and the lower row for Exp. 35 data. The orange cut and fraction show the values for the
3 GeV energy cut, while the red cut and fraction show the values for the 4.5 GeV cut. No
bias correction is applied.
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8.3 Analysis of the GNN-ETM performance for ete” —
p () events

With a rather high cross-section of 1.14nb, ete” = ,u+,u_ (7v) is a frequent process at
Belle II and has, due to two high-energy tracks with low-energy offline ECL clusters
matched to it, a very clean signature. Besides the generic (CDC-based track triggers, which
select single tracks or two tracks with a high opening angle, the ECL| subdetector trigger
provides a significant part of the trigger efficiency for eTe™ — utpu~ () with the trigger
bit ecl _mumu (see Table 3.2) for tracks in the endcap regions. Improving the performance
of this trigger bit, which relies on the finding efficiency of low-energetic clusters and their
position reconstruction, is a challenge to be tackled with the GNN-ETM.

te” — efe (). First, the

The procedure for e e™ — /ﬁ/f (7) is the same as for e
selection procedure for this process is presented and the general data/MC agreement for
high-level reconstructed objects is shown to highlight effects that may differ between data
and [MC. For the MC samples, 1 million events are simulated with the KKMC generator, as
explained in Section 4.4l Then, the |(GNN-ETM performance on cluster level is evaluated on
these selected events for both data and MC|events. The finding efficiency and purity as well
as the resolutions of the predicted clusters is presented, in comparison to the performance
of the ICN-ETM. At last, the trigger bit efficiency for ete™ — ;ﬁ;f(’y) is shown, and

improvements to the trigger bits for GNN-ETM]| are discussed.

8.3.1 Selection Procedure and General Data/MC Agreement

The selection strategy is based on selecting two tracks with high momenta, which have
low-energy offline [ECL| clusters matched to those tracks. The cut on low-energy offline

ECL clusters rejects ete™ — e

e () events. Additionally, an invariant mass cut is applied
to reject radiative dimuon events, ete” o /ﬁ/f /ﬁ/f events and similar processes.

The selections applied are

e the transversal momentum p; of each track has to be p, > 0.2GeV /c,

the closest distance |dy| of the track in the r — ¢ plane to (0,0,0) and the transversal
distance |zy| between the track and (0,0,0) have to be |dy| < 2cm and |zg] < 4 cm,

the momentum of the track in the CM system has to be p.,, > 1.5GeV/c,

the |CM energy of all particle candidates E., has to be 2.5 < E.,, < 0.55 -
10.58 GeV,

the track has to have a matched offline ECL|cluster with 0 < Egjgter < 0.5 GeV.

The two muon candidates with the highest momenta are combined into a Y (4S) with

the following selections applied:
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the sum of the two polar angles in the CM system 6., has to be |0, (ul) +
O (12) - 180°] < 5°,

the absolute difference of the two azimuthal angles in the |CM system ¢, ,, has to be
||¢Cm(ﬂ1) - qbcm(:U“Q)‘ - 1800| < 507

e the two tracks have to have opposite charges q(u2)xq(ul) = -1,
e the reconstructed energy of the dimuon system has to be M, > 0.85 - 10.58 GGV/CZ.

For a very tight selection, an angle selection for the offline ECL| clusters matched to

the tracks to be only in the center barrel region is applied. This is done via the selection
e the offline ECL cluster angle 6 ser has to be between 37.8° < O uster < 120.5°.

As for the trigger offline [ECL| clusters in the endcaps are of particular interest, as (CDC-
based track triggers have rather low efficiency in this region, this requirement will be

loosened for the evaluation of the |GNN-ETM) performance.
HLT|and [L1 trigger selections

For the ete™ — ,uﬂf(’y) process, the [HLT|and |1 trigger trigger lines are separated,

as opposed to the trigger requirements for the efe” — et

e () process.
The HLT/line used here for selection is the selectmumu line. The selections for this

HLT' line are:
e two tracks with two matched offline ECL clusters,
e at least one matched offline [ECL| cluster has to have E.jster < 1GeV,

e The momentum of one track has to be |p| > 2.5 GeV/c, while the momentum of the
other track has to be |p| > 3GeV/c,

o the absolute difference of the two azimuthal angles in the |CM|system ¢, has to be
||¢cm(,u1) - ¢cm(,u2)‘ - 1800| < 150'

This [HLT line has a prescale of 1.

For the L1 trigger requirement, there is a dedicated |[ECL|trigger bit ecl mumu, as
mentioned before. While this trigger bit should have the best efficiency for eTe™ — p ™ (v)
and was used in [99], due to a faulty configuration with the database for the trigger
configuration, the ecl mumu bit has a significant efficiency loss for data taken in 2022.
This efficiency loss was not uniform but disfavoured events, where the muons deposited
more energy in the ECL, leading to a non-consistent shape between data and MC. In
Fig. 8.16, a shape comparison of the full selection including applied correction factors for

a trigger selection with ecl mumu in comparison to a trigger selection with stt is shown.
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Figure 8.16: Center-of-Mass energy of both tracks after selection and applying correction
factors obtained by the trigger efficiency calculation. For the left plot, the trigger bit
ecl _mumu was applied while for the right plot, the trigger bit stt was used. Lower-energy
tracks travel longer within the ECL|and deposit more energy, which is disfavoured by the
wrongly configured ecl mumu bit.

Lower-energy tracks do not pass straight through the |[ECL, but curl due to the magnetic
field. Due to the longer path, the energy deposition is higher, which results in lower
efficiency due to the misconfiguration of the ecl mumu bit. Therefore, the |[CDC based stt

bit is used, which requires at least one track found by the neural network track trigger.

HLT| and L1 trigger corrections

The trigger corrections are calculated analogously to the trigger corrections for ete” o
ete” (7). The full selections are applied besides the trigger requirement. The trigger

efficiency is then calculated by

N (Ref&Test)

€TRG = N(Rel) (8.7)

For the HLT test trigger line selectmumu, the reference bit gel tight track is used.
For this reference bit, at least one track with a maximum distance in z-direction from
(0,0,0) of 2 cm is required.

For the |L1 trigger trigger efficiency, two efficiencies are calculated. To show the shape
difference for the ecl mumu bit in Fig. 8.16/ and to later use this in a comparison for
GNN-ETM, a correction factor for the data/MC comparison is calculated with the reference
bit being the bfyo bit. The bfyo bit requires two tracks with an opening angle over 90°. For
the stt trigger bit, the reference bit is the Imi10 trigger bit. This requires the ecl Iml 10
input bit, which is defined in Table 3.3 and is solely based on ECL trigger information.
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The trigger efficiencies and the corresponding correction factors can be found in Table 8.8
For the ecl mumu bit, the improvement in efficiency between Exp. 26 and Exp. 35 can
clearly be seen. The drop in efficiency for the HLT| trigger bit selectmumu between Exp.
26 and Exp. 35 is due to a loss in offline tracking efficiency, both due to the high beam
backgrounds and due to reconstruction software misconfiguration. In general, due to the
high dependency on the tracking performance for this selection, the overall efficiency loss is
up to 5.5 % for the stt for Exp. 26 and for the HLT line selectmumu for Exp. 35. Effects
due to this trigger efficiency loss have to be checked for in the analysis of the |GNN-ETM
performance.

After application of all selections and correction factors, the corresponding data/MC
comparisons can be seen in Fig. 8.17| for the |CM]|energy of both tracks and Fig. 8.18 for
the cluster opening angle. For the |CM]| energy, the two particles are sorted according to
their 6, ., , with particle 1 having the larger angle. In general, the differential distributions
between the signal MC data and the collision data both from Exp. 26 and Exp. 35 agree
very well. Especially the offline ECL cluster opening angle, which also for ee™ — p* 1™ (v)
is the deciding factor for the ecl mumu L1 trigger|trigger decision, show the same features.
Therefore, the evaluation of GNN-ETM) can be done on all three datasets. Differences in
the performance of the |GNN-ETM can then be attributed to either different predictions
for collision data and MC|data or to different background levels in the different datasets,
for example, but not to differences in the signal process signatures.

Especially the (CM)| energy in Fig. |8.17 shows discrepancies for the shape of the
distribution for data taken in Exp. 35. This could be due to tracking difficulties, as
the |CDC is especially sensitive to high beam background conditions and had significant
problems towards the end of the data-taking period of Exp. 35.

Table 8.8: Trigger efficiencies for ete™ — ,uﬁuf(y) for the HLT and |L1 trigger| lines used
in selection for MC| data taken in Exp. 26 and data taken in Exp. 35. The correction
factors are calculated as €g,ta/€nic-

Test Line EMC €Exp.26 €Exp.35 fexp26  TExp.35
selectmumu  0.99570 0001 0.99710-0022  0.94570015%  1.001  0.950
stt 0.995T0 0001 0.945700110  0.989T0 006 0.950  0.994

ecl_mumu  0.98370 0008  0.916700512  0.98070 005  0.932  0.997
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Figure 8.17: Center-of-Mass energy for the two reconstructed particles and their combined
distribution for the ete™ — /ﬁ/f () process. The particles are sorted by their center-

of-mass 6 angle, with particle 1 having the larger angle.

