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Chapter 1

Introduction

In 1928, British physicist Paul Dirac proposed a new evolution equation [Dir28], with the
aim of accurately describing the behavior of electrons and other spin-1/2 particles within the
framework of special relativity. In particular, Dirac’s equation, in contrast to the Schrödinger
equation, also applies to particles travelling at velocities near the speed of light. It has not
only become one of the fundamental equations in relativistic quantum mechanics, but also
led to the prediction of antimatter as a new form of matter [And33].

The equation proposed by Dirac is nowadays known as the free Dirac equation. In dimen-
sionless form, it can be written as

∂tψ
ε(t, x) = − i

ε2 Tεψε(t, x), Tε = −iε
3∑
j=1

αj∂j + β (1.1)

for t ≥ 0, x ∈ R3. Here, ψε = ψε(t, x) ∈ C4 is the vector-valued wave function. The operator
Tε, sometimes called the free Dirac operator, is self-adjoint on the Sobolev space

(
H1(R3)

)4
[Tha92, Theorem 1.1]. It contains the Dirac matrices αj , j = 1, 2, 3, and β, which are given
by

αj =
(

0 σj
σj 0

)
, j = 1, 2, 3, β =

(
I2 0
0 −I2

)
.

They in turn are determined by the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A special role is played by the parameter ε = v/c ∈ (0, 1), which is the ratio of the velocity v
of the moving particle and the speed of light c [BMP98; Bao+16b; Bao+17]. There are two
important parameter regimes. The first one is the relativistic regime, where v is close to the
speed of light, such that ε is close to 1. The other one is the nonrelativistic limit regime. This
corresponds to quantum mechanical systems describing particles much slower than the speed
of light. Thus, ε ≪ 1 is small in this case, but it is not small enough to neglect relativistic
effects. In this regime, solutions of the Dirac equation exhibit rapid oscillations in time with
frequency proportional to 1/ε2. Understanding this oscillatory behavior will be crucial for
this thesis, which is why we discuss it in detail at the end of the introduction.

In applications, it is interesting to observe how particles behave under an external electro-
magnetic field and when particle self-interaction is taken into account [HC09; Mer+10; Sol70;
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Thi58]. Then, an electromagnetic potential W and a nonlinearity are included in the Dirac
equation. The two most prominent examples for the latter are the Soler model [Sol70] and
the Thirring model [Thi58]. In this work, we consider the nonlinear Dirac equation (NLDE)
in the nonrelativistic limit regime ε ≪ 1 in the form [Bao+16b; CW20]

∂tψ
ε(t, x) = − i

ε2 Tεψε(t, x) − iW (t, x)ψε(t, x) − iF (ψε(t, x))ψε(t, x),

ψε(0, x) = ψinit(x),
(1.2)

with nonlinearity F given by

F (v) = γ1(v∗βv)β + γ2 |v|2 I4.

The parameters γ1, γ2 ∈ R determine the kind of self interaction as well as the interac-
tion strength. For γ1 = 0, the Soler model is obtained, whereas the case γ2 = 0 cor-
responds to the Thirring model. The electromagnetic potential W = W (t, x) ∈ C4×4

is composed of an electric scalar potential V (t, x) ∈ R and a magnetic vector potential
A(t, x) = (A1(t, x), A2(t, x), A3(t, x))T ∈ R3. With the matrices from above, W is given by

W (t, x) = V (t, x)I4 −
3∑
j=1

Aj(t, x)αj . (1.3)

From an analytical point of view, it has been proven that there exist solutions of the NLDE
on time intervals independent of ε [CW20; Naj92]. For smooth initial data, those solutions
remain smooth in space, but as for the free Dirac equation, they oscillate rapidly in time
with frequency proportional to 1/ε2 [Bao+16a; CW20]. The oscillations go hand in hand
with time derivatives that are unbounded w.r.t. ε. In the left half of Figure 1.1, the temporal
evolution of a typical solution of the NLDE is illustrated. Here, a version of the NLDE in
one space dimension is considered, a point x0 ∈ R in space is fixed, and the real part of the
first component of a solution ψε at x0 is observed over time. Comparing the lines for the two
different values of ε confirms that the frequency of the oscillations is proportional to 1/ε2.

Since solutions of the NLDE remain smooth in space, standard methods can be used for
space discretization. However, the oscillatory nature of solutions poses major problems for
time discretization. Standard time integration schemes typically face two issues when they
are applied to oscillatory problems. On the one hand, some methods are only stable under a
severe step size restriction. Even in the linear case where γ1 = γ2 = 0 in (1.2), stability of the
leapfrog scheme, for example, is only obtained for small enough step sizes τ ≤ Cε2 for some
constant C dependent on the spatial mesh width [Bao+17]. Thus, for small values ε ≪ 1,
only tiny step sizes are possible. On the other hand, even if a method is stable, it might suffer
from a poor accuracy. The reason is that error constants often depend on the size of time
derivatives of the exact solution. Those derivatives grow very large in the case of the NLDE
for small ε ≪ 1 (corresponding to high frequencies of the oscillations). In [Bao+16b], several
standard methods applied to the NLDE in the nonrelativistic limit regime were analyzed. For
a Crank–Nicolson scheme, the authors did prove unconditional stability, but also that the
error of the time discretization (in a suitable norm) is of order O

(
τ2/ε6). Thus, even for tiny

step sizes τ ≈ ε3, good accuracies cannot be expected. For Strang splitting, they showed that
the error is bounded by Cτ2/ε4 for some constant C. Even though this is an improvement,
the same problems remain. All those methods thus require enormous computational costs
for acceptable accuracies.

To obtain better results, tailor-made time integration schemes have to be constructed. This
means that the schemes have to be adapted to the structure of the PDE under consideration.
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Figure 1.1: Temporal evolution of solutions of a 1D-analogue of the NLDE (left), the trans-
formed Dirac equations (right, solid lines), and the semi-nonrelativistic limit system (right,
dashed lines) for two different values of ε. All functions are considered for the same point x0
in space, whereas time varies. Each line represents the real part of the first component of the
respective function. Note that only a far smaller interval is shown on the y-axis in the right
plot.

In the nonrelativistic limit regime, the ultimate goal must be to obtain error bounds that
are independent of ε (uniformly accurate schemes) or even improve for smaller values of
ε. There has been some progress in this direction. First of all, it was shown in [BCY21]
that if no magnetic potential is present, i.e. Aj = 0 for j = 1, 2, 3 in (1.3), and if special,
nonresonant step sizes are employed, then the error of Strang splitting improves to O

(
τ3/2

)
uniformly in ε. For the NLDE with magnetic potential, three other schemes have been
proposed. In [CW18], the authors introduced the multiscale time integrator (MTI). They
work with a multiscale formulation of the NLDE, which allows them to construct a time
integration scheme with error in O

(
min

{
τ2 + ε2, τ2/ε2}). This implies that the error reduces

quadratically with decreasing step size τ > ε, until an accuracy of O
(
ε2) is achieved for

τ = ε. For step sizes ε2 ≤ τ < ε, no further improvement of the accuracy is expected. Only
for step sizes τ < ε2, quadratic convergence in τ sets in again, but with an error constant
proportional to 1/ε2. In view of this error behavior, the scheme is particularly interesting
when an accuracy of order O

(
ε2) is sufficient, which might be the case for small ε. However,

the fine-scale corrections lead to a very complicated method, cf. [CW18, Eq. (2.29)-(2.31)].
A different strategy has been proposed in [LMZ17]. Here, the authors separate the fast and
slow time scales in the NLDE, which leads to a non-oscillatory augmented problem, for which
they are indeed able to construct a uniformly accurate method of second order in the time
step size. However, this separation implies having an additional variable in the augmented
problem. The extra dimension leads to far larger computational cost. In [CW22], the second-
order nested Picard iterative integrator (NPI-2) has been presented. The NPI-2 also achieves
second order convergence uniformly in ε. It is derived by first iterating Duhamel’s formula,
which yields representations of the solution involving several integrals. In those integrals, one
carefully distinguishes slowly varying parts from highly oscillatory parts. The former ones
can be approximated, whereas the latter parts are integrated exactly. If carried out correctly,
the approximation errors in this strategy do not depend on the size of any time derivative
of the solution. This is why it is very well suited for highly oscillatory problems from an
accuracy point of view. However, the nonlinear nature of the PDE causes a large increase in
the number of terms with each iteration of Duhamel’s formula. The resulting method is very
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complicated, in the sense that it takes the authors two pages to write down the final scheme
in its full glory. This not only makes implementation and debugging extremely difficult, but
also reduces the method’s efficiency, since a large number of terms has to be computed in
each time step. Furthermore, a rigorous error analysis would be very tedious, which is why
the authors of [CW22] only presented it for a first-order scheme.

After having reviewed the few works that already exist on time integration of the NLDE
in the nonrelativistic limit regime, it becomes clear why the subject is so difficult. The
main challenge is to construct numerical schemes that can cope with both the oscillatory
behavior of solutions and the nonlinear nature of the NLDE. Handling the oscillations requires
special techniques, whilst the nonlinearity can make the application of said techniques very
sophisticated. In this thesis, we propose and analyze three new time integration schemes for
the NLDE. All of them take into account the special structure of the oscillations exhibited by
solutions of the NLDE, and in some cases even exploit them to their advantage. None of the
schemes is the best of the three. Instead, they all have their individual benefits. In particular,
the method of choice depends on the level of accuracy that the user wants to achieve.

The first step in the construction of all three methods is a transformation of variables through
which, roughly speaking, the dominating oscillations are filtered out. This transformation
goes back to [BMP98] and [CW20]. The result is the transformed Dirac equations, which
is a system of two coupled PDEs whose solutions ϕε+ and ϕε− are “less oscillatory”, in the
sense that their first time derivatives are uniformly bounded w.r.t. ε. However, the second
time derivative is still unbounded. This is illustrated by the solid lines in the right half of
Figure 1.1. They show the temporal evolution of the function ϕε+ from a solution of the
transformed Dirac equations. It becomes apparent that ϕε+ is still oscillatory. However, the
amplitude of the oscillations decreases fast enough with decreasing ε such that the size of
the first time derivative does not grow. The same holds for the function ϕε−. The solution of
the original NLDE can exactly be reconstructed from a solution (ϕε+, ϕε−) of the transformed
system. More precisely, we have

ψε(t, x) = e−it/ε2
ϕε+(t, x) + eit/ε2

ϕε−(t, x). (1.4)

The transformation is motivated by an eigenspace decomposition of the free Dirac operator
in Fourier space and is fundamental for all methods in this thesis. This is why we will present
it in detail at the end of this chapter.

Chapter 2 contains the paper [JK23]. Here, we consider time integration for the semi-
nonrelativistic limit system from [CW20]. This is a simplified version of the transformed
Dirac equations where a number of terms is omitted from the right-hand side of the PDEs.
The simplification comes at the cost of an O

(
ε2) approximation error. Considering (1.4), we

thus have

ψε(t, x) = e−it/ε2
φε+(t, x) + eit/ε2

φε−(t, x) + O
(
ε2
)
,

where (φε+, φε−) is a solution of the new system. Here, O(εp), p ∈ N0, stands for a time- and
space-dependent function for which a suitable Sobolev norm is bounded by Cεp at all times
with some constant C independent of ε. As a consequence of the deliberations above, any
method that approximates solutions of the semi-nonrelativistic limit system cannot achieve
accuracies better than O

(
ε2) for the original NLDE. For small values of ε, this will be sufficient

in some applications. The benefit of this new system are the simpler PDEs, but also that
the second time derivatives of its solutions are uniformly bounded w.r.t. ε. This is again
confirmed by the right plot in Figure 1.1, where the dashed lines represent the function φε+

4



Nonlinear Dirac equation
⇝ solution ψε

∂tψ
ε = O

(
1/ε2

)
∂ttψ

ε = O
(
1/ε4

)

ψε = e−it/ε2
ϕε+ + eit/ε2

ϕε−

Transformed Dirac equations
⇝ solution ϕε+, ϕ

ε
−

∂tϕ
ε
± = O(1)

∂ttϕ
ε
± = O

(
1/ε2

)
ϕε± = φε± + O

(
ε2
)

ψε = e−it/ε2
φε+ + eit/ε2

φε− + O
(
ε2
)

Semi-nonrelativistic limit system
⇝ solution φε+, φ

ε
−

∂tφ
ε
± = O(1)

∂ttφ
ε
± = O(1)

Figure 1.2: Systems under consideration, their relation to the original NLDE, and the size of
their first two time derivatives w.r.t. ε.

from the semi-nonrelativistic limit system. No temporal oscillations are visible anymore, and
the function ϕε+ oscillates around φε+ on a small scale. All three systems under consideration,
their relation to the original NLDE, and the different temporal regularity of their solutions
are summarized in Figure 1.2. We will present a uniformly accurate second order method for
the semi-nonrelativistic limit system called the explicit exponential midpoint rule (EEMR).
The method is an exponential integrator that perfectly exploits the additional temporal
smoothness attained by considering the semi-nonrelativistic limit system. It is based on
applying Duhamel’s formula over a time interval of length 2τ , where τ is the time step size,
and then approximating the resulting integrals via the midpoint rule. The approach requires
one less iteration of Duhamel’s formula than would normally be necessary to achieve the same
error order. This brings large benefits considering that the PDEs are nonlinear. Overall, a
two-step method with a very simple numerical flow is obtained. In particular, the EEMR is
far simpler than the MTI or the NPI-2, and yet has the same accuracy as long as an error of
O
(
ε2) is sufficient.

The methods from Chapters 3 and 4 are developed for applications where an accuracy of
O
(
ε2) is not enough, such that the EEMR does not provide adequate results. The contents

from Chapter 3 essentially correspond to the preprint [JK24], but it has been slightly modified
during the review process of a scientific journal. Here, we first revisit the NPI-2 scheme from
[CW22]. However, we formulate the method for the transformed Dirac equations instead of
the original NLDE, and employ slightly different techniques to approximate the slowly varying
parts. Working in the variables ϕε± allows us to identify terms in the NPI-2 scheme that are
expected to have only a limited impact on the result if nonresonant step sizes are used. We
then consider a simplified version of the NPI-2 scheme, where those terms are omitted. This
results in the nonresonant nested Picard iterative integrator (NRNPI), which is the main
accomplishment of this chapter. For τ ≥ πε2/4, the NRNPI has the same accuracy as the
NPI-2 scheme if some a-priori known resonant step sizes are avoided. In particular, the error
is proportional to τ2 in this regime, and accuracies up to O

(
ε4) can be achieved. For very

small step sizes τ < πε2/4, only linear convergence is observed, but with an error constant
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that is proportional to ε2. Altogether, the NRNPI performs especially well for very small
values of ε. In the error analysis of the NRNPI, a detailed look into the error accumulation
is necessary, since nonresonance effects that occur in the course of several time steps are
exploited. The error analysis is only manageable since we introduce a sophisticated notation
which allows writing both the full NPI-2 scheme and the NRNPI in a compact form. In fact,
before discussing the NRNPI, the error of the NPI-2 scheme itself has to be analyzed first.
This is worth mentioning since the authors of [CW22] refrained from doing so.

In Chapter 4, we introduce a new method based on splitting techniques. It is presented for
the first time here in this thesis. Splitting methods are usually not suitable for oscillatory
problems as their error constants grow very large with increasing frequency of the oscilla-
tions. For the classical splitting of the NLDE considered in [Bao+16b] and [BCY21], this
was discussed previously. However, we suggest a special splitting of the transformed Dirac
equation instead. The crucial benefit of this new ansatz is a reduced splitting error, which
is not as heavily affected by rapid oscillations as the classical ansatz. We will analyze the
resulting splitting error in detail. Furthermore, since the subproblems cannot be solved ex-
actly, we will also introduce efficient schemes to approximate their solutions. This will lead
to a method which we call the oscillation-rewinding splitting method (ORSM). The name is
motivated by a different interpretation of the new splitting ansatz. After all, we are able to
show that the error of the ORSM is in O

(
τ2/ε

)
. Thus, second order convergence is achieved

with an error constant that does increase with decreasing ε, but only linearly. This means
that we expect the ORSM to outperform the NRNPI for very small step sizes, i.e. τ ≤ τ0 for
some τ0 < ε2. In numerical experiments, however, we will see that the error is in fact even in
O
(
τ2) if certain resonant step sizes, which can easily be identified, are avoided. Note that in

each time step of the ORSM, only the solutions of the subproblems have to be approximated.
This brings considerable advantages compared to the approximation of solutions of the full
(transformed) Dirac equation. In particular, it turns out that the ORSM also outperforms
the NRNPI for step sizes τ > τ0.

All three methods proposed in this thesis combined cover the entire spectrum of accuracies.
If for a desired accuracy the most suitable of the three integrators is chosen, one can always
outperform the methods that have previously been proposed in the literature for time inte-
gration of the NLDE in the nonrelativistic limit regime. To conclude this thesis, we provide
a direct comparison of all three methods in Chapter 5, in particular in dependency of the
computational costs invested. This once again clarifies the decision-making basis for choosing
the right scheme.

Since Chapters 2 and 3 of this thesis consist of a peer-reviewed article and a preprint sub-
mitted for publication in a scientific journal, respectively, they are completely self-contained.
Minor overlaps, especially in the introductions, are unavoidable. Chapter 4 was newly devel-
oped for this thesis and contains several references to previous chapters.

Decomposing the free Dirac operator

Before we begin discussing the time integration schemes, we want to understand the origin
and the structure of the oscillations in solutions of the NLDE in the nonrelativistic limit
regime. To this purpose, we will consider a decomposition of the free Dirac operator Tε. This
decomposition also motivates the introduction of the transformed variables ϕε±, which are
fundamental throughout this thesis.

Let us omit the potential and the nonlinearity in the NLDE (1.2) for the moment. Thus, we
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go back to the free Dirac equation (1.1). The effect of Tε can be observed best in Fourier
space. For a function u = u(x) ∈

(
H1(R3)

)4 with Fourier representation

u(x) = 1
(2π)3/2

∫
R3

eix·ξû(ξ) dξ, û(ξ) = 1
(2π)3/2

∫
R3

e−ix·ξu(x) dx, ξ ∈ R3,

we have

Tεu(x) = 1
(2π)3/2

∫
R3

(
− iε

3∑
j=1

αj∂j + β

)
eix·ξû(ξ)dξ

= 1
(2π)3/2

∫
R3

(
ε

3∑
j=1

αjξj + β

)
eix·ξû(ξ) dξ.

Thus, application of Tε corresponds to multiplication of the Fourier transform at ξ ∈ R3 with
the matrix

Tε(ξ) = ε
3∑
j=1

αjξj + β ∈ C4×4.

Consequently, if we translate the PDE (1.1) into Fourier space, we obtain the ODE system

∂tψ̂
ε(t, ξ) = − i

ε2 Tε(ξ)ψ̂ε(t, ξ) (1.5)

for each ξ ∈ R3, with solution

ψ̂ε(t, ξ) = e− it
ε2 Tε(ξ)ψ̂ε(0, ξ). (1.6)

It can easily be checked that αj , j = 1, 2, 3 and β, and hence also Tε(ξ), are Hermitian
matrices. In particular, Tε(ξ) is (unitarily) diagonalizable and only has real eigenvalues. The
factor 1/ε2 in front of Tε(ξ) enlarges the modulus of those eigenvalues considerably. However,
considering the additional i in front of 1

ε2 Tε(ξ), it becomes apparent that the ODEs (1.5)
are not exploding or stiff, but instead highly oscillatory. A more detailed insight into the
oscillatory behavior can be gained by looking at the precise value of the eigenvalues. One
can easily check that the matrices Tε(ξ) have the two eigenvalues

±Λε(ξ) with Λε(ξ) =
√

1 + ε2 |ξ|2, (1.7)

each of them with geometric multiplicity two [BMP98]. The orthogonal projections onto the
two respective eigenspaces are given by

Π±
ε (ξ) = 1

2

(
I4 ± Tε(ξ)

Λε(ξ)

)
.

In particular, we have

Π±
ε (ξ)2 = Π±

ε (ξ), Π+
ε (ξ) + Π−

ε (ξ) = I4, and Π+
ε (ξ)Π−

ε (ξ) = Π−
ε (ξ)Π+

ε (ξ) = 0. (1.8)

Altogether, the matrix Tε(ξ) can be decomposed as

Tε(ξ) = Λε(ξ)Π+
ε (ξ) − Λε(ξ)Π−

ε (ξ). (1.9)
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This can be used to rewrite the solution (1.6) of (1.5) as

ψ̂ε(t, ξ) = e− it
ε2 Λε(ξ)Π+

ε (ξ)ψ̂ε(0, ξ) + e
it
ε2 Λε(ξ)Π−

ε (ξ)ψ̂ε(0, ξ).

In particular, the solution is obtained by multiplying the two eigenspace components of
ψ̂ε(0, ξ) with highly oscillatory phases with ξ-dependent frequencies of opposite sign. This
suggests considering both eigenspace components separately, i.e. to write the solution as
ψ̂ε(t, ξ) = ψ̂ε+(t, ξ) + ψ̂ε−(t, ξ) with ψ̂ε±(t, ξ) = Π±

ε (ξ)ψ̂ε(t, ξ) given by

ψ̂ε+(t, ξ) = e− it
ε2 Λε(ξ)ψ̂ε+(0, ξ), ψ̂ε−(t, ξ) = e

it
ε2 Λε(ξ)ψ̂ε−(0, ξ). (1.10)

The different frequency components of ψ̂ε(·, ξ) are now separated. The frequencies depend
on the Fourier mode ξ ∈ R3. However, the estimate

|Λε(ξ) − 1| =
∣∣∣∣√1 + ε2 |ξ|2 − 1

∣∣∣∣ =

∣∣∣∣∣∣ ε2 |ξ|2√
1 + ε2 |ξ|2 + 1

∣∣∣∣∣∣ ≤ ε2 |ξ|2

2 (1.11)

shows that for all ξ ∈ R3, the main part of the frequencies ∓Λε(ξ)/ε2 is given by ∓1/ε2,
and only a bounded (w.r.t. ε) part remains. In other words, if for each ξ ∈ R3 we multiply
the functions ψ̂ε±(·, ξ) in (1.10) with exp

(
±it/ε2), then the main temporal oscillations will be

filtered out. This is why we define the new functions

ϕ̂ε+(t, ξ) := e+ it
ε2 ψ̂ε+(t, ξ), ϕ̂ε−(t, ξ) := e− it

ε2 ψ̂ε−(t, ξ), ξ ∈ R3,

for which we obtain the formulas

ϕ̂ε+(t, ξ) = exp
(

−it Λε(ξ) − 1
ε2

)
ψ̂ε+(0, ξ), ϕ̂ε−(t, ξ) = exp

(
it Λε(ξ) − 1

ε2

)
ψ̂ε−(0, ξ).

In view of (1.11), the frequencies of the temporal phases are now bounded w.r.t. ε.

All the considerations above can be translated to the original solution ψε of the free Dirac
equation (1.1) in physical space using pseudo-differential operators. Applying the operator
Λε =

√
Id − ε2∆ to a function u ∈

(
H1(R3))4, for example, corresponds to multiplication of

the Fourier transform of u at ξ ∈ R3 with the number Λε(ξ) from (1.7). Additionally defining
the projection operators

Π±
ε = 1

2
(
Id ± Λ−1

ε Tε
)

(1.12)

in the same manner, we obtain the decomposition

Tε = ΛεΠ+
ε − ΛεΠ−

ε (1.13)

of the operator Tε, cf. Eq. (1.9). The properties of the projection matrices Π±
ε (ξ) from (1.8)

transfer to the projection operators:

(Π±
ε )2 = Π±

ε , Π+
ε + Π−

ε = Id, and Π+
ε Π−

ε = Π−
ε Π+

ε = 0. (1.14)

Further, analogously to before, we decompose the solution ψε = ψε+ + ψε− into the two
components ψε± = Π±

ε [ψε] and define the two new functions ϕε± by

ϕε±(t, x) = e± it
ε2 ψε±(t, x) = e± it

ε2 Π±
ε [ψε(t, x)] . (1.15)
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Since ψε±(t, x) = exp(∓ it
ε2 Λε)Π±

ε [ψε(0, x)], they fulfill

ϕε±(t, x) = e∓itDεΠ±
ε [ψε(0, x)] (1.16)

with the operator Dε defined by

Dε = 1
ε2 (Λε − Id) . (1.17)

To put it another way, the functions ϕε± solve the PDEs

∂tϕ
ε
± = ∓iDεϕ

ε
±, ϕε±(0, x) = Π±

ε [ψε(0, x)] .

Eq. (1.11) implies that Dε is a uniformly (w.r.t. ε) bounded operator from Hm+2 to Hm for
any m ≥ 0, in contrast to the unbounded operator 1

ε2 Tε in the free Dirac equation (1.1). The
filtering of the main part of the oscillations therefore leads to a uniformly (w.r.t. ε) bounded
first time derivative of the resulting functions ϕε±.

In the full NLDE (1.2), the operator 1
ε2 Tε constitutes the dominant part of the right-hand side.

This is why the transformation of variables from (1.15) will bring the same benefits for the
temporal regularity. However, we are of course no longer able to write down the exact solution
explicitly as in (1.16). Instead, from the original NLDE (1.2), we can derive two PDEs for
the variables ϕε±. Translating the potential term and the nonlinearity to the transformed
variables will lead to a coupling between both PDEs, and to more complicated right-hand
sides. Nevertheless, the resulting transformed Dirac equations are the cornerstone for all
subsequent chapters. In Chapter 2, they form the basis for deriving an analytic approximation
to solutions of the NLDE. Further, they make it possible to identify the different frequency
components in solutions of the NLDE, which is fundamental for exploiting nonresonance
effects to improve efficiency of a numerical scheme in Chapter 3. Finally, in Chapter 4, the
transformed Dirac equations will give the motivation for a new kind of splitting ansatz which
will result in a very efficient time integration scheme.
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Chapter 2

On numerical methods for the
semi-nonrelativistic limit system of
the nonlinear Dirac equation

This chapter consists of the paper [JK23], which is joint work with Tobias Jahnke and was
published in BIT Numerical Mathematics. In order to fit in with the rest of this thesis, the
layout was adapted and minor changes have been made to the notation.

TOBIAS JAHNKE AND MICHAEL KIRN

Abstract: Solving the nonlinear Dirac equation in the nonrelativistic limit regime
numerically is difficult, because the solution oscillates in time with frequency of
O
(
ε−2), where 0 < ε ≪ 1 is inversely proportional to the speed of light. Yongyong

Cai and Yan Wang have shown, however, that such solutions can be approximated
up to an error of O

(
ε2) by solving the semi-nonrelativistic limit system, which is a

non-oscillatory problem. For this system, we construct a two-step method, called
the explicit exponential midpoint rule, and prove second-order convergence of the
semi-discretization in time. Furthermore, we construct a benchmark method based
on standard techniques and compare the efficiency of both methods. Numerical
experiments show that the new integrator reduces the computational costs per time
step to 40% and within a given runtime improves the accuracy significantly.

2.1 Introduction

The Dirac equation describes the relativistic motion of spin-1/2 particles such as, e.g., elec-
trons, positrons, protons, neutrons, and quarks, under the influence of external electromag-
netic fields. Since its derivation by Dirac in [Dir28], it has become one of the cornerstones of
relativistic quantum mechanics; cf. [Tha92]. Nonlinear versions of the Dirac equation have
been proposed to model self-interaction of particles and other phenomena; see, e.g., [HC09;
Mer+10; Sol70; Thi58]. In the nonrelativistic limit regime, the Dirac equation involves a small
parameter 0 < ε ≪ 1 which is inversely proportional to the speed of light, and non-trivial
solutions oscillate in time with frequency of O

(
ε−2). Using traditional numerical methods

to approximate such solutions is inefficient, because then the oscillations have to be resolved
with a tiny step size, which causes prohibitively large computational costs; cf. [Bao+16b].
Hence, constructing and analyzing numerical methods for the nonlinear Dirac equation in
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the nonrelativistic limit regime is a considerable challenge.

