KIT | KIT-Bibliothek | Impressum | Datenschutz

Mean Minkowski content and mean fractal curvatures of random self-similar code tree fractals

Rataj, Jan; Winter, Steffen ORCID iD icon 1; Zähle, Martina
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider a class of random self-similar fractals based on code trees which includes random recursive, homogeneous and V-variable fractals and many more. For such random fractals we consider mean values of the Lipschitz-Killing curvatures of their parallel sets for small parallel radii. Under the uniform strong open set condition and some further geometric assumptions we show that rescaled limits of these mean values exist as the parallel radius
tends to 0. Moreover, integral representations are derived for these limits which recover and extend those known in the deterministic case and certain random cases. Results on the mean Minkowski content are included as a special case and shown to hold under weaker geometric assumptions.


Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000185173
Verlag arxiv
Umfang 25 S.
Externe Relationen Abstract/Volltext
Schlagwörter Probability (math.PR), Primary 28A80, Secondary 28A75, 53C65, 60D05, 60G57
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page