MC events are scaled with the

corresponding data luminosity. The data in the upper row is taken from Exp. 26, Runs
803, 848 and 898, while the data in the lower row is taken from Exp. 35, Runs 2817 - 2905.
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Figure 8.18: ¢ (left) and 6 (right) cluster opening angle for the two reconstructed particles
for the ete™ — uﬂf (7) process. The cluster opening angle is the relevant measure to
trigger on e e” — 't () events in the ECL trigger due to missing track information.
MC events are scaled with the corresponding data luminosity. The data in the upper row
is taken from Exp. 26, Runs 803, 848 and 898, while the data in the lower row is taken
from Exp. 35, Runs 2817 - 2905.
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8.3.2 Trigger Data Sample Selection

Jr

Similarly as for the ete™ — e e () sample, two raw data samples are used for the study

of the |GNN-ETM]| performance on data. The dataset for Exp. 35 remains the same as for

ete” — eTe (), described in Section 8.2.2.

For the sample for Exp. 26, the reprocessed mumu_ tight or highm skim is used. This
skim selects dimuon events with ideally no radiative photon component.
For this skim, two different selections are used and the events, that are kept by either

selection, pass the skim. The selections are:
1. Selection for two tracks with matched clusters:

e the number of tracks in the event has to be 2,
e both tracks are matched to an offline [ECL| cluster with E e < 0.5 GeV,
e the total energy of all offline ECL clusters is > Eguster < 2 GeV,

e the opening angle between the two tracks is ||¢(u1) — ¢(u2)| — 180°| < 10° and
16(u1) + 6(p2)| — 180°] < 10°,

e the radius of both tracks has to be R > 0.5m.
2. Selection allowing for one track to not be matched to an offline ECL| cluster:

e At least one track is matched to an offline [ECL| cluster,
e if an offline ECL| cluster is matched, its energy has to be Eygter < 1 GeV,
e the tracks have opposite charges q(ul) x g(u2) = -1,

e the reconstructed mass of both tracks has to be 8 GeV/ < Mivacki track2 <
12 GeV /c?,

the opening angle between the two tracks is ||¢(ul) — ¢(u2)| — 180°| < 10° and
[|0(p1) + 6(u2)] — 180°] < 10°.

For both the Exp. 35 and the Exp. 26 dataset, the selections from Section 8.3.1| are

applied, besides the angle selection
o 37.8° < O uster < 120.5°,

to allow for tracks reaching the forward and backwards endcap.

The number of events before and after the selection can be seen in Table 8.9l
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Table 8.9: Number of events for the full datasets used for the trigger study and after
selection. No angular selection on the offline [ECL clusters is made here.

MC sample Exp. 26 Exp. 35

Before Selection 10° 92588 3366688
After Selection 492433 64089 36365

8.3.3 Trigger Cluster Efficiencies and Resolutions

Improving the cluster finding efficiency and the energy and position reconstruction on trigger
level can improve the overall event reconstruction efficiency and aid in designing more
efficient trigger decision bits. The performance of the |[GNN-ETM is therefore first evaluated
on cluster level, checking the cluster finding efficiency, purity, and resolutions described in
Section 5.2 This performance is always compared to the ICN-ETM]| performance.

To test this, the offline [ECL| clusters, which are reconstructed as the offline ECL
clusters belonging to the muon candidates by the selection in Section [8.3.1, are used as
targets for both trigger algorithms. Only offline ECL] clusters are used that pass the timing
selection explained in Section 8.1 and additionally have a high enough energy deposition
to be visible on trigger level due to the TC| threshold cut of 100 MeV. An offline ECL
cluster is visible on trigger level, if it passes the requirements explained in Section 4.2.2.
The TCN-ETM! and IGNN-ETM! clusters of those events are then matched to the offline
ECL clusters using the cluster matching requirements of Section 5.1. If a | GNN-ETM
or [CN-ETM cluster is matched to an offline [ECL| cluster, this offline [ECL| cluster is
considered found. The relative difference between the reconstructed energy of the offline
ECL| cluster and the matched trigger cluster, and the absolute difference in position values
is then evaluated in the resolutions. This is done for the MC|data, Exp. 26 data and Exp.
35 data separately.

Cluster Finding Efficiencies

In Fig. 8.19, the finding efficiency for both GNN-ETM and ICN-ETM]|is shown. The
top row shows the efficiencies for the simulated MC dataset, the center row for the Exp.
26 dataset, and the lower row for the Exp. 35 dataset. The GNN-ETM outperforms the
ICN-ETM]|in the lower energy bins for all three datasets. For energies above 200 MeV, both
algorithms have a cluster finding efficiency of nearly 100 %. The performance is for both
algorithms very consistent over all three datasets and has no visible difference for the
and the p*.

In Fig. 8.20, the efficiency for the forward and backward endcap is shown additionally.
Reconstruction in those detector regions is in general more difficult due to the irregular
geometry and the higher background levels. The finding efficiency drops for |(GNN-ETM
in the energy bins below 200 MeV for the Exp. 26 and Exp. 35 datasets. Lower-energetic
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clusters are more affected by the presence of beam background, which is more abundant in
data. This can explain the drop in efficiency. Nevertheless, the efficiency of (GNN-ETM
still exceeds the efficiency of ICN-ETM in those energy bins.

Resolutions

For the |GNN-ETM| and ICN-ETM)| clusters, which are matched to an offline [ECL
cluster, the resolutions 7 for the reconstructed energy and the x, y, and z positions can be
determined, similar as in Section 8.2.3.

In this section, the resolutions for selected detector regions and offline ECL cluster
energies are shown. In Section D.2.1, the remaining resolutions for ICN-ETM|and GNN/
ETM) clusters matched to the = are shown, while in Section D.2.1 the same is shown for
the ut.

For the energy resolution, Fig. 8.21| shows the resolution in the forward and backward
endcap for offline [ECL clusters with a reconstructed energy between 0.16 and 0.2 GeV. The
resolution is in general wider for the Exp. 35 dataset, which is due to the very high beam
background level in these runs. The GNN-ETM energy resolution is better centered around
0 in comparison to the [CN-ETM]| energy distribution, while the width is comparable.

All distributions have pronounced tails towards lower values, which shows an underes-
timation of the offline ECI cluster energy for the trigger clusters. This tail is especially
visible in the MC dataset, due to the very narrow peak around 0. This can be explained
by the position of the offline [ECL| cluster within the [TCL Muons, as described earlier,
interact as minimum-ionizing particles in the KECL|and do not get stopped by the ECLL
The muon energy deposition is therefore usually contained in the crystal(s), which the muon
has crossed. In Fig. 8.22, the distance in € over the distance in ¢ between the ICN-ETM
cluster and the offline [ECL cluster, to which it is matched, is shown. The left plot shows
this distance for all offline [ECL clusters in the barrel region. As the TCN-ETM) always
reconstructs the position as the center of the highest-energetic [T'Cs, all entries in this plot
are within the boundaries of one TC, which spans a 10° region in both angle directions.
The crystal center positions can also be seen within that [TC by the high amount of entries
in 2.5° steps, as the offline reconstruction algorithm tends to reconstruct the position of the
muon offline [ECLJ clusters in the center of the corresponding crystal. The right plot only
shows this distance for ICN-ETM] clusters, which have an energy resolution below -0.3.
The majority of these entries are positioned at the edges of the [TCL The muon in these
events does not cross a single crystal, but two where only one of those crystals is within
a T'C| that has energy above the 100 MeV threshold. The other energy deposition of the
muon is therefore not visible on trigger level and the trigger algorithms underestimate the
total energy of the offline ECL| cluster.

The general position resolution for offline [ECL clusters in the forward endcap can be
seen in Fig. 8.23 in the left column for the x position and in the right column for the y

position for a reconstructed energy of the offline [ECL|clusters between 0.1 and 0.2 GeV.
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the p™* (right) for the | GNN-ETM and the ICN-ETM algorithm dependent on the offline
ECL cluster reconstructed energy. The top row shows the efficiency on the MC dataset,
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Figure 8.20: Finding efficiency for offline ECL| clusters matched to the p~ for the |GNN-
ETM and the ICN-ETM) algorithm dependent on the offline ECL cluster reconstructed
energy for offline ECL) clusters in the forward endcap (left) and in the backward endcap
(right). The top row shows the efficiency on the MC dataset, the center row on the Exp.
26 dataset and the bottom row on the Exp. 35 dataset.
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Figure 8.21: Energy resolution for offline |[ECL|clusters matched to the p~ for the |GNN-
ETM| and the ICN-ETM algorithm for offline ECL clusters in the forward endcap (left)
and the backward endcap (right) for 0.1 < E(offline ECL cluster) < 0.2 GeV. The top row
shows the energy resolution on the MC dataset, the center row on the Exp. 26 dataset
and the bottom row on the Exp. 35 dataset.
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Figure 8.22: The difference in 6 positions over the difference in ¢ positions for matched
ICN-ETM! to offline [ECLJ clusters for the MC| dataset for offline [ECL clusters in the
barrel region. The left plot shows this distance difference for all matched clusters, while
the right plot only for those with an energy resolution < -0.3.

As muons only hit a single crystal, there is no additional information available to the
GNN-ETM]| in terms of position reconstruction besides the TC| position. The position
resolution is as wide as the ICN-ETM) position resolution, which is to be expected. The
x position has a shift towards lower x values, which is a known problem of this trained
network and can be fixed with further trainings.

