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ABSTRACT We investigate the impact of higher-order modulation formats on the sensing performance
of single-carrier joint communication and sensing (JCAS) systems. Several separate components such as
a beamformer, a modulator, a target detector, an angle of arrival (AoA) estimator and a communication
demapper are implemented as trainable neural networks (NNs). We compare geometrically shaped mod-
ulation formats to a classical quadrature amplitude modulation (QAM) scheme. We assess the influence
of multi-snapshot sensing and varying signal-to-noise ratio (SNR) on the overall performance of the
autoencoder (AE)-based system. To improve the training behavior of the system, we decouple the loss
functions from the respective SNR values and the number of sensing snapshots, using upper bounds of
the sensing and communication performance. The NN-based sensing outperforms classical algorithms, such
as a Neyman-Pearson based power detector for object detection and ESPRIT for AoA estimation for both
the trained constellations and QAM at low SNRs. We show that the gap in sensing performance between
classical and shaped modulation formats can be significantly reduced through multi-snapshot sensing.
Lastly, we demonstrate system extension to multi-user multiple-input multiple-output (MIMO) to address
the improvement of spatial efficiency when servicing multiple user equipments (UEs). Our contribution
emphasizes the importance of estimation bounds for training neural networks, especially when the trained
solutions are deployed in varying SNR conditions.

INDEX TERMS Joint communication and sensing, Neural networks, Angle estimation, Object detection,
Higher-order modulation formats, 6G

I. INTRODUCTION
Digital communication is a vital service for our hyper-
connected society. The integration of a sensing service, which
aids automotive vehicles to detect potential collisions or
enables finer beam alignment, could improve the user ex-
perience of mobile network users. An increase in spectral
and energy efficiency can be achieved by combining radio
communication and sensing into one waveform instead of
operating two separate systems. Therefore, this work focuses
on the codesign of both functionalities in a joint communi-
cation and sensing (JCAS) system. The future 6G network
is expected to natively support JCAS by introducing object
detection of objects without communication capabilities and

by performing general sensing of the surroundings [2]. With
this approach, we expect to increase the spectral efficiency
by providing spectral resources for sensing while maintaining
their use for communication, as well as the energy efficiency
because of the dual use of a joint waveform.
There is growing interest in data-driven solutions based

on machine learning (ML) since they can overcome deficits
such as hardware impairments, faced by algorithms derived
usingmodel-based techniques [3]. Especially at higher carrier
frequencies, which will become more important in 6G, these
deficits become more pronounced due to hardware imperfec-
tions [4]. ML is expected to be prevalent in 6G, as its use in
communication and radar signal processing has matured in
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recent years [2].
For a communication-centric JCAS network, it is essential

to first guarantee communication capabilities. Therefore, the
effects of transmit signal design, such as the choice of modu-
lation formats, are of particular interest. Many studies such
as [5], [6] showcase sensing using only phase modulation,
however, higher-order QAM formats are often employed in
legacy communication systems to increase throughput and
reliability.

In this paper, we study the monostatic sensing capabilities
of a wireless communication system with multiple snapshots.
We consider single-carrier modulation to reduce the computa-
tional complexity of the simulations. Our findings can gener-
ally be transferred to multi-carrier systems such as orthogonal
frequency-division multiplexing (OFDM). Our contributions
are:

• We compare an autoencoder (AE)-based geometric con-
stellation shaping approach to classical QAM to analyze
in detail the impact on communication and sensing in
different signal-to-noise ratio (SNR) environments and
multi-snapshot sensing.

• We modify the loss function for the end-to-end training
to improve training over a wide range of SNR conditions

• We show that the loss modification improves the angle
of arrival (AoA) estimation and that the detection and
communication loss terms do not profit from modifica-
tion.

• We extend the AE-approach to demonstrate servicing
multiple user equipments (UEs).

The remainder of this paper is structured as follows: Sec-
tion II introduces the proposed system model. In Sec. III,
the design and training of the deep neural networks (DNNs)
are described. Section IV presents the results of the simu-
lations performed, including evaluation of bit-wise mutual
information (BMI), root mean squared error (RMSE) of angle
estimation, detection rate, and false alarm rate for object
detection. Lastly, in Sec. VI, we conclude this work.

A. RELATED WORK
ML approaches allow the joint optimization of the transmitter
and receiver taking into account sensing and communications
performance metrics. AEs have been studied as a promising
ML approach for communication systems [7], [8], and for
radar [9], [10] independently of each other. As JCAS has
gained significant attention within the scientific community,
ML research for JCAS has emerged, merging approaches for
radar and communications. In [3], an AE for JCAS in a single-
carrier system has been proposed, performing close to a max-
imum a posteriori ratio test detector benchmark for single
snapshot sensing of one radar target. In [11], this approach
was extended to multiple targets, addressing the problem of
target matching. The work of [4] extends these methods to
an OFDM waveform using model-based learning, which is a
well-known technique to combine communication and radar
[12], [13]. These works demonstrate the potential of deep-
learning-based sensing to mitigate hardware mismatches.

However, the research has been limited to single snapshot
estimation. We presented an extension to multiple-snapshot
sensing in [1], while limiting ourselves to QAM modulation.
In this work, we demonstrate the effect of constellation shap-
ing and give a detailed analysis of our approach.

B. NOTATION
R and C denote the set of real and complex numbers, respec-
tively. Sets are generally denoted by calligraphic font, e.g.,X ,
with the cardinality of a set being |X |. We denote vectors and
matrices with boldface lowercase and uppercase letters, e.g.,
vector x and matrix X . The single matrix element in the nth
row and the kth column of the matrix X is denoted as xnk . The
transpose and conjugate transpose of a matrix X are written
as X⊤ and XH , respectively, while the Hadamard product is
indicated with the operator ⊙ and the outer product with the
operator ⊗. The diagonal matrix D with diagonal entries d is
denoted as diag(d) and the all-one column vector of length N
is denoted as 1N . A complex normal distribution with mean µ
and variance σ2 is denoted as CN (µ, σ2). Random variables
are denoted with sans-serif font, e.g. x, with multivariate
random variables x, mutual information I(x1, x2), entropy
H(x) and cross-entropy H(x1||x2).