In the special case that no magnetic potential is present, it was shown in [BCY21] that
the classical Lie-Trotter and Strang splitting with step size τ have an error of O

(
τ1/2

)
, but

uniformly in ε. For nonresonant step sizes, the accuracy improves to O(τ) for Lie-Trotter and
O
(
τ3/2

)
for the Strang splitting. In the general case (with magnetic potential), uniformly

accurate methods have been proposed and analyzed in [CW18; CW22; LMZ17]. Under
certain assumptions, the error of the time discretization with the multiscale time integrator
pseudospectral method from [CW18] is bounded by a constant times min{τ2 + ε2, τ

2

ε2 }, where
τ is the step size. This yields second-order convergence if τ ≥ ε or τ ≪ ε and, what is
more important, first-order convergence uniformly in ε. The nested Picard iterative integrator
constructed in [CW22] converges even with order two in time and uniformly in ε. However, the
correct implementation of both methods is not easy, because they are based on complicated
expansions and involve a plethora of terms. A different approach was proposed in [LMZ17]
in one space dimension. The idea is to consider an augmented problem where the slow
and fast time scales are distinguished. A formal Chapman-Enskog expansion is used to
construct initial data for the augmented problem such that the corresponding solution has
three uniformly bounded time derivatives, which paves the way for the construction of a
uniformly accurate second-order scheme. However, the price to pay is that the augmented
problem involves one additional dimension representing the fast time scale, which increases
the numerical work significantly.

The nonlinear Dirac equation in the nonrelativistic limit regime has also been intensively
studied in analysis; cf. [CW20; MNO03; Mat95b; Mat95a; Naj92]. It was shown that the
solution ψε(t, x) ∈ C4 can be approximated by

ψε(t, x) = e−itβ/ε2
φ(t, x) + O(ε) (2.1)

where β = diag(1, 1,−1,−1) ∈ R4×4 is a diagonal matrix, and where φ is the solution of a
nonlinear Schrödinger equation which does not depend on ε and is thus easier to approximate
numerically. A precise formulation of this result and its proof are given in [CW20, Theorem
2.3]. The main result of [CW20], however, is that a better approximation

ψε(t, x) = e−it/ε2
φε+(t, x) + eit/ε2

φε−(t, x) + O
(
ε2
)

(2.2)

can be obtained, where φε± are the solutions of two coupled semilinear PDEs called the
semi-nonrelativistic limit system; see [CW20, Theorem 2.2] or Theorem 2.3 below for details.
In contrast to the above-mentioned nonlinear Schrödinger equation, the semi-nonrelativistic
limit system does still involve the parameter ε, but in contrast to the original problem, the
solution does not oscillate in time; cf. [CW20, Theorem 2.2]. Hence, (2.2) offers a way to
approximate the highly oscillatory solution of the nonlinear Dirac equation without having to
solve a highly oscillatory problem. Of course, one cannot expect the error of this approxima-
tion to be smaller than O

(
ε2), but in this work we assume that this accuracy is sufficient. If

a higher accuracy is required, one has to use the uniformly accurate integrators from [CW22;
LMZ17] with a step size τ < ε, which is computationally intense.

Solving the semi-nonrelativistic limit system numerically is much easier than solving the
nonlinear Dirac equation in the nonrelativistic limit regime, but it is not straightforward.
For example, explicit Runge-Kutta methods suffer from severe CFL conditions, whereas fully
implicit methods come at the price of solving a large nonlinear system in every time step.
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Constructing splitting methods1 in a straightforward way is not an option, either, due to the
particular structure of the semi-nonrelativistic limit system. These problems can be avoided
with exponential integrators. Such integrators are typically constructed by applying variation
of constants on the interval [tn, tn+1] (where tn = nτ are the times for which numerical
approximations are supposed to be computed) and approximating the convolution integral,
e.g. by expanding the nonlinearity in such a way that the integral can be solved analytically.
The corresponding techniques are nowadays well-known in the context of dispersive equations
and in particular highly oscillatory problems. Because of the special structure of the semi-
nonrelativistic limit system, however, such a method requires many forward and backward
Fourier transforms per time step, which is the dominating factor in the computational costs.
In this paper, we propose a non-standard second-order exponential integrator. The idea is to
apply variation of constants over the interval [tn−1, tn+1], which simplifies the treatment of
the nonlinearity a lot. This approach leads to a two-step method which we call the explicit
exponential midpoint rule. The new method is time-symmetric, simpler to implement, and
considerably more efficient than the standard second-order exponential integrator.

In Section 2.2 we introduce the nonlinear Dirac equation in the nonrelativistic limit regime
and sketch the derivation of the semi-nonrelativistic limit system as presented in [CW20].
Moreover, we specify our assumptions and quote a number of important results from [CW20].
Time-integrators for the semi-nonrelativistic limit system are constructed in Section 2.3. The
first method is an exponential integrator which is based on well-known techniques, and which
is therefore considered as a benchmark method. The second method is the explicit exponential
midpoint rule. For this integrator we carry out a detailed error analysis; cf. Theorem 2.10.
In Section 2.4 we test the efficiency of both methods in a numerical experiment. It turns
out that our new method reduces the computational costs per time step to about 40% and,
within the same runtime as the benchmark method, improves the accuracy by a factor of
about 4.6 in L2 and 6 in H1. We explain the reason for these improvements.

2.2 Problem setting

2.2.1 Nonlinear Dirac equation in the nonrelativistic limit regime

We consider the nonlinear Dirac equation (NLDE)

∂tψ
ε(t, x) = − i

ε2 Tεψε(t, x) − iW (t, x)ψε(t, x) − iF (ψε(t, x))ψε(t, x),

ψε(0, x) = ψinit(x)
(2.3)

for x ∈ R3 and t > 0. In (2.3), ψε := ψε(t, x) ∈ C4 is the complex-valued vector wave function
with initial data ψinit = ψinit(x) ∈ C4. The parameter ε > 0 is inversely proportional to the
speed of light and thus is very small in the nonrelativistic limit regime. Furthermore, Tε and
W denote the free Dirac operator and the electromagnetic potential, respectively, given by

Tε = −i
3∑
j=1

εαj∂j + β, W (t, x) = V (t, x)I4 −
3∑
j=1

Aj(t, x)αj , (2.4)

1In [KSZ21] a splitting method for approximating the function φ in (2.1) was proposed. Our goal, however,
is not to compute φ in (2.1), but φε

± in (2.2), because then an approximation of ψε up to O
(
ε2) is feasible.
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where V (t, x) ∈ R is the electric scalar potential and A(t, x) = (A1(t, x), ..., A3(t, x))T is the
magnetic vector potential. The Dirac matrices

β =
(
I2 0
0 −I2

)
, αj =

(
0 σj
σj 0

)

are determined by the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Finally, F is the nonlinearity given by F (v) = γ1(v∗βv)β + γ2 |v|2 I4 for γ1, γ2 ∈ R, where
v∗ = v T denotes the conjugate transpose and |v| =

√
v∗v the Euclidean norm of a vector

v, respectively. This type of nonlinearity is motivated by numerous applications in physics
and describes self-interaction of Dirac fermions; see, e.g., [HC09; Mer+10; Sol70; Thi58] and
the references in [Bao+16b; BCY21; CW18; CW22; LMZ17]. For simplicity, we assume that
γ1 = 0 henceforth, but all results and proofs can be adapted to the case γ1 ̸= 0.

Throughout this paper, we will use the following notation: ∥v∥Hm denotes the standard
Sobolev norm of a scalar-valued function v ∈ Hm(R3), whilst for a C4-valued function v =
(v1, ..., v4) ∈ (Hm(R3))4, we set

∥v∥Hm =
√

∥v1∥2
Hm + ...+ ∥v4∥2

Hm .

The following assumptions regarding the initial data and the potential W will be made.
Recall that W is determined by V and Aj via (2.4).

Assumption 2.1. Let 0 < T0 < ∞ be an arbitrary fixed time. For some m ≥ 2, we assume
that

(A) ψinit ∈
(
Hm(R3)

)4
,

(B) V,Aj ∈ C
(
[0, T0], Hm(R3)

)
, j = 1, 2, 3.

The following theorem quoted from [CW20, Theorem 2.1] provides well-posedness of the
NLDE (2.3) and regularity of solutions.

Theorem 2.2. [CW20, Theorem 2.1] Under the assumptions (A) and (B), there is a time
T1 ∈ (0, T0] such that for any ε ∈ (0, 1), the NLDE (2.3) admits a unique solution

ψε ∈ C
(
[0, T1], (Hm(R3))4

)
∩ C1

(
[0, T1], (Hm−1(R3))4

)
with uniform estimates

sup
ε∈(0,1)

sup
t∈[0,T1]

∥ψε(t, ·)∥Hm ≤ C,

where C is independent of ε.

The original formulation of this result in [CW20] is slightly more general and applies also to
the case where the initial data in (2.3) depend on ε to some extent.

Solving (2.3) numerically is a challenging task, because typical solutions oscillate in time
with frequency of O

(
ε−2) due to the term − i

ε2 Tεψε(t, x) on the right-hand side. Applying
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traditional time-integrators such as, e.g., Runge-Kutta or standard multistep methods is
inefficient, because such methods only achieve an acceptable accuracy if the ratio of the
step size and the highest frequency is small; see, e.g., [Bao+16b]. One possibility to solve
this problem is to construct special integrators which do not suffer from such a severe step
size restriction. This has been done in [CW18; CW22; LMZ17], but the implementation of
such methods is quite involved. In this paper we pursue a different goal. In [CW20] it was
rigorously shown that in the limit ε → 0 the solution of the NLDE (2.3) can be approximated
up to O

(
ε2) by solving a non-oscillatory system of PDEs known as the semi-nonrelativistic

limit system; cf. (2.14) below. Since this accuracy is good enough in many applications, our
main goal is to construct a particularly efficient method for the semi-nonrelativistic limit
system. This is done in Section 2.3. Before that, we briefly outline the derivation of the
semi-nonrelativistic limit system given in [CW20].

2.2.2 Transformed Dirac equation

In this and the next subsection we summarize the main results from [CW20].

By performing an eigenspace decomposition in Fourier space, the operator Tε can be decom-
posed as [BMP98, Eq. (1.22)]

Tε = ΛεΠ+
ε − ΛεΠ−

ε (2.5)

with the scalar operator Λε =
√

Id − ε2∆ and the two projection operators Π±
ε given by

Π±
ε = 1

2
(
Id ± (Id − ε2∆)− 1

2 Tε
)
. (2.6)

The identities Π+
ε + Π−

ε = Id, Π+
ε Π−

ε = Π−
ε Π+

ε = 0 and (Π±
ε )2 = Π±

ε can easily be checked;
cf. [CW20]. As a mapping from (Hm(R3))4 to (Hm(R3))4 the projectors Π±

ε are uniformly
bounded w.r.t. ε; cf. [BMP98, Lemma 2.1]. The decomposition (2.5) allows us to filter out the
main part of the temporal oscillations in a solution ψε of the NLDE (2.3). This is achieved
by considering the functions

ϕε±(t, x) := e±it/ε2Π±
ε [ψε(t, x)] (2.7)

instead of ψε. Substituting (2.7) into the NLDE (2.3) shows that ϕε+ and ϕε− are the solution
of the two coupled PDEs

∂tϕ
ε
± = ∓iDεϕ

ε
± − iΠ±

ε

[
W
(
ϕε± + e±2it/ε2

ϕε∓

)]
− iγ2Π±

ε

[
gε(ϕε+, ϕε−, t)

(
ϕε± + e±2it/ε2

ϕε∓

)]
ϕε±(0) = Π±

ε

[
ψinit

] (2.8)

with the differential operator

Dε = 1
ε2 (Λε − Id) = 1

ε2

(√
Id − ε2∆ − Id

)
(2.9)

and nonlinearity

gε(ϕε+, ϕε−, t) =
∣∣ϕε+∣∣2 +

∣∣ϕε−∣∣2 + e2it/ε2(ϕε+)∗ϕε− + e−2it/ε2(ϕε−)∗ϕε+,

cf. [CW20, Sect. 2.1]. From the solution ϕε± of (2.8) we can reconstruct the solution ψε of
the NLDE (2.3) by

ψε(t, x) = e−it/ε2
ϕε+(t, x) + eit/ε2

ϕε−(t, x). (2.10)
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In Fourier space, application of Dε to a function v corresponds to multiplication of the Fourier
transform of v at ξ ∈ R3 with

δε(ξ) := 1
ε2

(√
1 + ε2|ξ|2 − 1

)
= |ξ|2√

1 + ε2|ξ|2 + 1
∈
[
0, |ξ|2

2

]
. (2.11)

This yields the bound

∥Dεv∥Hn ≤ 1
2 ∥v∥Hn+2 ∀ v ∈ (Hn+2(R3))4, n ∈ N0, (2.12)

which means that the operator

Dε : (Hn+2(R3))4 → (Hn(R3))4 (2.13)

is uniformly bounded w.r.t. ε for all n ∈ N0. Hence, the first time derivative of a solution ϕε±
is uniformly bounded w.r.t. ε, which is not true for a solution ψε of the NLDE due to the
factor 1/ε2 on the right-hand side. In this sense (2.8) is better suited for numerical purposes
than the original form (2.3) of the NLDE. However, solving (2.8) with standard methods
still suffers from severe step size restrictions, because the solution of (2.8) still oscillates
with the same frequency as the original problem, albeit with smaller amplitude. In the next
subsection, these oscillations are completely removed at the cost of an approximation error.

2.2.3 Semi-nonrelativistic limit system

Omitting the terms containing highly oscillatory exponential functions in (2.8) (including
those in the nonlinearity g) yields the semi-nonrelativistic limit system [CW20, Eq. (2.14)]

∂tφ
ε
± = ∓iDεφ

ε
± − iΠ±

ε

[
Wφε±

]
− iγ2Π±

ε

[(∣∣φε+∣∣2 +
∣∣φε−∣∣2)φε±]

φε±(0) = Π±
ε

[
ψinit

]
.

(2.14)

Well-posedness of (2.14) and regularity of solutions of (2.14) has been shown in [CW20].
Furthermore, the authors proved that solutions of (2.14) provide approximations to a solution
of the original problem (2.3):

Theorem 2.3. [CW20, Theorem 2.2] Under the assumptions (A) and (B), there is a time
T2 ∈ (0, T0] such that for any ε ∈ (0, 1), the semi-nonrelativistic limit system (2.14) admits a
unique solution

φε± ∈ C

(
[0, T2],

(
Hm(R3)

)4
)

∩ C1
(

[0, T2],
(
Hm−1(R3)

)4
)

with uniform estimates

sup
ε∈(0,1)

sup
t∈[0,T2]

∥∥φε±∥∥Hm ≤ C,

sup
ε∈(0,1)

sup
t∈[0,T2]

∥∥∂tφε±∥∥Hm−2 ≤ C.

Moreover, φε± remain in the eigenspaces associated with Π±
ε , respectively. If in addition the

assumption V,Aj ∈ C1 ([0, T0], Hm−2(R3)
)

holds for j = 1, 2, 3, then the approximation error
is bounded by

sup
t∈[0,T ]

∥∥∥ψε − e−it/ε2
φε+ − eit/ε2

φε−

∥∥∥
Hm−2

≤ Cε2 (2.15)
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with T = min{T1, T2} and for m ≥ 4 we have

φε± ∈ C2
(
[0, T2], (Hm−2(R3))4

)
with sup

ε∈(0,1)
sup

t∈[0,T2]

∥∥∂ttφε±∥∥Hm−4 ≤ C.

In [CW20] this theorem is formulated in a more general way which, however, exceeds our
demands.

The inequality (2.15) implies that a solution of the NLDE (2.3) can be approximated up to
O
(
ε2) using a solution of the semi-nonrelativistic limit system. In this paper, we consider the

case where ε is small enough such that this approximation is satisfactory. Thus, instead of
developing time-integrators for the NLDE (2.3) or its transformed version (2.8), we can focus
on the simpler semi-nonrelativistic limit system (2.14). Solutions of (2.14) are not affected by
oscillations, because there is neither a factor ε−2 on the right-hand side (in contrast to (2.3))
nor oscillating exponentials (in contrast to (2.8)). The solution only depends on ε because
the projectors Π±

ε and the differential operator Dε do, but in a non-critical way. In spite of
these advantages, solving (2.14) with standard methods is still not a good option. If explicit
Runge-Kutta or multistep methods are used, then the spatial discretization of the differential
operator Dε causes severe CFL conditions, whereas a time step with an implicit method is
somewhat costly due to the nonlinearity and the projectors Π±

ε . Applying a splitting method
to (2.14) in a straightforward way is not feasible, because the sub-problems involving the
projectors Π±

ε cannot be propagated exactly or particularly efficiently. These disadvantages
can be avoided by exponential integrators. Two such methods are presented and compared
in the next section.

2.3 Time integration methods for the semi-nonrelativistic limit
system

Our goal now is to compute approximations φn± ≈ φε±(tn) of the solution of the semi-nonrel-
ativistic limit system at discrete times tn = nτ , where τ > 0 is the step size. We propose two
exponential integrators which converge with order two in τ . The first one is constructed by
applying variation of constants over the interval [tn, tn+1], approximating the integrand in a
suitable way and computing the resulting integrals exactly. This strategy is, of course, not
new, and the related techniques have been used for various types of PDEs, in particular in the
context of highly oscillatory problems. We consider this first method only as a benchmark
method, and for this reason we refrain from an extensive error analysis. The main contribution
of this paper is the second time-integrator. The crucial idea is to use variation of constants
over the time interval [tn−1, tn+1] instead of [tn, tn+1], which makes the approximation of the
resulting integrals much easier. This leads to a novel exponential two-step method called the
explicit exponential midpoint rule (EEMR). This time-integrator is time-symmetric, simple
to implement, and considerably more efficient than the benchmark method. We present
a detailed error analysis for the EEMR and explain the speed-up observed in numerical
examples.

Assumptions and notation. In the end, we want to obtain error bounds in L2. Our
methods will rely on the uniform boundedness of the second time derivative of φ± in L2.
According to Theorem 2.3, this is given under the following assumptions that we will assume
for the rest of the paper:

(I) ψinit ∈
(
H4(R3)

)4
,
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(II) V,Aj ∈ C
(
[0, T0], H4(R3)

)
, j = 1, 2, 3.

(III) V,Aj ∈ C1
(
[0, T0], H2(R3)

)
, j = 1, 2, 3.

In order to prove convergence of the methods, we will also require the assumption

(IV) V,Aj ∈ C2
(
[0, T0], L2(R3)

)
, j = 1, 2, 3.

Assumptions (I) and (II) coincide with Assumption 2.1 for m = 4.

To increase readability, we define the function space

ST := C([0, T ], (H4(R3))4) ∩ C1([0, T ], (H2(R3))4)
∩ C2([0, T ], (L2(R3))4)

for T = min{T1, T2} from Theorem 2.3, which then states that if assumptions (I)–(III) hold,
then φ± ∈ ST with uniform bounds in ε.

From now on we assume that ε is small but fixed. We can thus omit the index ε in our
notation such that the semi-nonrelativistic limit system (2.14) reads

∂tφ± = ∓iDφ± − iΠ± [Wφ±] − iγ2Π±
[(

|φ+|2 + |φ−|2
)
φ±
]

φ±(0) = Π±
[
ψinit

]
.

(2.16)

All bounds presented below are uniformly in ε in the sense that the constants do not depend
on ε.

Let τ ∈ (0, T ) be the time step size and let tn = nτ , n = 0, 1, ..., ⌊T/τ⌋. To improve
readability, we omit the spatial variable x on the solution and the potential in the following.
For a function fε = fε(s), we write fε = O(sp) for some p ∈ N0 to express that

∥fε(s)∥L2 ≤ Csp

for s → 0 with some constant C which does not dependent on s and ε.

We will repeatedly use that there is a constant C such that

∥vw∥L2 ≤ C ∥v∥L2 ∥w∥H2 (2.17)

for all v ∈ L2(R3), w ∈ H2(R3) (where one of the functions may also be C4-valued), and

∥v∗w∥L2 ≤ C ∥v∥L2 ∥w∥H2 (2.18)

for all v ∈ (L2(R3))4, w ∈ (H2(R3))4. These inequalities follow from the Sobolev embedding
H2(R3) ⊂ L∞(R3).

2.3.1 The benchmark method

Using variation of constants, we can express the solution φ± of the semi-nonrelativistic limit
system (2.16) at time tn + τ as

φ±(tn + τ) = e∓iτDφ±(tn) − iI±
1 (φ+, φ−, tn) − iγ2I

±
2 (φ+, φ−, tn) (2.19)
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with I±
j = I±

j (φ+, φ−, tn) given by

I±
1 =

∫ τ

0
e∓i(τ−s)DΠ± [W (tn + s)φ±(tn + s)] ds,

I±
2 =

∫ τ

0
e∓i(τ−s)DΠ±

[(
|φ+(tn + s)|2 + |φ−(tn + s)|2

)
φ±(tn + s)

]
ds.

The operators e∓i(τ−s)D and Π± are both bounded in (L2(R3))4. Thus, in order to obtain
a third-order approximation (in τ) to the integrals, we need a second-order approximation
(in s) to the integrands. Under assumption (IV), W (tn + s) can be replaced by the Taylor
expansion

W (tn + s) = W (tn) + s∂tW (tn) + O
(
s2
)
. (2.20)

Since the second time derivative of φ± is bounded in (L2(R3))4 under assumptions (I)–(III),
we can also expand

φ±(tn + s) = φ±(tn) + sΘ±(φ+(tn), φ−(tn), tn) + O
(
s2
)
, (2.21)

with

Θ± = Θ±(φ+(tn), φ−(tn), tn) := ∂tφ±(tn)

being the first time derivative of φ± at time tn. It is obtained by evaluating the right-hand
side of the PDE (2.16) at time tn:

Θ±(φ+(tn), φ−(tn), tn) = ∓ iDφ±(tn) − iΠ± [W (tn)φ±(tn)]

− iγ2Π±
[(

|φ+(tn)|2 + |φ−(tn)|2
)
φ±(tn)

]
. (2.22)

Before we continue by inserting (2.20) and (2.21) into (2.19), let us quickly comment on
an alternative approach to construct a second-order approximation to φ±(tn + s). Using
variation of constants once again, but now over a time interval of length s, and fixing φ± as
well as W at time tn inside the integrals yields

φ±(tn + s) = e∓isDφ±(tn) − i
∫ s

0
e∓i(s−r)DΠ± [W (tn)φ±(tn)] dr

− i
∫ s

0
e∓i(s−r)DΠ±

[
γ2
(
|φ+(tn)|2 + |φ−(tn)|2

)
φ±(tn)

]
dr + O

(
s2
)
. (2.23)

This approach does only rely on boundedness of the first time derivative of φ± and thus is,
at first glance, feasible under lower regularity assumptions on the potential W and the initial
data. Unfortunately, inserting (2.23) into (2.19) leads to integrals which cannot be computed
analytically. In order to avoid this problem, we could use the formal approximations

e∓isDφ±(tn) = φ±(tn) ∓ isDφ±(tn) + O
(
s2
)
,∫ s

0
e∓i(s−r)DΠ± [v] dr = sΠ± [v] + O

(
s2
)

which can be rigorously justified for φ± ∈
(
H4(R3)

)4 and v ∈
(
H2(R3)

)4. Using these
approximations in (2.23), however, yields exactly the same second-order approximation to
φ±(tn + s) as (2.21) together with (2.22).
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Now we continue the construction of the benchmark method. Inserting (2.20) and (2.21) into
I±

1 yields

I±
1 (φ+, φ−, tn) = Î±

1 (φ+(tn), φ−(tn), tn) + O
(
τ3
)

where Î±
1 = Î±

1 (φ+(tn), φ−(tn), tn) is given by

Î±
1 =

∫ τ

0
e∓i(τ−s)DΠ± [W (tn)φ±(tn)] ds

+
∫ τ

0
se∓i(τ−s)DΠ± [W (tn)Θ± + ∂tW (tn)φ±(tn)] ds

= τp1(∓iτD) Π± [W (tn)φ±(tn)]
+ τ2p2(∓iτD) Π± [W (tn)Θ± + ∂tW (tn)φ±(tn)] .

The functions p1 and p2 are defined by

p1(z) =
∫ 1

0
e(1−θ)zdθ, p2(z) =

∫ 1

0
θe(1−θ)zdθ, z ∈ C, (2.24)

cf. [HO10, Eq. (2.10) and (2.11)]. They can be computed as

p1(z) =
{
ez−1
z for z ̸= 0,

1 for z = 0
and p2(z) =

{
ez−z−1
z2 for z ̸= 0,

1
2 for z = 0.

When inserting (2.21) into I±
2 , we can additionally drop all O

(
s2)-terms in the integrand

that arise due to the nonlinearity. Overall, we obtain

I±
2 (φ+, φ−, tn) = Î±

2 (φ+(tn), φ−(tn), tn) + O
(
τ3
)

where Î±
2 = Î±

2 (φ+(tn), φ−(tn), tn) is given by

Î±
2 =

∫ τ

0
e∓i(τ−s)DΠ± [ζ± + sζ ′

±
]
ds

= τp1 (∓iτD) Π± [ζ±] + τ2p2 (∓iτD) Π± [ζ ′
±
]

with ζ± = ζ± (φ+(tn), φ−(tn), tn) and ζ ′
± = ζ ′

± (φ+(tn), φ−(tn), tn) defined by

ζ± =
(
|φ+(tn)|2 + |φ−(tn)|2

)
φ±(tn)

ζ ′
± =

(
|φ+(tn)|2 + |φ−(tn)|2

)
Θ± + 2 Re

(
(Θ+)∗φ+(tn) + (Θ−)∗φ−(tn)

)
φ±(tn)

and Θ± from (2.22). A third-order approximation to φ±(tn + τ) is obtained by simply
replacing the integrals I±

1 and I±
2 in (2.19) by their approximations Î±

1 and Î±
2 :

φ±(tn + τ) = e∓iτDφ±(tn) − iÎ±
1 (φ+(tn), φ−(tn), tn)

− iγ2Î
±
2 (φ+(tn), φ−(tn), tn) + O

(
τ3
)
. (2.25)

This approximation suggests a numerical method with local error of order O
(
τ3) which,

however, would not be stable. The reason for this instability is the term ∓iDφ±(tn), which
appears in Θ±, cf. (2.22), and thus also in ζ ′

±. A bound for the norm of D that is independent
of ε can only be established when interpreting D as mapping from H2 to L2, cf. (2.13).
Hence, the L2-norm of Θ± and thus ζ ′

±, Î±
1 and Î±

2 can only be bounded using the H2-norm
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of φ±(tn), which would not be sufficient for stability. This is why we replace D in Θ± by a
filtered version

D̃(τ) = sin(τD)
τ

(2.26)

as, e.g., in [CW19; CW22]. It is not difficult to show that for every τ > 0, D̃(τ) is a bounded
operator from L2 to L2 with

∥∥D̃(τ)
∥∥ ≤ 1

τ , and that∥∥(D − D̃(τ))v
∥∥
L2 ≤ τ

2 ∥v∥H4

for all v ∈ (H4(R3))4. Since Theorem 2.3 yields that φ± ∈ C
(
[0, T2], (H4(R3))4) under

assumptions (I) and (II), it follows that replacing D by D̃(τ) in Θ± and hence also in ζ ′
±

causes an error of O(τ). But in Î±
1 and Î±

2 , the terms including Θ± or ζ ′
± are multiplied by

a factor τ2. Thus, substituting D̃(τ) for D in the right-hand side of (2.25) causes only an
additional error of O

(
τ3) and hence does not affect the overall approximation error. All in

all, this yields the numerical method

φn+1
± = Φ±

τ (φn+, φn−, tn), n ∈ N0, (2.27)

with the numerical flow

Φ±
τ (φn+, φn−, tn) = e∓iτDφn± − iĨ±

1 (φn+, φn−, tn) − iγ2Ĩ
±
2 (φn+, φn−, tn). (2.28)

Ĩ±
1 and Ĩ±

2 correspond to Î±
1 and Î±

2 , respectively, but with D replaced by D̃(τ) in Θ± and
ζ ′

±, i.e.