To summarize, the finding efficiency for offline [ECLJ clusters for two energy bins, 0.1 -
0.2GeV and 0.3 - 0.4 GeV, is shown in Table 8.11. The GNN-ETM algorithm can improve
the cluster finding efficiency in the lower-energetic bin by up to 7% for the backward endcap
in the MC|dataset and by 7 and 8 % for the forward endcap for the Exp. 26 and Exp. 35
datasets, respectively. The efficiency for the higher-energetic bins is for both algorithms at
around 1. The energy resolution width and the resolution bias for the same energy bins
are shown in Table 8.10. The resolution width is comparable between [[CN-ETM and
GNN-ETM| with GNN-ETM]| having a slightly broader resolution in general. However,
the bias of the distribution is drastically reduced by a factor of 2-3 for all datasets by
the GNN-ETM]|in comparison to the ICN-ETM. While this bias could be corrected in
operation for the ICN-ETM, this adds an extra layer of complexity.
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Figure 8.23: x position resolution (left) and y position resolution (right) for offline ECL
clusters matched to the p= for the GNN-ETM) and the ICN-ETM algorithm for offline
ECL clusters in the backward endcap with 0.1 < E(offline ECL cluster) < 0.2 GeV. The
top row shows the energy resolution on the MC| dataset, the center row on the Exp. 26
dataset and the bottom row on the Exp. 35 dataset.
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Table 8.10: Energy resolution width rg after bias correction and mean mg of the Gaussian

fit for the bias correction for the
clusters matched to the p~ for the three datasets. The efficiency is shown for offline ECL
clusters with a reconstructed energy between 0.1 and 0.2 GeV and for offline ECL| clusters

with a reconstructed energy between 0.3 and 0.4 GeV.

GNN-ETM and ICN-ETM clusters for offline ECL

Dataset Region Algorithm NE,0.1-0.2 ME.1-0.2 1E,0.3-0.4 ME.3-0.4
BWD GNN-ETM  0.099340.0006 -0.079 0.091140.0019 -0.060
ICN-ETM  0.0966+0.0006 -0.138 0.0848+0.0018 -0.122
GNN-ETM  0.065540.0001 -0.042 0.059540.0005 -0.026

MC Barrel
ICN-ETM  0.0611+£0.0001 -0.096 0.0549+0.0004 -0.088
FWD GNN-ETM  0.051140.0003 -0.018 0.0477+0.0008 -0.017
ICN-ETM  0.0472+0.0003 -0.079 0.045040.0009 -0.083
BWD GNN-ETM  0.09484+0.0017 -0.088 0.0904+0.0048 -0.063
ICN-ETM  0.0929+0.0017 -0.148 0.081440.0041 -0.128
GNN-ETM  0.069040.0004 -0.060 0.0633%0.0015 -0.042

Exp. 26  Barrel
ICN-ETM  0.0645+0.0003 -0.112 0.0584+0.0013 -0.105
FWD GNN-ETM  0.065640.0011 -0.050 0.067540.0043 -0.048
ICN-ETM  0.0616+0.0009 -0.108 0.0657+0.0040 -0.114
P GNN-ETM  0.125340.0033 -0.090 0.104140.0091 -0.072
ICN-ETM  0.1246+0.0030 -0.152 0.102140.0081 -0.127
GNN-ETM  0.076840.0006 -0.051 0.0656+0.0017 -0.035

Exp. 35 Barrel
ICN-ETM  0.0721+£0.0005 -0.103 0.0613+0.0021 -0.095
FWD GNN-ETM  0.0699+0.0014 -0.028 0.084240.0057 -0.033
ICN-ETM  0.0647+0.0013 -0.085 0.0779+£0.0050 -0.096
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Table 8.11: Cluster finding efficiency €., for the |(GNN-ETM and ICN-ETM for offline
ECL clusters matched to the = for the three datasets. The efficiency is shown for offline
ECL clusters with a reconstructed energy between 0.1 and 0.2 GeV and for offline ECL
cluster with a reconstructed energy between 0.3 and 0.4 GeV.

Dataset Region Algorithm e,y E € [0.1, 0.2] GeV  ey4, E € 0.3, 0.4] GeV
sy, CNN-ETM 0.9935 F0-0007 0.9966*0:0019
ICN-ETM 0.9253170 0052 0.9902 0 005t
= ey GNN-ETM 0.994170 500 0.99327 0 500
[CN-ETM 0.9717+0:0006 0.9878 00007
cwp | CNN-ETM 0.9951+0:0005 0.9948+0:9011
ICN-ETM 0.96017) 0015 0.9923 700013
sy GNN-ETM 0.992370.0022 0.9968+9:9920
[CN-ETM 0.925070-0068 0.98730:0080
b, 26 Dol CNNETM 0.99277+0:0009 0.994510:0012
[CN-ETM 0.961870:0020 0.9904 00016
cwp | CNNETM 0.9792+0:0036 0.97940:007%
ICN-ETM 0.912570 0070 0.9819700058
pwp  CNN-ETM 0.9942+3-9022 0.995770:0927
ICN-ETM 0.91297001% 0.9660001%
b 35 B CVETN 0.99000:0015 0.99420:005
ICN-ETM 0.955370 00a3 0.99017) 505
cwp | ONNETM 0.9841 100087 0.987170-0050
[CN-ETM 0.9039+0:0091 0.98720: 0087




Chapter 8. Evaluation on Physics Processes 167

Trigger Bit Efficiency

While high cluster efficiencies and good energy and position resolution are important for
the performance of a trigger algorithm, the final performance metric is the efficiency and
the rate of the trigger bits. These determine whether an event is kept or not and should,
for these events which contain a clean signature for the e e™ — ptp~ (7v) process, have a
trigger efficiency of close to 1. The trigger bits currently in use for the ICN-ETM-based
trigger are shown in Table 3.2/ and Table 3.3l The trigger bit eclmumu is a dedicated trigger
bit for the ee™ — /ﬁ,u,_ (v) signature and should have an efficiency close to 1.

To test the trigger efficiency of the (GNN-ETM) the events remaining after the selection
in Section 8.3.1, besides the angle and stt trigger requirement, are used. For the [CN-ETM|
the trigger bit decision is taken from either TSIM in the case of [MC|events or from the
online trigger decision recorded in raw data. The FTDL value of the bits are taken, to

remove prescale effects.

For the GNN-ETM), the trigger bits are calculated as given by the definition in Table 3.2
and Table 3.3 When a trigger bit needs position or energy values in the |CM]|frame, the
value is boosted to the |(CM|frame using a Lorentz transformation in ROOT. For this Lorentz
transformation, the four-vector is built from the cluster energy, # and ¢ values. This is a
slight difference to the ICN-ETM]| calculation, where, for implementation simplification,

the conversion values are fixed values for each [T'C, assuming a photon cluster with 1GeV.

In Fig. 8.24) the trigger bit efficiency for both [CN-ETM| and |GNN-ETM) for the
three datasets is shown. The trigger bits for the |GNN-ETM] are calculated using only
clusters with a signal classifier output value above 0.7. The most relevant trigger bit
for the ee™ — ptp~ () process is the eclmumu bit, which looks for two back-to-back
clusters below 2 GeV. The trigger bit has a high efficiency for MC|events, with ICN-ETM
outperforming the ICN-ETM by 2%. The threshold of 0.7 for the signal classifier was
set to achieve 95 % signal efficiency. This means that for all three datasets, the classifier
is more likely to classify |GNN-ETM clusters matched to muon offline ECL| clusters as
signal, because the expected efficiency loss for eclmumu would be 10 %. For the ICN-ETM,
the drop in efficiency for Exp. 26 data can be explained by the wrong configuration of the
eclmumu bit explained in Section 8.3.1. In Exp. 35, this configuration was fixed and the

trigger bit efficiency increased again.

For the |(GNN-ETM| a significant drop in efficiency for both Exp. 26 and Exp. 35 can
be seen. In Fig. 8.25, the same trigger bit efficiency is shown, only now the GNN-ETM
trigger bits are calculated on all clusters, without taking the signal classifier into account.
This increases the trigger efficiency for GNN-ETM|in Exp. 26 and Exp. 35. However,
the signal classifier output for the GNN-ETM clusters matched to the muon offline ECL
clusters, seen in Fig. 8.26, shows that the vast majority of muon clusters are classified as
signal. For the MC dataset, 2.7 % of events have at least one of the GNN-ETM clusters
matched to the muon offline [ECL| cluster classified as background, for the Exp. 26 dataset,
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Figure 8.24: Trigger bit efficiency for ete™ — ,u+,u_ (7) events for the GNN-ETM and
ICN-ETM. The exclusive ECL trigger bits are shown, with the total trigger bit being
the inclusive sum of all other shown trigger bits. The trigger bit efficiency is shown for
the three datasets. For the |GNN-ETM trigger bit determination, only clusters with a
signal /background classifier output above 0.7 are used.

6.4 % are classified as background and for Exp. 35 8.9% of the GNN-ETM clusters. This
can already explain part of the effect. Nevertheless, the trigger bit efficiency for Exp. 35
for the eclmumu bit is larger than for Exp. 26, while the number of clusters classified as
signal is larger in Exp. 26, which has to be due to an additional effect.

In Fig. 8.27, the distributions for the two angle requirements for the eclmumu bit are
shown for the |GNN-ETM and [ICN-ETM]| clusters. The plots show the difference in ¢
positions between the 1~ and ™t over the sum of the [CM 6 value for the two particles. The
red lines mark the cuts of the eclmumu trigger bit. For the Exp. 26 and Exp. 35 dataset,
the distribution for the (GNN-ETM is shifted to lower values for the ¢ difference. This
leads to a loss in efficiency for the eclmumu bit, which a change in trigger bit requirements
could mitigate. The overall distribution for the |GNN-ETM]|is wider for all three datasets
than the ICN-ETM, which is due to the floating position prediction of the GNN-ETM.
The ICN-ETM is restricted to the TC positions.