II. SYSTEM MODEL
In this paper, we investigate a monostatic JCAS setup, where
the transmitter and the sensing receiver are co-located, e.g.,
part of the same base station, and have multiple antennas.
Our goal is to detect a target and estimate its AoA θ based on
the reflection of the transmitted signal at the potential target.
The transmit signal is simultaneously used to communicate
with a UE with a single antenna at a different position than
the sensing target. The UE is located randomly at an azimuth
angle φ ∈ [φmin, φmax] and the radar target is located
randomly at an azimuth angle of θ ∈ [θmin, θmax]. In the con-
sidered scenario, the communication area [φmin, φmax] and
sensing area [θmin, θmax] do not overlap. We consider multi-
snapshot sensing with Nwin samples to provide more detailed
information on the sensing targets. The system block diagram
is illustrated in Fig. 1. The blocks shaded in blue are trainable
neural networks (NNs) and the following subsections explain
in detail the signal processing of the system.

A. TRANSMITTER
A modulator with M = 2c, c ∈ N different modulation
symbols transforms the data symbols m ∈ {1, 2, . . . ,M}
into complex symbols x ∈ M ⊂ C, where M contains
theM distinct modulation symbols. The transmitter generates
a sequence of cNwin independent and identically distributed
random bits that are transformed into a vector x ∈ CNwin

through a fixed bit mapping for blockwise processing. Each
bit vector b = (b1, . . . , bc)⊤ ∈ {0, 1}c is mapped to a unique
symbol x.
The transmitter is equipped with K antennas and uses digi-

tal precoding, i.e., a unique complex factor vk = gk exp(jϑk)
is generated for each antenna k ∈ {1, 2, . . . ,K} with am-
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FIGURE 1. JCAS system, light blue blocks are trainable NNs. The modulator can be implemented as an NN or with a classical QAM constellation.

plitude gk and phase shift ϑk to steer the signal to a cer-
tain area of interest. The beamformer is implemented as
an NN and has the limits of the azimuth angle regions in
which communication and sensing should take place, i.e.,
{φmin, φmax, θmin, θmax} as inputs. The use of an NN en-
ables analysis of an optimized power trade-off between the
sensing and communication functionality. The output of the
NN is a vector v ∈ CK = (v1, v2, . . . , vK )

⊤ containing
the complex factors of each antenna. The modulator and
beamformer employ power normalization to meet power con-
straints.

The transmit signal Y ∈ CK×Nwin is the outer product of the
complex modulation symbols x and the beamformer output v.
Specifically, Y can be expressed as

Y = v⊗ x. (1)

B. CHANNELS
A part of the radiated power is steered toward the commu-
nication receiver by the beamformer while another part is
reflected by the object of interest and reaches the sensing
receiver co-located with the transmitter. The signal propa-
gation from K antennas towards the object located at an
azimuth angle φi is modeled with the spatial angle matrix
ATX(φ) = (aTX(φ1) . . . aTX(φNwin)) ∈ CK×Nwin whose
columns are given by

aTX(φ) =
(
1, ejπ sinφ, . . . , ejπ(K−1) sinφ

)⊤
, (2)

assuming the antenna spacing matches exactly λ/2 of the
transmission wavelength λ.
For communications, we consider the UE at a different

uniformly distributed angle for each communication sample
to generate varied training data. The signal Y experiences a

single-tap Rayleigh fading channel before being received by
the UE with a single antenna as

zc = 1⊤K (ATX(φ)⊙ Y) diag(αc) + nc⊤, (3)

with channel coefficientαc,n ∼ CN (0, σ2
c ) and noise samples

nc,n ∼ CN (0, σ2
nc). We select a constant φi ∈ [φmin, φmax]

uniformly at random during an observation window Nwin to
analyze multi-snapshot sensing and define SNRc = σ2

c /σ
2
nc.

The total SNR is corrected with the beamforming gain βc to
SNR = βc · SNRc.
With T ∈ {0, 1} indicating the presence of a potential

target, we express the sensing signal reflected from said target
in the monostatic setup as

Zs = TaRX(θ)aTX(θ)⊤Ydiag(αs) + NS, (4)

with the radar target following a Swerling-1 model [14] with
αs,n ∼ CN (0, σ2

s ) representing radar cross section and path
loss and N s consisting of noise samples ns,nk ∼ CN (0, σ2

ns).
The spatial angle vectors relate as aRX(θ) = aTX(θ), with
θ being the AoA of the target throughout the observation
window Nwin. With a Swerling-1 model, we model scan-
to-scan deviations of the radar cross section (RCS), which
manifest as a change in αs,n during Nwin. The radial velocity
of the target is assumed to be zero, so no Doppler shift occurs.

C. SENSING RECEIVER
The sensing receiver, which is part of the base station, detects
the potential target and estimates its AoA using a linear array
of K antennas. We consider multiple snapshot sensing with
Nwin snapshots, enabled by forming the short-term spatial
auto-correlation of all considered samples across the receive
antennas defined as

Corr(Zs,Zs) :=
1

Nwin
ZsZHs ∈ CK×K . (5)

This metric approximates a sufficient statistic for AoA es-
timation and detection as outlined in Appendix B. Next,
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CCR(θ) =
1

π2 cos(θ)2
σ2
ns

2Nwin

(
Re

{[
βsσ

2
s

[
Kβsσ

2
s

σ2
ns + Kβsσ2

s

]]
· K

3 − K
12

})−1

(6)

Corr(Zs,Zs) and Nwin, and σn,s are passed to the target de-
tection and angle estimation blocks which are implemented
as NNs and described in Sec. III. The target detection block
outputs a probability pT ∈ [0, 1] which denotes the certainty
that a target is present (T = 1). The angle estimation block
outputs θ̂ ∈ [−π

2 ,
π
2 ], which indicates the estimated azimuth

AoA of the target.