Ĩ±
1 (φn+, φn−, tn) = τp1(∓iτD) Π± [W (tn)φn±

]
+ τ2p2(∓iτD) Π±

[
W (tn)Θ̃± + ∂tW (tn)φn±

]
,

Ĩ±
2 (φn+, φn−, tn) = τp1 (∓iτD) Π± [ζ±] + τ2p2 (∓iτD) Π±

[
ζ̃ ′

±

]
,

with

ζ± = ζ±
(
φn+, φ

n
−, tn

)
=
(∣∣φn+∣∣2 +

∣∣φn−∣∣2)φn±,
Θ̃± = Θ̃±(φn+, φn−, tn) = ∓iD̃(τ)φn± − iΠ± [W (tn)φn± + γ2ζ±

]
,

ζ̃ ′
± = ζ̃ ′

±(φn+, φn−, tn) =
(∣∣φn+∣∣2 +

∣∣φn−∣∣2) Θ̃± + 2 Re
(
(Θ̃+)∗φn+ + (Θ̃−)∗φn−

)
φn±.

For an efficient implementation, the two integrals Ĩ±
1 and γ2Ĩ

±
2 can be combined to

Ĩ±(φn+, φn−, tn) = Ĩ±
1 (φn+, φn−, tn) + γ2Ĩ

±
2 (φn+, φn−, tn)

= τp1 (∓iτD) Π± [W (tn)φn± + γ2ζ±
]

+ τ2p2 (∓iτD) Π±
[
W (tn)Θ̃± + ∂tW (tn)φn± + γ2ζ̃ ′

±

]
.

Under assumptions (I)–(IV) the local error in L2 is bounded by Cτ3 by construction. With
well-known techniques, it can be shown that under assumptions (I)–(IV) there are constants
τ0 > 0 and C such that for all step sizes τ ∈ (0, τ0] the bound∥∥φn± − φ±(tn)

∥∥
L2 ≤ Cτ2, n = 1, 2, ..., ⌊T/τ⌋

for the global error holds. We omit the proof, because our focus is not on the benchmark
method. The step size restriction τ ≤ τ0 is required to obtain uniform boundedness of the
numerical approximations in H2(R3), which is required for stability; for the EEMR this issue
is discussed in the proof of Theorem 2.10.
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Remark 2.4. The method (2.27)–(2.28) is certainly not new. We have described the con-
struction only for the convenience of the reader and in order to keep the paper self-contained.
In fact, (2.27)–(2.28) coincides with a “part” of the multiscale method for the NLDE (2.3)
which has been proposed in [CW18]. The idea is, roughly speaking, to make the ansatz

ψε(t, x) = e−it/ε2
φ+(t, x) + eit/ε2

φ−(t, x) + r(t, x),

i.e. to decompose the solution of (2.3) into the part provided by the semi-nonrelativistic limit
system plus a rest r(t, x) which, according to (2.15), is only O

(
ε2). Substituting this ansatz

into the NLDE and replacing ∂tφ± by (2.16) yields a PDE for r(t, x) with a rather complicated
right-hand side. Then, a numerical method for φ± and r is constructed in [CW18]. Within
this method the part which approximates φ± is almost identical to what we call the benchmark
method. The only differences are that instead of (2.26) a different filter is used in [CW18],
and that the authors consider the full discretization in time and space.

Remark 2.5. In this work we only consider time discretizations. For a full discretization
in time and space on the torus, the benchmark method (2.27)–(2.28) can be combined with a
Fourier pseudospectral method, such that φn± is approximated by a trigonometric polynomial.
All operators involving spatial derivatives (which includes the projectors Π±) are applied
in Fourier space, whereas pointwise multiplications of functions such as, e.g., W (tn)φn± or
W (tn)Θ̃± correspond to entry-wise multiplications of vectors. In order to compute all terms
required for one time step, the fast Fourier transform (FFT) or its inverse has to be applied
quite a number of times, and in spite of the efficiency of the FFT, this causes the dominating
part of the numerical work.

2.3.2 Explicit exponential midpoint rule

We will now propose and analyze a new exponential integrator which converges with order two
under the same regularity assumptions as the benchmark method, but which is conceptually
simpler, easier to implement and significantly faster. The new integrator is time-symmetric,
in contrast to the benchmark method. For time-dependent potentials, the new method does
not require evaluations of ∂tW , which is convenient in situations where no explicit formula
for W (t, x) is available.

Construction

We again use variation of constants to express the solution φ± of the semi-nonrelativistic
limit system at time tn + τ , but now over a time interval of length 2τ . This yields

φ±(tn + τ) = e∓2iτDφ±(tn − τ) − iI±
1 (φ+, φ−, tn) − iγ2I

±
2 (φ+, φ−, tn) (2.29)

with I±
1 = I±

1 (φ+, φ−, tn), I±
2 = I±

2 (φ+, φ−, tn) given by2

I±
1 =

∫ τ

−τ
e∓i(τ−s)DΠ± [W (tn + s)φ±(tn + s)] ds,

I±
2 =

∫ τ

−τ
e∓i(τ−s)DΠ±

[(
|φ+(tn + s)|2 + |φ−(tn + s)|2

)
φ±(tn + s)

]
ds.

2Note that I±
1 and I±

2 are different from the integral terms which were denoted with I±
1 and I±

2 in the
previous section. Many other objects which appeared in the previous section such as, e.g., Î±

1 , Î±
2 , Φ±

τ , Φτ

etc., will be re-defined in a different way in this section.
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Under the assumptions (I)–(III), we know that φ± ∈ ST with uniformly bounded (w.r.t.
ε) derivatives according to Theorem 2.3. If additionally assumption (IV) is fulfilled, then
according to the estimates (2.17) and (2.18) the same holds for the functions

Π± [Wφ±] and γ2Π±
[(

|φ+|2 + |φ−|2
)
φ±
]

which appear in the integrands of I±
1 and I±

2 . For a function v ∈ ST , a third-order ap-
proximation to integrals of the form

∫ τ
−τ e

∓i(τ−s)Dv(tn + s) ds is obtained by fixing v at the
midpoint tn, as the following lemma confirms.

Lemma 2.6. Let v ∈ ST and τ ∈ (0, T ). Then,∥∥∥∥∫ τ

−τ
e∓i(τ−s)Dv(tn + s) ds−

∫ τ

−τ
e∓i(τ−s)Dv(tn) ds

∥∥∥∥
L2

≤ Cτ3

for some constant C that only depends on ∥∂tv∥H2 and ∥∂ttv∥L2.

Proof. Since v is twice continuously differentiable, Taylor’s theorem yields

v(tn + s) = v(tn) + s∂tv(tn) +
∫ s

0
(s− r)∂ttv(tn + r) dr, s ∈ R.

Thus, ∫ τ

−τ
e∓i(τ−s)Dv(tn + s) ds =

∫ τ

−τ
e∓i(τ−s)Dv(tn) ds+ R1(v, tn, τ) + R2(v, tn, τ)

with the remainders

R1(v, tn, τ) =
∫ τ

−τ
se∓i(τ−s)D∂tv(tn) ds,

R2(v, tn, τ) =
∫ τ

−τ
e∓i(τ−s)D

∫ s

0
(s− r)∂ttv(tn + r) dr ds.

For R2, we can derive the bound

∥R2(v, tn, τ)∥L2 ≤
∫ τ

−τ

∣∣∣∣∫ s

0
s− r dr

∣∣∣∣ ds max
r∈[−τ,τ ]

∥∂ttv(tn + r)∥L2

= τ3

3 max
r∈[−τ,τ ]

∥∂ttv(tn + r)∥L2 ≤ Cτ3. (2.30)

We analyze the norm of R1 in Fourier space. Recall that application of D corresponds to
multiplication with δε(ξ) in Fourier space, cf. (2.11). This yields

∥R1(v, tn, τ)∥2
L2 =

∫
R3

∣∣∣∣∫ τ

−τ
se∓i(τ−s)δε(ξ) ds

∣∣∣∣2 ∣∣∣∂̂tv(tn)(ξ)
∣∣∣2 dξ

=
∫
R3

∣∣∣∣∫ τ

−τ
se±isδε(ξ) ds

∣∣∣∣2 ∣∣∣∂̂tv(tn)(ξ)
∣∣∣2 dξ,

where ∂̂tv(tn) is the Fourier transform of ∂tv(tn). Using e±isδε(ξ) = 1 ± isδε(ξ) p1(±isδε(ξ))
and |p1(ix)| ≤ 1 ∀x ∈ R, we have∣∣∣∣∫ τ

−τ
se±isδε(ξ) ds

∣∣∣∣ ≤
∣∣∣∣∫ τ

−τ
s ds

∣∣∣∣+ ∣∣∣∣∫ τ

−τ
s2δε(ξ)p1(±isδε(ξ)) ds

∣∣∣∣
≤ 0 + 2τ3

3 |δε(ξ)| ≤ τ3

3 |ξ|2,
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where we used the bound (2.11) on δε(ξ) in the last step. Overall, we have

∥R1(v, tn, τ)∥2
Hm ≤

∫
R3

(
τ3

3 |ξ|2
)2 ∣∣∣∂̂tv(tn)(ξ)

∣∣∣2 dξ
≤
(
τ3

3

)2

∥∂tv(tn)∥2
H2 . (2.31)

Since v ∈ ST , the assertion follows from (2.30) and (2.31).

After fixing v at the midpoint as in the previous lemma, the remaining integral can be
computed as ∫ τ

−τ
e∓i(τ−s)Dv(tn) ds = 2τ p1(∓2iτD)v(tn)

with p1 from (2.24). Applying the lemma to the integrals I±
1 and I±

2 in (2.29) thus yields

φ±(tn + τ) = e∓2iτDφ±(tn − τ) − iÎ±
1 − iγ2Î

±
2 + O

(
τ3
)

with Î±
1 = Î±

1 (φ+(tn), φ−(tn), tn) and Î±
2 = Î±

2 (φ+(tn), φ−(tn)) given by

Î±
1 = 2τp1(∓2iτD)Π± [W (tn)φ±(tn)] , (2.32)

Î±
2 = 2τp1(∓2iτD)Π±

[(
|φ+(tn)|2 + |φ−(tn)|2

)
φ±(tn)

]
. (2.33)

Omitting the O
(
τ3)-terms and replacing exact solutions with approximations φn± ≈ φ±(tn)

leads to the integrator

φn+1
± = Φ±

τ

(
φn+, φ

n
−, φ

n−1
+ , φn−1

− , tn
)
, n ∈ N (2.34)

with the numerical flow

Φ±
τ

(
φn+, φ

n
−, φ

n−1
+ , φn−1

− , tn
)

= e∓2iτDφn−1
± − iÎ±

1 (φn+, φn−, tn)

− iγ2Î
±
2 (φn+, φn−). (2.35)

For an efficient implementation, we can again combine the two integrals Î±
1 and γ2Î

±
2 to

Î±(φn+, φn−, tn) = Î±
1 (φn+, φn−, tn) + γ2Î

±
2 (φn+, φn−)

= 2τp1 (∓2iτD) Π±
[
W (tn)φn± + γ2

(∣∣φn+∣∣2 +
∣∣φn−∣∣2)φn±] .

When using a Fourier pseudospectral method for space discretization on the torus, only one
FFT per time step is required in the computation of Î± before being able to apply the
operators p1 (∓2iτD) Π±. If the approximations obtained in the two previous steps are saved
in physical as well as in Fourier space, only one inverse FFT is necessary for retransforming
the result of (2.34)–(2.35) into physical space.

We call this method the explicit exponential midpoint rule (EEMR), because it can be re-
garded as the exponential counterpart of the classical explicit midpoint rule. Since (2.34)–
(2.35) is a two-step method, the first approximation φ1

± ≈ φ±(t1) has to be computed with a
starting step. Only an accuracy of O

(
τ2) is required for φ1

±, and this can be achieved easily
by using variation of constants over a time span of length τ as in the benchmark method and
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then approximating the integrals via the rectangle rule. After omitting the O
(
τ2)-terms and

replacing φ±(t1) with φ1
± we obtain

φ1
± = e∓iτDφ0

± − iτe∓iτDΠ±
[(
W + γ2

(∣∣∣φ0
±

∣∣∣2 +
∣∣∣φ0

±

∣∣∣2))φ0
±

]
. (2.36)

To improve the accuracy of φ1
±, one can replace (2.36) by η ∈ N such steps with step size

τ/η.

Remark 2.7. The idea to construct exponential multistep methods by applying variation of
constants over the time-interval [(n − ℓ)τ, (n + 1)τ ] for some ℓ ≥ 1 has already been used
in [CP06; Jah04; JM19], but the PDEs and the methods considered in these references are
completely different. The exponential multistep methods reviewed in [HO10, Section 2.5] are
of Adams type, which is different from what we propose here.

Error analysis

Our goal is to prove that the EEMR (2.34)–(2.36) is indeed second-order convergent under
the regularity assumptions (I)–(IV), which are also required for the benchmark method. For
this purpose we reformulate the EEMR as a one-step method by introducing the vectors

u(t) =


φ+(t)
φ−(t)

φ+(t− τ)
φ−(t− τ)

 , un =


φn+
φn−
φn−1

+
φn−1

−

 , n ∈ N.

We then have un+1 = Φτ (un, tn) for n ∈ N with the numerical flow

Φτ (un, tn) =


Φ+
τ (φn+, φn−, φn−1

+ , φn−1
− , tn)

Φ−
τ (φn+, φn−, φn−1

+ , φn−1
− , tn)

φn+
φn−

 (2.37)

with Φ±
τ defined by (2.35). For vectors of the form v = (v1, ..., v4)T with four functions

v1, ..., v4 ∈ (L2(R3))4, we define the norm

|||v|||L2 =
4∑
j=1

∥vj∥L2

and analogously for the Hm-norm for some m > 0. The following bounds for the local error
and the starting step are an immediate consequence of the construction of the EEMR.

Lemma 2.8. (a) Local error: Under assumptions (I)–(IV) there is a constant CE1 such
that the inequality

|||u(tn + τ) − Φτ (u(tn), tn)|||L2 ≤ CE1τ
3 (2.38)

holds for all τ > 0 and all n = 1, 2 . . . , ⌊T/τ⌋.

(b) Starting step: Let φ0
± = φ±(0) and let φ1

± be computed with the starting step (2.36).
Under assumptions (I)–(IV) there is a constant CE2 such that the inequality

|||u(t1) − u1|||L2 ≤ CE2τ
2 (2.39)

holds for some constant CE2.
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Proof. By definition of u, Φτ and |||·|||L2 we have

|||u(tn + τ) − Φτ (u(tn), tn)|||L2

=
∥∥∥φ+(tn + τ) − Φ+

τ (φ+(tn), φ−(tn), φ+(tn − τ), φ−(tn − τ), tn)
∥∥∥
L2

+
∥∥φ−(tn + τ) − Φ−

τ (φ+(tn), φ−(tn), φ+(tn − τ), φ−(tn − τ), tn)
∥∥
L2 .

Since all approximations made during the construction of the method are O
(
τ3), the bound

(2.38) follows. In a similar way, the bound for

|||u(t1) − u1|||L2 =
∥∥∥φ+(t1) − φ1

+

∥∥∥
L2

+
∥∥∥φ−(t1) − φ1

−

∥∥∥
L2

(2.40)

can be shown with standard arguments.

Next, we discuss stability. In order to simplify presentation, we will henceforth assume that
the electromagnetic potential W does not depend on time. In this case, the semi-nonrel-
ativistic limit system (2.14) is autonomous, and as a consequence the numerical flows Φ±

τ

defined in (2.35) and Φτ defined in (2.37) do not depend on t, either. This allows us to
omit the last variable in Φ±

τ and Φτ , which makes the following equations easier to read. We
stress, however, that under Assumption (I)–(IV) the following proofs could be extended to a
time-dependent W at the cost of a more involved notation.

Lemma 2.9. Let W (t) = W be constant in time. Let v±
ℓ , w

±
ℓ ∈ (H2(R3))4 for ℓ ∈ {0, 1} and

set v = (v+
1 , v

−
1 , v

+
0 , v

−
0 )T and w = (w+

1 , w
−
1 , w

+
0 , w

−
0 )T . Under assumptions (I)–(II) there is

a constant CS such that the stability estimate

|||Φτ (v) − Φτ (w)|||L2 ≤ (1 + CSτ) |||v − w|||L2 (2.41)

holds for all τ > 0. The constant CS depends on ∥V ∥H2, ∥Aj∥H2, j = 1, 2, 3,
∥∥∥v±

1

∥∥∥
H2

and∥∥∥w±
1

∥∥∥
H2

, but not on τ .

Proof. It follows from (2.37) and (2.35) that

|||Φτ (v) − Φτ (w)|||L2

≤

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


e−2iτD

(
v+

0 − w+
0

)
e+2iτD

(
v−

0 − w−
0

)
v+

1 − w+
1

v−
1 − w−

1


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
L2

+

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


Î+

1 (v+
1 , v

−
1 ) − Î+

1 (w+
1 , w

−
1 )

Î−
1 (v+

1 , v
−
1 ) − Î−

1 (w+
1 , w

−
1 )

0
0


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
L2

+

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


Î+

2 (v+
1 , v

−
1 ) − Î+

2 (w+
1 , w

−
1 )

Î−
2 (v+

1 , v
−
1 ) − Î−

2 (w+
1 , w

−
1 )

0
0


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
L2

. (2.42)

Since e∓2iτD is an isometry in L2, the first term on the right-hand side equals |||v − w|||L2 .
Now we insert the definition (2.32) of Î±

1 and use that p1(∓2iτD) and the projectors Π± are
bounded operators in L2. Applying the estimate (2.17) for the product with the potential W
yields the inequality ∥∥∥Î±

1 (v+
1 , v

−
1 ) − Î±

1 (w+
1 , w

−
1 )
∥∥∥
L2

≤ Cτ
∥∥∥v±

1 − w±
1

∥∥∥
L2

(2.43)
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for some constant C which depends on ∥V ∥H2 and ∥Aj∥H2 , j = 1, 2, 3, but not on τ .

Now we will prove such a bound for the term Î±
2 containing the nonlinearity. The estimates

(2.17) and (2.18) imply the inequality∥∥∥∥(∣∣∣v+
1

∣∣∣2 +
∣∣∣v−

1

∣∣∣2) v±
1 −

(∣∣∣w+
1

∣∣∣2 +
∣∣∣w−

1

∣∣∣2)w±
1

∥∥∥∥
L2

≤ C
(∥∥∥v+

1 − w+
1

∥∥∥
L2

+
∥∥∥v−

1 − w−
1

∥∥∥
L2

)
(2.44)

with a constant C which depends on
∥∥∥v±

1

∥∥∥
H2

and
∥∥∥w±

1

∥∥∥
H2
. Together with the arguments

mentioned above, we obtain∥∥∥Î±
2 (v+

1 , v
−
1 ) − Î±

2 (w+
1 , w

−
1 )
∥∥∥
L2

≤ Cτ
(∥∥∥v+

1 − w+
1

∥∥∥
L2

+
∥∥∥v−

1 − w−
1

∥∥∥
L2

)
(2.45)

for some constant C which depends on
∥∥∥v±

1

∥∥∥
H2

and
∥∥∥w±

1

∥∥∥
H2

. Combining (2.42), (2.43) and
(2.45) proves the assertion.

We are now in a position to prove second-order convergence for the EEMR.

Theorem 2.10 (Global error of the EEMR). Assume that assumptions (I) and (II) hold and
that W does not depend on t. Let τ > 0 be the step size and let φn± be the approximations
obtained by (2.34) and (2.36) with step size τ and initial data φ0

± = φ±(0) = Π± [ψinit].
Then, there are constants C and τ0 > 0 such that the global error bound∥∥φn± − φ±(tn)

∥∥
L2 ≤ Cτ2, n = 1, 2, ..., ⌊T/τ⌋

holds for all τ ∈ (0, τ0].

Remark 2.11. Under the assumptions (I)–(IV) the theorem remains true for a time-depen-
dent potential W = W (t).

Remark 2.12. Under stronger regularity assumptions on the initial data and the potentials,
one could of course obtain error bounds in higher-order Sobolev spaces. More precisely, to
obtain an identical error bound in Hm, m ≥ 0, one would require the initial data ψinit and
the potentials V , Aj to be in Hm+4 with

V,Aj ∈ C1([0, T0], Hm+2(R3)) ∩ C2([0, T0], Hm(R3)), j = 1, 2, 3.

Proof. Set Φ0
τ (v) = v and define Φn

τ (v) = Φτ (Φn−1
τ (v)) recursively for n ∈ N, such that Φn

τ (v)
denotes the result of n steps of the EEMR in the one-step formulation with initial data v.

In order to prove the global error bound, we combine the local error bounds (2.38) and (2.39)
with the stability estimate (2.41) in the classical construction known as Lady Windermere’s
fan. Using a telescopic sum, we have for n = 1, 2, ..., ⌊T/τ⌋

|||u(tn) − un|||L2 =
∣∣∣∣∣∣∣∣∣Φ0

τ (u(tn)) − Φn−1
τ (u1)

∣∣∣∣∣∣∣∣∣
L2

≤
n−2∑
k=0

∣∣∣∣∣∣∣∣∣Φk
τ (u(tn−k)) − Φk+1

τ (u(tn−k−1))
∣∣∣∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣∣∣∣Φn−1

τ (u(t1)) − Φn−1
τ (u1)

∣∣∣∣∣∣∣∣∣
L2
. (2.46)
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At this point, we would like to control the term∣∣∣∣∣∣∣∣∣Φk
τ (u(tn−k)) − Φk+1

τ (u(tn−k−1))
∣∣∣∣∣∣∣∣∣
L2

=
∣∣∣∣∣∣∣∣∣Φk

τ (u(tn−k)) − Φk
τ

(
Φτ (u(tn−k−1))

)∣∣∣∣∣∣∣∣∣
L2

(2.47)

by applying the stability estimate (2.41) k times. A minor technical difficulty is the fact that
the constant CS in (2.41) depends on the H2-norms of the two functions involved, which in
our situation are Φj

τ (u(tn−k)) and Φj+1
τ (u(tn−k−1)), respectively, with j = 0, . . . , k − 1. In

order to obtain a corresponding bound for (2.47) with a constant which does not depend on
n, k or τ , we need that there are constants τ0 and C such that

max
j,ℓ=0,...,⌊T/τ⌋
j+ℓ≤⌊T/τ⌋

∣∣∣∣∣∣∣∣∣Φj
τ (u(tℓ))

∣∣∣∣∣∣∣∣∣
H2

≤ C for all τ ∈ (0, τ0]. (2.48)

This estimate states, roughly speaking, that for a sufficiently small step size the numerical
approximations, starting from the exact solution at time tℓ, remain uniformly bounded in H2

on the time interval [0, T ].

In order to prove (2.48), two auxiliary results are needed. Firstly, under the assumptions of
Lemma 2.9, the inequality

|||Φτ (v) − Φτ (w)|||H2 ≤ (1 + csτ) |||v − w|||H2 (2.49)

holds for some constant cs which depends on |||v|||H2 and |||w|||H2 . Note that in contrast to
(2.41), the H2-norm is used on both sides of (2.49). The estimate can be shown by adjusting
the proof of Lemma 2.9. Secondly, one has to prove that under the assumptions of Lemma 2.8,
the local error bound

|||u(tn + τ) − Φτ (u(tn))|||H2 ≤ CE3τ
2 (2.50)

holds for some constant CE3 and for all τ > 0 and n = 1, 2, ..., ⌊T/τ⌋. In contrast to (2.38),
the local error is measured in the H2-norm instead of L2, but the power of τ is only 2 instead
of 3. The proof of (2.50) is straightforward. Having established (2.49) and (2.50), one can
prove (2.48) by induction. Since the procedure is essentially the same as, e.g., in [Lub08] or
[JMS17, Section 8], we omit this part.

Now we return to (2.46). Combining (2.48) with the stability estimate (2.41) yields under
the condition τ ≤ τ0 that

|||u(tn) − un|||L2 ≤
n−2∑
k=0

(1 + C⋆τ)k |||u(tn−k) − Φτ (u(tn−k−1))|||L2

+ (1 + C⋆τ)n−1 |||u(t1) − u1|||L2

with a constant C⋆ which only depends on ∥V ∥H2 , ∥Aj∥H2 , j = 1, 2, 3, and on C from (2.48).
Applying the local error bound (2.38) as well as the bound (2.39) for the starting step and
using that (n− 1)τ = tn−1 ≤ T shows that

|||u(tn) − un|||L2 ≤
n−2∑
k=0

(
1 + C⋆tn

n

)k
CE1τ

3 +
(

1 + C⋆tn
n

)n−1
CE2τ

2

≤
n−2∑
k=0

eC⋆tnCE1τ
3 + eC⋆tnCE2τ

2 ≤ eC⋆tn
(
tnCE1τ

2 + CE2τ
2
)

≤(T + 1)eC⋆TCEτ
2

with CE = max{CE1 , CE2}. This implies that |||u(tn) − un|||L2 = O
(
τ2) for all n ≥ 1 and

thus
∥∥φ±(tn) − φn±

∥∥
L2 = O

(
τ2).
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The EEMR for the semi-nonrelativistic limit system is thus indeed second-order accurate.
Both the solution and the numerical approximation still depend on ε (see the remark at the
beginning of this section), but all bounds are uniform in ε.

2.4 Numerical experiments
In this section, we present numerical results to illustrate our error analysis, and to compare
the efficiency of the EEMR and the benchmark method. For simplicity, we conduct our
experiments in one space dimension, where the NLDE can be reduced to the system

∂tψ
ε(t, x) = − i

ε2 T̃ ψε(t, x) − iW̃ (t, x)ψε(t, x) − iF̃ (ψε)ψε(t, x),

t > 0, x ∈ R, for a two-component solution ψε(t, x) ∈ C2 with initial data ψε(0, x) =
ψ̃0(x) ∈ C2 (see e.g. [Bao+16b]). Here, the differential operator T̃ , the potential W̃ and the
nonlinearity F̃ are given by

T̃ = −iεσ1∂x + σ3, W̃ (t, x) = V (t, x)I2 −A1(t, x)σ1, F̃ (v) = γ2 |v|2 I2.

For simplicity, we omit the˜ in the following, and we chose γ2 = 1. The properties of the
semi-nonrelativistic limit system, the construction of the numerical methods presented above
as well as the obtained error results can be formulated for this reduced system in exactly the
same manner.

As is common practice [Alv92; Bao+16b; BCY21; HL06], we truncate the whole space prob-
lem to a bounded interval Ω = [a, b] which is large enough such that the truncation error
is negligible. We impose periodic boundary conditions and discretize Ω through the grid
points xj = (a + b)/2 + jh, j = −M, ...,M − 1 with mesh size h = (b − a)/2M for some
M ∈ N. All spatial derivatives are then computed by Fourier pseudospectral techniques. For
our experiments, we utilize 2M = 256 grid points in space. We use the data from [Bao+16b;
CW22], i.e. we choose the interval Ω = [−16, 16], the initial data

ψinit
1 (x) = e−x2/2, ψinit

2 (x) = e−(x−1)2/2, x ∈ Ω

and the (time-independent) potential functions

V (t, x) = 1 − x

1 + x2 , A1(t, x) = (x+ 1)2

1 + x2 , x ∈ Ω, t ≥ 0.