As a summary, the calculated trigger bit efficiency using the current bit definition
decreases the GNN-ETM] efficiency in comparison to the ICN-ETM]| efficiency. This
is not due to incorrect predictions of the |GNN-ETM]| but to the less restricted position
reconstruction. However, especially for muons, the position reconstruction could be improved
in future trainings to enforce clearer boundaries. Additionally, a check on the signal classifier
for clusters matched to the muon offline ECL| clusters shows a good performance in the
classification of these clusters as signal in [MC| but a decrease in classification performance
for data. Further trainings with an addition of muons to the training samples or different

background conditions might mitigate this effect.
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Figure 8.25: Trigger bit efficiency for ete™ — ,uJF,Lf (7) events for the GNN-ETM and
ICN-ETM. The exclusive ECL trigger bits are shown, with the total trigger bit being the
inclusive sum of all other shown trigger bits. The trigger bit efficiency is shown for the
three datasets.
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Figure 8.26: Signal classifier output for the GNN-ETM] cluster matched to the p~ offline
ECL cluster for the three different datasets. The distributions are normed for shape
comparison. The red dotted line marks the threshold above which clusters are marked as
signal.
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Figure 8.27: Comparison of the values of the sum of the (CM 6§ angles and the difference of
the |CM ¢ angles between the two signal clusters. The upper row shows the distribution for
MC, the center for Exp. 26 data and the lower for Exp. 35 data. The left column shows
the GNN-ETM]| distribution, while the right column shows the I[CN-ETM]| distribution.

The red dotted lines mark the requirements for the eclmumu trigger bit. The fraction of
events in these lines is given in the plot.
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8.4 Signal Classifier Performance on Data

Adding a signal /background classification on trigger level can reduce the overall trigger rate
and improve event selection by removing background trigger clusters within one event. This
can especially reduce the rate of trigger bits such as ¢3 or c4, which test if at least three or
at least four clusters, respectively, are reconstructed by the trigger algorithm. Removing
potential background clusters from this count can help improve the purity of these trigger
bits.

Testing the signal/classifier performance on data is difficult due to the missing signal
label information. A clean sample of events or clusters, in which the probability of coming
from beam background is high, has to be selected to evaluate the performance and verify
the results of the classifier on [MC.

Two options for testing the classifier are possible: The first option is to use events
triggered not by physics trigger bits, but by so-called random trigger bits. For these events, I
assume that the majority of the energy depositions in the ECL are due to beam background.

In the current L1 trigger setup, three random bits are available:

1. random: trigger signal is given by a random number generator using an independent

local clock
2. poisson: random trigger using a Poisson distribution

3. bg: trigger signal used for background overlays (see Section 4.1.3)), trigger 5us after
bha3d has triggered.

For the random and the bg trigger bit, the injection veto is additionally applied. All
three trigger bits are prescaled, so that the resulting rate is below 1kHz. Events, that are
triggered by those bits, are very likely events where no collision has taken place during the
bunch crossing, as the interaction rate per bunch crossing is very small. Therefore all energy
depositions in these events should originate from beam background and the |GNN-ETM
should classify all predicted clusters as background. Only a small amount of this data is
available due to the prescales, but the overall trigger efficiency and the distribution of the
signal /background classifier can be tested.

The second method is the complete reconstruction of an event containing a clean physics
Yoo s ptuT(y)ore”

coming from the signal process, and evaluating the classifier on the offline ECL|cluster in the

process such as e e — e+e7(7), removing all offline [ECL cluster
remaining event. Fven if two tracks apass the very clean selection presented in Section 8.3.1,
additional offline ECL cluster with a reconstructed energy up to a few 100 MeV do not
alter the tracks’ kinematics significantly, even with the excellent momentum resolution of
Belle II [58]. This necessitates a larger amount of events and an even tighter selection than
presented in Section [8.2.1 and Section [8.3.1 to factor out this effect. This will be tested in
the future when more data taken with the GNN-ETM module is available.
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Figure 8.28: The output of the signal /background classifier value p _signal for the clusters
in the events triggered by the random, poisson, and bg trigger bits. The red dotted line
marks the cut value for the signal threshold.

To test events triggered by random triggers, the data from Exp. 35, Runs 2882, 2890,
2895, 2896 is used. Data from Exp. 26 cannot be used due to the previously applied skims
on the raw data (see Section 8.2.2), which already select events that very likely include a
signal process coming from a collision. The available data corresponds to 3366688 events
in total. First, the events are selected in which at least one of the random, poisson, or bg
trigger bit has a value of 1. As a second step, only those events are selected where the
trigger decision window for the ICN-ETM consists of data windows 3 and 4, as explained
in Section 8.1. This guarantees a fair comparison for the |GNN-ETM and [CN-ETM
performance, as for the |GNN-ETM only the GNN-ETM window 2 is selected for the
trigger evaluation. This also ensures that these events have significant energy depositions
in the ECLL.

After selection, 1702 events remain, of which 76 are triggered by the random trigger,
220 by the poisson trigger, and 1406 by the bg trigger. Additionally, only events, where
the injection veto has not been active, are selected. Most |ECL trigger bits have an
additional requirement of the injection veto being inactive, which makes a comparison
between |GNN-ETM|and [CN-ETM] performance for events with an active injection veto.
This further reduces the events triggered by the poisson trigger to 159.

In Fig. 8.28, the |GNN-ETM signal classifier output for all clusters in the remaining
events is shown, color-coded for the events coming from the random, poisson, and bg trigger
bits. The cut value for a signal cluster is chosen as 0.7, which is determined by the cut
value for the technical sample in Section 7.2.1. Further optimization of this cut value might

improve the performance.
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Table 8.12: Trigger efficiency for events triggered by the random, poisson and bg trigger bit.
The efficiency is calculated for the ICN-ETM| the |(GNN-ETM| and |GNN-ETM with only
clusters with a signal classifier value above 0.7. The denominator is the number of events
triggered by the respective random, poisson and bg trigger bit and with the ICN-ETM
trigger decision window consisting of data windows 3 and 4.

Algorithm Erotal(random==1) €. (poisson==1) €. (bg==1)
ICN-ETM 0.002170 0007 0.001670:0004 0.002270:0005
GNN-ETM 0.00145.5006 0.00177g0001  0-0018%5:5005
GNN-ETM (p_signal > 0.7)  0.0014X5500 0.00175 05001 0.001375 5605

For all events, the ECL|trigger bits are calculated for the GNN-ETM] and taken from
data for the [CN-ETM. In general, for both GNN-ETM|and [ICN-ETM, the trigger
efficiency for the ECL| trigger bits for these events is very low, as expected. The total
trigger efficiency, which is the inclusive rate of all ECL trigger bits with their FTDL value
is shown in Table 8.12. The efficiency is shown for the ICN-ETM trigger bits, the trigger
bits calculated with all |GNN-ETM clusters, and the trigger bits calculated only using
clusters with a signal classifier output above 0.7. Especially for the events triggered by
the bg trigger, the classifier cut can reduce the overall efficiency. This is a desired result
as these events with a very high chance do not contain processes originating from actual
collisions. The trigger efficiency for the different trigger bits can be found in Section D.3.

Nevertheless, as the bunch-crossing rate is at 250 MHz, a very small trigger efficiency can
still lead to a very high trigger rate. For the calculation of the trigger rate, the denominator
used are all events which are triggered by the respective random, poisson, or bg trigger
bit, regardless of the ICN-ETM]|decision window. The numerator uses the aforementioned
events where the [CN-ETM]| trigger window is the correct one for comparison to the
GNN-ETM, as the assumption is a correct working [ECL trigger setup for these events.
The rate is calculated as described in Section 5.2l

In Fig. 8.29, Fig. 8.30, and Fig. |8.31) the trigger bit rates for the separate |[ECL trigger
bits and the total trigger rate for the combined bits is shown for events triggered by the
random, poisson, and bg trigger bit, respectively. For all three cases, the c2 trigger bit
has the highest contribution. For the current Belle II data-taking, this has a prescale
of 0, which takes it out of the active trigger decision due to its very high rate. However,
especially in case of events triggered by the bg trigger, the signal classifier can reduce this
trigger rate by more than a factor of 2. For the poisson and random triggered events, the
signal classifier has no impact on the total (GNN-ETM trigger rate. However, the total
amount of events which have any active ECL]trigger bit for the GNN-ETM] are 4 and 20,
for the random and the poisson trigger, respectively. For further conclusions, the amount
of data has to be increased.

In Fig. 8.30, another effect can be seen which is given by the low number of tested
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Figure 8.29: Trigger bit rate for the |[ECL trigger bits for events triggered by the random
trigger bit. The trigger bit rate for the ICN-ETM] is shown, which is taken from raw
data, as well as the trigger bit efficiency for the GNN-ETM, both when using all predicted
clusters and using only predicted clusters with a signal classifier value > 0.7. The total
trigger bit is 1, if at least one of the other trigger bits is 1. The denominator is the number
of events, in which the random trigger has fired.

events. The trigger rate for the |GNN-ETM)| with the signal classifier cut is lower for the
Iml10 and the ¢2 bit than the ICN-ETM]|rate and only higher for the Iml13 bit. In each
case this is a single event difference. Nevertheless, the overall trigger rate of the GNN-ETM
is higher than the ICN-ETM. This is due to the fact that the same event is triggered by
multiple bits and enters the total value only once. The event for Iml13 however, is only
triggered by the GNN-ETM] for this single bit and therefore has a high impact. With a
higher number of test events, this effect can be reduced.