D. COMMUNICATION RECEIVER
At the communication receiver, our goal is to recover the
transmitted bits based on the received signal, i.e., demodulate
the received signal. The communication receiver is imple-
mented as a NN that outputs log-likelihood ratios (LLRs)
ℓ ∈ Rn×Nwin that can be used as input to a soft decision chan-
nel decoder. For the demodulation, we assume that channel
estimation has already been performed at the communication
receiver and that the precoding matrix v is known. Therefore,
channel state information (CSI) γ = v⊤ATX(φ)diag(αc) is
available at the communication receiver. It is important to
note that this CSI has no effect on the sensing functionality
of the system.

E. PERFORMANCE INDICATORS
We formulate bounds on the communication throughput and
estimation accuracy as theoretical performance indicators for
the system.

1) Constellation Kurtosis
In [15], it was shown that the random-deterministic sensing
trade-off for OFDM-sensing can be controlled by the kurtosis,
i.e., the fourth standardized moment of the constellation, if
a matched filter is applied to estimate the sensing channel.
As OFDM sensing and AoA estimation are both harmonic
retrieval problems, these findings can be reapplied to our
scenario. The constellation kurtosis is directly connected to
the achievable detection rate in sensing. The kurtosis is not
directly linked to the communication performance. Neverthe-
less, the kurtosis constraint places restrictions on constella-
tion design and can affect achievable data rates. Assuming
equal symbol probability, we use the mean minimum distance
d̄min defined as

d̄min =
1

|M|
∑
xm∈M

min
xn∈M\{xm}

|xn − xm| (6)

as an indicator for the communication performance and re-
late it to the kurtosis of a constellation. Typically, a larger
d̄min leads to a smaller bit error rate (BER), especially for
pragmatic constellation diagrams where the spacing between
neighboring constellation points is similar for all constella-
tion symbols.

2π
M

d̄min R1

R2

FIGURE 2. Example constellation of APSK to explore performance for
constellations with different kurtosis

To demonstrate the relationship between the minimum dis-
tance d̄min and the kurtosis κ, we design an amplitude phase
shift keying (APSK) as a constellation using two 8 phase shift
keyings (PSKs) on radii R1 and R2 with an offset phase of 2π

M
between the constellation points on circle R1 and R2 as shown
in Fig. 2. The APSK allows a continuous evaluation of the
kurtosis.
Then, R1 =

√
2− R2

2 is obtained by power normalization
and the kurtosis κ of the constellation with mean µM = 0
and standard deviation σM = 1 follows as

κ =
1

|M|
∑
m∈M

∣∣∣∣xm − µM

σM

∣∣∣∣4 =
R4
1 + R4

2

2
. (7)

The minimum distance follows from trigonometric identi-
ties as

d̄min =

√
2− 2

√
κ cos

(
2π

M

)
, (8)

which is valid for d̄min ≤ 2R2 sin
(
2π
M

)
, i.e., until the inner

circle becomes too small to fit an 8PSKwith point distance of
at least d̄min. This constellation yields an achievable relation-
ship between kurtosis and mean minimum distance for this
specific constellation topology without claiming optimality.

2) Cramér-Rao Bound
The adaptation of the Cramér-Rao bound (CRB) to the de-
signed system is derived in Appendix A. For the estimation
of the angle of a single target, the CRB amounts to (6),
where Nwin is the number of samples collected, θ the angle
to be estimated, β the beamforming gain, and K the number
of antennas [16]. The given CRB is a lower bound for the
variance of an unbiased estimator.

3) Bit-wise Mutual Information
Although a blockwise processing is indicated in Fig. 1 with
block length Nwin, we consider the statistics of single modu-
lation symbols for evaluation (as the channel is memoryless).
The aim of the communication receiver is to maximize the
BMI, since transmission uses bit-interleaved coded modula-
tion (BICM) and forward error correction (FEC) to enable
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reliable communication. The BMI is therefore used as a sur-
rogate measure for communication performance after FEC
without the need to consider a specific coding approach in
this work. Maximizing the BMI is equivalent to minimizing
the binary cross entropy (BCE) between true bit labels bi and
the estimated bit labels b̂i [8, Eq. (8)]:

BMI =
log2 M∑
i=1

I(bi; zc) (7)

= H(b)−
log2 M∑
i=1

H(bi||b̂i)

+

log2 M∑
i=1

Eγ

[
DKL(p(bi|zc)||p(b̂i|zc))

]
, (8)

with source entropyH(b), binary cross-entropyH(bi||b̂i) and
the expected Kullback-Leibler divergence DKL that denotes
the expected mismatch of the true posterior p(bi|zc) given
the observed receiver signal and the approximated (by the
receiver) posterior p(b̂i|zc) over different channel realiza-
tions. The BMI is an achievable rate using binary coding and
pragmatic coded modulation.

III. NEURAL NETWORK TRAINING AND VALIDATION
A. NEURAL NETWORK CONFIGURATION
Our system is configured similarly to that of [11]. Function
blocks such as beamforming, target detection, angle estima-
tion, demapping and optionally modulation are implemented
as separate NNs. The NN layer dimensions are given in
Tab. 1. The NNs consist of fully connected layers with ELU
activation function in the hidden layers.

We implement modulation as a classical QAM and for
comparison as a trainable NN. Inputs are symbol indices with
a known fixed bit mapping. The inputs of the beamformer
are the areas of interest for sensing {θmin, θmax} and for
communication {φmin, φmax}. The output of the transmitter
is subject to power normalization.