For all following error plots, we compute approximations to solutions at time T = 1 using the
presented methods, and compare them to reference solutions computed via Matlab’s ode45
routine using the same spatial grid and very small tolerances. The error is always computed in
the L2-norm, approximated by ∥v∥2

L2 ≈
∑M−1
k=−M |v̂k|2 for a scalar periodic function v ∈ L2(Ω)

and ∥v∥L2 =
√

∥v+∥2
L2 + ∥v−∥2

L2 for a vector v = (v+, v−) of two scalar periodic functions
v± ∈ L2(Ω).

Performing various numerical experiments, we have observed that an even number of time
steps gives slightly better results for the two-step method. Therefore, in all following plots,
the step sizes are chosen such that the number of time steps T/τ is even. The quality of
approximations after many time steps can be further improved by a very good approximation
to the solution at time t1. In the experiments below, we always use η = 3 substeps in the
starting step (2.36) to obtain an approximation at time t1. Increasing η further did not
improve the results significantly.
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Figure 2.1: Global error of the numerical methods presented in Section 2.3 at time T = 1.
Left: In comparison to a reference solution φ± of the semi-nonrelativistic limit system (2.16).
Right: In comparison to a reference solution ψε of the NLDE (2.3).

Accuracy. Figure 2.1 shows the global error of both methods in dependency of the step size
τ in logarithmic axes. On the left-hand side, the approximations obtained by both methods
are compared to a reference solution φ± of the semi-nonrelativistic limit system (2.16). The
solid lines represent the benchmark method, the colored dashed lines the EEMR. Different
values of ε are depicted through different colors, but the six lines coincide almost. The results
confirm that both methods are second-order accurate in the step size τ , and that the error
constants do not depend on ε. For a fixed step size τ , both methods yield approximations
of nearly the same accuracy in this example. On the right-hand side of Figure 2.1, the
approximations are compared to a reference solution of the NLDE (2.3). Here the numerical
approximations φn± are interpreted as approximations to a solution ϕ± of the transformed
Dirac equation (2.8). Then, according to (2.10) the function

ψn := e−itn/ε2
φn+ + eitn/ε2

φn−, n ≥ 1,

approximates a solution of the original problem (2.3). Since

∥ψn − ψ(tn)∥L2 =
∥∥∥e−itn/ε2 (

φn+ − ϕ+(tn)
)

+ eitn/ε2 (
φn− − ϕ−(tn)

)∥∥∥
L2

≤
∥∥φn+ − ϕ+(tn)

∥∥
L2 +

∥∥φn− − ϕ−(tn)
∥∥
L2 ,

the overall error is composed of two parts:

• the approximation error of the numerical methods in comparison to the exact solution
of the semi-nonrelativistic limit system, which is of order O(τ2),

• the difference between solutions of the semi-nonrelativistic limit system and the trans-
formed NLDE, which, for a fixed time T , is of order O(ε2).

The overall approximation error is thus of order O(τ2) + O(ε2). Consequently, the O(τ2)-
terms are dominating for large step sizes τ > ε, and we observe second-order convergence
w.r.t. τ until τ = ε (this value is indicated by the vertical dashed-dotted lines). For τ < ε
however, the O(ε2)-terms are dominating, and no further convergence is achieved when the
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Figure 2.2: Global error of the numerical methods presented in Section 2.3 at time T = 1 for
ε = 0.01. Left: Error over computation time. Right: Error over number of required Fourier
and inverse Fourier transforms.

step size τ is reduced. Thus, applying the two methods to the semi-nonrelativistic limit
system allows us to compute very accurate approximations to the highly oscillatory solution
of the original NLDE in the nonrelativistic regime, where ε is very small.

Efficiency. Whilst the experiments above suggest that both methods perform equally well,
they do not take into account the computational effort required for one time step in each
method. In the EEMR, we have symmetry of the integration interval of the integrals I±

1 and
I±

2 in the variation of constants formula. This is why the required accuracy was achieved
by essentially only keeping the constant term of the Taylor expansions of the integrands.
In contrast to that, in the benchmark method, the linear terms of such Taylor expansions
had to be taken into account as well. Those terms include several pointwise multiplica-
tions of space-dependent functions (with the potential W or with the functions φ± itself)
as well as applications of the projectors Π±. Whilst the former has to be done in physical
space, the latter can only be done in Fourier space. Consequently, computing those linear
terms requires additional (inverse) Fourier transforms, which are the dominating operations
in computational costs; cf. Remark 2.5. One time step of the benchmark method is thus sig-
nificantly more expensive than of the EEMR. In an efficient implementation, one time step
of the EEMR can be done using one Fourier and one inverse Fourier transform (where we
count one transformation of a function v = (v+, v−)T , v± ∈ (L2(Ω))2, into or out of Fourier
space as one transform). One time step of the benchmark method, however, requires three
Fourier and two inverse Fourier transforms. Hence, the computational cost of a time step of
the benchmark method is about 5

2 times larger than one of the EEMR.

Figure 2.2 shows the results of numerical experiments comparing the efficiency of both meth-
ods. For the plot on the left-hand side, both methods have been applied using different step
sizes and their computation time has been measured. To lower the impact of background pro-
cesses, the average of multiple runs is taken, and the different step sizes are used in random
order. For each method, a reference line has been added that fits best to the measurement
points. Comparing the constants of those lines, one can see that for a given computation time,
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the error of the benchmark method is about 4.6 times larger than the error of the EEMR,
despite the fact that for this specific data, the EEMR performs a little worse for a fixed time
step size than the benchmark method. On the right-hand side, the number of Fourier and
inverse Fourier transforms is counted. Again, for a fixed number of Fourier transforms, the
error of the benchmark method is about 4.7 times larger than the error of the EEMR.

If the error is measured in the discrete H1-norm instead (cf. Remark 2.12), then the accuracy
of both methods for a fixed time step is almost indistinguishable for this model problem (data
not shown). For a fixed computation time, the error of the benchmark method in the discrete
H1-norm is six times larger than the error of EEMR (data not shown).

The reason for the observed factors is the following. Let wj(Nj) be the numerical work
(measured in runtime or in number of FFTs) required for Nj steps with the benchmark
method (j = 1) or the EEMR (j = 2), respectively. For a given N we have w1(N) ≈ 5

2cN
and w2(N) ≈ cN with some constant c > 0. If we fix the numerical work w > 0 we can
thus perform N1 ≈ 2w

5c steps with the benchmark method and N2 ≈ w
c with the EEMR.

According to Figure 2.1 the error errj(Nj) of both methods is errj(Nj) ≈ CjN
−2
j with some

error constant Cj . Hence, the errors for a fixed numerical work w are

err1(N1) ≈ C1

( 5c
2w

)2
and err2(N2) ≈ C2

(
c

w

)2
.

This implies that err1(N1) ≈ C1
C2

25
4 err2(N2). For the error in the L2-norm, the ratio C1

C2
≈ 0.8

can be calculated from Figure 2.1, which yields err1(N1) ≈ 5err2(N2). For the error in H1,
we have that C1

C2
≈ 1, which yields err1(N1) ≈ 6.25err2(N2). Although the values 5 and

6.25 are a bit larger than the observed factors 4.7 and 6, they predict approximately the
improvement obtained with EEMR.
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Chapter 3

Employing nonresonant step sizes
for time integration of highly
oscillatory nonlinear Dirac
equations

This chapter is based on the preprint [JK24], which was written in collaboration with Tobias
Jahnke and has since been accepted for publication in the IMA Journal of Numerical Analysis
(IMAJNA). The present version contains minor revisions to the preprint that were made
during the review process.

In contrast to the rest of this work and to other literature on the Dirac equation, in this
chapter the projectors onto the eigenspaces are defined by Πε

∓1 = 1
2
(
Id ± Λ−1

ε Tε
)

instead of
(1.12). In particular, the role of “+” and “−” is interchanged in the notation, and to avoid
confusion with exponents, the indices ∓1 are attached below. Similarly, the transformed
eigenspace components ϕε± of a solution of the NLDE are now referred to as ϕε∓1. This
change in notation will allow a compact representation of otherwise complicated expressions
in Section 3.2.3 and thereafter. Furthermore, the functions p1 and p2 from (2.24) are from
now on called by their common names φ1 and φ2. This was not done previously to avoid
confusion with the solution φε± of the semi-nonrelativistic limit system, which will no longer
play a role in the following chapters.

TOBIAS JAHNKE AND MICHAEL KIRN

Abstract: In the nonrelativistic limit regime, nonlinear Dirac equations involve
a small parameter ε > 0 which induces rapid temporal oscillations with frequency
proportional to ε−2. Efficient time integrators are challenging to construct, since
their accuracy has to be independent of ε or improve with smaller values of ε.
Yongyong Cai and Yan Wang have presented a nested Picard iterative integrator
(NPI-2), which is a uniformly accurate second-order scheme. We propose a novel
method called the nonresonant nested Picard iterative integrator (NRNPI), which
takes advantage of cancellation effects in the global error to significantly simplify
the NPI-2. We prove that for nonresonant step sizes τ ≥ π

4 ε
2, the NRNPI has the

same accuracy as the NPI-2 and is thus more efficient. Moreover, we show that for
arbitrary τ < π

4 ε
2 the error decreases proportionally to ε2τ . We provide numerical

experiments to illustrate the error behavior as well as the efficiency gain.
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3.1 Introduction

One of the most important partial differential equations (PDE) in particle physics are the
Dirac equations, which represents a well-established model for relativistic dynamics of elec-
trons, protons, neutrons, and other spin-1/2 particles in an external electromagnetic field
[Dir28; Tha92]. In order to include effects related to self-interaction of particles and other
phenomena, nonlinear versions have been introduced in [HC09; Mer+10; Sol70; Thi58]. Af-
ter a proper nondimensionalization, nonlinear Dirac equations involve a parameter ε > 0
inversely proportional to the speed of light; cf. [Bao+16b]. In the nonrelativistic limit regime,
this parameter is very small, and solutions exhibit rapid oscillations in time with frequency
proportional to ε−2. In this situation, traditional time integrators require a tiny step size
τ ∼ ε−2 and thus a huge number of time steps to produce an acceptable accuracy; see
[Bao+16b] for details.

The construction of numerical methods with a better convergence behavior is a major chal-
lenge. Several attempts have been made in this direction. If an accuracy of O

(
ε2) is sufficient,

then one can solve the semi-nonrelativistic limit system, which is a non-oscillatory problem
and enables the approximation of solutions of nonlinear Dirac equations with said accuracy
[CW20]. For this purpose, the explicit exponential midpoint rule was proposed in [JK23],
which is a second-order integrator and consequently yields a total accuracy of O

(
ε2 + τ2).

For very small step sizes τ < ε2, better accuracies can be achieved with the multiscale time
integrator pseudospectral method from [CW18], which has an error of O

(
min{τ2 + ε2, τ2/ε2}

)
.

This implies that the method is uniformly accurate with order one, i.e. that the error can be
bounded by Cτ with a constant C that does not depend on ε. Splitting methods for nonlin-
ear Dirac equations in the nonrelativistic limit regime were analyzed in [BCY21]. Although
such methods usually suffer from a severe order reduction when applied to highly oscillatory
problems, it was shown that using special nonresonant step sizes yields convergence of the
Lie-Trotter splitting with the full order 1 and of the Strang splitting with order 3/2 indepen-
dently of ε. However, the analysis in [BCY21] is based on the assumption that there is no
magnetic field.

Two second-order uniformly accurate methods were proposed in [LMZ17] and [CW22]. The
authors of [LMZ17] devised an approach which allows them to replace the highly oscillatory
Dirac equations by a non-oscillatory augmented problem. The price to pay is that the aug-
mented problem has one additional dimension, which originates from the separation of the
fast and slow timescales. In [CW22], uniformly accurate nested Picard iterative integrators
(NPI) of first and second order were constructed. This is done by iterating Duhamel’s for-
mula, approximating the slowly varying parts of the integrands, but integrating all highly
oscillatory phases exactly. However, the fact that the solution has to be expanded in a suit-
able way and appears three times in the nonlinearity has the consequence that the number
of terms in the numerical flow of the first-order scheme (NPI-1) is already rather large (cf.
Section 2.2 in [CW22]). For the second-order method (NPI-2), where Duhamel’s formula
has to be used twice, the ansatz leads to a plethora of complicated terms (cf. Section 2.3 in
[CW22]). This makes the implementation and debugging of the integrator quite difficult and
causes considerable numerical costs per time step.

In this work we construct and analyze a new method called the nonresonant nested Picard
iterative integrator (NRNPI). This method is a modification of the NPI-2, but contains only a
small portion of the terms in its numerical flow. In spite of this simplification, our integrator
has essentially the same accuracy as the NPI-2 if the step size is not extremely small and is
chosen in such a way that resonances in the error accumulation are avoided. The construc-
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tion is carried out for the transformed form of the nonlinear Dirac equations introduced in
[CW20]. We consider two different representations of this PDE and show how to use them to
reformulate the NPI-2 scheme for the transformed problem in a very compact and structured
way. This reformulation is crucial, because it allows us to identify all terms in the numerical
flow which are of O

(
τ2) and contain a factor of the type eiqtn/ε2 for some q ̸= 0, where n ∈ N

and tn = nτ are the time points where the solution is approximated. Then, we obtain the
new NRNPI by simply omitting all these terms. In contrast to the NPI-2, the local error
of the NRNPI is clearly not of O

(
τ3) anymore, such that second-order convergence in the

classical sense cannot be expected. Nevertheless, we prove that the NRNPI behaves like a
second-order method for step sizes which are moderately small (τ ≥ πε2/4) and not close to
certain resonant values. The reason is that for such choices of τ the omitted terms do not
sum up critically in the error accumulation due to the exponential factor eiqtn/ε2 . A similar
yet different technique has been used in [BCY21; Buc+18; GH06; HL99; JM19; JL03]. The
fact that the NRNPI achieves the same accuracy as the NPI-2 with a significantly smaller
number of terms improves the efficiency and facilitates implementation and debugging. We
remark that choosing a nonresonant step size is easy, because both the resonant and the
optimal step sizes are known a priori. For very small step sizes τ < π

4 ε
2, we prove that the

NRNPI has an error of O
(
ε2τ

)
. In this range, the error of the second-order NPI-2 is smaller,

but this is only relevant if an extremely small error of O
(
ε4) or less is required.

The paper is structured as follows. In Section 2 we introduce the nonlinear Dirac equations in
the nonrelativistic limit regime. We recall the transformation of variables from [CW20] and
present the two different representations of the resulting PDEs. With these representations,
we formulate the NPI-2 in the transformed variables and derive the NRNPI in Section 3.3.
In Section 3.4, we present a rigorous error analysis for the NRNPI. Our main results are the
global error bounds in Theorem 3.12 and Corollary 3.14. In particular, we show why there
is no significant error accumulation for nonresonant step sizes due to cancellation effects. To
keep the focus on the essentials, the proofs of a number of auxiliary results are postponed to
Section 3.6. In Section 3.5, we present several numerical experiments which corroborate our
error analysis and reveal certain interesting effects, which we discuss briefly. Finally, we test
the efficiency gain achieved with NRNPI.

3.2 Problem setting

3.2.1 Nonlinear Dirac equations in the nonrelativistic limit regime

The nonlinear Dirac equations (NLDE)

∂tψ
ε = − i

ε2 Tεψε − iWψε − iF (ψε)ψε, x ∈ R3, t > 0, (3.1)

with initial data ψε(0, x) = ψinit(x) describe the evolution of a complex-valued vector wave
function ψε = ψε(t, x) ∈ C4. The solution ψε depends on the value of a parameter ε ∈ (0, 1).
In the nonrelativistic limit regime, this parameter is very small as it is inversely proportional
to the speed of light. The operator Tε and the function W = W (t, x) are the free Dirac
operator and the electromagnetic potential, respectively. They are given by

Tε = −i
3∑
j=1

εαj∂j + β, W (t, x) = V (t, x)I4 −
3∑
j=1

Aj(t, x)αj . (3.2)
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where V (t, x) ∈ R is the electric scalar potential and A(t, x) = (A1(t, x), ..., A3(t, x))T is the
magnetic vector potential. The matrices

β =
(
I2 0
0 −I2

)
, αj =

(
0 σj
σj 0

)
, j = 1, 2, 3,

are the Dirac matrices, which are determined by the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Further, F is a nonlinearity of the form F (u) = γ1(u∗βu)β + γ2 |u|2 I4 for γ1, γ2 ∈ R. Here,
u∗ = uT denotes the conjugate transpose and |u| =

√
u∗u the Euclidean norm of a vector u,

respectively. This type of nonlinearity is motivated by numerous applications in physics and
models self-interaction of Dirac fermions; see, e.g., [HC09; Mer+10; Sol70; Thi58] and the
references in [Bao+16b; BCY21; CW18; CW22; LMZ17]. In the rest of this paper, we limit
ourselves to the second type of nonlinearity, i.e. γ1 = 0. However, analogous results could be
obtained for the case γ1 ̸= 0. With no loss of generality, we set γ2 = 1.

The kinetic part − i
ε2 Tεψε of (3.1) causes oscillations in time with frequency of O

(
ε−2). As a

consequence, classical numerical schemes can only be expected to converge if the step size is
significantly smaller than ε2, which results in prohibitive numerical costs.

3.2.2 Function spaces and assumptions

Throughout, the Fourier transform of u ∈ L2(R3) or u ∈
(
L2(R3)

)4 and the inverse transform
are defined by

û(ξ) = 1
(2π)3/2

∫
R3

e−ix·ξu(x) dx and u(x) = 1
(2π)3/2

∫
R3

eix·ξû(ξ) dξ,

respectively. For m ≥ 0 we equip the Sobolev spaces Hm(R3) and
(
Hm(R3)

)4 with the norm

∥u∥Hm =
(∫

R3

(
1 + |ξ|22

)m
|û(ξ)|22 dξ

)1/2
.

Since we will later decompose a solution of (3.1) into two components, we further define the
space

Hm =
(
Hm(R3)

)4 ×
(
Hm(R3)

)4
for tuples u = (u−1, u+1) of two functions u−1, u+1 ∈

(
Hm(R3)

)4, and equip it with the norm

|||u|||Hm = ∥u−1∥Hm + ∥u+1∥Hm .

In the special case m = 0 we have H0 =
(
L2(R3)

)4 ×
(
L2(R3)

)4, and we write L2 instead of
H0 for clarity. Finally, we define Bm(R) = {u ∈ Hm : |||u|||Hm ≤ R} to be the closed ball of
radius R in Hm.

Having established the necessary notation, we collect some important Sobolev inequalities
that we will use frequently. There is a constant CS > 0 such that

∥uv∥H2 ≤ CS ∥u∥H2 ∥v∥H2 , u ∈ H2(R3), v ∈ H2(R3), (3.3)
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∥uv∥L2 ≤ CS ∥u∥L2 ∥v∥H2 , u ∈ L2(R3), v ∈ H2(R3). (3.4)

In both cases, one of the functions may also be C4-valued. The first inequality (3.3) is
the classical bilinear estimate in a Banach algebra; cf. Theorem 4.39 in [AF03]. The sec-
ond inequality (3.4) follows from the Sobolev embedding H2(R3) ⊂ L∞(R3) via ∥uv∥L2 ≤
∥u∥L2 ∥v∥L∞ ≤ CS ∥u∥L2 ∥v∥H2 ; cf. Theorem 4.12 in [AF03]. The counterparts of (3.3) and
(3.4) for two vector-valued functions read

∥u∗v∥H2 ≤ CS ∥u∥H2 ∥v∥H2 , u ∈
(
H2(R3)

)4
, v ∈

(
H2(R3)

)4
, (3.5)

∥u∗v∥L2 ≤ CS ∥u∥L2 ∥v∥H2 , u ∈
(
L2(R3)

)4
, v ∈

(
H2(R3)

)4
. (3.6)

The following assumptions regarding regularity of the initial data and the potential W (de-
termined by V and Aj via (3.2)) are crucial in the construction of our methods and will thus
be made henceforth.

Assumption 3.1. Let 0 < T < ∞ be an arbitrary fixed time. We assume that

(A) V,Aj ∈ L∞([0, T ], H2(R3)
)

and that there is a constant Mex > 0 independent of ε such that for the exact solution ψε of
(3.1), we have

(B) sup
ε∈(0,1)

sup
t∈[0,T ]

∥ψε(t, ·)∥H4 ≤ Mex.

We remark that assumption (B) is always fulfilled for some T > 0 if the potential and the
initial data are sufficiently regular, in particular if V,Aj ∈ L∞([0, T̃ ], H4(R3)

)
for some T̃ > T

and if ψinit ∈ H4(R3), see [CW20, Theorem 2.1].

Assumption (A) together with the inequalities (3.3)–(3.6) yields the existence of some con-
stant CW > 0 such that for all t ∈ [0, T ], we have

∥W (t, ·)u∥L2 ≤ CW ∥u∥L2 , u ∈
(
L2(R3)

)4
,

∥W (t, ·)u∥H2 ≤ CW ∥u∥H2 , u ∈
(
H2(R3)

)4
.

(3.7)

3.2.3 Transformed Dirac equations

Whilst the uniform boundedness of solutions in (B) is a reasonable assumption, the time
derivative of a solution is in general unbounded w.r.t. ε due to the term − i

ε2 Tεψε on the right-
hand side of (3.1). In this subsection, we introduce a transformation of variables proposed in
[CW20] and state the PDEs for the new variables. These PDEs have the advantage that for
sufficiently smooth solutions, the right-hand side is uniformly bounded in ε, which is favorable
for numerical approximation. A key step in the systematic formulation of the methods in
Section 3.3 will be to write those PDEs in an appropriate representation. In fact, it will later
turn out that two different representations of the PDEs are useful as each of them has its
individual advantages.

The transformation of variables used in [CW20] is based on the decomposition

Tε = ΛεΠε
−1 − ΛεΠε

+1 (3.8)
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with the scalar operator Λε and the two projection operators Πε
∓1 given by

Λε =
√

Id − ε2∆, Πε
∓1 = 1

2
(
Id ± (Id − ε2∆)− 1

2 Tε
)
.

Here and below, Id denotes the identity operator. These pseudo-differential operators are
defined in Fourier space, for example

Λεu(x) = 1
(2π)d/2

∫
Rd

eix·ξ
√

1 + ε2|ξ|22 û(ξ)dξ,

and similar for Πε
∓1. The decomposition (3.8) is obtained by performing an eigenspace de-

composition in Fourier space, see [BMP98, Eq. (1.22)] and [CW20, Section 2]. It was shown
in [BMP98] that for any m ≥ 0 the operators

Πε
∓1 :

(
Hm(R3)

)4 →
(
Hm(R3)

)4
are indeed projectors, i.e. (Πε

∓1)2 = Πε
∓1, and that

∥∥Πε
∓1
∥∥ = 1.

The decomposition (3.8) allows us to filter out the main part of the temporal oscillations in
a solution ψε of the NLDE (3.1). This is achieved by introducing two new functions ϕε−1 and
ϕε+1 defined by

ϕε−1(t, x) = eit/ε2Πε
−1 [ψε(t, x)] , ϕε+1(t, x) = e−it/ε2Πε

+1 [ψε(t, x)] (3.9)

for t ≥ 0 and x ∈ R3. To increase readability, we will omit the variable x from now on.
Assumption (B) together with the boundedness of the projectors immediately implies

sup
ε∈(0,1)

sup
t∈[0,T ]

∥∥ϕε−1(t)
∥∥
H4 ≤ Mex, sup

ε∈(0,1)
sup
t∈[0,T ]

∥∥ϕε+1(t)
∥∥
H4 ≤ Mex. (3.10)

The original variable ψε is determined from the pair ϕε = (ϕε−1, ϕ
ε
+1) via

ψε(t) = e−it/ε2
ϕε−1(t) + eit/ε2

ϕε+1(t) =
∑

j∈{−1,+1}
ejit/ε2

ϕεj(t). (3.11)

Taking the derivative w.r.t. time in (3.9) and inserting the Dirac equations (3.1) yields the
PDEs

∂tϕ
ε
−1 = −iDεϕ

ε
−1 − ie+it/ε2Πε

−1 [Wψε] − ie+it/ε2Πε
−1

[
|ψε|2 ψε

]
, ϕε−1(0) = Πε

−1

[
ψinit

]
,

∂tϕ
ε
+1 = +iDεϕ

ε
+1 − ie−it/ε2Πε

+1 [Wψε] − ie−it/ε2Πε
+1

[
|ψε|2 ψε

]
, ϕε+1(0) = Πε

+1

[
ψinit

]
with operator

Dε = 1
ε2

(√
1 − ε2∆ − Id

)
.

In fact, considering the very similar structure of both PDEs allows us to write them in a
general way as

∂tϕ
ε
σ = σiDεϕ

ε
σ − ie−σit/ε2Πε

σ [Wψε] − ie−σit/ε2Πε
σ

[
|ψε|2 ψε

]
, σ ∈ {−1,+1}. (3.12)

By expanding the product, we can represent the nonlinearity in terms of ϕε as

|ψε|2 ψε =
(
e−it/ε2

ϕε−1 + eit/ε2
ϕε+1

)∗ (
e−it/ε2

ϕε−1 + eit/ε2
ϕε+1

) (
e−it/ε2

ϕε−1 + eit/ε2
ϕε+1

)
=

3∑
j=−3
j odd

∑
J∈J

#J=j

eijt/ε2(ϕε−j1)∗ϕεj2ϕ
ε
j3 ,
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where J = {−1,+1}3 is the set of all multi-indices and #J = j1 + j2 + j3 denotes the sum of
the entries of J = (j1, j2, j3) ∈ J . Additionally replacing ψε in the potential-term of (3.12),
we obtain the transformed Dirac equations

∂tϕ
ε
σ = σiDεϕ

ε
σ − i

∑
j∈{−1,1}

ei(j−σ)t/ε2Πε
σ

[
Wϕεj

]

− i
3∑

j=−3
j odd

∑
J∈J

#J=j

ei(j−σ)t/ε2Πε
σ

[
(ϕε−j1)∗ϕεj2ϕ

ε
j3

]
(3.13)

for σ ∈ {−1,+1}. In contrast to the operator − i
ε2 Tε in (3.1), the leading differential operator

Dε in (3.13) is uniformly bounded w.r.t. ε when considered as an operator from Hm+2(R3)
to Hm(R3) for m ≥ 0; cf. [CW20]. More precisely, it fulfills the estimate

∥Dεu∥Hm ≤ 1
2 ∥u∥Hm+2 , u ∈

(
Hm+2(R3)

)
, (3.14)

see [JK23, Eq. (2.8)]. Thus, Assumption 3.1 implies that the first time derivative of ϕε−1 and
ϕε+1 is uniformly bounded in H2 w.r.t. ε, i.e. for σ ∈ {−1,+1} we have

sup
ε∈(0,1)

sup
t∈[0,T ]

∥∂tϕεσ(t)∥H2 ≤ CD (3.15)

for some constant CD. The same then obviously holds in the L2-norm. This fact will be
crucial in the construction and error analysis of our methods.

In the PDEs (3.13), one can clearly recognize the origin of each term, but the double sum
makes the right-hand sides somewhat complicated. An alternative representation of the PDEs
for ϕε−1 and ϕε+1 can be obtained by sorting the terms in (3.13) according to the arguments
in the exponential functions. For example, in the equation for ϕε−1, i.e. σ = −1 in (3.13), the
argument 2it/ε2 is obtained by the value j = +1. Next, one can check which terms appear
with the associated prefactor e2it/ε2 . In the first sum in (3.13), this is

Πε
−1
[
Wϕε+1

]
,

because for σ = −1 and j = +1 the summand is e2it/ε2Πε
−1
[
Wϕε+1

]
. In the second sum, we

have to take into account all multi-indices J = (j1, j2, j3) ∈ J = {−1,+1}3 with #J = 1.
Those are (+1,+1,−1), (+1,−1,+1) and (−1,+1,+1), leading to the terms

Πε
−1
[
(ϕε−1)∗ϕε+1ϕ

ε
−1
]
, Πε

−1
[
(ϕε−1)∗ϕε−1ϕ

ε
+1
]
, and Πε

−1
[
(ϕε+1)∗ϕε+1ϕ

ε
+1
]
.

