KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards Automated, Individualized, and Adaptive Lower-Limb Motor Training with a Force-Controlled Robotic Walker*

Zachariae, Andreas 1; Štogl, Denis; Hein, Björn 1; Wurll, Christian; Krell-Rösch, Janina ORCID iD icon 2; Woll, Alexander ORCID iD icon 2
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Institut für Sport und Sportwissenschaft (IfSS), Karlsruher Institut für Technologie (KIT)

Abstract:

Individualized and adaptive motor training is more effective than standard “one-fits-all” programs because it can account for individual needs, provide challenging tasks, and adapt to the user’s performance. Automating this process is especially important in the face of a rapidly aging society and a shortage of skilled healthcare workers. The main challenges are automatic assessment of user performance, adaptive task difficulty, and dynamic exercise scheduling to provide an individualized training plan. The contributions of this paper are: 1) Overview of current literature on methods for individualized and adaptive motor training; 2) User study to evaluate the technical ability of the robotic walker RoboTrainer to provide individualized training; 3) Presentation of the novel framework RoboTrainerAID, which uses machine learning techniques for automatic assessment and spatial control actions for adaptive task difficulty. Evaluation of this framework will be conducted in a future user study. The goal of this paper is to highlight research gaps and provide concepts for the technical feasibility of robot-assisted, individualized, and adaptive lower-limb motor training and rehabilitation.


Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Sport und Sportwissenschaft (IfSS)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 17.07.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-1101-2
KITopen-ID: 1000184931
Erschienen in IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO 2025); Proceedings
Veranstaltung IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO 2025), Ōsaka, Japan, 17.07.2025 – 19.07.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 146–151
Nachgewiesen in Scopus
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page