At the communication receiver, miminummean squared er-
ror (MMSE) equalization is performed, compensating for the
complex random channel tap, to achieve better convergence
along different SNR values. The outputs of the communica-
tion receiver are interpreted as LLRs for each bit. For the BER
calculation, we use the hard decision of these LLR values.
As stated in Sec. II, we strive to improve the performance
for multiple snapshot estimation by calculating the short-
term spatial auto-correlation matrix (ACM) Corr(Zs,Zs). The
number of input neurons of the sensing receiver is K2 + 2.
Two input neurons have Nwin and σns as inputs and allow
the investigation of sensing for varying channel parameters.
Specifically, our systems are trained for generalized Nwin

and σns, allowing flexible investigation within the range of
training parameters. This parameterization leads to roughly
the same communication and sensing performance as systems
trained individually for different Nwin and σns, while allowing
flexible operation without requiring a change of the NN

TABLE 1. Sizes of neural networks

Component Input layer Hidden layers Output

Beamformer 4 {K ,K , 2K} 2K
Demapper 3 {10M , 10M , 10M , 10M} log2(M)
Angle estimation 2K2 + 2 {8K , 4K , 4K ,K} 1
Detection 2K2 + 2 {2K , 2K ,K} 1

Modulator M {8M , 8M , 8M} 2

weights and, at the same time reducing the computational
complexity required for training.
During training, a vector indicating the presence of a target

is fed to the sensing receiver in order to calculate the detection
threshold that is needed to keep the false alarm rate Pf con-
stant. This threshold is added to the output of the detection
NN before applying the output sigmoid function. Since this
threshold is numerically calculated for each system, there are
small variations expected. The output function of the angle
estimation NN is π

2 tanh(·), normalizing the output to ±π
2 .

B. LOSS FUNCTIONS
There are three main components of the loss function, result-
ing in a multi-objective optimization, which evaluates the per-
formance of communication, detection, and angle estimation.
We introduce a weight ws ∈ [0, 1] that controls the impact or
perceived importance of the sensing tasks, resulting in the full
loss term

L = (1− ws)Lcomm + wsLdetect + wsLangle. (9)

JCAS systems have been trained in [11] with N different
scenarios where a target is present using the loss given by

L = (1− ws)

log2 M∑
i=1

H(bi||b̂i)︸ ︷︷ ︸
Lcomm

+ ws

H(t||̂t)︸ ︷︷ ︸
Ldetect

+
1

N

N∑
i=1

(θi − θ̂i)
2

︸ ︷︷ ︸
Langle

 . (10)

When training multiple functionalities and multiple operat-
ing scenarios simultaneously, we observed a reduced perfor-
mance when using (10) as a loss function. Especially the AoA
estimation showed unreliable convergence. The achievable
precision, which is bounded by (6), depends significantly
on the chosen Nwin and σns. After training, the estimator
should yield a mean squared error (MSE) similar to the lower
bounds, i.e., the CRB, of the estimator. The lower bound
is not constant in all training scenarios, since it depends on
Nwin and σnc resulting in a perturbation of the loss. Therefore,
we introduce bound-informed adaptations to ensure a robust
performance over a range of SNRs and observation window
lengths Nwin. We expect increased precision and better con-
vergence behaviour if the loss is normalized across multiple
SNRs and Nwin.
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The CRB is used for an informed modification of the loss
function used for the training of NNs. Under the assumption
of σ2

ns ≪ Kβσ2
s , we simplify (6) to separate the expression

into parts depending on Nwin and σns:

CCR(θ) ≈
1

π2 cos(θ)2
σ2
ns

Nwin

1

βsσ2
s

6

K3 − K
. (11)

The factor σ2
ns/Nwin describes the impact of the observation

window and SNR on the bound. Therefore, we modify the
loss term with the correction factor Nwin/σ

2
ns. The proposed

loss term is then given by

Langle =
1

N

N∑
i=1

Nwin,i

σ2
ns,i

(θi − θ̂i)
2, (12)

achieving loss terms with similar magnitude for varying Nwin

and σns and regularizing the output.
There are multiple examples for training communication

systems over varying SNRs [8], [17]; but a gradient pertur-
bation or problems during training have not been reported.
To complete our analysis of loss behaviour, we consider the
behaviour of BCE for our channel model and varying Nwin

and SNRs. In the following, we show why a modification
of the communication loss term is not necessary. We adapt
the communication loss that is evaluated based on the known
bits bi,n, with i denoting the bit in a specific symbol and n
denoting the symbol index, and estimated bits b̂i,n based on
output probabilities p(b̂i,n = 1|zc) = σ(ℓi,n), with σ(·) being
the sigmoid function and the output LLRs ℓi,n. Traditionally,
the BCE H(b||b̂) is used as a loss function, given by

log2 M∑
i=1

H(bi||b̂i) =−
log2 M∑
i=1

bi log2(p(b̂i = 1|zc))

+ (1− bi) log2(1− p(b̂i = 1|zc)). (13)

Assuming independent bits, the BCE and BMI are related
as [8]

log2 M∑
i=1

H(bi||b̂i) =H(b)− BMI

+

log2 M∑
i=1

Eγ

[
DKL(p(bi|zc)||p(b̂i|zc))

]
.

(14)

We lower bound the BCE as
log2 M∑
i=1

H(bi||b̂i)
(a)
≥H(b)− I(b; zc)

+

log2 M∑
i=1

Eγ

[
DKL(p(bi|zc)||p(b̂i|zc))

]
(15)

(b)
≥H(b)− I(b; zc) (16)
(c)
≥H(b)− C , (17)

where in (a), we upper bound the BMI by the mutual infor-
mation I(b; zc). The Kullback-Leibler divergence DKL ≥ 0
describes the mismatch of the true posterior distributions and
the distributions at the NN output. With converged systems,
this mismatch should be very small, encouraging us to drop
the term in (b). Finally, we bound the mutual information by
the channel capacity C in (c).
The ergodic channel capacity C for a Rayleigh fading

channel is given by Ce = log2

(
1 +

σ2
c ·β̄cPs
σ2
nc

)
[18], with β̄c

denoting the average beamforming gain for the area of interest
for communication. For a single realization, I(b; zc) could
be larger than the ergodic capacity, but considering many
different realizations for a loss function and the law of large
numbers diminish this possibility. Then

log2 M∑
i=1

H(bi||b̂i) ⪆H(b)− log2

(
1 +

σ2
c β̄cPs
σ2
nc

)
(18)

=H(b)− log2

σ2
nc + σ2

c β̄cPs︸ ︷︷ ︸
σ2
nc≪σ2

c β̄cPs


+ log2

(
σ2
nc

)
(19)

≈H(b)− log2
(
σ2
c β̄cPs

)
+ log2

(
σ2
nc

)
.
(20)

The approximation in (20) is valid for high SNR. In lower
SNR scenarios, the BCE is underestimated when using (20).
Based on (20), the terms log2

(
σ2
c β̄cPs

)
describes the impact

of the beamforming while the term log2
(
σ2
nc

)
represents the

impact of SNR variations which we aim to remove from the
loss. A loss function modification following our arguments
for (12) results in:

Lcomm =
−1

N log2M

N∑
i=1

log2 M∑
k=1

(
bi,k · log2(p(b̂i,k = 1|zc,i))

+(1− bi,k) · log2(p(b̂i,k = 0|zc,i))
)
+ log2(σ

2
nc,i)

)
.