Carefully proceeding similarly for all other exponents and for both values of σ, one can obtain
the alternative representation

∂tϕ
ε
σ = σiDεϕ

ε
σ − ie−4σit/ε2Πε

σ

[
(ϕεσ)∗ϕε−σϕ

ε
−σ
]

− ie−2σit/ε2 (Πε
σ

[
Wϕε−σ

]
+ Πε

σ

[(∣∣ϕε−1
∣∣2 +

∣∣ϕε+1
∣∣2)ϕε−σ + (ϕεσ)∗ϕε−σϕ

ε
σ

])
− i

(
Πε
σ [Wϕεσ] + Πε

σ

[(∣∣ϕε−1
∣∣2 +

∣∣ϕε+1
∣∣2)ϕεσ + (ϕε−σ)∗ϕεσϕ

ε
−σ

])
− ie+2σit/ε2Πε

σ

[
(ϕε−σ)∗ϕεσϕ

ε
σ

]
. (3.16)

This can be written in the more compact form

∂tϕ
ε
σ = σiDεϕ

ε
σ +

2∑
p=−4
p even

epσit/ε2
G(p)
σ (ϕε)[ϕε], σ ∈ {−1,+1}, (3.17)

39



where for each u = (u−1, u+1) ∈ H2, σ ∈ {−1,+1} and p ∈ {−4,−2, 0, 2}, the operators
G

(p)
σ (u) are defined by

G(−4)
σ (u)[v] := −iΠε

σ [(uσ)∗u−σv−σ] ,

G(−2)
σ (u)[v] := −iΠε

σ [Wv−σ] − iΠε
σ

[(
|u−1|2 + |u+1|2

)
v−σ + (uσ)∗u−σvσ

]
,

G(0)
σ (u)[v] := −iΠε

σ [Wvσ] − iΠε
σ

[(
|u−1|2 + |u+1|2

)
vσ + (u−σ)∗uσv−σ

]
,

G(2)
σ (u)[v] := −iΠε

σ [(u−σ)∗uσvσ]

for v = (v−1, v+1) ∈ L2. The linearity of the projectors Πε
∓1 and the estimates (3.3)-(3.7)

imply that for every u ∈ H2, G(p)
σ (u) are linear operators that map a tuple from L2 to a

function in
(
L2(R3)

)4 and a tuple from H2 to a function in
(
H2(R3)

)4.

In the derivation of our methods, we always consider the operators G(p)
σ with argument ϕε(t),

which are applied to the same function ϕε(t). In short, we consider G(p)
σ (ϕε(t))[ϕε(t)] where

ϕε(t) = (ϕε−1(t), ϕε+1(t)) is a solution of (3.13) (or, equivalently, (3.17)) at some time t ≥ 0.
We just write G(p)

σ (t) in this case to increase readability. However, in our error analysis, the
distinction between the argument of G(p)

σ and the function to which it is applied to will be
crucial.

The representation (3.17) is the most compact form to write the PDEs for ϕεσ, involving only
four addends in the sum. However, there is no common structure of the individual addends
G

(p)
σ for different values of p. In contrast to that, each addend in the sums of (3.13) has exactly

the same structure, and only the indices j or j1, j2, j3, determining which solution component
to be employed, differ. On the other hand, the representation in (3.13) is more involved due
to the distinction between the potential and the nonlinearity parts and the more complicated
composition of the exponents. In the next section, we will use both representations to make
the best possible use of their individual advantages.

3.3 Construction of time integration methods
In this section, we present the construction of two different time integration methods for the
NLDE. Both methods are based on the transformed Dirac equations (3.13) or (3.17) and will
therefore yield approximations

ϕn =
(
ϕn−1, ϕ

n
+1
)

≈
(
ϕε−1(tn), ϕε+1(tn)

)
= ϕε(tn)

with tn = nτ for n = 0, 1, 2, ... and a step size τ > 0. The relation (3.11) between ϕε and ψε

can then be used to construct approximations ψn ≈ ψε(tn) by

ψn := e−itn/ε2
ϕn−1 + eitn/ε2

ϕn+1, n = 0, 1, . . . . (3.18)

Since

∥ψn − ψε(tn)∥L2 =
∥∥∥e−itn/ε2 (

ϕn−1 − ϕε−1(tn)
)

+ eitn/ε2 (
ϕn+1 − ϕε+1(tn)

)∥∥∥
L2

≤
∥∥ϕn−1 − ϕε−1(tn)

∥∥
L2 +

∥∥ϕn+1 − ϕε+1(tn)
∥∥
L2 = |||ϕn − ϕε(tn)|||L2 , (3.19)

any error bound concerning the accuracy of ϕn transfers directly to ψn.

The first method constructed in this section is a uniformly accurate second-order time in-
tegrator. It is similar and not superior to the NPI-2 from [CW22]. However, we formulate
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the method in the transformed variables (ϕε−1, ϕ
ε
+1) instead of the original variable ψε. This

allows us to write the recursion formula in a special structure, which is fundamental for the
construction of the nonresonant nested Picard iterative integrator (NRNPI) in the second
part of this section. The NRNPI is a simplification of the first method, but in many cases
has the same accuracy and thus improved efficiency.

To make the formulas a little simpler, we assume that the potential W is time-independent
throughout the rest of the paper. We will explain later how and under which assumptions
the methods can be extended to time-dependent potentials. In case of a time-independent
potential, assumption (A) simplifies to V,Aj ∈ H2(R3).

We write fε = O(tp) for a function fε = fε(t, x) and some p ∈ N0 to express that

∥fε(t, ·)∥L2 ≤ Ctp

for t → 0 with some constant C which does not depend on t and ε.

3.3.1 Iterating Duhamel’s formula for the transformed Dirac equations

The method we present here is based on the idea of iterating Duhamel’s formula for the
transformed Dirac equations (3.13) twice, and then only approximating the slowly varying
parts in the integrals, whereas the highly oscillatory parts are integrated exactly. The same
strategy has been used in [CW22] and for oscillatory Klein-Gordon equations also in, e.g.,
[BFS18; CS22; Wan22; CZ22].

Duhamel’s formula for (3.13) yields the representation

ϕεσ(tn + τ) = eσiτDεϕεσ(tn) − i
∑

j∈{−1,1}

∫ τ

0
eσi(τ−s)Dεei(j−σ)(tn+s)/ε2Πε

σ

[
Wϕεj(tn + s)

]
ds

− i
3∑

j=−3
j odd

∑
J∈J

#J=j

∫ τ

0
eσi(τ−s)Dεei(j−σ)(tn+s)/ε2Πε

σ

[

ϕε−j1(tn + s)∗ϕεj2(tn + s)ϕεj3(tn + s)
]
ds (3.20)

for the solution ϕεσ, σ ∈ {−1,+1}, at time tn+1 = tn + τ . In order to obtain a uniformly
accurate second-order method, the main challenge is to approximate the highly oscillatory in-
tegrals up to O

(
τ3) by an expression where the unknown solution ϕε∓1 is only evaluated at the

current time tn. The first step to achieve this is to construct a sufficiently accurate approxima-
tion to ϕε−1(tn+s) and ϕε+1(tn+s) by using Duhamel’s formula once again and approximating
non-oscillatory parts. To ensure stability, the differential operator Dε : Hm+2(R3) → Hm(R3)
is replaced by a filtered version in the second step. In the third step, we insert this represen-
tation into (3.20) and compute all remaining oscillatory integrals analytically.

Step 1: approximation of ϕε∓1(tn + s)

In order to approximate ϕε∓1(tn+ s), we apply Duhamel’s formula again, but this time to the
representation (3.17) of the PDEs for ϕεσ. This yields

ϕεσ(tn + s) = eσisDεϕεσ(tn) +
2∑

p=−4
p even

∫ s

0
eσi(s−r)Dεepσi(tn+r)/ε2

G(p)
σ (tn + r) dr. (3.21)
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Thanks to (3.15), we have

ϕεσ(tn + r) = ϕεσ(tn) + O(r) , r > 0 (3.22)

for σ ∈ {−1,+1}. Using (3.22) and the fact that the exact solution is uniformly bounded in
H2 at all times (even in H4 by assumption (B)), we obtain

ϕεj1(tn + r)∗ϕεj2(tn + r)ϕεj3(tn + r) = ϕεj1(tn)∗ϕεj2(tn)ϕεj3(tn) + O(r)

for any j1, j2, j3 ∈ {−1,+1} and thus G(p)
σ (tn + r) = G

(p)
σ (tn) + O(r). Considering the

surrounding integral, fixing the solutions at time tn in the functions G(p)
σ in (3.21) produces

an error of O
(
s2). Further, we can use the following

Lemma 3.2. For any s ∈ R, we have∥∥∥eisDεu− u
∥∥∥
L2

≤ 1
2s ∥u∥H2 , u ∈

(
H2(R3)

)4
,∥∥∥eisDεu− (Id + isDε)u

∥∥∥
L2

≤ 1
8s

2 ∥u∥H4 , u ∈
(
H4(R3)

)4
.

Proof. Apply Taylor’s theorem in Fourier space.

Using the first estimate inside and the second estimate outside the integrals in (3.21), we
overall obtain

ϕεσ(tn + s) = ϕεσ(tn) + σisDεϕ
ε
σ(tn) +

2∑
p=−4
p even

∫ s

0
epσi(tn+r)/ε2 dr G(p)

σ (tn) + O
(
s2
)
. (3.23)

Step 2: filtered operator

Whilst the order of accuracy in (3.23) is sufficient, using this representation would lead to
instabilities of the methods we are about to construct. The reason is that the operator Dε

maps from Hm+2(R3) to Hm(R3) for m ≥ 0, and hence causes a loss of regularity; cf. (3.14).
This is why we replace Dε by the filtered version

D̂ε(τ) : Hm(R3) → Hm(R3), D̂ε(τ) = sin(τDε)
τ

, τ > 0

as, e.g., in [CW19; CW22]. The filtered operator D̂ε(τ) has the properties that∥∥∥D̂ε(τ)u
∥∥∥
Hm

≤ 1
τ

∥u∥Hm , u ∈
(
Hm(R3)

)4
, (3.24)∥∥∥D̂ε(τ)u

∥∥∥
Hm

≤ 1
2 ∥u∥Hm+2 , u ∈

(
Hm+2(R3)

)4 (3.25)

for any m ≥ 0. The first inequality is obvious, whereas the second one can easily be shown
by using Taylor’s theorem in Fourier space. Moreover, using the same techniques, it is not
difficult so show that ∥∥∥(Dε − D̂ε(τ)

)
u
∥∥∥
L2

≤ τ

2 ∥u∥H4 (3.26)

for all u ∈
(
H4(R3)

)4 (see [CW19, Proof of Lemma 3.2]). Since the exact solution is assumed
to be in H4, property (3.26) implies that replacing Dε by D̂ε in (3.23) introduces an O(sτ)
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error, which is unproblematic in view of the error order we want to achieve. Further, com-
bining the term σisD̂ε(τ)ϕεσ(tn) with G(0)

σ (tn) = G
(0)
σ (ϕε(tn))[ϕε(tn)] motivates the definition

of the operators Ĝ(p)
σ (u) for each u = (u−1, u+1) ∈ H2 by

Ĝ(0)
σ (u)[v] := G(0)

σ (u)[v] + σiD̂ε(τ)vσ,
Ĝ(p)
σ (u)[v] := G(p)

σ (u)[v], p ∈ {−4,−2, 2}
(3.27)

for v = (v−1, v+1) ∈ L2. This leads to the representation

ϕεσ(tn + s) = ϕεσ(tn) +
2∑

p=−4
p even

∫ s

0
epσi(tn+r)/ε2 dr Ĝ(p)

σ (tn) + O
(
s2 + sτ

)
, (3.28)

where we wrote Ĝ(p)
σ (tn) instead of Ĝ(p)

σ (ϕε(tn))[ϕε(tn)] similar to before. Property (3.24)
ensures that for each u ∈ H2, Ĝ(0)

σ (u) are indeed well-defined operators mapping from and
to L2 (details on this and other properties of the operators Ĝ(p)

σ are discussed in Lemma 3.17
in Section 3.6). With the function φ1 given by

φ1(z) =
∫ 1

0
eθz dθ =

{
ez−1
z for z ∈ C, z ̸= 0,

1 for z = 0,

Eq. (3.28) can equivalently be expressed as

ϕεσ(tn + s) = ϕεσ(tn) +
2∑

p=−4
p even

epσitn/ε2
sφ1

(pσis
ε2

)
Ĝ(p)
σ (tn) + O

(
s2 + sτ

)
. (3.29)

Step 3: Approximating the integrals in (3.20)

Eq. (3.29) can now be inserted into (3.20). At this point, it becomes clear why we established
two different representations of the PDEs for ϕεσ: We would like our O

(
s2)-approximation of

ϕεσ(tn + s) to be as simple as possible, which was achieved by using the representation (3.17).
When inserting (3.29) into (3.20), however, the similar structure of all terms provided by
representation (3.13) is essential such that we can take care of all of them at once instead
of considering every term individually, which would be very cumbersome as the nonlinearity
increases the number of terms even further.

When inserting (3.29) into the nonlinearity in (3.20), this gives rise to a number of O
(
s2)

terms which lead to a total error of O
(
τ3). After all, we can express each component of the

exact solution ϕε = (ϕε−1, ϕ
ε
+1) at time tn + τ as

ϕεσ(tn + τ) = eσiτDεϕεσ(tn) − iI1
σ(tn, ϕε(tn)) − iI2

σ(tn, ϕε(tn)) + O
(
τ3
)
, (3.30)

σ ∈ {−1,+1}. Here, we define

I1
σ(t, u) =

∑
j∈{−1,1}

ei(j−σ) t
ε2

∫ τ

0
eσi(τ−s)Dεei(j−σ) s

ε2 dsΠε
σ [Wuj ]

+
∑

j∈{−1,1}

2∑
p=−4
p even

ei(j−σ+pj) t
ε2

∫ τ

0
eσi(τ−s)Dεei(j−σ) s

ε2 sφ1
(pjis
ε2

)
dsΠε

σ

[
WĜ

(p)
j (u)[u]

]
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for t ≥ 0 and u = (u−1, u+1) ∈ H2, such that I1
σ(tn, ϕε(tn)) is the O

(
τ3)-approximation to

the integrals in (3.20) containing products with the potential W . Further, I2
σ is given by

I2
σ(t, u) =

3∑
j=−3
j odd

∑
J∈J

#J=j

ei(j−σ) t
ε2

∫ τ

0
eσi(τ−s)Dεei(j−σ) s

ε2 dsΠε
σ

[
u∗

−j1uj2uj3

]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

2∑
p=−4
p even

ei(j−σ+pj1) t
ε2

∫ τ

0
eσi(τ−s)Dεei(j−σ) s

ε2 sφ1
(pj1is
ε2

)
dsΠε

σ

[(
Ĝ

(p)
−j1(u)[u]

)∗
uj2uj3

]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

2∑
p=−4
p even

ei(j−σ+pj2) t
ε2

∫ τ

0
eσi(τ−s)Dεei(j−σ) s

ε2 sφ1
(pj2is
ε2

)
dsΠε

σ

[
u∗

−j1Ĝ
(p)
j2

(u)[u]uj3
]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

2∑
p=−4
p even

ei(j−σ+pj3) t
ε2

∫ τ

0
eσi(τ−s)Dεei(j−σ) s

ε2 sφ1
(pj3is
ε2

)
dsΠε

σ

[
u∗

−j1uj2Ĝ
(p)
j3

(u)[u]
]
,

which means that I2
σ(tn, ϕε(tn)) is the O

(
τ3)-approximation to the integrals in (3.20) account-

ing for the nonlinearity. The integrals in I1
σ and I2

σ do no longer involve the exact solution
ϕε. Instead, they are operators that can be computed and applied analytically. For δ, ζ ∈ Z,
we have

Aσ(δ) :=
∫ τ

0
eσi(τ−s)Dεeiδs/ε2 ds = τeiδτ/ε2

φ1
(
iτ
(
σDε − δ

ε2 Id
))
,

Bσ(δ, ζ) :=
∫ τ

0
eσi(τ−s)Dεseiδs/ε2

φ1
(ζis
ε2

)
ds (3.31)

=


iτ ε

2

ζ
eiτδ/ε2

(
φ1
(
iτ
(
σDε − δ

ε2 Id
))

− eiτζ/ε2
φ1
(
iτ
(
σDε − δ + ζ

ε2 Id
)))

, ζ ̸= 0,

τ2eiτδ/ε2
φ2
(
iτ
(
σDε − δ

ε2 Id
))
, ζ = 0,

where the function φ2 is given by

φ2(z) =
∫ 1

0
θe(1−θ)z dθ =

{
φ1(z)−1

z for z ∈ C, z ̸= 0,
1
2 for z = 0.

Thus, we obtain

I1
σ(t, u) =

∑
j∈{−1,1}

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ [Wuj ]

+
∑

j∈{−1,1}

2∑
p=−4
p even

ei(j−σ+pj)t/ε2Bσ(j − σ, pj)Πε
σ

[
WĜ

(p)
j (u)[u]

]
(3.32)
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and

I2
σ(t, u) =

3∑
j=−3
j odd

∑
J∈J

#J=j

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ [(u−j1)∗uj2uj3 ]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

2∑
p=−4
p even

ei(j−σ+pj1)t/ε2Bσ(j − σ, pj1)Πε
σ

[(
Ĝ

(p)
−j1(u)[u]

)∗
uj2uj3

]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

2∑
p=−4
p even

ei(j−σ+pj2)t/ε2Bσ(j − σ, pj2)Πε
σ

[
(u−j1)∗Ĝ

(p)
j2

(u)[u]uj3
]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

2∑
p=−4
p even

ei(j−σ+pj3)t/ε2Bσ(j − σ, pj3)Πε
σ

[
(u−j1)∗uj2Ĝ

(p)
j3

(u)[u]
]
. (3.33)

Specification of the time integrator and local error bound

Eq. (3.30) immediately suggests a time integrator: Replacing ϕε(tn) by numerical approxima-
tions ϕn =

(
ϕn−1, ϕ

n
+1
)

(thus also replacing Ĝ
(p)
σ (tn) = Ĝ

(p)
σ (ϕε(tn))[ϕε(tn)] by Ĝ

(p)
σ (ϕn)[ϕn])

and omitting the O
(
τ3) terms yields the recursion

ϕn+1 = ΦNPI(tn, ϕn), n = 0, 1, 2, . . . (3.34)

with the numerical flow1

ΦNPI(t, u) =
(

e−iτDεu−1 − iI1
−1(t, u) − iI2

−1(t, u)
e+iτDεu+1 − iI1

+1(t, u) − iI2
+1(t, u)

)
. (3.35)

The operator ΦNPI does of course depend on the step size τ and on ε (as I1
±1 and I2

±1 do).
However, we refrain from marking this dependency explicitly in order to keep the notation
simple. The method (3.34) is fully explicit. If the exact solution ϕε = (ϕε−1, ϕ

ε
+1) of (3.13) is

in H4 for all times, then by construction its local error

ℓn+1
NPI := ϕε(tn+1) − ΦNPI(tn, ϕε(tn)), n ∈ N0,

is bounded by ∣∣∣∣∣∣∣∣∣ℓn+1
NPI

∣∣∣∣∣∣∣∣∣
L2

≤ Cτ3 (3.36)

for some constant C that is independent of τ and ε. This is one of the ingredients which
would be necessary to prove that the scheme is second-order accurate independently of ε,
which, however, is not our objective. Instead, this estimate will turn out to be useful for the
error analysis of the NRNPI in the next subsection.

Remark 3.3. If the potential W = W (t, x) is time-dependent, a similar method can easily
be derived. In the inner application of Duhamel’s formula, that is Eq. (3.21) in step 1, the
potential W appearing in G

(−2)
σ and G(0)

σ is then evaluated at time tn + r, but approximating
W (tn + r) ≈ W (tn) is sufficiently accurate here. In the outer application of Duhamel’s
formula from (3.20), W is evaluated at time tn+s. For a sufficient accuracy, the linearization
W (tn + s) ≈ W (tn) + s∂tW (tn) has to be employed here. In step 3, the strategies remain

1In general, we combine two functions u−1, u+1 ∈ Hm(R3) to a tuple (u−1, u+1) ∈ Hm. Only occasionally,
we stack two such functions into a vector for the sake of presentation.
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unaltered, but the additional term s∂tW (tn) has to be taken into account. One can check that
the additional assumptions

V,Aj ∈ C1([0, T ], H2(R3)), V, Aj ∈ C2([0, T ], L2(R3))

are necessary for a rigorous local error and stability analysis in L2.

Remark 3.4. The NPI-2 proposed in [CW22] is based on the same ideas. There are however
some differences. Firstly, they work in the context of the original Dirac equations (3.1). This
means that they cannot apply an approximation of the type ψε(tn + r) ≈ ψε(tn) (as we did
for the transformed variables, cf. (3.22)), since this would induce large errors when ε is small
due to the oscillatory dynamics of ψε. This is why in [CW22], the approximation

ψε(tn + r) =
(
e−ir/ε2Πε

−1 + eir/ε2Πε
+1

)
ψε(tn) + O(r) , r > 0

was used instead, which is again motivated by Duhamel’s formula together with the decom-
position (3.8). Secondly, they employed slightly different strategies for approximating the
remaining, slowly varying parts. In the end, their NPI-2 scheme is still very similar to the
method we presented in (3.34), which is why we will also refer to our version as NPI-2. How-
ever, having formulated the method in the transformed variables ϕ = (ϕε−1, ϕ

ε
+1) allows us to

have a detailed look at the frequencies of the highly oscillatory phases involved. This will be
crucial for the derivation and analysis of our simplified method in the following section.

3.3.2 Nonresonant nested Picard iterative integrator (NRNPI)

For the NPI-2 (3.34), one can derive a second-order global error bound with a constant that
does not depend on ε, as mentioned in [CW22, Sec. 4]. To do so, one has to combine the local
error bound (3.36) with suitable stability estimates and a standard Lady Windermere’s fan
argument. Even though second-order convergence uniformly in ε is a very favorable property,
the efficiency of the NPI-2 is to some extent limited by the huge amount of terms that have
to be computed in each time step: the numerical flow (3.35) contains evaluations of I1

± and
I2

±, which in turn involve multiple sums. Each addend then requires the computation of a
product of several functions in physical space and the application of operators in Fourier
space. The total numerical work to compute one time step of this method is thus very large.

Our goal now is to omit a significant number of terms in the numerical flow without affecting
the accuracy, or only to a small extent. For this purpose, we return to the representation
(3.30) of an exact solution ϕε = (ϕε−1, ϕ

ε
+1) of (3.13) at time tn + τ , which provided the basis

for the method from the previous section. Here, it is worthwhile to consider the structure of
the actual addends that appear in the sums of I1

± and I2
± more closely. Let us take a look,

for instance, at the last three lines of I2
σ, cf. Eq. (3.33). If I2

σ is evaluated with arguments tn
and ϕε(tn) as in (3.30), then each of the addends is of the type

eiqtn/ε2Bσ(δ, ζ)Πε
σ [z(tn)] (3.37)

for some q ∈ {−6,−4,−2, 0, 2, 4, 6}, δ, ζ ∈ Z and some function z of the form

z(t) = u(t)∗v(t)w(t) (3.38)

where u, v and w each are either ϕεσ for some σ ∈ {−1,+1} or Ĝ(p)
σ (ϕε(·))[ϕε(·)] for some

σ ∈ {−1,+1}, p ∈ {−4,−2, 0, 2}. We suggest a method where all terms of the type (3.37)
with q ̸= 0 are omitted, and are thus included in the local error instead. This may come as a
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surprise since those terms are only in O
(
τ2) due to the norm bound of Bσ(δ, ζ). Hence, in a

standard error analysis based on the classical Lady Windermere’s fan argument, neglecting
such terms would reduce the global error order from two to one. However, we expect that
actually such terms will not critically sum up in the error accumulation. The reasons for this
conjecture are the following: Firstly, the terms in (3.37) contain the prefactor eiqtn/ε2 . This
is a complex number oscillating on the unit circle throughout the time steps. For q ̸= 0, two
consecutive numbers eiqtn/ε2 and eiqtn+1/ε2 = eiqτ/ε2eiqtn/ε2 do not point in the same direction
in the complex plane as long as a nonresonant step size is chosen, meaning that

eiqτ/ε2 ̸≈ 1, i.e., τ ̸≈ k
2πε2

q
for all k ∈ Z.

Secondly, the boundedness of the first time derivative of a solution ϕε = (ϕε−1, ϕ
ε
+1) of (3.13)

implies that z only varies slowly (in a sense that is made precise later on) in the course of
several time steps. The same holds for Bσ(δ, ζ)Πε

σ [z(tn)] since the operator Bσ(δ, ζ)Πε
σ does

not depend on n. Those two facts are later used in a summation-by-parts argument (cf.
proof of Thm. 3.12) to show that neglecting terms of the form (3.37) with nonzero exponent
in the prefactor, i.e. q ̸= 0, has indeed only little impact on the accuracy. Terms of a similar
structure that we will also omit are additionally found in I1

σ(tn, ϕε(tn)).

Let us now establish our new method in detail. In each of the last three lines of I2
σ, defined

in (3.33), we only keep the terms for the value of p for which the exponent in the prefactor
is zero. In the second line of I2

σ, for example, we only keep the term for the value of p for
which j − σ + pj1 = 0. Since 1/j1 = j1 for j1 ∈ {−1,+1}, this is the case for p = j1(σ − j).
Thus, for each multi-index J ∈ J , there is exactly one value of p for which the exponent is
zero, whereas the terms for the other three values of p are omitted in our simplified method.

Analogously, in the third and fourth line of I2
σ, we only keep the term for p = j2(σ − j) or

p = j3(σ − j), respectively. In the second line of I1
σ, we keep the term for the value of p for

which j−σ+ pj = 0, i.e. p = σj− 1. Thus, as before, we always keep exactly one out of four
terms here. Overall, we replace I1

σ(t, u) and I2
σ(t, u) in the numerical flow (3.35) of the full

method by J1
σ(t, u)[u] and J2

σ(t, u)[u] where for u = (u−1, u+1) ∈ H2 the operators J1
σ(t, u)

and J2
σ(t, u) are given by

J1
σ(t, u)[v] =

∑
j∈{−1,1}

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ [Wvj ]

+
∑

j∈{−1,1}
Bσ(j − σ, σ − j)Πε

σ

[
WĜ

(σj−1)
j (u)[v]

]
, (3.39)

J2
σ(t, u)[v] =

3∑
j=−3
j odd

∑
J∈J

#J=j

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ

[
u∗

−j1uj2vj3

]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

Bσ(j − σ, σ − j)Πε
σ

[(
Ĝ

(j1(σ−j))
−j1 (u)[u]

)∗
uj2vj3

]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

Bσ(j − σ, σ − j)Πε
σ

[
u∗

−j1Ĝ
(j2(σ−j))
j2

(u)[u]vj3
]

+
3∑

j=−3
j odd

∑
J∈J

#J=j

Bσ(j − σ, σ − j)Πε
σ

[
u∗

−j1uj2Ĝ
(j3(σ−j))
j3

(u)[v]
]
, (3.40)
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v = (v−1, v+1) ∈ L2. The reason why we distinguished between the arguments u and v is
that now, for every u ∈ H2, J1

σ(t, u) and J2
σ(t, u) are linear operators. This will be crucial in

the error analysis.