In summary, the signal/background classifier can improve the overall trigger rate on
pure background events by removing clusters from the trigger bit calculation when they are
identified as background. The reduction in rate by the (GNN-ETM] for events triggered
by the bg trigger bit is more than 50 % respective to the rate of the ICN-ETM. These
events are, as explained in Section 4.1.3, used as official beam background overlays for the
Belle 11| collaboration. Clusters in these events should therefore be classified as background
and the high reduction in rate due to the classifier performance is promising. Further tests

with more data can improve this result and help develop the signal classifier further.
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Figure 8.30: Trigger bit rate for the ECL trigger bits for events triggered by the poisson
trigger bit. The trigger bit rate for the ICN-ETM is shown, which is taken from raw data,
as well as the trigger bit rate for the (GNN-ETM, both when using all predicted clusters
and using only predicted clusters with a signal classifier value > 0.7. The total trigger bit
is 1, if at least one of the other trigger bits is 1. The denominator is the number of events,
in which the poisson trigger has fired.
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Figure 8.31: Trigger bit rate for the ECL trigger bits for events triggered by the bg trigger
bit. The trigger bit rate for the ICN-ETM]|is shown, which is taken from raw data, as well
as the trigger bit rate for the |GNN-ETM)| both when using all predicted clusters and using
only predicted clusters with a signal classifier value > 0.7. The total trigger bit is 1, if at
least one of the other trigger bits is 1. The denominator is the number of events, in which
the bg trigger has fired.
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Conclusion

In this thesis, I present the design, implementation, and evaluation of a |GNN:based
trigger algorithm for the Belle I ECL| L1 trigger. This demonstrates the feasibility and
performance of an |[ML algorithm designed for and deployed in a real-time environment
with hard latency and throughput constraints.

The GNN-ETM] algorithm is designed with the restrictions of an implementation on
the [UT4] [FPGA| while still achieving a good performance. The challenges and techniques
for a hardware-software codesign are shown and the effects of reduced precision, pruning
of parameters, and simplifications of activation functions are evaluated. The algorithm
is implemented on the UT4| board and successfully deployed in the Belle II |L1 trigger
in a parasitic implementation, which it was operated in during collision data taking in
December 2024. I show the successful pre- and postprocessing of the GNN-ETM module
and the storing and unpacking of the |GNN-ETM) data in the raw data of Belle II. The
performance of the GNN-ETM) is tested on technical datasets and two selected physics
processes, e e —ete (y)and ee” — T (v).

The GNN-ETM improves the offline ECL cluster finding efficiency for ete™ — ete™ (v)
by 10 % and the position resolution by up to 30 %. The trigger efficiency for ECL-based
trigger decisions for this process is comparable to that of ICN-ETM and can be optimized
further with a redesign of the trigger bits.

For the ete™ — ptp~ (7) process, the (GNN-ETM matches the performance of the
ICN-ETM. Due to the inherent position and energy resolution of offline ECL| cluster
contained in one [T'C, an improvement of energy and position resolutions cannot be done
without changing the ECL trigger input geometry. A 8 % improvement in efficiency for
clusters below 0.2 GeV is achieved by the GNN-ETM]|over the ICN-ETM. Additionally,
the bias of the energy resolution is reduced up to a factor of 3.

A key contribution of this work is the development of a signal/background classifier,
introducing a capability not available in the existing [ECL L1 trigger system. This classifier
is evaluated on both simulated beam background as well as on background samples in

collision data. Due to the classifier, the trigger rate for beam background-induced events
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taken in December 2024 can be reduced by a factor of 2.

In general, the (GNN-ETM module is the first (GNN-based trigger with dynamic graph
building implemented and deployed in a realistic collider environment with high background
levels. Full deployment is planned in ongoing cosmics data taking and in the upcoming
data taking period of Belle II in the fall of 2025.

The overall latency of approximately 3 ps is about twice the maximum latency allowable
for a full integration in the |L1 trigger| system. The latency has to be reduced to 1.6 ps. To
achieve this latency, work is underway to reduce network depth, the size of the network
layers, and the bit widths.

Additionally, specific |GNN-ETM] trigger bits are currently being developed. The
different performance of the GNN-ETM) in comparison to the [CN-ETM] allows the
change or tightening of trigger bit requirements, especially with the inclusion of the
signal /background classifier.

For future upgrades of [Belle II, increasing the granularity of the TCs is expected to
improve the possibilities of the trigger designs distinctly. Going from 4x4 [T'Cs, which is the
current input to the [ECL trigger, to 2x2 or 1x1 can help reject background clusters more
efficiently and use shower shape information for the detection and identification of different
cluster signatures. I have implemented a possible 2x2 [T'C| design in the basf2 trigger
simulation to test the performance of the GNN-ETM with a different input geometry. This
is specifically challenging for the implementation on hardware, as the average number of
inputs will increase from currently 10 to 40 for the 2x2 geometry and to 250 for the 1x1
geometry, but opens up new possibilities for algorithmic design and trigger decisions.

In conclusion, I have shown the integration of a first (GNN-based trigger algorithm for
clustering in the ECL|of Belle II, performing within the throughput constraints of the |L1
trigger system and improving the ECL| trigger efficiency, purity, and position and energy

resolution for high energy clusters.
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Table A.1: Mapping of # and ¢ IDs to the approximate angles. The values vary for the
different detector regions.

OID 6Hin° oID ¢in°
1 15.62 1 17.59
2 22.49 2 20.25
3 29.1 3 40.09
4 34.84 4 42.75
5 40.78 5 62.59
6 47.54 6 65.25
7 55.15 7 85.09
8 63.57 8 87.75
9 72.74 9 107.59
10 82.47 10 110.25
11 92.52 11 130.09
12 102.45 12 132.75
13 111.93 13 152.59
14 120.74 14 155.25
15 126.8 15 175.09
17 145.89 16 177.75
16 134.31 17 197.59

18 200.25
19 220.09
20 222.75
21 242.59
22 245.25
23 265.09
24 267.75
25 287.59
26 290.25
27 310.09
28 312.75
29 332.59
30 335.25
31 355.25
32 357.78
33 327.52
34 337.52
35 347.52
36 357.52
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Appendix B

Input quantizations
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Figure B.1: 2D Distributions of input values with floating point single precision versus
Q3.13 fixed point precision. All values are quantized with the same fixed point quantization.
The dataset is the Category-One test sample using 15000 events. The top row shows the x,
y, and z distributions, while the bottom row shows the energy and the relative timing. For
the energy, the clipping due to the quantization range at 8 GeV is clearly visible. The bins
are chosen as multiples of the quantization step to make differences more visible.



Appendix C

Resolutions of five Final

Configuration Trainings

In this section, the remaining resolution distribution plots for the energy, x, y, and z

resolutions for all five trainings in Section [7.1] are shown.
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Figure C.1: Energy resolution histograms for five trainings evaluated on the Category-One
test dataset for offline [ECL| clusters with a true energy between 0.15 - 0.25 GeV in the
forward endcap. For a direct comparison, the [CN-ETM]| resolution is also shown in

each figure. The resolutions are before bias correction to see possible offsets within the
predictions.
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Figure C.2: Energy resolution histograms for five trainings evaluated on the Category-One
test dataset for offline ECL clusters with a true energy between 0.45 - 0.55 GeV in the
forward endcap. For a direct comparison, the [CN-ETM]| resolution is also shown in

each figure. The resolutions are before bias correction to see possible offsets within the
predictions.
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Figure C.3: Energy resolution histograms for five trainings evaluated on the Category-One
test dataset for offline ECL| clusters with a true energy between 0.15 - 0.25 GeV in the
barrel. For a direct comparison, the [ICN-ETM resolution is also shown in each figure. The
resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.4: Energy resolution histograms for five trainings evaluated on the Category-One
test dataset for offline [ECL| clusters with a true energy between 0.45 - 0.55 GeV in the
barrel. For a direct comparison, the [ICN-ETM resolution is also shown in each figure. The
resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.5: Energy resolution histograms for five trainings evaluated on the Category-One
test dataset for offline [ECL| clusters with a true energy between 0.15 - 0.25 GeV in the
backward endcap. For a direct comparison, the [CN-ETM]| resolution is also shown in
each figure. The resolutions are before bias correction to see possible offsets within the

predictions.
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Figure C.6: Energy resolution histograms for five trainings evaluated on the Category-One
test dataset for offline ECL clusters with a true energy between 0.45 - 0.55 GeV in the
backward endcap. For a direct comparison, the I[CN-ETM] resolution is also shown in
each figure. The resolutions are before bias correction to see possible offsets within the