(21)

This loss function can be used for optimization of the various
NN-based blocks using the Adam optimizer [19]; therefore,
the gradients of Lcomm with respect to the weights of the neural
networks are used for optimization. However, since the offset
term log2(σ

2
nc,i) in (21) is additive and does not depend on

the weights, its gradient will be zero and will not affect the
training. Hence, it can be omitted from (21), which then boils
down to the BCE loss, showing that modification of the BCE
loss for communication is not necessary.
For the detection loss, we can use the same approach of

modifying the BCE between the true presence of targets
t ∈ {0, 1}N and the detection output pT, keeping in mind
that the SNR scales with

√
Nwin:

H(t||̂t) ≈ H(t)− log2
(
σ2
s β̄sPs

)
+ log2

(
σ2
ns√
Nwin

)
. (22)
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We can derive a loss similar to (21), given by

Ldetect =
−1

N

N∑
i=1

ti · log2(pT) + (1− ti) · log2(1− pT)

+ log2

(
σ2
ns,i√
Nwin,i

)
. (23)

With the same arguments as given before, the last term

log2

(
σ2
ns,i√
Nwin,i

)
does not impact the training behavior. There-

fore, a modification of the BCE as loss term for communi-
cation and object detection is not necessary for the described
system configuration.

Furthermore, we want to ensure a constant false alarm
rate Pf over different SNRs and observation window lengths
Nwin. The input of the detection NN is normalized to
Corr(Zs,Zs)/σ

2
ns,i to obtain the same noise statistic and, there-

fore, false alarm rates for different SNRs. We apply different
decision thresholds for each window length Nwin that are
calculated numerically after training the NN components,
explained in Sec. III-C.

C. NEURAL NETWORK TRAINING
The training comprises three phases: Pre-training, fine-
tuning, and limiting. In pre-training, the detection and angle
estimation neural network are trained independently, i.e., the
other loss terms of Eq. 9 are set to 0. We use a total of
2.5 · 107 communication symbols for both pre-training steps,
divided into mini-batches of 104 symbols. We use the Adam
optimizer with a learning rate of 10−4. The length of the
sensing window is randomly and uniformly chosen between
1 and 15 for each sensing state, to generalize to different Nwin

and to give insight into multi-snapshot behavior. Fine-tuning
establishes the operating point of the JCAS trade-off. The
fine-tuning is performed on 5·107 symbols by using thewhole
loss function in (9) starting with the parameters established
in the pre-training. We use the same hyperparameters as used
for pre-training. Lastly, limiting ensures that the constant false
alarm rate is maintained. In the limiting phase, the system
runs separately for 104 symbols for each length of the sensing
window Nwin. The neural network components are not trained
anymore in this phase, but the decision threshold for detection
is refined as described in [11].

For validation of the communication component, we
choose the BMI and BER as metrics. The BMI represents
the maximum number of bits per symbol that can be reliably
transmitted on average with the given system.

The object detection task is evaluated on the basis of its
detection rate and false alarm rate. For direct comparison, we
design detectors with a constant false alarm rate.

The AoA estimation is evaluated on the RMSE of angle
estimates. We evaluate the AoA on all the present targets
instead of only on the detected targets as in [3].

IV. SIMULATION RESULTS AND DISCUSSION
In our simulations, the communication receiver is located at
an AoA of φ ∈ [30◦, 50◦]. Radar targets are found in a range
θ ∈ [−20◦, 20◦]. Our monostatic transmitter and sensing
receiver are both simulated as a linear array with 16 antennas
and we consider an observation window up to Nwin = 15 and
modulation withM = 16. For the radar receiver, our objective
is to achieve a false alarm rate of Pf = 10−2 while optimizing
the detection rate and angle estimator.

A. BENCHMARKS FOR MODULATION, DETECTION AND
ANGLE ESTIMATION
We train NNs to optimize the modulation format as in [11],
enabling geometric constellation shaping, and compare it
to a classical QAM to quantify the gains of the optimized
constellation.
For detection, we employ a generalized power detector

based on a Neyman-Pearson (NP) criterion [16, Chap. 10]
as a benchmark, distinguishing between two normal distribu-
tions of mean 0 with different variances. The exact transmit
sequence X as well as prior knowledge about the sensing
area are not available. In the reference detector, the average
power of all the input samples zs,il considered for sensing is
computed. The detector can be formulated as

2

σ2
ns

Nwin∑
l=1

K∑
i=1

|zs,il |2
t̂=1

⋛
t̂=0

χ2
2KNwin

(1− Pf), (24)

where χ2
2KNwin

(·) denotes the density of the chi-squared distri-
bution with 2KNwin degrees of freedom. The correction factor
is caused by the transformation of the problem from complex
to real numbers, therefore artificially doubling the number of
samples but reducing the noise variance by a factor of

√
2.

The benchmark detector has a constant false alarm rate along
varying values of SNRs and Nwin.
We use the well-studied ESPRIT algorithm as a benchmark

for angle estimation as presented in [16]. ESPRIT performs
close to the CRB for high SNRs or large observation window
length Nwin.