After all, the nonresonant nested Picard iterative integrator (NRNPI) is given by the recursion

ϕn+1 = ΦNRNPI(tn, ϕn)[ϕn], n = 0, 1, 2, . . .

with the numerical flow

ΦNRNPI(t, u)[v] =
(

e−iτDεv−1 − iJ1
−1(t, u)[v] − iJ2

−1(t, u)[v]
e+iτDεv+1 − iJ1

+1(t, u)[v] − iJ2
+1(t, u)[v]

)
(3.41)

for u ∈ H2 and v ∈ L2. Again, we do not express the dependency of ΦNRNPI on τ and ε
explicitly. The linearity of J1

σ(t, u) and J2
σ(t, u) directly implies the linearity of ΦNRNPI(t, u)

for fixed u ∈ H2.

Remark 3.5. The terms J1
σ and J2

σ have to be computed in every time step. They include
products of the numerical approximations ϕnσ with the potential and with themselves in the
nonlinearity. Those products have to be computed in physical space. The result has to be
transformed to Fourier space, since afterward the projectors and the operators Aσ or Bσ have
to be applied. Considering the computational effort, (inverse) Fourier transforms are the
dominating operations in each time step. It is thus crucial to reduce their number as much
as possible. In the second line of J1

σ and the last three lines of J2
σ, for each j ∈ {−3,−1, 1, 3},

the respective operator is always identical. Consequently, by a reordering of the sums, only
two Fourier transforms per index j are required (one for the case σ = −1 and σ = +1
respectively). The same holds for the first lines of J1

σ and J2
σ.

Remark 3.6. Again, the method can easily be extended to time-dependent potentials W =
W (t, x). To do so, one can take the corresponding extension of the full NPI-2 from Remark
3.3 and omit terms according to the strategies from above. Consequently, the same additional
assumptions on the potential W as in Remark 3.3 are required.

Remark 3.7. The techniques from this section can be used to construct similar time inte-
grators for other equations, such as the Klein-Gordon-Dirac system.

3.4 Convergence of the NRNPI

In this section, we analyze the convergence of the NRNPI. First, we discuss the local error.
In contrast to the NPI-2, the NRNPI involves local error terms which are only in O

(
τ2), but

have a special structure in return. This will be the topic of the first lemma in this section.
Then, we state two technical lemmas concerning stability of the numerical flow. The proofs
of those lemmas are postponed to Section 3.6. Instead, we will continue by presenting and
proving our main theorem, which is a convergence result for the NRNPI. In particular, we
show that although the local error of the NRNPI is increased, its special structure ensures
that the global error is not affected in many cases (in a sense to be made precise below). In
all proofs, C always denotes a constant that may change from line to line, but is independent
of τ and ε.

The local error

ℓn+1 := ϕε(tn+1) − ΦNRNPI(tn, ϕε(tn))[ϕε(tn)]
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of the NRNPI in the (n+ 1)-st step can be decomposed into two parts: The local errors ℓn+1
NPI

of the full NPI-2 and those originating from omitting terms of the full method (3.34), which
we collect in ℓn+1

diff , i.e.

ℓn+1 = ϕε(tn+1) − ΦNPI(tn, ϕε(tn))︸ ︷︷ ︸
=ℓn+1

NPI

+ ΦNPI(tn, ϕε(tn)) − ΦNRNPI(tn, ϕε(tn))[ϕε(tn)].︸ ︷︷ ︸
=:ℓn+1

diff

(3.42)

From (3.36), we have
∣∣∣∣∣∣∣∣∣ℓn+1

NPI

∣∣∣∣∣∣∣∣∣
L2

≤ Cτ3. Comparing (3.35) and (3.41), we further find

ℓn+1
diff = i

(
J1

−1(tn, ϕε(tn))[ϕε(tn)] − I1
−1(tn, ϕε(tn))

J1
+1(tn, ϕε(tn))[ϕε(tn)] − I1

+1(tn, ϕε(tn))

)

+ i
(
J2

−1(tn, ϕε(tn))[ϕε(tn)] − I2
−1(tn, ϕε(tn))

J2
+1(tn, ϕε(tn))[ϕε(tn)] − I2

+1(tn, ϕε(tn))

)
.

This representation allows us to derive the following lemma concerning the structure and
properties of ℓn+1

diff .

Lemma 3.8. Let Assumption 3.1 hold and let ϕε be the exact solution of (3.13). Set Q =
{−6,−4,−2, 2, 4, 6}. Then, we can write

ℓn+1
diff =

∑
q∈Q

τ2eiqtn/ε2
Enq (3.43)

for some Enq ∈ H2 that fulfill∣∣∣∣∣∣∣∣∣Enq ∣∣∣∣∣∣∣∣∣H2
≤ C and

∣∣∣∣∣∣∣∣∣En+1
q − Enq

∣∣∣∣∣∣∣∣∣
L2

≤ Cτ

for n = 0, 1, ..., ⌊T/τ⌋ with some constant C independent of τ , n and ε.

The proof can be found in Section 3.6. The next lemma addresses the stability of the numer-
ical flow ΦNRNPI.

Lemma 3.9. Let Assumption 3.1 (A) hold. Then, for R > 0, we have

(i) |||ΦNRNPI(t, u)[v]|||L2 ≤ (1 + Cτ) |||v|||L2 , u ∈ B2(R), v ∈ L2,

(ii) |||(ΦNRNPI(t, u) − Id) [v]|||L2 ≤ Cτ |||v|||H2 , u ∈ B2(R), v ∈ H2,

(iii) |||ΦNRNPI(t, u)[v] − ΦNRNPI(t, ũ)[v]|||L2 ≤ Cτ |||u− ũ|||L2 , u, ũ, v ∈ B2(R),

for all t ≥ 0. In all cases, the constant C depends on R, but not on τ and ε.

Lemma 3.8 implies that the local error of the NRNPI is at least in O
(
τ2) for all step sizes τ .

A Lady Windermere’s fan argument and Lemma 3.9 yield a first-order global error bound
which is uniform in ε. We will see later, however, that the accuracy of NRNPI is actually
much better; cf. Corollary 3.14.

In preparation for the following lemma, we define the (linear) operators Φn,k
NRNPI for n, k ∈ N0

by

Φn,k
NRNPI[u] = ΦNRNPI(tn−1, ϕ

n−1)
[
ΦNRNPI(tn−2, ϕ

n−2)
[
. . . ΦNRNPI(tk, ϕk)

[
u
]]]
, k < n

Φn,k
NRNPI[u] = u, k ≥ n
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for u ∈ L2. If u = ϕk is the numerical approximation after k steps, then application of Φn,k
NRNPI

with n > k corresponds to performing another n − k steps, such that Φn,k
NRNPI(ϕk) = ϕn is

the numerical approximation after n steps. However, note that even if u ̸= ϕk is an arbitrary
function, the numerical approximations ϕk, . . . , ϕn are used in the numerical flow operators
ΦNRNPI. In order to be able to state a stability estimate for Φn,k

NRNPI and in the further error
analysis, we require the following

Assumption 3.10. There is a constant τ0 independent of ε such that for all τ ≤ τ0 and
ε ∈ (0, 1), the numerical approximations ϕn remain uniformly bounded in H2:

ϕn ∈ B2(Mnum) for all n = 0, 1, ..., ⌊T/τ⌋

for some constant Mnum independent of τ and ε.

In fact, one can prove with a bootstrapping argument that this assumption is indeed fulfilled
if the step size is sufficiently small, cf. [JK23; Lub08]. This step size restriction is not critical,
since it is independent of ε.

Lemma 3.11. Under Assumptions 3.1 (A) and 3.10, we have for all k, n ∈ N with k, n ≤
⌊T/τ⌋ that ∣∣∣∣∣∣∣∣∣Φn,k

NRNPI[u]
∣∣∣∣∣∣∣∣∣

L2
≤ eCtn |||u|||L2 for all u ∈ L2

for some constant C independent of n, k, τ and ε.

In the proof of this lemma (see Section 3.6.4), Lemma 3.9 (i) will be applied recursively.
Assumption 3.10 guarantees that the constant C therein can always be chosen identically,
and in particular independently of τ and ε.

We are now in a position to state and prove an error estimate for the NRNPI, which is the
main result of this paper.

Theorem 3.12. Let Assumptions 3.1 and 3.10 hold and let τ0 be the constant from the
latter. Further, for ε ∈ (0, 1) arbitrary, let ϕε be the exact solution of (3.13) and let ϕn be the
numerical approximations of the NRNPI for any step size τ ≤ τ0 with τ /∈ {k2πε

2, k3πε
2, k ∈

N}. Then, the error bound

|||ϕε(tn) − ϕn|||L2 ≤ C⋆

(
1 + 1

K(τ, ε)

)
τ2, n = 0, 1, ..., ⌊T/τ⌋,

holds for some constant C⋆ independent of τ and ε and with

K(τ, ε) := min
q∈{2,4,6}

∣∣∣eiqτ/ε2 − 1
∣∣∣ . (3.44)

According to (3.19), the theorem directly yields an error bound for the approximations ψn ≈
ψε(tn) defined in (3.18):

Corollary 3.13. Under the assumptions of and with the constant C⋆ from Theorem 3.12,
we have

∥ψn − ψε(tn)∥L2 ≤ C⋆

(
1 + 1

K(τ, ε)

)
τ2, n = 0, 1, ..., ⌊T/τ⌋.
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Before we continue with the proof of Theorem 3.12, it is crucial to note that the right-hand
side of the estimate contains the τ -dependent number 1/K(τ, ε), which might be very large
if an unsuitable step size is chosen. We now discuss to what extent ensuring K(τ, ε) ̸≈ 0 is
possible. For a fixed value of ε, we distinguish two cases. If τ ≥ π

4 ε
2, then one can choose

the step sizes

τ = (2k − 1)
4 πε2, k ∈ N. (3.45)

It follows from (3.44) that K(τ, ε) =
√

2 for this choice of τ . One can check that this is the
maximal possible value, which is why we call the step sizes (3.45) optimal. On the other
hand, one should avoid the resonant step sizes

τ = k

2πε
2 or τ = k

3πε
2, k ∈ N, (3.46)

for which K(τ, ε) = 0. This is the reason why these step sizes were excluded in Theorem 3.12.
For a step size in between the optimal and the resonant ones, the size of 1/K(τ, ε) and thus
of the error bound depends on how close it is to a resonant step size. This is illustrated in
Figure 3.1 (a) in Section 3.5, where the function τ 7→ τ2

K(τ,ε) is plotted for ε = 0.01 together
with markers of the optimal and the resonant step sizes. In practice, however, we recommend
replacing a given step size by the closest optimal step size, which is at most π

4 ε
2 away.

If τ < π
4 ε

2, on the other hand, it is no longer possible to ensure that K(τ, ε) ̸≈ 0 since
K(τ, ε) → 0 for τ → 0. Instead, we can only show the lower bound

K(τ, ε) = min
q∈{2,4,6}

∣∣∣eiqτ/ε2 − 1
∣∣∣ =

∣∣∣ei2τ/ε2 − 1
∣∣∣ = 2 sin(τ/ε2) > 4

√
2

π

τ

ε2 ,

where we used that

|eix − 1| =
√

(cos(x) − 1)2 + sin2(x) =
√

2 − 2 cos(x) = 2 sin
(
x
2
)

for x ∈ [0, 2π]

and that sin(x) > 2
√

2
π x for x ∈ (0, π4 ). This implies(

1 + 1
K(τ, ε)

)
τ2 < τ2 + π

4
√

2
ε2τ <

(
1 + 1√

2

)
π

4 ε
2τ,

which means that the error of the NRNPI decreases only linearly, but in return, the error
constant is proportional to ε2. Altogether, we obtain the following

Corollary 3.14. In the setting of Corollary 3.13, we have

∥ψn − ψε(tn)∥L2 ≤ C⋆

(
1 + 1√

2

)
τ2 for optimal τ ≥ π

4 ε
2,

∥ψn − ψε(tn)∥L2 ≤ C⋆

(
1 + 1√

2

)
π

4 ε
2τ for τ < π

4 ε
2.

In the first case, the error of the NRNPI is not larger than the one of the full NPI-2, even
though many terms have been omitted from the numerical flow. Only if extremely small
errors of less than O

(
ε4) are required, the second case, where the NRNPI is inferior, becomes

relevant.
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Proof of Theorem 3.12. Let en = ϕε(tn) − ϕn be the global error at time tn. The linearity of
ΦNRNPI(t, u) for fixed u allows decomposing en as

en = ϕε(tn) − ΦNRNPI(tn−1, ϕ
n−1)[ϕn−1] = ℓn + dn + ΦNRNPI(tn−1, ϕ

n−1)[en−1]

with ℓn = ϕε(tn) − ΦNRNPI(tn−1, ϕ
ε(tn−1))[ϕε(tn−1)] being the local error and

dn := ΦNRNPI(tn−1, ϕ
ε(tn−1))[ϕε(tn−1)] − ΦNRNPI(tn−1, ϕ

n−1)[ϕε(tn−1)] (3.47)

accounting for perturbations in the linear flow operator ΦNRNPI. Dissolving the recursion
formula yields

en = ℓn + dn + ΦNRNPI(tn−1, ϕ
n−1)

[
ℓn−1 + dn−1 + ΦNRNPI(tn−2, ϕ

n−2)[en−2]
]

= . . . =
n∑
k=1

Φn,k
NRNPI

[
ℓk
]

+
n∑
k=1

Φn,k
NRNPI

[
dk
]
. (3.48)

Here, we used the definition and linearity of Φn,k
NRNPI and that e0 = ϕε(t0) − ϕ0 = 0. Again

using the linearity of Φn,k
NRNPI and the decomposition of the local error ℓk from (3.42), the

first sum can be decomposed to
n∑
k=1

Φn,k
NRNPI

[
ℓk
]

=
n∑
k=1

Φn,k
NRNPI

[
ℓkNPI

]
+

n∑
k=1

Φn,k
NRNPI

[
ℓkdiff

]
. (3.49)

Now, the lemmas established before allow deriving suitable bounds for the norm of each of
the sums appearing in (3.48) or (3.49). In the first sum of (3.49), we can “afford” to lose one
τ since ℓkNPI is in O

(
τ3). Thus, we can use triangle inequality together with Lemma 3.11 to

obtain ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

Φn,k
NRNPI

[
ℓkNPI

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

≤
n∑
k=1

∣∣∣∣∣∣∣∣∣Φn,k
NRNPI

[
ℓkNPI

]∣∣∣∣∣∣∣∣∣
L2

≤
n∑
k=1

eCtn
∣∣∣∣∣∣∣∣∣ℓkNPI

∣∣∣∣∣∣∣∣∣
L2

≤
n∑
k=1

CeCtnτ3 ≤ CT eCT τ2. (3.50)

To control the second sum in (3.49), however, we rely on cancellation of errors from different
time steps, such that a more sophisticated analysis is required here. Recalling the structure
of ℓkdiff from Lemma 3.8 and using summation by parts, we have

n∑
k=1

Φn,k
NRNPI

[
ℓkdiff

]
= τ2 ∑

q∈Q

n∑
k=1

eiqtk−1/ε
2Φn,k

NRNPI

[
Ek−1
q

]

= τ2 ∑
q∈Q

Φn,n
NRNPI

[
En−1
q

] n∑
k=1

eiqtk−1/ε
2

+ τ2 ∑
q∈Q

n−1∑
k=1

(
Φn,k

NRNPI

[
Ek−1
q

]
− Φn,k+1

NRNPI

[
Ekq

]) k∑
j=1

eiqtj−1/ε2
.

Since Φn,n
NRNPI[·] = Id, we obtain∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

Φn,k
NRNPI

[
ℓkdiff

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

≤ τ2 ∑
q∈Q

∣∣∣∣∣∣∣∣∣En−1
q

∣∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣
n∑
k=1

eiqtk−1/ε
2

∣∣∣∣∣
+ τ2 ∑

q∈Q

n−1∑
k=1

∣∣∣∣∣∣∣∣∣Φn,k
NRNPI

[
Ek−1
q

]
− Φn,k+1

NRNPI

[
Ekq

]∣∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣
k∑
j=1

eiqtj−1/ε2

∣∣∣∣∣∣ .
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In the first term, only the complex numbers oscillating on the unit circle are summed up. For
nonresonant step sizes, the modulus of this sum does not grow with n since by the geometric
sum formula, we have∣∣∣∣∣

n∑
k=1

eiqtk−1/ε
2

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
k=0

eiqtk/ε2

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
k=0

(
eiqτ/ε2)k∣∣∣∣∣ =

∣∣∣∣∣eiqtn/ε2 − 1
eiqτ/ε2 − 1

∣∣∣∣∣ ≤ 2∣∣eiqτ/ε2 − 1
∣∣ ≤ 2

K(τ, ε)

for all q ∈ Q. Together with the uniform bound for the norm of En−1
q from Lemma 3.8, we

infer that the first term is in O
(

τ2

K(τ,ε)

)
. Further, using the properties of ΦNRNPI and Φn,k

NRNPI
from Lemmas 3.9 and 3.11, respectively, and the properties for the error components Eq from
Lemma 3.8, we obtain for k ≤ n− 1 that∣∣∣∣∣∣∣∣∣Φn,k

NRNPI

[
Ek−1
q

]
− Φn,k+1

NRNPI

[
Ekq

]∣∣∣∣∣∣∣∣∣
L2

≤
∣∣∣∣∣∣∣∣∣Φn,k

NRNPI

[
Ek−1
q

]
− Φn,k

NRNPI

[
Ekq

]∣∣∣∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣∣∣∣Φn,k

NRNPI

[
Ekq

]
− Φn,k+1

NRNPI

[
Ekq

]∣∣∣∣∣∣∣∣∣
L2

=
∣∣∣∣∣∣∣∣∣Φn,k

NRNPI

[
Ek−1
q − Ekq

]∣∣∣∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣∣∣∣Φn,k+1

NRNPI

[
ΦNRNPI(tk, ϕk)

[
Ekq

]
− Ekq

]∣∣∣∣∣∣∣∣∣
L2

≤ eCtn
∣∣∣∣∣∣∣∣∣Ek−1

q − Ekq

∣∣∣∣∣∣∣∣∣
L2

+ eCtn
∣∣∣∣∣∣∣∣∣(ΦNRNPI(tk, ϕk) − Id

) [
Ekq

]∣∣∣∣∣∣∣∣∣
L2

≤ eCtnCτ + eCtnCτ
∣∣∣∣∣∣∣∣∣[Ekq ]∣∣∣∣∣∣∣∣∣H2

≤ CτeCT .

Overall, we have∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

Φn,k
NRNPI

[
ℓkdiff

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

≤ τ2 ∑
q∈Q

C
2

K(τ, ε) + τ2 ∑
q∈Q

n−1∑
k=1

CτeCT 2
K(τ, ε) ≤ τ2CT eCT

K(τ, ε) . (3.51)

Now, it remains to control the second sum in (3.48). Recall the definition of dk from (3.47).
Since ϕε(tk−1) ∈ B2(Mex) and ϕk−1 ∈ B2(Mnum) by Assumptions 3.1 and 3.10, respectively,
we can use Lemma 3.9 (iii) with R = max{Mex,Mnum} to obtain

|||dk|||L2 ≤ Cτ
∣∣∣∣∣∣∣∣∣ϕε(tk−1) − ϕk−1

∣∣∣∣∣∣∣∣∣
L2

= Cτ
∣∣∣∣∣∣∣∣∣ek−1

∣∣∣∣∣∣∣∣∣
L2
.

The triangle inequality together with Lemma 3.11 then yields∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

Φn,k
NRNPI[d

k]
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

≤ eCtn
n∑
k=1

∣∣∣∣∣∣∣∣∣dk∣∣∣∣∣∣∣∣∣
L2

≤ CeCT τ
n∑
k=1

∣∣∣∣∣∣∣∣∣ek−1
∣∣∣∣∣∣∣∣∣

L2
. (3.52)

Finally, combining (3.48) - (3.52), we have

|||en|||L2 ≤ Cτ2
(

1 + 1
K(τ, ε)

)
+ Cτ

n∑
k=1

∣∣∣∣∣∣∣∣∣ek−1
∣∣∣∣∣∣∣∣∣

L2
.

The discrete Gronwall Lemma inequality implies

|||en|||L2 ≤ Cτ2
(

1 + 1
K(τ, ε)

)
enCτ ≤ Cτ2

(
1 + 1

K(τ, ε)

)
eCT ,

which completes the proof.

Remark 3.15. Since the local errors of the NRNPI contain those of the NPI-2 (ℓkNPI) and
additionally the terms that have been omitted from it (ℓkdiff), the error analysis of the NRNPI
is more involved than of the full NPI-2. Nevertheless, we were able to present it in detail

53



in the proof above. This is worth mentioning since in the work [CW22], where the authors
presented the original version of the NPI-2, they refrained from an error analysis due to the
plethora of terms in the numerical flow. It was the structured formulation of the NPI-2 and
the NRNPI in (3.32)-(3.35) and (3.39)-(3.41), respectively, that made the error analysis in
this section manageable. In fact, Lemmas 3.9, 3.11 and 3.17 could easily be extended to
the NPI-2. A uniform second-order global error bound could then be proven with standard
techniques and without requiring summation by parts.

Remark 3.16. The entire error analysis can also be carried out in Hr instead of L2 if more
regularity is available. For error bounds in Hr, we only have to replace H2 by H2+r in
Assumptions 3.1 (A) and 3.10 as well as H4 by H4+r in Assumption 3.1 (B). If r > 3/2,
then Hr is an algebra, which simplifies things because (3.3) and (3.4) can then be replaced by
the single inequality

∥uv∥Hr ≤ CS ∥u∥Hr ∥v∥Hr , u ∈ Hr(R3), v ∈ Hr(R3),

and (3.5) and (3.6) by

∥u∗v∥Hr ≤ CS ∥u∥Hr ∥v∥Hr , u ∈
(
Hr(R3)

)4
, v ∈

(
HrR3)

)4
.

3.5 Numerical illustrations
In this section, we illustrate the results of our error analysis for the NRNPI by numerical
experiments. Furthermore, we compare the efficiency of the NRNPI and the NPI-2.

3.5.1 Problem setting and details about the numerical computations

For simplicity, we consider the NLDE in one space dimension, where it can be reduced to

∂tψ
ε(t, x) = − i

ε2 T̃εψε(t, x) − iW̃ (t, x)ψε(t, x) − iF̃ (ψε)ψε(t, x), t > 0, x ∈ R

with a two-component solution ψε(t, x) ∈ C2 and

T̃ε = −iεσ1∂x + σ3, W̃ (t, x) = V (t, x)I2 −A1(t, x)σ1, F̃ (u) = |u|2 I2,

see e.g. [Bao+16b]. To keep notation simple, we omit the tilde in the following. For this
reduced system, the construction of the NRNPI as well as the error analysis can be carried
out in exactly the same manner.

In the numerical computations, we have to replace the unbounded domain by a sufficiently
large, but bounded interval Ω = [a, b] and impose periodic boundary conditions as, e.g.,
in [Bao+16b; BCY21; CW22]. For the space discretization, we define grid points xj =
(a+ b)/2 + jh, j = −M, ...,M − 1, with mesh size h = (b− a)/2M for M = 128 and compute
all spatial derivatives by Fourier pseudospectral techniques.

The initial data, the potential functions and the interval Ω are chosen as in [Bao+16b; CW22],
i.e.

ψinit
1 (x) = e−x2/2, ψinit

2 (x) = e−(x−1)2/2, V (x) = 1 − x

1 + x2 , A1(x) = (x+ 1)2

1 + x2

for x ∈ Ω = [−16, 16]. We consider time intervals [0, T ] with two slightly different values
of T which are specified below. All numerical computations on [0, T ] are carried out with
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Figure 3.1: The behavior of the function τ 7→ τ2

K(τ,ε) (left) compared to the error at time
T = 0.3360π of the NRNPI (right) for ε = 0.01. In both plots, the axis limits for the step size
τ are the same. The green dots depict the function values for the optimal step sizes (3.45).
Further, the vertical gray lines mark the resonant step sizes (3.46), where we distinguish
between the multiples of πε2 (dash-dotted) and the additional multiples of πε2

2 (dashed) or
πε2

3 (dotted). The black lines are first (solid) and second (dashed) order reference lines.

step sizes τ = T/N , where N ∈ N is the number of time steps. This means, in particular,
that not all positive real numbers are possible step sizes, which will be important later on.
We apply both the NPI-2 and the NRNPI to compute approximations ψ1, . . . , ψN via (3.18).
For all error plots, we then compare the approximations ψN at the final time tN = T with
a reference solution ψ(T ) of the NLDE. To compute the latter, we use the same spatial grid
and applied Matlab’s ode45 routine with very small absolute and relative tolerances. All
errors are measured in the L2-norm, which is approximated by ∥u∥2

L2 ≈
∑M−1
k=−M |ûk|2 for a

periodic function u ∈
(
L2(Ω)

)2 with Fourier coefficients ûk ∈ C2, k ∈ Z.

3.5.2 Accuracy

First, we want to observe how the accuracy of the NRNPI depends on the step size τ . While
doing so, we pay special attention to the performance of the NRNPI for optimal step sizes
(3.45) and for resonant step sizes (3.46). This is why we choose T in such a way that for
ε ∈ {0.005, 0.01, 0.02}, many of the optimal and resonant step sizes are hit by τ = T/N for
some N ∈ N. A suitable choice is T = 0.336π ≈ 1. Then, for ε = 0.02, the resonant step
sizes τ = k

2πε
2 with k ∈ N have the form τ = T/N for some N ∈ N if

N = 2T
kπ
ε−2 = T

2kπ104 = 3360
2k (3.53)

is an integer, which is true if k ∈ {1, . . . , 8, 10, 12, 14, 15, 16 . . .}. The same holds for ε = 0.01
or ε = 0.005, because dividing ε by 2 in (3.53) simply corresponds to multiplying N by 4.
Similar considerations can be made for resonant step sizes of the form τ = k

3πε
2 and for the

optimal step sizes (3.45).

Figure 3.1 (b) shows the L2-error of the NRNPI for ε = 0.01 at the final time T = 0.336π
in dependency of the time step size τ . By comparing the red line with the black dashed
reference line, one can see that for τ ≥ π

4 ε
2, the error of the NRNPI is indeed proportional
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Figure 3.2: Left: L2-error of the NRNPI (solid) and the NPI-2 (dashed) at time T = 0.3360π
in dependency of the step size τ for three different values of ε. Right: L2-error of the NRNPI
at time T = 1 in dependency of ε for five different step sizes τ , namely τ0 = 0.02 and
fractions thereof. The filled markers correspond to ε-values for which the respective step size
is optimal.

to τ2 if optimal step sizes (represented by the green markers) are chosen. The error can,
however, be much larger for step sizes close to the resonant step sizes (depicted by the gray
vertical lines). For τ < π

4 ε
2 (i.e. left of the leftmost green marker), only linear convergence

is observed. This error behavior agrees perfectly with the Corollaries 3.13 and 3.14. What
comes as a surprise is that not all resonant step sizes seem to be harmful, because in contrast
to the function τ 7→ τ2

K(τ,ε) depicted in (a), the error plot in (b) does only have a spike at
some of the resonant step sizes. This interesting effect will be discussed below.

The way how this error behavior changes for other values of ε is illustrated in Figure 3.2 (a).
The red line is the same as in Figure 3.1 (b), but the corresponding results for ε = 0.02
(blue) and ε = 0.005 (yellow) are added. It can be seen that the error constant of the linear
convergence for τ < π

4 ε
2 decreases significantly with ε, which again corroborates our error

analysis; cf. Corollaries 3.13 and 3.14. The dashed lines in blue, red, and yellow show the error
of the full NPI-2. As expected, all of them almost coincide, because the NPI-2 is uniformly
accurate. Comparing the solid colored lines with the dashed ones shows that for nonresonant
step sizes the NRNPI has almost exactly the same accuracy as the NPI-2, although a huge
number of terms of the latter have been omitted in the former. Only for very small step
sizes, the accuracy of the NPI-2 is better, because then the O

(
τε2)-errors of the NRNPI are

larger than the O
(
τ2)-errors of the NPI-2. More precisely, this is the case if τ < Cε2 for some

constant C. In this experiment, the value C ≈ 3π
4 can be observed. However, we emphasize

that at the threshold τ = Cε2 the error has already been reduced to O
(
ε4), which should be

sufficient for most applications.