predictions.
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Figure C.7: x resolution histograms for five trainings evaluated on the Category-One test
dataset for offline ECL clusters with a true energy between 0.15 - 0.25 GeV in the forward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.8: x resolution histograms for five trainings evaluated on the Category-One test
dataset for offline [ECL| clusters with a true energy between 0.45 - 0.55 GeV in the forward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.9: x resolution histograms for five trainings evaluated on the Category-One test
dataset for offline |[ECL|clusters with a true energy between 0.15 - 0.25 GeV in the barrel.
For a direct comparison, the [CN-ETM resolution is also shown in each figure. The
resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.10: x resolution histograms for five trainings evaluated on the Category-One
test dataset for offline [ECLJ clusters with a true energy between 0.45 - 0.55 GeV in the
barrel. For a direct comparison, the [CN-ETM) resolution is also shown in each figure. The
resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.11: x resolution histograms for five trainings evaluated on the Category-One test
dataset for offline |ECL clusters with a true energy between 0.15 - 0.25 GeV in the backward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.12: x resolution histograms for five trainings evaluated on the Category-One test
dataset for offline [ECL clusters with a true energy between 0.45 - 0.55 GeV in the backward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.13: y resolution histograms for five trainings evaluated on the Category-One test
dataset for offline ECL clusters with a true energy between 0.15 - 0.25 GeV in the forward
endcap. For a direct comparison, the TCN-ETM) resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.14: y resolution histograms for five trainings evaluated on the Category-One test
dataset for offline [ECL| clusters with a true energy between 0.45 - 0.55 GeV in the forward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.15: y resolution histograms for five trainings evaluated on the Category-One
test dataset for offline ECL| clusters with a true energy between 0.15 - 0.25 GeV in the
barrel. For a direct comparison, the [ICN-ETM resolution is also shown in each figure. The
resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.16: y resolution histograms for five trainings evaluated on the Category-One
test dataset for offline [ECL| clusters with a true energy between 0.45 - 0.55 GeV in the
barrel. For a direct comparison, the [ICN-ETM resolution is also shown in each figure. The
resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.17: y resolution histograms for five trainings evaluated on the Category-One test
dataset for offline |ECL clusters with a true energy between 0.15 - 0.25 GeV in the backward
endcap. For a direct comparison, the TCN-ETM) resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.18: y resolution histograms for five trainings evaluated on the Category-One test
dataset for offline [ECL clusters with a true energy between 0.45 - 0.55 GeV in the backward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.19: z resolution histograms for five trainings evaluated on the Category-One test
dataset for offline ECL clusters with a true energy between 0.15 - 0.25 GeV in the forward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.20: z resolution histograms for five trainings evaluated on the Category-One test
dataset for offline [ECL| clusters with a true energy between 0.45 - 0.55 GeV in the forward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.21: z resolution histograms for five trainings evaluated on the Category-One
test dataset for offline ECL| clusters with a true energy between 0.15 - 0.25 GeV in the
barrel. For a direct comparison, the [CN-ETM ) resolution is also shown in each figure. The
resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.22: z resolution histograms for five trainings evaluated on the Category-One
test dataset for offline [ECLJ clusters with a true energy between 0.45 - 0.55 GeV in the
barrel. For a direct comparison, the [CN-ETM) resolution is also shown in each figure. The
resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.23: z resolution histograms for five trainings evaluated on the Category-One test
dataset for offline |ECL clusters with a true energy between 0.15 - 0.25 GeV in the backward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.
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Figure C.24: z resolution histograms for five trainings evaluated on the Category-One test
dataset for offline [ECL clusters with a true energy between 0.45 - 0.55 GeV in the backward
endcap. For a direct comparison, the ICN-ETM resolution is also shown in each figure.
The resolutions are before bias correction to see possible offsets within the predictions.



Appendix D

Resolution Distributions and Trigger

Efficiencies

D.1 |[GNN-ETM results for ete™ — ete™ (v)

D.1.1 Energy and Position Resolutions
e Resolutions

This section shows the energy and position resolutions for ICN-ETM|and GNN-ETM
clusters matched to the e offline |[ECL| cluster from the selection shown in Section 8.2.3.
The energy resolution ng is shown for the barrel region and the forward endcap in Fig. [D.1
and Fig. D.2, respectively. The position resolutions 7,, 1,, and 7, are also shown for the
barrel region and the forward endcap in Fig. [D.3| Fig. D.4, Fig. D.5, Fig. [D.6,Fig. D.7, and
Fig. D.8.

207



208 D.1. GNN-ETM results for ete™ — ete™ (v)

g 5000 Belle Il Simulation (own work) Barrel g 6 x;e"e 1l Simulation (own work) Barrel
S Baba_yaga@Nl__O O Beiba_yaga@Nl__O
\400066 —e’e \588 —=e’e
g 3.00 < E(offline ECL cluster) < 5.00 GeV g 4 5.00 < ffline ECL cluster) < 7.00 GeV
-+ +J
5 3000 5
O O3
2000
2
1000 ICN-ETM, e ~ 1 [ ICN-ETM, e~
1 GNN-ETM, e~
Do ~05 0.0 05 10 Yo ~05 0.0 05 1.0
Ne Ne
oy 7000 Belle Il (own work) B N ‘Be
S arrel S Belle Il (own work) Barrel
- Exp. 26, R .
S 6000/E%7% 84170 S 152500
~ ~ N
g 5000 3.00 < E(offfine ECL cluster) < 5.00 GeV 2 5.00 < E(dffline ECL cluster) < 7.00 GeV
g &
34000 31.0
(@) o |l
3000
2000 0.5
ICN-ETM, e~ 1 ICN-ETM, e~
1000 GNN-ETM, e~ 1 GNN-ETM, e~
9% ~05 0.0 05 1o %9% ~05 0.0 05 1.0
Ne Ne
g 7000 Belle Il (own work) Barrel S xIlioelle 11 (own work) Barrel
: Exp. 35, R 2882 - 2896 - .35, -
S 6000 e)ipe‘ —»el’:nes‘ P s E)‘(*pe*35—)2'ir:*2882 2896
~ ~ .
g 5000 3.00 < E(offljne ECL cluster) < 5.00 GeV & 5.00 < E(qaffline ECL cluster) < 7.00 GeV
g &
34000 510
O O
3000
2000 0.5
1000 ICN-ETM, e~ 1 ICN-ETM, e~
GNN-ETM, e~ 1 GNN-ETM, e~
i) —05 0.0 05 10 %% —05 0.0 05 1.0
Ne Ne

Figure D.1: ng for GNN-ETM|and ICN-ETM]| clusters matched to the e offline ECL
cluster for 3 < E(offline ECL cluster) < 5GeV (left) and 5 < E(offline ECL cluster) <
7GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the barrel region.
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Figure D.2: ng for GNN-ETM|and ICN-ETM] clusters matched to the e offline ECL
cluster for 3 < E(offline ECL cluster) < 5GeV (left) and 5 < E(offline ECL cluster) <
7GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the forward endcap.
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Figure D.3: n, for GNN-ETM and [CN-ETM] clusters matched to the e offline ECL
cluster for 3 < E(offline ECL cluster) < 5GeV (left) and 5 < E(offline ECL cluster) <
7GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the barrel region.
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Figure D.4: n, for GNN-ETM and [CN-ETM) clusters matched to the e offline ECL
cluster for 3 < E(offline ECL cluster) < 5GeV (left) and 5 < E(offline ECL cluster) <
7GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the backward endcap.
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Figure D.5: 7, for GNN-ETM and ICN-ETM clusters matched to the e offline ECL
cluster for 3 < E(offline ECL cluster) < 5GeV (left) and 5 < E(offline ECL cluster) <
7GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the barrel region.
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Figure D.6: 7, for GNN-ETM|and ICN-ETM clusters matched to the e offline ECL
cluster for 3 < E(offline ECL cluster) < 5GeV (left) and 5 < E(offline ECL cluster) <
7GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the backward endcap.
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Figure D.7: n, for |GNN-ETM and [ICN-ETM] clusters matched to the e offline ECL
cluster for 3 < E(offline ECL cluster) < 5GeV (left) and 5 < E(offline ECL cluster) <
7GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline [ECL clusters in the barrel region.
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Figure D.8: n, for |GNN-ETM and ICN-ETM] clusters matched to the e offline ECL
cluster for 3 < E(offline ECL cluster) < 5GeV (left) and 5 < E(offline ECL cluster) <
7GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the backward endcap.
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e Resolutions

This section shows the energy and position resolutions for ICN-ETM and GNN-ETM
clusters matched to the et offline ECL cluster from the selection shown in Section 8.2.3.
The energy resolution 7 is shown for the barrel region and the backward endcap in
Fig. D.10 and Fig. D.9, respectively. The position resolutions 7,, n,, and 7, are also
shown for the barrel region and the backward endcap in Fig. D.11, Fig. D.12] Fig. D.13|
Fig. D.14,Fig. |D.15, and Fig. |D.16.
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Figure D.9: ny for (GNN-ETM and ICN-ETM clusters matched to the et offline ECL
cluster for 1 < E(offline ECL cluster) < 3GeV (left) and 3 < E(offline ECL cluster) <
5GeV (right). The top row shows the position resolution on the MC| dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the backward endcap.
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Figure D.10: 5 for GNN-ETM and ICN-ETM clusters matched to the e offline ECL
cluster for 1 < E(offline ECL cluster) < 3GeV (left) and 3 < E(offline ECL cluster) <
5GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the barrel region.
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Figure D.11: n, for GNN-ETM and ICN-ETM clusters matched to the e' offline ECL
cluster for 1 < E(offline ECL cluster) < 3 GeV (left) and 3 < E(offline ECL cluster) <
5GeV (right). The top row shows the position resolution on the MC| dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the barrel region.
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Figure D.12: n, for GNN-ETM and ICN-ETM clusters matched to the e' offline ECL
cluster for 1 < E(offline ECL cluster) < 3GeV (left) and 3 < E(offline ECL cluster) <
5GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the backward endcap.
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Figure D.13: n, for GNN-ETM and ICN-ETM clusters matched to the et offline ECL
cluster for 1 < E(offline ECL cluster) < 3GeV (left) and 3 < E(offline ECL cluster) <
5GeV (right). The top row shows the position resolution on the MC| dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the barrel region.



