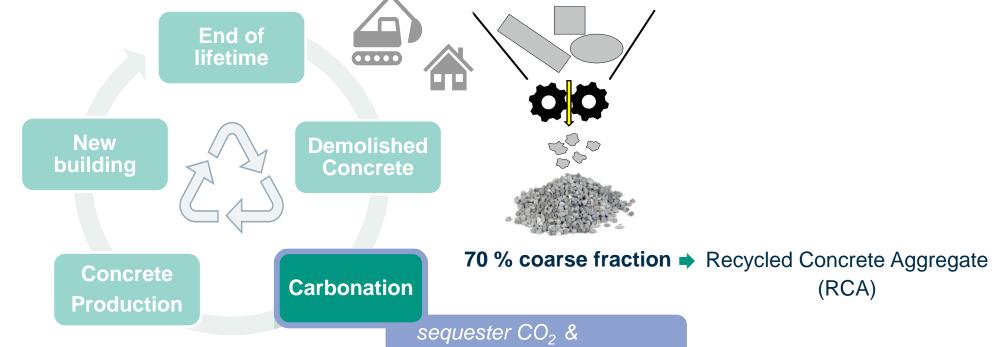


Characterisation of Recycled Concrete Aggregates with TGA and XRF coupled with Statistical Data Analysis

<u>Lisa Frankenhauser</u>, Krassimir Garbev, Angela Ullrich, Peter Stemmermann, Dieter Stapf


Motivation

Facts:

- ~ 8 % man-made CO₂ emissions (cement industry) [1]
- ~ 200 mio. t of Construction and Demolition Waste (CDW) in Germany per year (in 2023) [2]

Solutions:

- CCUS (Carbon Capture Utilization & Storage)
- Sustainable and circular recycling routes

improve physical properties

[1] Jan Skocek et al. 2020 DOI: 10.1038/s41598-020-62503-z

[2] Mineralische Bauabfälle Monitoring 2022 -Bericht zum Aufkommen und zum Verbleib mineralischer Bauabfälle im Jahr 2022. Bundesverband Baustoffe - Steine und Erden e.V., Dez. 2024.

Challenges

- Development & optimisation of an accelerated carbonation process
 - ➤ Aim: Complete carbonation of RCA in a short time (years → minutes or a few hours)

- Inhomogeneity of the material
 - CO₂-uptake potential of the material?
 - Comparability?
 - Precise assessment of the CO₂-uptake?

Aim of this study:

Find a methodology

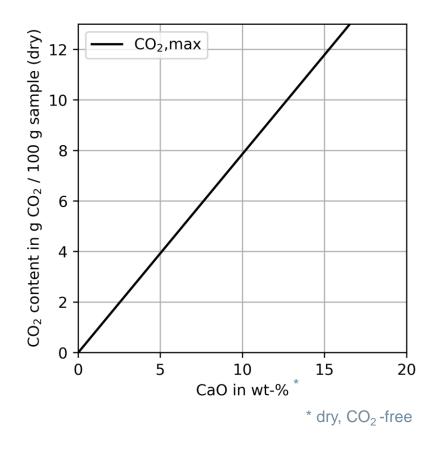
- a) For the characterisation of RCA
- b) To quantify the carbonation of RCA from old paving stones

Approach

- 1. Step: Calculation of the theoretical maximum CO₂ uptake
 - Using a modified Steinour approach

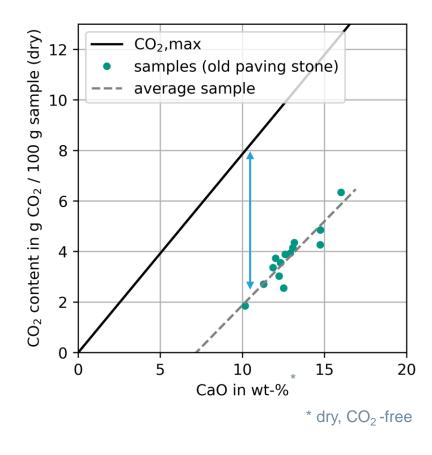
- 2. Step: Analysis of 14 not carbonated concrete samples
 - Thermogravimetric Analysis (CO₂-content)
 - X-ray fluorescence Analysis (CaO-content)
 - Statistical Data Analysis
- 3. Step: 3 different Carbonation experiments (right)
 - Calculation of CO₂-uptake
 - Reference basis CO₂-uptake: Data Step 2