Figure 3.2 (b) illustrates how the error of the NRNPI scales for several fixed step sizes,
but varying values of ε. Here, the special choice of T made before is no longer necessary,
such that we use T = 1 instead. In the regime ε ≤

(
4τ
π

)1/2
, i.e. for τ ≥ π

4 ε
2, only values

of ε have been chosen for which the respective step size is one of the optimal step sizes
τ = 2k−1

4 πε2 from Eq. (3.45), i.e. ε =
( 4τ

(2k−1)π
)1/2 for some k ∈ N. Those values of ε are

depicted by the filled markers. The numbers k = 1, 2, 3 (furthermost right filled markers)
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and k = 6, 11, 21, 41, ... (other filled markers) were chosen for a suitable distribution on the
logarithmic axis. Apart from the one for k = 1, all markers for the same step size are nearly
at the same height, which again confirms that the error is independent of ε for optimal step
sizes τ ≥ π

4 ε
2, in accordance with Corollary 3.14. In contrast, in the regime τ < π

4 ε
2 (empty

markers), a comparison with the reference line yields that the error scales quadratically with
ε, as predicted by Corollary 3.14.

All in all, the numerical experiments agree nicely with the main results of our error analysis.
However, these experiments also suggest that in practice, the performance of the NRNPI
is even better than predicted by theory. The following three aspects are interesting in this
context.

Resonant but harmless step sizes. In view of Figure 3.1, it seems that not all resonant
step sizes (3.46) do indeed cause a large error. In fact, apart from the furthermost left, all
spikes appear at multiples of πε2, and there are no spikes at those multiples of πε2

2 or πε2

3 that
are not a multiple of πε2 as well. Those step sizes had to be excluded such that the terms
of the form (3.37) for q = ±4 or q = ±6, respectively, do indeed have prefactors pointing in
different directions on the complex plane. As an example, we analyze the term in the second
line of (3.33). Here, one combination of indices leading to the value q = 6 in the exponent is
J = (1, 1, 1), σ = −1 and p = 2. The corresponding term that has been omitted for the flow
of the NRNPI, evaluated for a solution u = ϕε(tn) =

(
ϕε−1(tn), ϕε+1(tn)

)
of the transformed

Dirac equations, is

e6it/ε2B−1(4, 2)Πε
−1

[(
Ĝ

(2)
−1(ϕε(tn))[ϕε(tn)]

)∗
ϕε+1(tn)ϕε+1(tn)

]
(3.54)

with

Ĝ
(2)
−1(ϕε(tn))[ϕε(tn)] = −iΠε

−1
[
(ϕε+1(tn))∗ϕε−1(tn)ϕε−1(tn)

]
.

Noting that ϕε−1 and ϕε+1 are in the range of the opposing projectors Πε
−1 and Πε

+1, respec-
tively, and considering an expansion of Πε

∓1 w.r.t. ε, it was shown in [CW19, Eq. (3.25) and
(3.26)], however, that∥∥(ϕε+1(s))∗ϕε−1(s)

∥∥
L2 ≤ Cε,

∥∥Πε
−1
[
uϕε+1(s)

]∥∥
L2 ≤ Cε,

∥∥Πε
+1
[
uϕε−1(s)

]∥∥
L2 ≤ Cε

for any s ∈ [0, T ], any sufficiently regular, scalar-valued function u, and a constant C inde-
pendent of ε. This yields∥∥∥Ĝ(2)

−1(ϕε(tn))[ϕε(tn)]
∥∥∥
L2

≤ Cε,
∥∥∥Πε

−1

[(
Ĝ

(2)
−1(ϕε(tn))[ϕε(tn)]

)∗
ϕε+1(tn)ϕε+1(tn)

]∥∥∥
L2

≤ Cε2.

Thus, the terms in (3.54) are actually not only in O
(
τ2), but even in O

(
τ2ε2) and hence also

in O
(
τ3) for τ ≥ π

4 ε
2. Consequently, in our error analysis, we do not rely on non-accumulation

of the error terms obtained by omitting terms of the form (3.54). All other terms with q = 6
or q = −6 in the exponent can be analyzed in a similar way, which explains the absence of
spikes at

τ = k

3πε
2, k ∈ N \ {3, 6, 9, . . .}

in Figures 3.1 (b) and 3.2 (a), and which implies that the corresponding step size restriction
is actually not necessary. A corresponding analysis for q = ±4, however, does not cover all
terms, such that we do not have a full explanation for the other missing spikes.
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Figure 3.3: L2-error of the NRNPI (solid, circles) and the NPI-2 (dashed, diamonds) at time
T = 1 in dependency of the computing time for two different values of ε. Each marker
corresponds to an approximation with a different step size.

Bounded error for resonant step sizes. By definition of K(τ, ε), the function τ 7→
τ2/K(τ, ε) has a singularity at the resonant step sizes (3.46), which is illustrated in Fig-
ure 3.1 (a). Hence, Corollary 3.13 suggests that the error of the NRNPI would be unbounded
if a resonant step size was used. In contrast, Figure 3.1 (b) reveals that even at those resonant
step sizes where spikes indeed appear, the error grows only to a finite level. There are two
explanations for this. First, NRNPI is a first-order uniformly accurate method for all step
sizes τ , as we have seen in the discussion after Lemma 3.9. Indeed, the furthermost left large
spikes for the different values of ε in Figure 3.2 (a) could be capped by a first-order reference
line. Secondly, an alternative error bound can be derived by once more analyzing the norm
of the operators Bσ(δ, ζ) contained in the terms (3.37) that have been omitted from the nu-
merical flow of the full NPI-2. By the definition of Bσ(δ, ζ), cf. (3.31), and of the φ1-function,
we have

Bσ(δ, ζ) = ε2

iζ

∫ τ

0
eσi(τ−s)Dεeiδs/ε2 (eiζs/ε2 − 1

)
ds

for ζ ̸= 0, such that an O
(
τε2) bound in operator norm follows. In the case ζ = 0, the same

bound easily follows by integration by parts. Together with the local error terms from the
full NPI-2, the local error of the NRNPI can be shown to be in O

(
τε2 + τ3), which in turn

can be used to derive the bound C(ε2 + τ2) for the global error. In particular, for τ ≤ ε
(including resonant τ), the error is limited by Cε2. This explains the constant height of all
spikes for a given value of ε.

Accuracy for non-optimal but nonresonant step sizes. Whilst the optimal step sizes
(3.45) provide a suitable choice for τ , many other nonresonant step sizes yield equally good
results.

3.5.3 Efficiency

In the convergence analysis and the illustrations before, we have seen that for optimal step
sizes in the regime τ ≥ π

4 ε
2, the NRNPI yields equally accurate results as the NPI-2 applied

with the same step size. However, since the numerical flow of the NRNPI was obtained by
omitting many terms of the flow of the NPI-2, each time step of the former is significantly
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cheaper than of the latter. In other words, if a certain computing time is available, more
steps of the NRNPI can be conducted, yielding an improved accuracy. To show this effect,
we apply both methods for different step sizes and then evaluate the error in dependency of
the computing times required. In the regime τ ≥ π

4 ε
2, only nonresonant step sizes are used.

The results are depicted in Figure 3.3. A comparison of the constants of the two second-order
reference lines therein shows that for large step sizes, the error of the NRNPI is approximately
3/16 = 18.75% of the one of the NPI-2 for a fixed computing time. Conversely, to achieve a
given accuracy which is not extremely high (i.e. errors not smaller than ε4, up to a constant),
the necessary computing time of the NRNPI is around

√
3/16 ≈ 43.3% of that of the NPI-2.

In fact, it can be checked that the numerical flow of the NRNPI contains only around 32%
of the terms of the flow of the NPI-2. The reason why this does not quite correspond to the
improvement in terms of computing time is some computational overhead which is equally
expensive for both methods, such as, e.g., the evaluation of all Ĝ(p)

σ -operators or the evolution
of the kinetic part.

For τ < π
4 ε

2 the error of the NRNPI is bounded by C1ε
2τ with a constant C1 according to

Corollary 3.14, whereas the error of the NPI-2 is bounded by C2τ
2 for some C2. Hence, the

NPI-2 is more accurate for τ ≤ (C1/C2)ε2. This means that if τ is sufficiently small, the full
second order of NPI-2 starts to pay off and compensates the higher costs per time step, such
that the NPI-2 outperforms the NRNPI. This is reflected by Figure 3.3: The point where
the solid line crosses the dashed line of the same color has an ordinate (= error at time T )
of approximately ε4, i.e. 10−8 for the blue lines (ε = 0.01) and 1.6 · 10−7 for the red lines
(ε = 0.02). Since ε is assumed to be small, however, we believe that such a high accuracy is
not required in many applications.

All in all, the NRNPI offers a significant efficiency gain as long as the desired accuracy is not
extremely high. Moreover, the substantial reduction of the number of terms facilitates the
implementation and in particular the debugging.

3.6 Proof of auxiliary lemmas
In this chapter, we present the proofs of the Lemmas 3.8, 3.9 and 3.11. In preparation thereto,
we prove an additional lemma concerning properties of the operators Ĝ(p)

σ in Section 3.6.1. In
several parts of the proofs, we will have to use that differences of two identically-structured
products of two or three functions can be related to differences of the individual functions by
inserting intermediate terms. In particular, we have

u∗v − ũ∗ṽ = u∗ (v − ṽ) + (u− ũ)∗ ṽ, (3.55)
u∗vw − ũ∗ṽw̃ = u∗v (w − w̃) + u∗ (v − ṽ) w̃ + (u− ũ)∗ ṽw̃ (3.56)

for u, v, w, ũ, ṽ, w̃ ∈
(
L2(R3)

)4.

3.6.1 Properties of the operators Ĝ(p)
σ

Lemma 3.17. Let Assumption 3.1 hold and let R > 0. For each u ∈ B2(R), p ∈ {−4,−2, 0, 2}
and σ ∈ {−1, 1}, the operators Ĝ(p)

σ (u) are linear operators with the properties

(i)
∥∥∥Ĝ(p)

σ (u)[v]
∥∥∥
L2

≤ C

τ
|||v|||L2 for all v ∈ L2,

(ii)
∥∥∥Ĝ(p)

σ (u)[v]
∥∥∥
H2

≤ C

τ
|||v|||H2 for all v ∈ H2,
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(iii)
∥∥∥Ĝ(p)

σ (u)[v]
∥∥∥
H2

≤ C |||v|||H4 for all v ∈ H4.

Moreover, the inequalities

(iv)
∥∥∥Ĝ(p)

σ (u)[u] − Ĝ(p)
σ (ũ)[ũ]

∥∥∥
L2

≤ C

τ
|||u− ũ|||L2 ,

(v)
∥∥∥Ĝ(p)

σ (u)[u] − Ĝ(p)
σ (ũ)[ũ]

∥∥∥
L2

≤ C |||u− ũ|||H2 ,

(vi)
∥∥∥Ĝ(p)

σ (u)[v] − Ĝ(p)
σ (ũ)[v]

∥∥∥
L2

≤ C |||u− ũ|||L2

hold for all u, ũ, v ∈ B2(R). In all cases, the constant C does depend on R, but not on τ and
ε.

Proof. (i) Let u = (u−1, u+1) ∈ B2(R) and v = (v−1, v+1) ∈ L2. Then, for three indices
j1, j2, j3 ∈ {−1,+1}, the inequalities (3.4) and (3.6) yield∥∥∥u∗

j1uj2vj3

∥∥∥
L2

≤ C2
S ∥uj1∥H2 ∥uj2∥H2 ∥vj3∥L2 ≤ C2

SR
2 ∥vj3∥L2 .

Together with the bound (3.7) for products with the potential W , the fact that
∥∥Πε

∓1
∥∥ = 1,

and the estimate (3.24) for the norm of D̂ε(τ), the assertion follows from the definition of
Ĝ

(p)
σ .

(ii) As in (i), but using that H2 is an algebra instead of inequalities (3.4) and (3.6).

(iii) As in (ii), but using the estimate (3.25) instead of (3.24) for D̂ε(τ).

(iv) Let u, ũ ∈ B2(R). First, note that with (3.24), we have∥∥∥σiD̂ε(τ)uσ − σiD̂ε(τ)ũσ
∥∥∥
L2

≤
∥∥∥D̂ε(τ) [uσ − ũσ]

∥∥∥
L2

≤ 1
τ

|||u− ũ|||L2 .

For three indices j1, j2, j3 ∈ {−1,+1}, a decomposition of the form 3.56 together with the
inequalities (3.4) and (3.6) imply that∥∥∥u∗

j1uj2uj3 − ũ∗
j1 ũj2 ũj3

∥∥∥
L2

≤ 3C2
SR

2 |||u− ũ|||L2 .

On top of that, (3.7) yields

∥Wuj −Wũj∥L2 = ∥W (uj − ũj)∥L2 ≤ CW |||u− ũ|||L2

for j ∈ {−1,+1}. Now the assertion follows from
∥∥Πε

∓1
∥∥ = 1 and the definition of Ĝ(p)

σ .

(v) Instead of (3.24), we use the estimate (3.25) to obtain∥∥∥σiD̂ε(τ)uσ − σiD̂ε(τ)ũσ
∥∥∥
L2

≤
∥∥∥D̂ε(τ) [uσ − ũσ]

∥∥∥
L2

≤ 1
2 |||u− ũ|||H2 .

Considering that the L2-norm is bounded by H2-norm, the rest then follows exactly as in
(iii).

(vi) Let u, ũ, v ∈ B2(R). Since here Ĝ(p)
σ (u) and Ĝ

(p)
σ (ũ) are applied to the same function

v, the terms including the operator D̂ε or the potential W vanish. For the remaining terms,
one can proceed similarly as in (iii).
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3.6.2 Lemma 3.8: structure of the local error of the NRNPI

Proof of Lemma 3.8. Let σ ∈ {−1,+1}. The terms that have been omitted in J2
σ(tn, ϕε(tn))

[ϕε(tn)] compared to I2
σ(tn, ϕε(tn)) are exactly those of the form (3.37) with q ̸= 0, i.e.

q ∈ Q, and with z given by (3.38). Those terms omitted in J1
σ(tn, ϕε(tn))[ϕε(tn)] compared

to I1
σ(tn, ϕε(tn)) are also of the form (3.37) with q ∈ Q, but with

z(t) = WĜ
(p)
j (ϕε(t))[ϕε(t)] (3.57)

for some j ∈ {−1,+1}, p ∈ {−4,−2, 0, 2}. For each q ∈ Q, collecting all corresponding terms
of the form Bσ(δ, ζ)Πε

σ [z(tn)], combining those for σ = −1 and for σ = +1 in a tuple and
extracting the factor τ2 defines the functions Enq .

Considering that the time derivative of ϕε±1 is uniformly bounded w.r.t. ε in H2, Taylor’s
theorem yields

∥∥∥ϕεj(tn+1) − ϕεj(tn)
∥∥∥
H2

≤ Cτ and thus also

∥∥∥ϕεj(tn+1) − ϕεj(tn)
∥∥∥
L2

≤ Cτ (3.58)

with the constant C = CD from (3.15). Further, since for all t ∈ [0, T ],
∥∥∥ϕεj(t)∥∥∥H4

≤ Mex

by (3.10), we have ϕε(t) = (ϕε−1(t), ϕε+1(t)) ∈ B4(2Mex) ⊂ B2(2Mex). Now it follows from
Lemma 3.17 (v) that∥∥∥Ĝ(p)

j (ϕε(tn+1))[ϕε(tn+1)] − Ĝ
(p)
j (ϕε(tn))[ϕε(tn)]

∥∥∥
L2

≤ C |||ϕε(tn+1) − ϕε(tn)|||H2 ≤ Cτ

(3.59)

for j ∈ {−1,+1} and some constant C which depends on Mex, but not on τ and ε.

Now, we first analyze the case where z is of the type (3.38). Regardless of whether u = ϕεσ
or u = Ĝ

(p)
σ (ϕε(·))[ϕε(·)], from (3.10) and Lemma 3.17 (iii), we know that u(tn) ∈

(
H2(R3)

)4
with uniform bound in ε and n. The same holds for v(tn) and w(tn) and thus for z(tn). On
top of that, the estimates (3.58) and (3.59) yield

∥u(tn+1) − u(tn)∥L2 ≤ Cτ

and the same estimate for the functions v and w. Consequently, for the difference

z(tn+1) − z(tn) = (u(tn+1))∗v(tn+1)w(tn+1) − (u(tn))∗v(tn)w(tn),

a decomposition of the form (3.56) together with the Sobolev inequalities (3.4) and (3.6)
yields

∥z(tn+1) − z(tn)∥L2 ≤ Cτ.

When z is of the form (3.57), the same estimate follows from (3.59) together with the bounds
for products with the potential (3.7). Since

∥∥Πε
∓1
∥∥ = 1 and since Bσ are linear operators with

norm proportional to τ2, we obtain

∥Bσ(δ, ζ)Πε
σ [z(tn)]∥H2 ≤ Cτ2, ∥Bσ(δ, ζ)Πε

σ [z(tn+1)] − Bσ(δ, ζ)Πε
σ [z(tn)]∥L2 ≤ Cτ3,

such that the assertion follows.
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3.6.3 Lemma 3.9: stability of the numerical flow of the NRNPI

Proof of Lemma 3.9. (i) Let u ∈ B2(R) and v = (v−1, v+1) ∈ L2. Since eiστDε is an
isometry in L2, we obtain

|||ΦNRNPI(t, u)[v]|||L2 ≤
∑

σ∈{−1,+1}

( ∥∥∥eσiτDεvσ
∥∥∥
L2

+
∥∥∥J1

σ(t, u)[v]
∥∥∥
L2

+
∥∥∥J2

σ(t, u)[v]
∥∥∥
L2

)
= |||v|||L2 +

∑
σ∈{−1,+1}

( ∥∥∥J1
σ(t, u)[v]

∥∥∥
L2

+
∥∥∥J2

σ(t, u)[v]
∥∥∥
L2

)
.

Each addend of J1
σ(t, u)[v] and J2

σ(t, u)[v] contains an operator Aσ or Bσ. We know that
∥Aσ(δ)∥ ≤ Cτ and ∥Bσ(δ, ζ)∥ ≤ Cτ2 for all σ ∈ {−1,+1}, ζ, δ ∈ Z. According to Lemma 3.17
(i), we have

∥∥∥Ĝ(p)
σ (u)[v]

∥∥∥
L2

≤ C |||v|||L2 for some constant C that depends on R, but not on
τ . Using that u ∈ B2(R) together with the estimates (3.4), (3.6) and (3.7) yields∥∥∥J1

σ(t, u)[v]
∥∥∥
L2

≤ Cτ |||v|||L2 ,
∥∥∥J2

σ(t, u)[v]
∥∥∥
L2

≤ Cτ |||v|||L2

for some constant C that depends on R, but not on τ . The assertion then follows.

(ii) Let u ∈ B2(R) and v = (v−1, v+1) ∈ H2. Then, we have

|||(ΦNRNPI(t, u) − Id) [v]|||L2

≤
∑

σ∈{−1,+1}

( ∥∥∥eσiτDεvσ − vσ
∥∥∥
L2

+
∥∥∥J1

σ(t, u)[v]
∥∥∥
L2

+
∥∥∥J2

σ(t, u)[v]
∥∥∥
L2

)
.

Since vσ ∈
(
H2(R3)

)4 for σ ∈ {−1,+1}, Lemma 3.2 yields∥∥∥eσiτDεvσ − vσ
∥∥∥
L2

≤ Cτ ∥vσ∥H2 .

Moreover, we know from the proof of part (i) that∥∥∥J1
σ(t, u)[v]

∥∥∥
L2

≤ Cτ |||v|||H2 ,
∥∥∥J2

σ(t, u)[v]
∥∥∥
L2

≤ Cτ |||v|||H2

because |||v|||L2 ≤ |||v|||H2 . Altogether, the assertion follows.

(iii) Let u = (u−1, u+1), ũ = (ũ+1, ũ−1), v = (v−1, v+1) ∈ B2(R). Since in both ΦNRNPI(t, u)[v]
and ΦNRNPI(t, ũ)[v], the evolution operators e±iτDε act on the components v−1 and v+1 of
the same function v, we have

|||ΦNRNPI(t, u)[v] − ΦNRNPI(t, ũ)[v]|||L2 ≤
∑

σ∈{−1,+1}

( ∥∥∥J1
σ(t, u)[v] − J1

σ(t, ũ)[v]
∥∥∥
L2

+
∥∥∥J2

σ(t, u)[v] − J2
σ(t, ũ)[v]

∥∥∥
L2

)
.

We proceed by discussing the second term first. Both J2
σ(t, u)[v] and J2

σ(t, ũ)[v] are given by
(3.40), only with u replaced by ũ in the latter case (whereas the function v in the second
argument is the same). Combing the corresponding double sums, the difference of J2

σ(t, u)[v]
and J2

σ(t, ũ)[v] consists of four double sums which we analyze individually. The first one is
given by

3∑
j=−3
j odd

∑
J∈J

#J=j

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ

(
u∗

−j1uj2 − ũ∗
−j1 ũj2

)
vj3 . (3.60)
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With (3.4) and the fact that ∥vj3∥H2 ≤ |||v|||H2 ≤ R, we obtain∥∥∥(u∗
−j1uj2 − ũ∗

−j1 ũj2

)
vj3

∥∥∥
L2

≤ CSR
∥∥∥u∗

−j1uj2 − ũ∗
−j1 ũj2

∥∥∥
L2
.

A decomposition of the form (3.55) together with (3.6) and ∥uj∥H2 ≤ |||u|||H2 ≤ R for
j ∈ {−1,+1} leads to ∥∥∥u∗

−j1uj2 − ũ∗
−j1 ũj2

∥∥∥
L2

≤ 2CSR |||u− ũ|||L2 .

Combining both estimates and considering that the operators Aσ and Πε
∓1 have norm bounded

by Cτ and 1, respectively, yields a bound of the form Cτ |||u− ũ|||L2 for the L2-norm of the
first double sum (3.60).

The second double sum in the difference J2
σ(t, u)[v] − J2

σ(t, ũ)[v] is

3∑
j=−3
j odd

∑
J∈J

#J=j

Bσ(j − σ, σ − j)Πε
σ

[((
Ĝ

(j1(σ−j))
−j1 (u)[u]

)∗
uj2 −

(
Ĝ

(j1(σ−j))
−j1 (ũ)[ũ]

)∗
ũj2

)
vj3

]
.

First using a decomposition of the form (3.55) together with estimate (3.6) and then applying
Lemma 3.17 (ii) and (iv), we find∥∥∥(Ĝ(j1(σ−j))

−j1 (u)[u]
)∗
uj2 −

(
Ĝ

(j1(σ−j))
−j1 (ũ)[ũ]

)∗
ũj2

∥∥∥
L2

≤ CS
( ∥∥∥Ĝ(j1(σ−j))

−j1 (u)[u] − Ĝ
(j1(σ−j))
−j1 (ũ)[ũ]

∥∥∥
L2

∥uj3∥H2

+
∥∥∥Ĝ(j1(σ−j))

−j1 (ũ)[ũ]
∥∥∥
H2

∥uj2 − ũj2∥L2

)
≤ C

τ
|||u− ũ|||L2

for some constant C dependent on R. Having established this bound, estimating the L2-norm
of the second double sum works in the same way as for the first one. The τ in the denominator
is not a problem, since it is compensated by the extra τ we get from the bound of the norm
of Bσ. Analogously, one can proceed for the third double sum in the difference of J2

σ(t, u)[v]
and J2

σ(t, ũ)[v].

In the fourth double sum

3∑
j=−3
j odd

∑
J∈J

#J=j

Bσ(j − σ, σ − j)Πε
σ

[
u∗

−j1uj2Ĝ
(j3(σ−j))
j3

(u)[v] − ũ∗
−j1 ũj2Ĝ

(j3(σ−j))
j3

(ũ)[v]
]
,

the functions u or ũ appear in all three factors of the products. Thus, a decomposition of the
form (3.56) instead of (3.55) is required here. Apart from that, the same arguments as for the
previous sums lead to a bound of the form Cτ |||u− ũ|||L2 for some constant C independent
of τ and ε.

It remains to analyze the difference of J1
σ(t, u)[v] and J1

σ(t, ũ)[v]. Each of them consist of
two sums, cf. Eq. (3.39). Since both J1

σ(t, u) and J1
σ(t, ũ) are applied to the same function v,

the first sums vanish in the difference. The difference of the remaining sums can be treated
similarly as those above.
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3.6.4 Lemma 3.11: Stability of Φn,k
NRNPI

Proof of Lemma 3.11. Let u ∈ L2. For k ≥ n the assertion is trivial because Φn,k
NRNPI = Id.

For k < n, Φn,k
NRNPI is given by

Φn,k
NRNPI(u) = ΦNRNPI(tn−1, ϕ

n−1)
[
ΦNRNPI(tn−2, ϕ

n−2)
[
. . . ΦNRNPI(tk, ϕk)

[
u
]]]
.

Now, we can apply Lemma 3.9 (i) for ΦNRNPI(tk, ϕk), then for ΦNRNPI(tk+1, ϕ
k+1) and so

forth. The constant of the lemma can be chosen identically each time by Assumption 3.10.
Thus, we obtain∣∣∣∣∣∣∣∣∣Φn,k

NRNPI(u)
∣∣∣∣∣∣∣∣∣

L2
≤ (1 + Cτ)n−k |||u|||L2 ≤

(
1 + Ctn

n

)n
|||u|||L2 ≤ eCtn |||u|||L2 ,

which proves the assertion.

64



Chapter 4

Splitting methods for (transformed)
Dirac equations

4.1 Introduction
The technique of iterating Duhamel’s formula, which built the basis in constructing the
NPI-2 scheme in the previous chapter, is a very powerful tool as it allows finding explicit
approximations of the solution after a time step of given size τ . More precisely, it is possible
to construct approximations of arbitrary order in τ that are independent of the highest
occurring frequency of the temporal oscillations, see [CW19] and [CW22] for the linear and
nonlinear Dirac equation.

However, this technique has the major disadvantage that the approximations (and thus the
numerical time integrators) become more and more complicated with increasing order in τ .
In the case of the transformed Dirac equation, the O

(
s2) approximation (3.29) of ϕεσ(tn + s),

σ ∈ {−1,+1} is still rather clear. However, inserting this representation in the integrals of
Duhamel’s formula once again (especially in the integral containing the nonlinearity) led to
the very involved third order approximation (3.30) of ϕεσ(tn + τ). The enormous amount
of resulting terms was only manageable by a sophisticated notation. Implementation and
debugging of the resulting method and the limited efficiency caused by the large computa-
tional effort required for each time step remain drawbacks of this ansatz. The NRNPI scheme
brought significant improvements on those issues, but the remaining number of terms is still
not particularly small.

Splitting methods are in strong contrast to this. They divide the considered PDE into two (or
more) subproblems and propagate each of them after the other in a specific order. Solutions
of the individual subproblems are typically far easier to approximate than of the full PDE.
Ideally, one can exploit special properties of the subproblems that even allow solving each of
them exactly. The NLDE (1.2), for example, can be split into the two subproblems

∂tψ
ε = − i

ε2 Tεψε, ∂tψ
ε = −iWψε − iF (ψε)ψε. (4.1)

Both of them can indeed be solved exactly in the case γ1 = 0 [Bao+16b]. For the first
subproblem, the decomposition (1.13) yields that

ψε(t0 + t) = e−t i
ε2 Tεψε(t0) =

(
e− i

ε2 te−itDεΠ+
ε + e

i
ε2 teitDεΠ−

ε

)
ψε(t0) (4.2)
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for all t0 ≥ 0 and t > 0. The operators e±itDε and Π±
ε can easily be applied in Fourier space.