222 D.1. GNN-ETM results for ete™ — ete™ (v)

B Belle Il Simulation (own work) Backward Endcap € 6000/ iie 11 Simulation (own work)  Backward Endcap
200Babayaga@NLO Babayaga@NLO
— ete- sete — + _y 9 Fa-
o S 5000(ee” »e'e
‘S’ 150 cluster) < 3.00 GeV | O 4000 e ECL cluster) < 5.00 GeV
v "
2 g 3000
S100 ju
o) 3
© 2000
50 ICN-ETM, e * 1000 4 ICN-ETM, e *
NN-ETM, e * | GNN-ETM, e *
0—=62 ~ Zo2 0.0 02 04 R - 0.0 02 04
ny I‘)y
—~70ganie (own work) Backward Endcap ’é Belle Il (own work) Backward Endcap
£ 60,5920, 8n 558 =, 800(E, 26, R 358
Q e"e —e’e g
o f = ne ECL cluster) < 5.00 GeV
: 50 ffline ECL cluster) < 3.00 GeV ; 600
240 o
[0} -
I 4] |
530 5 400
S O
20
ICN-ETM, e * 200y ICN-ETM, e *
10 NN-ETM, e+ NN-ETM, e+
0—=64 =02 00 0.2 0% (R — 00 0.2 04
ny ny
,é40 Belle Il (own work) Backward Endcap ’E‘ Belle Il (own work) Backward Endcap
Exp. 35, Runs 2882 - 2896 - 400—E>ip- 35, RgnS_2882 - 2896
8 ete~ sete~ o ere —eve
S30 1.00 < E(offline ECL cluster) < 3.00 GeV e 3.00 < ne ECL cluster) < 5.00 GeV
Z ~ 300/
S0 g
o % 200}
= 3
S O
10 i
ICN-ETM, e * 100 L ICN-ETM, e *
N-ETM, e * NN-ETM, et
S—1 —0.2 0.0 0.2 0.4 (7 R — 0.0 0.2 0.4
ny ny

Figure D.14: n, for GNN-ETM and ICN-ETM clusters matched to the et offline ECL
cluster for 1 < E(offline ECL cluster) < 3GeV (left) and 3 < E(offline ECL cluster) <
5GeV (right). The top row shows the position resolution on the MC dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the backward endcap.
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Figure D.15: 7, for GNN-ETM and ICN-ETM clusters matched to the e* offline ECL
cluster for 1 < E(offline ECL cluster) < 3GeV (left) and 3 < E(offline ECL cluster) <
5GeV (right). The top row shows the position resolution on the MC| dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the barrel region.
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Figure D.16: 7, for GNN-ETM and ICN-ETM clusters matched to the e* offline ECL
cluster for 1 < E(offline ECL cluster) < 3GeV (left) and 3 < E(offline ECL cluster) <
5GeV (right). The top row shows the position resolution on the MC| dataset, the center
row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The resolution is
shown for offline ECL clusters in the backward endcap.
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D.2 |GNN-ETM results for ete™ — ptp=(v)

D.2.1 Energy and Position Resolutions
1~ Resolutions

This section shows the energy and position resolutions for ICN-ETM| and GNN-ETM
clusters matched to the p~ offline ECL| cluster from the selection shown in ??. The energy
resolution 7 is shown for the barrel region and the forward endcap in Fig. D.17 and
Fig. D.18, respectively. The position resolutions 7,, 1,, and 1, are also shown for the barrel
region and the forward endcap in Fig. D.19 Fig. D.20, Fig. D.21, Fig. D.22/Fig. D.23| and
Fig. D.24.
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Figure D.17: ng for GNN-ETM and [ICN-ETM clusters matched to the mu offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the barrel region.
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Figure D.18: ng for GNN-ETM|and ICN-ETM clusters matched to the mu offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The

resolution is shown for offline ECL clusters in the forward endcap.
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Figure D.19: 5, for |GNN-ETM and [ICN-ETM clusters matched to the mu offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the barrel region.
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Figure D.20: 5, for GNN-ETM and [ICN-ETM clusters matched to the mu  offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the backward endcap.



230 D.2. GNN-ETM results for ete™ — pFp™(v)
’é‘ 8000 Belle Il Simulation (own work) Barrel ’é 2500 Belle Il Simulation (own work) Barrel
LI R
o < 2000
S 6000 0.10 < E(gffline ECL cluster) < 0.20 GeV | 2 0.30 < E(6fffl{he ECL cluster) < 0.40 GeV
~ ~
0 © 1500
% 4000 %

5 G 1000
2000
ICN-ETM, = 500 ICN-ETM, p =
GNN-ETM, 11~ GNN-ETM, p -
Ay — 02 0.4 A — Y 0.0 02 0.4
ny I‘)y
’é Belle 1l (own work) Barrel =350 Belle 1l (own work) Barrel
— 800 Exp 26, Run 898 Exp. 26, Run 898
1S) ete -utu” <-;)!30075,+e—_.“+“—
g 600 0.10<E ne ECL cluster) < 0.20 GeV g 250 030<E ne ECL cluster) < 0.40 GeV
] 0
1] b 2001
%) -
> 400 35150
O O
100¢
200 ICN-ETM, 1~ ICN-ETM, i~
GNN-ETM, 1~ >0 GNN-ETM, 1~
R L, — 0.0 02 04
’7y Ny
’g Belle Il (own work) Barrel 'é Belle Il (own work) Barrel
400Exp. 35, Runs 2882 - 2896 200Exp. 35, Runs 2882 - 2896
8 ete -»utu- S ete " -»utu-

9 300 0.10 < E line ECL cluster) < 0.20 GeV 8 150 0.30<E ne ECL cluster) < 0.40 GeV
@ @

9] 9]
7] @

3200 5 100t
@] @]

100 ICN-ETM, - 50¢ ICN-ETM, 1~
GNN-ETM, p - GNN-ETM, p~
- 0.0 02 0.4 - 0.0 02 0.4

Ny

Ny

Figure D.21: n, for GNN-ETM and ICN-ETM clusters matched to the mu  offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)

< 0.4 GeV (right).

The top row shows the position resolution on the MC dataset, the

center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the barrel region.
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Figure D.22: n, for GNN-ETM and ICN-ETM clusters matched to the mu  offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the backward endcap.
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Figure D.23: n, for GNN-ETM and ICN-ETM clusters matched to the mu~ offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline [ECL clusters in the barrel region.
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Figure D.24: n, for GNN-ETM and ICN-ETM clusters matched to the mu~ offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the backward endcap.
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u+ Resolutions

This section shows the energy and position resolutions for ICN-ETM and GNN-ETM
clusters matched to the ' offline [ECL cluster from the selection shown in ??. The energy
resolution ng is shown for the barrel region and the backward endcap in Fig. D.26| and
Fig. D.25, respectively. The position resolutions 7,, n,, and n, are also shown for the barrel
region and the backward endcap in Fig. D.27, Fig. D.28, Fig. D.29, Fig. D.30,Fig. D.31]
and Fig. |D.32.



Chapter D. Resolution Distributions and Trigger Efficiencies 235

I 120015 gjie 11 Simuiation (own work) Backward Endcap q 400/ giie 11 Simulation (own work)  Backward Endcap
S KKMC S KKMC
Z1000e*e” »pu*u- Z ete  outu-
2 0.10 < E(gffline ECL cluster) < 0.20 GeV ¥ 300 0.30 </Efoffline ECL cluster) < 0.40 GeV
2 800 2
3 3
O 600 O 200
400
N 100 +
200 ICN-ETM, u 1 ICN-ETM, u
GNN-ETM, u* GNN-ETM, u*
9% —05 0.0 05 1.0 D% =05 0.0 05 1.0
Ne Ne
S 120(geiie (own work) Backward Endcap S 60rgetle 1i (own work) Backward Endcap
o Exp. 26, Run 898 o Exp. 26, Run 898
Z100fe*e” »u*u- Z50pefe” »putpus
Q 0.10 line ECL cluster) < 0.20 GeV 2 0.30 < ffline ECL cluster) < 0.40 GeV
L 80 L40
(%] %))
3 =)
O 60 O 30
40 20
20 ICN-ETM, u* 10 1 ICN-ETM, u*
GNN-ETM, u* 1 GNN-ETM, u*
0 [=P=N 0. n o mommndbrth nm b d
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.
Ne Ne
g >0 Belle 11 (own work) Backward Endcap g 30 Belle Il (own work) Backward Endcap
S Exp. 35, Runs 2882 - 2896 S Exp. 35, Runs 2882 - 2896
<40 ete -utu~ Z25fete  sputpu”
2 fline ECL cluster) < 0.20 GeV 9 0.30 <|Efoffline ECL cluster) < 0.40 GeV
2 Z20
530 3
O 015
20
10
10 ICN-ETM, u* 5 1 ICN-ETM, u*
NN-ETM, u* GNN-ETM, u *
[afnadl rmfl m 0 il n mnorman i
9% ~0.5 0.0 0.5 10 Yo ~05 0.0 05 1.0
Ne Ne

Figure D.25: np for GNN-ETM and ICN-ETM clusters matched to the mu™ offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the backward endcap.
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Figure D.26: np for GNN-ETM and ICN-ETM clusters matched to the mu™ offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the barrel region.
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Figure D.27: 1, for GNN-ETM and ICN-ETM clusters matched to the mu" offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the barrel region.
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Figure D.28: n, for |GNN-ETM and [ICN-ETM clusters matched to the mu' offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline [ECL) clusters in the backward endcap.
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Figure D.29: n, for GNN-ETM and ICN-ETM clusters matched to the mu’ offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the barrel region.
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Figure D.30: n, for GNN-ETM and ICN-ETM clusters matched to the mu' offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the |MC| dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline ECL clusters in the backward endcap.
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Figure D.31: n, for GNN-ETM and [ICN-ETM clusters matched to the mu' offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)
< 0.4GeV (right). The top row shows the position resolution on the MC dataset, the
center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline [ECL clusters in the barrel region.



