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Tritium Breeding for Fusion

Plasma: D +—> “He + n + 17.6 MeV
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Tritium Breeding Materials - Requirements

Operability

= Tritium generation =» High Li-density & low T-trapping
= Neutron irradiation =» Phase equilibria upon Li-burn-up
=> Low activation of elements beside Li
= High temperatures =» High melting point / thermal conductivity
= Mechanical stress =» Reasonable resilience

Safety

= Structural material compatibility =» Little interdiffusion

Cost efficiency

= Fabrication & recycling =» As easy as possible



Tritium Breeding Materials

= Liguid breeder blanket concepts - e.qg. Li-Pb alloys

= Solid breeder blanket concepts - Li-ceramics
— Well investigated breeder materials: Li,O, Li,SIO,, LigPbOg, Li,TiOg4, Li,ZrO,, LIAIO,

— At IT: Advanced Ceramic Breeder (ACB) material
—> Biphasic material, combining Li,SiO, + Li, TiOq
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Advanced Ceramic Breeders (ACB)

= Biphasic pebbles consisting of Li,SIO, and LI, TiO,

= ACB pebbles represent the EU reference tritium
breeding material (= ITER, EU-DEMO)

= Activities at KIT are focused on the process
development and the material qualification

— The production facility was recently converted from a batch
process to a continuous operation (production rate of 2 kg/h)

— Standard quality control
— Testing material under extreme conditions




ACB Pebble Production at KIT

KALOS process (KArlsruhe Lithium OrthoSilicate)
= Raw materials: LIOH-H,0, SiO,, TiO,

— Mixing, ~500 °C for 5 h, sieving
Pretreated powder is melted at ~1400 °C
Jet break-up with adjustable droplet size
Solidification using liquid nitrogen

Pebble size: 250-1250 pm
= Process yield: ~95 wt%

[O. Leys et al., FED 164 (2021) 112171]




KALOS Production and QC Flow Chart
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ACB Pebbles - Size Distribution

p+V

Size distribution can be controlled by applying selected frequencies

No frequency Induced jet break-up
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ACB Pebbles - Phase Composition & Microstructure

Lithium orthosilicate + lithium metatitanate Li, TiO5 dendrites & Li,SiO, forming in between
| ' | y | ' | ' | ' =L - SRNEIARIAY
Li,Sio, (mel)| [SEImMage - a4
. . 7 AR AN o

5 Li, TiO, (cub) AE X e N R N

©

>

‘»

C

Q

£
I ' I ' | ' I ' | ' !
20 30 40 50 60 70 1

2 theta/°

KIT



ACB Pebbles - Mechanical Strength

Uniaxial crush
load tests

[O. Leys et al., FED 164 (2021) 112171]

Main phase Li,S10, with additions of Li,TiO,

—> Higher mechanical strength with increasing Li, TiO, content
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Characteristic Material Properties for ACB

Phase composition Li,SIO, + Li, TIO,

Li, TiO; content 30-35 mol% Li, TiO5 (max. 40 mol%)
Pebble size range 250—1250 pum (smaller range possible)
Mean crush load (ngrgol\.l.. 35 rfozl/2 I_IT\I/IT, @ 1000 pm)
Open porosity 3x1%

Closed porosity 2x1%

Relative pebble density 5+£1%

Pour density 581 %

Tap density 61 +1%

Packing factor ~ 64 %

[O. Leys et al., FED 164 (2021) 112171;

Knitter & Zmitko, CBBI-21 Proceedings (2023) 7-23]
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Long-term Thermal Stability

= Thermal treatment at 900 °C for up to 128 days

= Gas atmosphere: He + 0.1 vol% H, / H,0

Lithium / mass%

- High chemical and mechanical stability in both atmospheres
—> Stable microstructure with limited grain growth over time
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Thermal Behaviour of Pebble Beds

Discrete Element Method to model the heat transfer in ceramic breeder pebble beds

Effective thermal conductivity Temperature profile
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Phase Stability regarding Lithium Burn-up

* Typical ACB composition
= Li burn-up due to °Li(n,a)3H reaction

- Change in phase composition

= Assumption: both phases
will burn-up Li to the

same degree

= Only 3 phases
will occur
according to
the phase
diagram
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Behaviour under Neutron
Irradiation - Activation

Neutronic calculations performed for ACB
with 30 mol% Li,TiO,

= Remote level is reached after 18 years
= Hands-on level is reached after 189 years

= The activation is determined by critical
iIsotopes resulting...
— from the raw materials
(e.g. 46Sc, 9Co, 133Ba, %%Al)

— from the crucible of the fabrication process
(i.e. 192Rh and 1°3Pt)

cf. [Mukai et al., FED 100 (2015) 565-570]
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Behaviour under Neutron Irradiation

Neutron irradiation in Almaty

with In-situ measurements

— Information on the tritium
release behaviour
— Tritium inventory
— Tritium residence time

— Ratio of released species
(HTO + HT)

— Influence of the temperature
(400-900 °C)

— Influence of the purge gas
(He + x H, %)

[Shaimerdenov et al., FED 212 (2025) 114851]
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Behaviour under Neutron Irradiation

Neutron irradiation in Mol I I
for Post-Irradiation Examination (PIE)

—> Information on the material properties affected by
radiation-induced damages and the burn-up of lithium

= Comprehensive PIE at the Fusion Materials Lab at KIT
— Out-of-pile tritium release / TPD; IC + QMS
— Microstructure / light microscopy + SEM
— Phase analysis / powder XRD
— Mechanical stability / crush load tests
— Density + porosity / pycnometry




Possibilities for Material Recycling

Replenishment of Li-6 .
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[Images: iter.org; KIT]

Tests on the reprocessing of
ACB pebbles

- Accumulation of the crucible-related
elements Pt, Au, Rh
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[O. Leys et al., FED 107 (2016) 70-74]
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Summary 1. Tritium Breeding for Fusion

5Li + n — 4He + 3H

Li-containing ceramics as solid breeder materials

2. Advanced Ceramic Breeder

Biphasic material consisting of Li,SIO, and Li,TiO,

ACB pebble production using melt-based KALOS
process

Material qualification incl. e.g. long-term thermal stability,
thermal behaviour of pebble beds, phase stability with
regard to Li burn-up

Material behaviour under neutron irradiation
Material Recycling (= incl. ®Li replenishment)
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Thank you for your attention
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