KIT | KIT-Bibliothek | Impressum | Datenschutz

Fractal curvatures and short-time asymptotics of heat content

Rozanova-Pierrat, Anna; Teplyaev, Alexander; Winter, Steffen ORCID iD icon 1; Zähle, Martina
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

The aim of our paper is twofold. First, we present new mathematical developments on the analysis of de Gennes’ hypothesis on the short-time asymptotics of the heat content for bounded domains with smooth boundary and with fractal boundary. Second, we discuss new findings and concepts related to fractal curvatures for domains with fractal boundary. We conjecture that fractal curvatures and their scaling exponents will emerge in the short-time heat content asymptotics of domains with fractal boundary and the results discussed here are small initial contributions towards a resolution.


Originalveröffentlichung
DOI: 10.48550/arXiv.2502.02989
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000185174
Verlag arxiv
Umfang 54 S.
Externe Relationen Siehe auch
Schlagwörter Analysis of PDEs (math.AP), Mathematical Physics (math-ph), Differential Geometry (math.DG), Functional Analysis (math.FA)
Nachgewiesen in Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page