242 D.2. GNN-ETM results for ete™ — pFp™(v)
ESOOO Belle Il Simulation (own work) Backward Endcap E 1750 z:ll'l: Il Simulation (own work) Backward Endcap
KKMC
g ete- sutu- S 1500(e*e” »utu- l
S 6000 0.10 < E(offline ECL cluster) < 0.20 GeV | = 1250 0.30 < E(offjine ECL cluster) < 0.40 GeV
Z
» o
5 @ 1000 J
2 4000 w
3 =2 750
S O
500
2000 ICN-ETM, p* ] ICN-ETM, u*
J ] GNN-ETM, u* 250 ] GNN-ETM, u*
[ r
=62 -o02 0.4 =02 -02 0.0 02 0.4
Nz nz
’é‘ Belle Il (own work) Backward Endcap g Belle Il (own work) Backward Endcap
—_ 800Exp. 26, Run 898 — 200Exp. 26, Run 898
o ete  »utu- o ete  -»utu-
9 600 0.10 < E(qffline ECL cluster) < 0.20 GeV 9 150 0.30 < E(qffline ECL cluster) < 0.40 GeV
~ ~
5 5 |
+— + i
Z 400 35100}
O O
200 [ 1 ICN-ETM, u* 50¢ [ 1 ICN-ETM, u*
1 GNN-ETM, u* j 1 GNN-ETM, u*
I [
067 02 0.4 U 7 R — 0.0 02 0.4
nz Nz
’é‘400 Belle Il (own work) Backward Endcap | € 160(getie 11 (own work) Backward Endcap
5 Exp. 35, Runs 2882 - 2896 — 140ExP. 35, Runs 2882 - 2896
o ete  sutpu” o ete  —»utyu
S 300 0.10 < E(dffline ECL cluster) < 0.20 Gev | =120 0.30 < E(dffline ECL cluster) < 0.40 GeV.
~
> » 100
—
(0]
2200 I # 80
S 2
O O 60f
100 20!
1 ICN-ETM, u* 1 ICN-ETM, u*
] 1 GNN-ETM, u+ 20} 1 GNN-ETM, u+
0 -0.4 -0.2 0.0 0.2 0.4 0 —0.4 -0.2 0.0 0.2 0.4
nz Nz

Figure D.32: n, for GNN-ETM and [ICN-ETM clusters matched to the mut offline ECL
cluster for 0.1 < E(offline ECL cluster) < 0.2 GeV (left) and 0.3 < E(offline ECL cluster)

< 0.4GeV (right).

The top row shows the position resolution on the MC| dataset, the

center row on the Exp. 26 dataset and the bottom row on the Exp. 35 dataset. The
resolution is shown for offline [ECL| clusters in the backward endcap.
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D.3 Trigger Bit Efficiency for Random Triggered Events

This section shows the trigger bit efficiency for the (GNN-ETM and ICN-ETM. The trigger
bit efficiency for events triggered by the random trigger is shown in Fig. D.33, for events
triggered by the Poisson trigger in Fig. D.34, and for events triggered by the bg trigger in
Fig. D.35.
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Figure D.33: Trigger bit efficiency for the |[ECL trigger bits for events triggered by the
random trigger bit. The trigger bit efficiency for the [CN-ETM is shown, which is taken
from raw data, as well as the trigger bit efficiency for the GNN-ETM, both for all clusters
as well as for clusters with a signal classifier value > 0.7. The total trigger bit is 1, if at
least one of the other trigger bits is 1. The denominator is the number of events, in which
the random trigger has fired and the trigger decision window for ICN-ETM] consists of
data windows 3 and 4.
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Figure D.34: Trigger bit efficiency for the |[ECL trigger bits for events triggered by the
poisson trigger bit. The trigger bit efficiency for the ICN-ETM) is shown, which is taken
from raw data, as well as the trigger bit efficiency for the |GNN-ETM, both for all clusters
as well as for clusters with a signal classifier value > 0.7. The total trigger bit is 1, if at
least one of the other trigger bits is 1. The denominator is the number of events, in which
the poisson trigger has fired and the trigger decision window for [CN-ETM)| consists of data
windows 3 and 4.
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Figure D.35: Trigger bit efficiency for the ECL|trigger bits for events triggered by the bg
trigger bit. The trigger bit efficiency for the ICN-ETM] is shown, which is taken from raw
data, as well as the trigger bit efficiency for the |GNN-ETM, both for all clusters as well as
for clusters with a signal classifier value > 0.7. The total trigger bit is 1, if at least one of
the other trigger bits is 1. The denominator is the number of events, in which the bg trigger
has fired and the trigger decision window for ICN-ETM consists of data windows 3 and 4.
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calorimeter trigger, based on the Isolated Cluster Number logic. 2, [15-(19, 22- 24,
26, 34, 44, [52, 53, 5558, 74, [89}-192, 94, 95, 97, 98, 103112, 114, 117~
127, 130, (134137, 139} 151, [158-[170, 172-[177, 195~ 245

SuperKEKB An upgrade of the KEKB electron-positron collider and the accelerator at
which the Belle IT experiment is located. |1, 3, 4, 13, 60, 104
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ANN All-Nearest-Neighbour. |96

ARICH Aerogel Ring-Imaging Cherenkov detector. |5, |7, 12

basf2 Belle I Analysis Software Framework. [11, 29, 32, 37, [39, 40, 43, 53, 54, 58

BRAM Block RAM. 96 [100

CDC Central Drift Chamber. 2, 5-[8, [11-[15, 23, 32, [105, [124, [128, 129, [151- [154

CM Center-of-Mass. [1, [3, 22, 27, 58, [127-[129, [131, 134, [147-[152, 154, [167, [168,
170

CMS Compact Muon Solenoid. 62
CNN Convolutional Neural Network. 161
CR Connected Region. 27-30

CsI(Ti) Thallium-doped Cesium-Iodide. 8, 16, 28

DAQ Data Acquisition. 31
DEPFET Depleted Field Effect Transistor. |5

DSP Digital Signal Processor. 62, 72, 73, 98, 100

ECL Electromagnetic Calorimeter. 2, [5, [7-20, 22, 25-[30, 32, [33, 35, [36, 3849,
51-61, 68, [71, [73, [76, 84, 88, 00, 04, 05, [108-[122, [124- 131, 133148, [150-
154, [156- 169, [171-[177, [195- 242, 244, [245

ETM ECL Trigger Master Module. [15

FADC Fast Analog-to-Digital Converter. |[17
FAM FlashADC Analog Module. [15-18, 21, 26

FF Flip-Flop register. 98, 100
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FPGA Field-Programmable Gate Array. (1, [2, 11-(13, (15, [17, 60, (7274, 78, 81,
85, 89, 193, 98, 176

FTDL Final Trigger Decision Line. 14, 35, 118, 119, (129, (167, [173

GDL Global Decision Logic. [11, [13}-[15] [21}-23, 94 95 123
GNN Graph Neural Network. 2, 61, 62, (73, 103, 104, 176, 177

GRL Global Reconstruction Logic. [13-15, 22

HEP High Energy Physics. |1, 2, 25, |61
HER high-energy ring. 3, 51

HLT High Level Trigger. |1, (11, 27, [117, [128-(130, |152— 154
IP interaction point. 1, 3, 5, 6, &8, 13, 53, 54

KLM K and Muon Detector. 2, 5, 7, 8, 11-14, 31, 43

kNN k-Nearest-Neighbour. 60-63, 79, 89, 93

L1 trigger Level 1 Trigger. 1, 2, 68, [11-15, 20, 25, 29, 43, 44, 60, 73-75, 94,
95, 104, [117, 119, 126, 128-[130, 135, [152-154, (171, 176, (177

LER low-energy ring. 3, 51
LHC Large Hadron Collider. 62
LM Local Maximum. 28-30

LUT Lookup Table. 22, 27, 37, 53, 62, 68, 72- 74, 81, 96, 98, 100, 147

MAE Mean Absolute Error. 89+ 191

MC Monte Carlo. 2, [8, 25, 27, 32, 35-43, 45-48, 51, 117, 118, 123, [125- 133,
135- 147, [149-[152, 154156, [158- 168, [170, 171, 208- 215, 217- 224, 226- 233,
935 242

ML Machine Learning. 2, 60, 72, 87, 176
NN Neural Network. 160
OC Object Condensation. 2, [52, 62, 64166, 71, |83, 86, 89, 96

PID particle identification. 5, 7
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PSNM Pre-Scale And Mask. (15, [129

PXD Pixel Detector. 5, 6, (12, 31, (105

rd run-dependent. 32, (33, 35, |36

ri run-independent. 32, 33, 35, 36, 45-47, |51, 117, 142

ROC Receiver Operating Characteristic. [52, 53, 58, 59, [82-84, 9092, 109, 112,
113

SM Standard Model of particle physics. |[1

SVD Silicon Vertex Detector. 5, 6, |11, 12, 31, 105, 124

TC Trigger Cell. [15-123, 26, 27, 29, 34, [36-38, 42, 44, 45, 53, 54, 57, [60, 61,
64, 65, 68, 71, 74, 88, 89, 01, (92, 04-199, 10T, 104, [106, [108, 109, 115, 117,
119~ (121, (123, [124, (126, (131, [134, (136, (142, [147, [158, (159, 163, [167, (168,
176, [177

TMM Trigger Merger Module. |15, 18
TOP Time-Of-Propagation counter. 5, 7, [11-|15, 124

TSIM Trigger Simulation. 26, 37, 44, [53, 58, (117, [118

UT3 Universal Trigger Board 3. |12

UT4 Universal Trigger Board 4. (13, 60, (94, 98-100, |176
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