Tab. 1: Carbonation conditions


	T/°C	<i>t </i> h	$p_{\it ges}$ / bar	p_{CO_2} / bar
Air	20	672	1	0,04
Moderate	20	672	1	0,4
Hydrothermal	170	4	5,7	4

25/09/25

Results – Step 1: Maximum CO₂ uptake



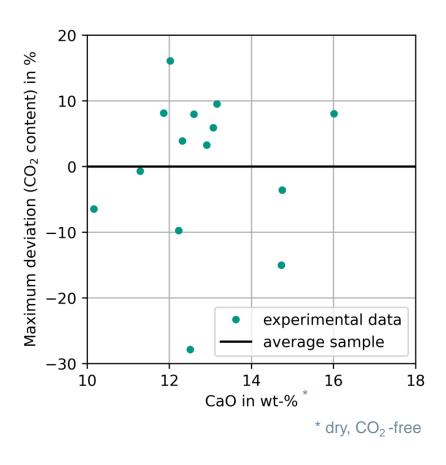
- ➤ Theoretical maximum CO₂ uptake (CO₂,max) based on the CaO content of a sample
- Assumption: all non-sulphate-bound CaO is converted into CaCO₃ & other phases do not react with CO₂

25/09/25

Results - Step 2: Analysis of starting material

- ➤ Differences in CaO content (10-16 wt-%)
 - Different ratio of cement paste to aggregates
 - Different ratio of CaCO₃ aggregates to CaO-free aggregates
- ➤ Differences in CO₂ content
 - CO₂ from already carbonated hdcp or CaCO₃ aggregates

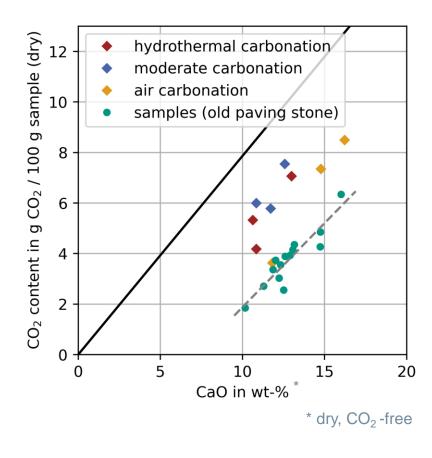
Findings:


- CaO content can be used as a tracer for characterizing the different samples
- Average sample = linear regression
- > Theoretical carbonation potential

DIN-EN 197-1 (CEM III/C)

Results - Step 2: Analysis of starting material

- \triangleright Mean deviation (absolute): 0,34 $\frac{g CO_2}{100 g sample}$
- Experimental data = sample (old paving stone)
- No clear trend, maximum deviation can be up to 28%


Finding:

➤ Deviations have to be considered carefully, as they have an impact on a calculated CO₂-uptake (using this data as a reference basis)

Results – Step 3: Carbonation experiments

- Wide spread of data points
- > CO₂-uptake:
 - ightharpoonup Hydrothermal: 2,67 \pm 0,73 $\frac{g c O_2}{100g sample}$
 - ► Moderate: 3,43 ± 0,59 $\frac{g \, co_2}{100g \, sample}$
 - ightharpoonup Air: 1,78 \pm 0,9 $\frac{g \, CO_2}{100g \, sample}$

Findings:

- ➤ Successful CO₂-uptake for RCA
- Limited comparison between the different carbonation experiments

8

Conclusion and Outlook

- Characterisation of inhomogeneous RCA is possible with the combination of TGA, XRF and Statistical Data Analysis
- Detectable differences in CO₂-uptake under varying carbonation conditions
 - Difficulties in the investigation of individual influencing factors

- Additional samples need to be analysed → minimize statistical impacts
 - Investigation of carbonation behaviour with modell system
 - A More realistic calculation of the theoretical carbonation potential

Thank you!

Lisa Frankenhauser

Institute for Technical Chemistry (ITC), Karlsruhe Institute of Technology (KIT), Germany

Email: lisa.frankenhauser@kit.edu

10