B. BEAMFORMING RESULTS
In Fig. 3(a), we show the effect of the trade-off parameter
ws on the power radiated to the different areas of interest.
The power distribution for a system using QAM is identical
to a system with a shaped constellation. At ws = 0.5, the
power is almost equally distributed to the sensing and the
communication functionality. For ws < 0.2 and ws > 0.8,
the power radiated toward the less favored function decreases
more rapidly. The sum of the radiated power in both areas
of interest increases slightly with increasing ws, but approxi-
mately 10% of the total power is radiated outside of our areas
of interest. In Fig. 3(b), the beam patterns for selected values
of ws are shown. We radiate more power outside our area of
interest while prioritizing communication, which is caused
by higher side lobes, particularly at an angle of ±90◦. We
also observe a slight widening of the communication beam for

VOLUME XX, 2025 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3607561

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Muth et al.: NN-based Single-carrier JCAS: Loss Design, Constellation Shaping and Precoding

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ws

P
/P

to
ta
l

Sens.
Comm.
Sum

NN mod
QAM

(a) Power distribution for areas of interest

−50 0 50

10−2

100

−25 25 75−75

Sensing Comm.

Angle (deg)

P

ws = 0.9
ws = 0.7
ws = 0.4
ws = 0.1

(b) Beam pattern outputs for QAM, areas of interests are shaded

FIGURE 3. Beamforming results for different operating points ws

decreasing ws, which contributes to higher emissions outside
our areas of interest.

C. COMMUNICATION RESULTS
In Fig. 4(a), we show the BMI for different ws values. As
M = 16, the BMI cannot exceed 4 and slowly saturates to this
level for high SNR. The shaped constellations perform very
close to QAM forws ≥ 0.7. Fig. 4(b) displays the BER over a
range of SNR values and different trade-off factorsws. We ob-
serve, as expected, that the BER increases for higher ws. Two
main effects are responsible for this degradation: Part of the
BER degradation can be attributed to the shaped constellation
diagrams, while the rest is attributed to the beamforming gain
toward the communication receiver. We can directly observe
the degradation caused by the beamforming gain considering
QAM in Fig. 4(b). Since the same QAM is used for all ws, the
performance gap is caused by the beamforming gain only. We
can see that QAM performs robustly over the different SNR
values. The QAM results experience an SNR offset when
varying ws, since the beamforming gain varies for different
ws. Forws ≤ 0.7, the performance of the shaped constellation
and QAM are nearly identical.

In Fig. 4(c), we can verify that the trained detectors for
QAMperform very close to theMLD. The SNR is normalized
by beamforming gain β̄c for comparability.

The performance degradation caused by the shaped con-
stellations can be quantified using Fig. 4(d), where the SNR is
corrected with the beamforming gain, enabling a raw compar-
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FIGURE 4. Comparison of communication performance of systems using
QAM or constellation shaping
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FIGURE 6. Communication performance evaluated based on the mean
minimum distance between constellation points and the kurtosis κ

ison of the performance caused by changing the constellation.
For comparison, we also show the MLD results for conven-
tional 16-QAM and 16-PSK in Fig. 4(d). We can observe a
performance close to the MLD for all trained systems. As
expected, the performance for low ws is close the MLD for
QAM, but for ws = 0.9 we observe a performance penalty of
approximately 0.4 dB to the MLD for PSK.

Depending on the priority of the communication quality
set by ws and the channel SNR, different constellations are
obtained, as shown in Fig. 5. In particular, if the sensing
priority is very low, the constellation diagram resembles a

QAM1. When the priority of the sensing task increases, the
inner symbols are slowly pushed outwards. At very high
sensing priority (ws ≈ 1), the constellation resembles a
PSK-like constellation, as the transmit power becomes equal
over all symbols, resulting in a constant modulus signal. This
indicates the importance of the kurtosis or a constant modulus
constraint for JCAS systems. As the constellation converges
to a constant amplitude with increasing ws, communication
becomes less reliable since the Euclidean distance between
the constellation symbols becomes smaller.
Finally, in Fig. 6, we show the effect of the constellation

kurtosis on the mean minimum distance d̄min by comparing
the geometrically shaped constellations obtained from theNN
to the APSK proposed in Sec. II-E1, a QAM and a pure PSK.
As expected, a higher kurtosis allows the constellation points
to be spaced further apart, resulting in a higher d̄min and a
lower BER eventually. The reference APSK clearly shows
this relationship between the kurtosis and the mean minimum
distance d̄min in Fig. 6. The d̄min of the trained constellations
is higher than the d̄min of the APSK. With decreasing ws, the
kurtosis κ and the d̄min increase, approaching the d̄min of a
QAM. Especially for higher-order modulation formats, the
kurtosis κ manifests as an additional trade-off parameter for
sensing and communication performance.

D. TARGET DETECTION RESULTS
In Fig. 7(a), we compare the performance of the trained
detectors at varying SNR. P̃f is approximately constant at
10−2, as intended by design. The detection rate is very similar
for both modulation methods, only for high ws, we can see a
slightly better detection rate for the shaped constellation. We
converge to P̃d ≈ 1 for all cases. The impact of beamform-
ing is clearly visible, especially for very low ws, where the
beamformer barely illuminates the sensing area and P̃d = 0.5
is obtained only at SNRs = 2 dB. In Fig. 7(b), we correct
for the average beamforming gain and observe that most
detectors converge to a very similar performance. In Fig. 7(c)
the trained detectors are shownwith the benchmark NP-based
detectors. All NN-based detectors trained for QAM perform
almost identically andwe can observe a reduced detection rate
of the NP-based power detectors.

We evaluate target detection by comparing the detection
rate P̃d and the false alarm rate P̃f for different observation
window lengths Nwin for ws = 0.9 in Fig. 8. Increasing Nwin

improves the detection rate, as expected. The false alarm rate
remains approximately constant for varying Nwin. The NP
benchmark detector leads to a lower detection rate for both
setups, since it only relies on the input power. The trained
detector can also take directional information into account.

Having reviewed the effects of multi-snapshot estimation
and the use of different modulation formats, the presented
setups enables us to choose different trade-offs between
communication and sensing. Even though we sacrifice some

1If the BER is optimized instead of symbol error rates, QAM shows better
performance than hexagonal lattices, as effective Gray coding in a hexagonal
lattice is not possible
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FIGURE 7. Detection probability and false alarm rate for varying SNR and single snapshot detection
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Performance evaluated at SNRc = 20.8 dB, SNRs = 2.6 dB and Nwin = 1

sensing performance through the use of QAM, we can sig-
nificantly improve detection and parameter estimation by
collecting multiple samples to perform sensing in scenarios
where objects are slow enough to be captured by multiple
samples at almost the same position.

E. ANGLE ESTIMATION RESULTS

We analyze the effect of the modified angle loss term on
the results compared to the unmodified loss given in (10) in
Fig. 9. We optimize the JCAS system by choosing different
trade-off factors ws and display the RMSE of the angle of
estimation as a function of the BMI for each value of ws.
With the original loss function (10), as indicated by the dashed
lines, there are performance fluctuations. After training, the
estimation error depends mainly on the noise power and Nwin.
Since Nwin and σns are randomly chosen during training,
the loss is influenced by random processes which distort
the magnitude of the gradients. Nevertheless, this random-
ness during training is beneficial for generalization. During
training, we also noticed that trained systems converged to
solutions of varying performance. We would anticipate a
monotonic behavior of the curves, from high ws in the left
bottom corner of the plot to low ws in the upper right corner.
By modifying the loss function, we keep the randomness in
our training data while normalizing the expected magnitude
of the gradients. We achieve a gradual performance trade-
off as expected and achieve a lower AoA estimation RMSE
than for the unmodified loss while a similar BMI is achieved.
The trained constellation generally achieves better accuracy
in estimating the AoA, which can be attributed to its smaller
constellation kurtosis.
We investigate the estimation bias of the AoA NN in

Fig. 10(a). The trained estimators lead to small biases in the
order of 10−2. There is not a clear trend of the bias as a
function of SNR or ws, or a systematic bias. In Fig. 10(b), we
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channel with ws = 0.9. Achievable area is limited by CRB.

can observe how increasingws decreases the angle estimation
error. In particular, while the changes of BER for ws = 0.7
in Fig. 4(b) between trained constellation and QAM are not
very distinct, there is a gain in sensing performance. From
Fig. 10(c), we can observe that for larger ws, the gap of
NN modulation and QAM increases further. Furthermore,
as the priority of sensing is very low for ws = 0.1, the
sensing does not approach the results of the other detectors
for QAM.We know from Fig. 3(b) that at ws = 0.1, the beam
towards the sensing targets varies in magnitude in our area
of interest more significantly than for higher ws, indicating
that the minima in the wider beam lead to a high RMSE for
targets. in Fig. 11, we compare different window lengthsNwin.
The trained angle estimators outperform ESPRIT at a raw
SNRs = −5 dB. At low SNR, the proposed method can con-
sistently outperform the ESPRIT baseline. The gap between
the modulation formats first becomes larger with increasing
window length until Nwin ≈ 4 for both modulation methods.
Since both modulators lead to the same average output power,

a longer observation window reduces the variance of the auto-
correlation, under the assumption of a similar statistic for
both modulation formats. There is a gap to the CRB for all
estimators as expected in such a low SNR scenario.

V. SCENARIO EXTENSION: MULTI-USER MIMO
Weextend the analyzed scenario to the downlink ofmulti-user
multiple-input multiple-output (MIMO), to demonstrate how
spatial efficiency can be addressed with our setup. In this sec-
tion, we show a proof-of-concept how to extend the system of
Fig. 1 toNue UEs. The beamforming NN needs to be extended
to enable precoding for multiple different positions, therefore
we enlarge the output layer to 2K · Nue neurons. The inputs
of the precoding NN are then {φmin, φmax, θue1, . . . , θueNue}
and (1) is replaced by

Y = V · X , (25)

with V ∈ CK×Nue being the precoding matrix and X ∈
CNue×Nwin denoting the transmit symbols for all UEs.
We need to use a different loss term for communication

to address the resource allocation. We reformulate the maxi-
mization of an α-fair utility function or the weighted sum rate
as in [20, (5)] to a loss function as

L̃comm(α) =−
∑Nue

n=1 log2

(∑log2 M
i=1

[
1− H(bi,n||b̂i,n)

])
, α = 1

−
∑Nue

n=1

(∑log2 M
i=1 [1−H(bi,n||b̂i,n)]

)1−α

1−α , α ̸= 1,

(26)

with α ∈ R+ trading off the total throughput and fairness
between UEs. α = 0 results in a sum-rate maximization
and α = 1 yields maximum fairness. Fairness is especially
important in scenarios, where the channel capacities between
UE and the base station vary significantly between UEs to
prevent UEs with low channel capacity from being allocated
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no resources at all. In our training setup, L̃comm(α) replaces
Lcomm in (9).

We demonstrate such a systemwith 2 UEs whose dominant
reflection path is at an angle of departure of 50◦ and 70◦

respectively. The simulated SNR range is the same for both
UEs and we train a respective decoder while QPSK is used
for transmission. This setup results in the same total data
throughput as the other simulations in this paper. Both UEs
attempt to receive the same number of symbols. For the
communication loss L̃comm(α) we choose α = 1 and we set
ws = 0.7.

The effects of the precoding are shown in Fig. 12. The
vertical purple lines mark the direction of the main reflection
servicing the UEs. The average total beam pattern is shown
as well as the effects of the precoding vectors for each UE.
The beam pattern for each UE shows a maximum towards
its target direction and minimum towards the other UE. Both
signals contribute to the illumination of the sensing area of
interest. At the same SNR, the BER is similar for both UEs,
as shown in Fig. 13. The beamforming gain is slightly lower
for UE2, therefore we see a slightly higher BER. The BER is
generally lower as in the other presented scenario, as QPSK
instead of a higher order modulation is used.

VI. CONCLUSION
In this paper, we have proposed a novel loss function for end-
to-end trainable JCAS systems based on supervised learning.

By separating the loss functions from the SNR, we have
improved training convergence of our system together with
its overall performance. We have compared a system with
a 16QAM constellation to a geometrically shaped constel-
lation. We observed similar behavior in terms of communi-
cation and sensing performance, and were able to adjust the
trade-off between sensing and communication performance
using the trade-off parameter ws. The QAM constellation
achieved comparable results for object detection and com-
munication compared to the shaped constellation diagrams
showing that JCAS systems can use legacy constellations.
For AoA estimation, the shaped constellation achieves lower
MSEs than QAM. The trained object detector and AoA es-
timator both outperform the respective baseline algorithms,
namely a Neyman-Pearson-based power detector for object
detection and ESPRIT for AoA estimation. By extending our
setup, we demonstrate how spatial resources can be used to
service multiple UEs.
In our future work, we want to build on our developed

system and proof-of-concept to further explore the effects of
multi-user MIMO and precoding in JCAS. To realize low-
complexity solutions, we need to quantify the system com-
plexity in comparison to classical algorithms and explore how
reduction of the size of NN components affects the perfor-
mance together with the expected performance-complexity
trade-off. Paradigms such a model-based learning could help
to find an appropriate structure of the trainable algorithms.
We can integrate the analysis of this paper with our prior work
on multiple target sensing in [11].

APPENDIX A CRB DERIVATION
We know from [16, Ch. 8.4] that the CRB for phase recovery
of phase γ = π sin(θ) is given by

CCR(γ) =
σ2
n

2N
Re

{[
Sf

[(
I + AHA

Sf
σ2
n

)−1

(
AHA

Sf
σ2
n

)]]
⊙H⊤

}−1

. (27)

In (27), N denotes the number of samples and σ2
n is the noise

power. For the single source case, the signal spectral matrix
Sf reduces to a scalar sf = βσ2

s , with transmit beamforming
gain β and transmit power σs. The Matrix H is defined as

H = _AHγ
[
I − A(AHA)−1AH

] _Aγ , (28)

with _Aγ denoting the derivative of A with respect to γ. The
steering matrix A simplifies for a uniform linear array to a
steering vector

a = [1, exp(−jγ), exp(−j2γ), . . . , exp(−j(K − 1)γ)]⊤

(29)

and the derivative _aγ with respect to γ to

_aγ = [1,−j exp(−jγ), . . . ,−j(K − 1) exp(−jγ)]⊤. (30)

12 VOLUME XX, 2025

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3607561

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Muth et al.: NN-based Single-carrier JCAS: Loss Design, Constellation Shaping and Precoding

For the CRB concerning the angle of arrival θ with γ being a
function of θ, we can rewrite

CCR(γ) = _F⊤CCR(θ)_F, (_F)i,j =
dγ
dθ

. (31)

Evaluating the inner terms of (27) for one source/target yields:

(
I + AHA

Sf
σ2
n

)−1

=
σ2
n

σ2
n + Kβσ2

s
, (32)(

AHA
Sf
σ2
n

)
=
Kβσ2

s

σ2
n

. (33)

Now we calculate H , which is also a scalar for the single
source case:

H = _aHγ
[
I − a(aHa)−1aH

]
_aγ (34)

= _aHγ _aγ − _aHγ a(a
Ha)−1aH_aγ (35)

=

K−1∑
k=0

k2 −

(
K−1∑
k=0

k

)
· 1

K
·

(
K−1∑
k=0

k

)
(36)

=
K (K − 1)(2K − 1)

6
− K (K − 1)2

4
(37)

=
K3 − K

12
=
K (K2 − 1)

12
. (38)

We can formulate the CRB concerning γ:

CCR(γ) =
σ2
n

2N
Re

{[
βσ2

s

[
σ2
n

σ2
n + Kβσ2

s

Kβσ2
s

σ2
n

]]
·

K3 − K
12

}−1

. (39)

Calculating the derivative of γ with respect to θ yields

dγ

dθ
=

dπ sin(θ)

dθ
(40)

= π cos(θ). (41)

Putting everything together yields (6).

APPENDIX B SUFFICIENT STATISTIC
In this section, we reason the use of correlation preprocessing
in the sensing receiver by proving that it is a sufficient statistic
for object detection and AoA estimation. A sufficient statistic
is a set of values that contains all information of a set of
measurement samples concerning the estimation of a certain
parameter, i.e., an optimal estimator based on the sufficient
statistic achieves the same estimation accuracy as an optimal
estimator based on the measurement samples.

For AoA estimation, we can show the sufficiency mathe-
matically following [21]. The log-likelihood function to esti-

mate the AoA θ of themeasurement samplesZs can bewritten
in an AWGN scenario as:

logfZs(Zs; θ) = −KNwin log(πσ
2
ns)−

1

σ2
ns

Nwin∑
n=1

||zs||2

+
2
√
Nwin

σ2
ns

Re
{
αs
(
aRX(θ)aTX(θ)⊤

)H
ZsYH

}
− |αs|2Nwin

σ2
ns

aHRX(θ)Corr(Y ,Y)
HaTX(θ)aHRX(θ)aTX(θ)

(42)

A sufficient statistic η can be found through the factor-
ization theorem, i.e., by rewriting the log-likelihood as
log fZs(Zs; θ) = f1(Zs) + f2(θ, η). According to [21], the
sufficient statistic can be extracted as

η =
1√
Nwin

ZsYH . (43)

In case Y is unknown, η can be approximated with the pro-
jection of the received signal on the signal space as in [22]:

η ≈ 1√
Nwin

Zs

((
aRX(θ)aTX(θ)⊤

)†
Zs

)H
(44)

=
1√
Nwin

ZsZHs
((
aRX(θ)aTX(θ)⊤

)†)H
, (45)

with (·)† denoting the Moore-Penrose pseudoinverse. In our
case, the transmit signal is known, but using the approxima-
tion (45) allows extension to bistatic scenarios, resulting in
the approximated sufficient statistic

η̃ = Corr(Zs,Zs). (46)

Notably, the ESPRIT algorithm that we use as a baseline uses
(46) as input. The comparison of the proposed algorithm and
the baseline becomesmore fair if both systems estimate based
on the same statistic.
For object detection, the total power of the received signal

projected on the AoAs is a sufficient statistic as shown in
[21] and can be calculated from the correlation matrix in (43).
Under an unknown transmit signal, the approximation in (45)
applies. Therefore, we can feed (46) into the detectionNN and
approach optimal performance after training. The baseline
NP-detector is also only based on the total power of the signal
and does not rely on a known transmit signal.
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