Further, if γ1 = 0, one can check that F (ψε) remains constant in time within the second
subproblem, which allows solving it exactly. If the potential W is time-independent, then the
solution is given by

ψε(t0 + t) = e−itW−itF (ψε(t0))ψε(t0). (4.3)

Here, the argument of the exponential function is a 4 × 4-matrix for each x ∈ R3, and its
exponential can easily be computed using a diagonalization [Bao+16b]. Numerical schemes
can be constructed by combining the exact flows (4.2) and (4.3), e.g., using Strang splitting.
For a given step size τ , approximations ψn ≈ ψε(tn) to the exact solution at the discrete time
points tn = nτ , n = 0, 1, ..., are then computed via the procedure

ψ 1⃝ = e− τ
2 · i

ε2 Tεψn, ψ 2⃝ = e−iτW−iτF (ψ 1⃝)ψ 1⃝, ψn+1 = e− τ
2 · i

ε2 Tεψ 2⃝. (4.4)

Together with space discretization by Fourier spectral methods, the resulting scheme was
named time-splitting Fourier pseudospectral method (TSFP) by the authors of [Bao+16b].
The iteration (4.4) is very simple, and each time step is very cheap to compute. If only the last
approximation ψN at some final time TN is of interest, then both half steps can be combined,
such that only one Fourier transform/inverse Fourier transform is required before/after each
application of the operator e−τ i

ε2 Tε .

However, also spitting methods come with a major drawback, namely that they are usually not
suitable for oscillatory problems as the error constant is strongly affected by fast oscillations.
In the case of the NLDE, it was shown in [Bao+16b] that the error of the TSFP scheme is in
O
(
τ2/ε4). Useful results can therefore only be expected for small step sizes τ ≤ ε2. Further,

the authors proved that there exists a number K0 ∈ N such that the error is in O
(
τ2/ε2)

if the special step size τ = 2πε2/K is employed for some K ∈ N with K ≥ K0. Despite
this being a significant improvement, the occurrence of ε2 in the denominator is a serious
disadvantage. A more detailed understanding of the error behavior of the TSFP scheme can
be obtained by looking at a numerical experiment. To this purpose, we again consider the
NLDE in one space dimension as in Sections 2.4 and 3.5.1 with the same initial data and
potentials, and approximate its solution using Strang splitting with different step sizes τ .
The resulting L2-error at the final time T = 1 in dependency of τ is illustrated in Figure 4.1.
For step sizes τ > ε2, a very irregular error behavior is observed. The error oscillates within
a corridor with upper bound of O(1) and lower bound of O(τ), cf. the black dotted reference
line. Only for τ ≤ ε2, second order convergence is observed. However, the error constant
indeed is proportional to ε−2 as a comparison with the dashed reference lines reveals. This
seems to hold for all step sizes τ ≤ ε2, not only for the special step sizes τ = 2πε2/K,
K0 ≤ K ∈ N.

For the sake of completeness, we note that the error bounds improve if no magnetic potential
is present [BCY21]. However, since this is not the case we are interested in, we refrain from
further details.

In this chapter, we will employ a different strategy of splitting the NLDE than the one briefly
discussed above. The crucial advantage of this new strategy is that the splitting error behaves
far more favorable than before, in the sense that it is less critically affected by the oscillatory
nature of solutions of the NLDE. More precisely, we will prove that the error is in

O
(

min
{
τ2

ε
,max

{
τε, τ2

}})
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Figure 4.1: L2-error of the TSFP scheme at time T = 1 in dependency of the time step size
τ for three different values of ε. The dashed reference lines are of the form C τ2

ε2 for a joint
constant C.

and thus in particular in O
(
τ2

ε

)
. This means that the error constant only increases linearly

if ε decreases (no matter if τ ≤ ε2 or τ > ε2). In numerical experiments, we will even see
that the error is in O

(
τ2) uniformly in ε if some specific resonant step sizes are avoided.

This improvement comes at the cost of more challenging subproblems than those in (4.1). In
fact, approximating the solution of each of them will again require the technique of iterating
Duhamel’s formula. It will turn out, however, that applying said technique only to the
subproblems instead of the full NLDE will bring notable improvements.

Overall, the method we construct and analyze in this chapter is an interplay between iterating
Duhamel’s formula and splitting methods. It makes use of the advantages of both techniques,
whereas their disadvantages only occur to a small extent.

As in the previous chapters, we only consider the case γ1 = 0 for the nonlinearity of the
NLDE (1.2) and set γ2 = 1 without loss of generality. Further, we present details only for
time-independent potentials, but later give a remark on how to incorporate time-dependent
potentials as well.

The new splitting strategy is described very simply: We divide the transformed Dirac equation
(2.8) into the two subproblems

∂tϕ
LDE
± = ∓iDεϕ

LDE
± − iΠ±

ε

[
W
(
ϕLDE

± + e±2it/ε2
ϕLDE

∓

)]
, (4.5)

∂tϕ
NL
± = −iΠ±

ε

[
gε(ϕNL

+ (t), ϕNL
− (t), t)

(
ϕNL

± + e±2it/ε2
ϕNL

∓

)]
, (4.6)

i.e. the linear transformed Dirac equations and the PDEs containing only the nonlinear
terms. Then, in order to obtain an approximation ϕn+1

± ≈ ϕε±(tn+1) to the solution ϕε± of
the full transformed Dirac equation at the next time step tn+1 = tn + τ out of the previous
iterate ϕn± ≈ ϕε±(tn), both subproblems are combined via Strang splitting in the following
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way:

1. Solve (4.6) (nonlinearity) for t ∈ [tn, tn + τ
2 ] with initial data ϕn±.

Denote the result by ϕ 1⃝
± .

2. Solve (4.5) (transformed LDE) for t ∈ [tn, tn+1] with initial data ϕ 1⃝
± .

Denote the result by ϕ 2⃝
± .

3. Solve (4.6) (nonlinearity) for t ∈ [tn + τ
2 , tn+1] with initial data ϕ 2⃝

± .
Denote the result by ϕ 3⃝

± =: ϕn+1
± .


(4.7)

Note that the specification of the precise time interval is necessary as the PDEs (4.5) and (4.6)
are not autonomous. The role of both subproblems in Strang splitting could, of course, also
be interchanged, see Remark 4.15 for a motivation of our choice. The improved smoothness
of the transformed Dirac equation (which was discussed in Sections 2.2.2 and 3.2.3) gives
hope for a lower splitting error. However, the presence of the operator Dε and the projectors
Π±
ε makes solving the subproblems non-trivial.

We will proceed as follows in this chapter. First, we will translate the splitting ansatz (4.5)
- (4.6) into the original variables ψε in Section 4.2. On the one hand, this will give an
interesting new perspective on the splitting ansatz. On the other hand, we will also conduct
the analysis of the splitting error in the original variables in Section 4.3. For this analysis,
we will still assume that the subproblems can be solved exactly, but this is not the case
in practice. Instead, we will discuss numerical methods to approximate their solutions in
sections 4.4.1 and 4.4.2. This will allow us to present our proposed time integrator for the
NLDE in Section 4.4.3. We then conduct a full error analysis in Section 4.5 and finally
illustrate our estimates in numerical experiments in Section 4.6.

4.2 Splitting ansatz in original variables

Recall that the transformed Dirac equation was derived by introducing the new variables
ϕε±(t) = e±it/ε2Π±

ε [ψε(t)]. Thus, by definition, ϕε±(t) is in the range of Π±
ε for all t ≥ 0. The

original variable ψε can always be reconstructed by ψε(t) = e−it/ε2
ϕε+(t) + eit/ε2

ϕε−(t).

Now, let ϕLDE
± and ϕNL

± be the solution of the subproblems (4.5) or (4.6), respectively. By
the structure of both PDEs, it is obvious that if the initial data is in the range of Π±

ε , then
the same holds for the solutions ϕLDE

± and ϕNL
± of the subproblems at any later time. Thus,

if we define the new variables ψLDE and ψNL by

ψLDE(t) = e−it/ε2
ϕLDE

+ (t) + eit/ε2
ϕLDE

− (t), ψNL(t) = e−it/ε2
ϕNL

+ (t) + eit/ε2
ϕNL

− (t),

then it is always possible to reconstruct ϕLDE
± and ϕNL

± by

ϕLDE
± (t) = e±it/ε2Π±

ε

[
ψLDE(t)

]
, ϕNL

± (t) = e±it/ε2Π±
ε

[
ψNL(t)

]
.

With ψLDE and ψNL, it is possible to write the subproblems (4.5) and (4.6) more conveniently
as

∂tϕ
LDE
± = ∓ie±it/ε2DεΠ±

ε

[
ψLDE

]
− ie±it/ε2Π±

ε

[
WψLDE

]
,

∂tϕ
NL
± = −ie±it/ε2Π±

ε

[
F (ψNL)ψNL

]
,
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which in turn can be used to derive the PDEs

∂tψ
LDE = − i

ε2

(
Π+
ε − Π−

ε

)
[ψLDE] − iDε

(
Π+
ε − Π−

ε

)
[ψLDE] − iWψLDE,

∂tψ
NL = − i

ε2

(
Π+
ε − Π−

ε

)
[ψNL] − iF (ψNL)ψNL.

(4.8)

Since the differential operator − i
ε2 Tε from the NLDE (1.2) can be decomposed as

− i
ε2 Tε = −i

(
Dε + 1

ε2 Id
)(

Π+
ε − Π−

ε

)
= − i

ε2

(
Π+
ε − Π−

ε

)
− iDε

(
Π+
ε − Π−

ε

)
,

cf. (1.13) and (1.17), the first PDE is, unsurprisingly, the linear Dirac equation in the
original variables. However, for the further analysis, it will be more convenient to distinguish
the unbounded part (w.r.t. ε)

Pε := − i
ε2

(
Π+
ε − Π−

ε

)
of the operator − i

ε2 Tε from the bounded part −iDε
(
Π+
ε − Π−

ε

)
. Instead, we combine the

latter part with the potential W by introducing the linear operator

Lε := −iDε

(
Π+
ε − Π−

ε

)
− iW. (4.9)

The PDEs from (4.8) can then be written as

∂tψ
LDE = PεψLDE + LεψLDE,

∂tψ
NL = PεψNL − iF (ψNL)ψNL.

Thus, in the second PDE, the nonlinearity appears together with the dominating part of the
operator − i

ε2 Tε. Using the notation introduced above, the full NLDE (1.2) can be written as

∂tψ
ε = Pεψε + Lεψε − iF (ψε)ψε. (4.10)

We can now tell how the PDEs (4.5) and (4.6) of both subproblems look like in the original
variables ψLDE and ψNL. However, since the definition of those variables explicitly depends
on time, one has to take special care to appropriately choose the initial data in each substep.
Consider, e.g., the transition from the first to the second step in (4.7). Since ϕ 1⃝

± is the
solution of the first substep at time tn + τ

2 , the corresponding value in the variable ψNL is

ψ 1⃝ := e−i(tn+ τ
2 )/ε2

ϕ 1⃝
+ + ei(tn+ τ

2 )/ε2
ϕ 1⃝

− .

In the second substep in (4.7), however, ϕ 1⃝
± is taken as initial data at time tn. The corre-

sponding value in the variable ψLDE thus is

e−itn/ε2
ϕ 1⃝

+ + eitn/ε2
ϕ 1⃝

− = e−i τ
2 /ε

2Π+
ε [ψ 1⃝] + ei τ

2 /ε
2Π−

ε [ψ 1⃝] = e− τ
2 Pεψ 1⃝, (4.11)

where we used that

etPε = e−it/ε2(Π+
ε −Π−

ε ) = e−it/ε2Π+
ε + eit/ε2Π−

ε

for all t ∈ R due to the special properties of the projectors (1.14). Since the function in (4.11)
is the solution of the initial value problem

∂tψ
RO = −PεψRO, ψRO(0) = ψ 1⃝
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after a time interval of length τ
2 , this means that the transition of the data between the

substeps in the variables ψLDE and ψNL can be interpreted as "rewinding" the dominating
part of the operator Tε, or, in other words, "Rewinding the dominating Oscillations (RO)".
The same considerations hold for the transition between the second and third substep in
(4.7).

All in all, the splitting given by (4.5) - (4.7) can equivalently be interpreted as splitting the
full NLDE (4.10) into the three subproblems

∂tψ
LDE = PεψLDE + LεψLDE,

∂tψ
RO = −PεψRO, (4.12)

∂tψ
NL = PεψNL − iF (ψNL)ψNL

and combining their solutions according to the scheme

ψn
ΨNL

τ
2−→ ψ 1⃝

ΨRO
τ
2−→ ψ 2⃝

ΨLDE
τ

−→ ψ 4⃝
ΨRO

τ
2−→ ψ 5⃝

ΨNL
τ
2−→ ψ 6⃝ =: ψn+1, n = 0, 1, . . . , (4.13)

where ΨLDE
t , ΨRO

t and ΨNL
t are the exact flows of the three (autonomous) subproblems in

(4.12), respectively, over a time interval of length t. The value ψ 3⃝ has not been introduced
so far on purpose, since we will divide the full LDE-step into two substeps for the analysis of
the splitting error later. Combining all right-hand sides in (4.12) yields the right-hand side
of the full NLDE (4.10) again. Thus, (4.12) can be considered as a special splitting of the
NLDE into three terms, and (4.13) is the corresponding Strang splitting scheme.

Although the motivation for this kind of splitting originates from the transformed Dirac
equation, we will work in the original variables for the rest of this chapter. The reasons for
this are, on the one hand, the more compact form of the PDEs from the LDE- and the NL-
subproblem and, on the other hand, the autonomy of all subproblems. Both make notation
considerably easier. The fact that we have to consider a three-term instead of a two-term
splitting does not cause any significant problems, since the solution of the RO-subproblem is
trivial.

4.3 Local splitting error
Before we discuss how the solutions of all three subproblems in (4.12) can be approximated,
we analyze the local splitting error of the approach (4.13) under the assumption that each
subproblem could be solved exactly. To this purpose, let u0 = ψε(tn) be the exact solution
of the full NLDE at some time tn. We analyze the difference between Ψτ (u0) and u 6⃝ in
dependency of τ and ε, where Ψt is the exact flow of the NLDE over a time interval of length
t and u 6⃝ is defined according to the scheme

u0
ΨNL

τ
2−→ u 1⃝

ΨRO
τ
2−→ u 2⃝

ΨLDE
τ
2−→ u 3⃝

ΨLDE
τ
2−→ u 4⃝

ΨRO
τ
2−→ u 5⃝

ΨNL
τ
2−→ u 6⃝. (4.14)

In contrast to (4.13), we used that the exact flow of the LDE-subproblem fulfills ΨLDE
τ =

ΨLDE
τ
2

◦ ΨLDE
τ
2

and introduced the intermediate value u 3⃝.

Of course, establishing an error bound requires some assumptions. First of all, for the initial
data u0 and for all ε ∈ (0, 1), the exact solution of the NLDE must exist on the whole time
interval [0, τ ]. Furthermore, the solution has to be sufficiently regular in space, with uniform
norm bounds in ε. Both properties are non-trivial considering the nonlinear nature of the
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PDE, but for sufficiently small time intervals, these properties are guaranteed by Theorem 2.2
under suitable assumptions on the potential W and on u0. But also the NL-subproblem in
(4.12) is, of course, nonlinear, and the same properties as for the full NLDE are required
for its solutions on time intervals of length τ

2 . Here, we additionally have to keep in mind
that the NL-subproblem appears twice in (4.14), with initial data v0 = u0 or with v0 = u 5⃝.
Furthermore, we will divide the full time step into two half steps for the analysis at some
point. This is why the initial data v0 = ΨRO

τ
2

◦ ΨLDE
τ
2

(
u
(
τ
2
))

, where u(t) = Ψt(u0), will
be relevant as well. For all those choices of v0 and all ε ∈ (0, 1), we have to assume that
the solution of the NL-subproblem exists on the time interval [0, τ2 ], is sufficiently smooth
in space, and remains uniformly bounded w.r.t. ε and t. Again, this is not a far-fetched
assumption. Instead, one could show with a standard fixed point argument that this is true
at least for all τ ≤ τ0 for some number τ0 > 0 independent of ε. All precise requirements are
listed in the following.

Assumption 4.1. For some m̂ ≥ 2, let

(A) V,Aj ∈ Hm̂+6(R3), j = 1, 2, 3,

(B) u0 ∈
(
Hm̂+6(R3)

)4.

Further, let T1 > 0 such that the NLDE with initial data u0 admits a solution u on [0, T1] for
all ε ∈ (0, 1) that remains uniformly bounded in

(
Hm̂+6(R3)

)4 w.r.t. ε and t. For this value
of T1, assume that

(C) τ ≤ T1,

(D) for each ε ∈ (0, 1) and for all the initial data

v0 ∈
{
u0, u

5⃝, ΨRO
τ
2

◦ ΨLDE
τ
2

(
u

(
τ

2

))}
, (4.15)

the NL-subproblem admits a solution on the time interval [0, τ2 ] that is uniformly bounded
in Hm̂+6 w.r.t. ε and t.

Those assumptions will allow us to show the following bound for the local splitting error in
Hm̂, whose proof is the main objective of this section.

Lemma 4.2. Let Assumption 4.1 hold. Further, let u 6⃝ be the result after one splitting step
according to the scheme (4.14). Then, the local error estimate

∥Ψτ (u0) − u 6⃝∥
Hm̂

≤ C min
{
τ3

ε
,max

{
τ2ε, τ3

}}

holds for some constant C independent of τ and ε.

A short discussion of the right-hand side of this error bound will follow in Subsection 4.3.5.
Here, we focus on its proof, which we divide into several steps by establishing multiple pre-
liminary lemmas. First, we will derive expansions of the flow of each subproblem and of the
exact solution up to terms of order O

(
τ3) uniformly in ε, cf. Subsection 4.3.1. Those of the

subproblems are then combined to expansions of the flows of Lie splitting steps in Subsec-
tion 4.3.2. This is fundamental since the Strang splitting step (4.14) can be divided into two
consecutive Lie splitting steps with reversed order of the subproblems. In Subsection 4.3.3,
we will then analyze the error in the Lie splitting steps by comparing the expansions of
their flows to those of the exact solution. Further, we will combine the results to find that
the error in the Strang splitting step only involves few remainder terms (apart from O

(
τ3)
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terms). Finally, in Subsection 4.3.4, we will use the special structure of the projectors to show
that all those remainders combined fulfill the desired bound from Lemma 4.2. After having
established the error bound, we then also observe the local splitting error in a numerical
experiment in Subsection 4.3.5 and compare it with the analytical estimate.

A major challenge in the analysis of the splitting error will be to keep track of the spatial
regularity of all terms involved (especially of the remainder terms). To facilitate this, we
introduce the following notation: For a C4-valued time- and space-dependent function fε =
fε(t, x), we write

fε(t, ·) = Om(tpεq)

for some m ∈ N0 and p, q ∈ Z if fε(t, ·) ∈
(
Hm(R3)

)4 with ∥fε(t, ·)∥Hm ≤ Ctpεq for some
constant C independent of t and ε.

4.3.1 Step 1: Expansions of the flows of the NLDE and all subproblems

We first discuss the flows of the subproblems from (4.12) and then the flow of the full NLDE.
Whenever the operator Tε is involved in a problem (that is, in the LDE-subproblem and in the
full NLDE), Assumption 4.1 (B) will be particularly important since the additional regularity
of the solution (Hm̂+6 for an error bound in Hm̂) is required here in order to obtain uniform
bounds in ε. In contrast to that, in the NL- and the RO-subproblem, less strict assumptions
than Assumption 4.1 (B) would be sufficient. In fact, when discussing those two subproblems,
we will always work with initial data in Hm for a generic value m ≥ 2, while having in mind
that m = m̂+ 6 would be one admissible value.

RO-subproblem

The PDE of the RO-subproblem in (4.12) was chosen in such a way that it corresponds to
the flow ΨRO

t = e−tPε . In particular, the flow is known and we do not require an expansion.
Instead, we only discuss an important property.

Lemma 4.3. For any m ≥ 0 and any t ∈ R, the flow ΨRO
t = e−tPε of the RO-subproblem in

(4.12) is an isometry from and to
(
Hm(R3)

)4.

Proof. Application of the operator e−tPε corresponds to multiplication of the Fourier trans-
form at ξ ∈ R3 with the matrix exp

(
it
ε2
(
Π+
ε (ξ) − Π−

ε (ξ)
))

, where

Π±
ε (ξ) = 1

2

I4 ± Tε(ξ)√
1 + ε2 |ξ|2

 , Tε(ξ) = ε
3∑
j=1

αjξj + β.

Since αj , j = 1, 2, 3, and β are Hermitian, the same holds for the matrices Tε(ξ), Π±
ε (ξ)

and Π+
ε (ξ) − Π−

ε (ξ). The assertion then follows with a unitary diagonalization of Π+
ε (ξ) −

Π−
ε (ξ).

LDE-subproblem

Next, we tackle the LDE-subproblem in (4.12). To express its expansions in a compact form,
we define the auxiliary operator

ΥLDE
t : C

(
[0, t],

(
H2(R3)

)4) −→
(
L2(R3)

)4
, ΥLDE

t

(
v
)

=
∫ t

0
e−sPεLεesPεv(s) ds (4.16)
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for any t ≥ 0. We will usually just write ΥLDE
t (v(s)) instead of ΥLDE

t

(
s 7→ v(s)

)
to increase

readability. Further, for a time-independent function v0 ∈
(
H2(R3)

)4, we write ΥLDE
t (v0)

meaning that ΥLDE
t is applied to the constant function v(s) ≡ v0, s ∈ [0, t].

Having introduced the auxiliary operator above, we can now discuss different expansions of
ΨLDE
t . This will be part (ii) of the following lemma. As a preparation, however, we first have

to consider some technical properties of ΥLDE
t in part (i).

Lemma 4.4. Let Ass. 4.1 (A) hold.

(i) For any t ≥ 0, ΥLDE
t is a well-defined, linear operator. Further, for any 0 ≤ m ≤ m̂+4,

we have∥∥∥ΥLDE
t (v)

∥∥∥
Hm

≤ Ct sup
s∈[0,t]

∥v(s)∥Hm+2 , v ∈ C
(
[0, t],

(
Hm+2(R3)

)4) (4.17)

and for any 0 ≤ m ≤ m̂+ 2∥∥∥ΥLDE
t

(
ΥLDE
s (v)

)∥∥∥
Hm

≤ Ct2 ∥v∥Hm+4 , v ∈
(
Hm+4(R3)

)4 (4.18)

for a constant C independent of t, ε and v.

(ii) Let v0 ∈
(
Hm̂+6(R3)

)4. Then, for the flow ΨLDE
t of the LDE-subproblem in (4.12), we

have

ΨLDE
t (v0) = etPεv0 + tRLDE

1 , (4.19)
ΨLDE
t (v0) = etPεv0 + etPεΥLDE

t (v0) + t2RLDE
2 , (4.20)

ΨLDE
t (v0) = etPεv0 + etPεΥLDE

t (v0) + etPεΥLDE
t

(
ΥLDE
s (v0)

)
+ t3RLDE

3 (4.21)

for t ≥ 0, where RLDE
j ∈

(
Hm̂+6−2j(R3)

)4 are remainders with
∥∥∥RLDE

j

∥∥∥
Hm̂+6−2j

≤ C,
j = 1, 2, 3, for some constant C that depends on v0, but is independent of t and ε.

Proof. (i) It is clear that the operator Lε defined in (4.9) is linear and is uniformly bounded
w.r.t. ε from Hm+2 to Hm for any 0 ≤ m ≤ m̂+ 4 since the same holds for D and since W
is in Hm̂+6 by assumption. Together with the properties of etPε from Lemma 4.3, it then
follows from the definition that ΥLDE

t is well-defined on C
(
[0, t],

(
H2(R3)

)4), that it is linear
and that the first estimate from the assertion holds. The second estimate follows by applying
the first estimate twice.

(ii) Let v(s) = ΨLDE
s (v0), s ∈ [0, t], be the solution of the LDE-subproblem with initial data

v0 ∈
(
Hm̂+6(R3)

)4. The regularity of the potentials guarantees that the solution v remains
uniformly bounded w.r.t. ε in

(
Hm̂+6(R3)

)4 for all s ∈ [0, t] [BMP98, Lemma 2.2]. Further,
Duhamel’s formula yields

ΨLDE
t (v0) = etPεv0 + etPε

∫ t

0
e−sPεLεv(s) ds. (4.22)

The first equation (4.19) thus follows directly from the properties of Lε and etPε . Iterating
Duhamel’s formula once again in (4.22) and using the linearity of all operators involved yields

ΨLDE
t (v0) = etPεv0 + etPε

∫ t

0
e−sPεLεesPεv0 ds+ etPε

∫ t

0
e−sPεLεesPε

∫ s

0
e−rPεLεv(r) dr ds,

which immediately implies (4.20). Finally, (4.21) follows when employing (4.19) with t = r
to replace u(r) by erPε [v0] + rRLDE

1 in the double integral and using the properties of Lε and
etPε once more.
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NL-subproblem

Analyzing the NL-subproblem in (4.12) uses similar techniques. There are, however, some
difficulties arising from the nonlinearity. To begin with, for any t ≥ 0 we define the two
different auxiliary operators

ΥNL
t :

(
H2(R3)

)4 −→
(
H2(R3)

)4
, ΥNL

t

(
v
)

= −i
∫ t

0
e−sPε

[
F
(
esPεv

)
esPεv

]
ds, (4.23)

and

Υ̃NL
t :

(
H2(R3)

)4 × C
(
[0, t],

(
H2(R3)

)4) −→
(
H2(R3)

)4
,

Υ̃NL
t

(
v, w

)
= −i

∫ t

0
e−sPεT

(
esPεv, esPεw(s)

)
ds (4.24)

with

T (v, w) = |v|2w + v∗wv + w∗vv = |v|2w + 2Re(v∗w)v. (4.25)

Only in the second argument of Υ̃NL
t , we allow for time-dependent functions. Similar to

before, we write Υ̃NL
t (v, w(s)) instead of Υ̃NL

t (v, s 7→ w(s)), and Υ̃NL
t (v, w0) for the constant

function w(s) ≡ w0, s ∈ [0, t].

As for the LDE-subproblem, the main purpose of the following lemma is to analyze different
expansions of ΨNL

t based on ΥNL
t and Υ̃NL, which is the content of part (iv). However, some

technical aspects of ΥNL
t and Υ̃NL

t have to be discussed first.

Lemma 4.5. (i) For any t ≥ 0, ΥNL
t and Υ̃NL

t are well-defined. Further, Υ̃NL
t is real-linear

in the second component and for any m ≥ 2, the estimates∥∥∥ΥNL
t (v)

∥∥∥
Hm

≤ Ct ∥v∥3
Hm , v ∈

(
Hm(R3)

)4
, (4.26)∥∥∥Υ̃NL

t (v, w(s))
∥∥∥
Hm

≤ Ct ∥v∥2
Hm sup

s∈[0,t]
∥w(s)∥Hm , v ∈

(
Hm(R3)

)4
, (4.27)

w ∈ C
(
[0, t],

(
Hm(R3)

)4)
hold for a constant C independent of t, ε, v and w.

(ii) For any t ≥ 0 and m ≥ 2, the following estimates concerning Om(t) and Om
(
t2
)

perturbations of the argument of ΥNL
t hold:

ΥNL
t (v + tw) = ΥNL

t (v) + Υ̃NL
t (v, tw) + Om

(
t3
)
, (4.28)

ΥNL
t (v + tw) = ΥNL

t (v) + Om
(
t2
)
, (4.29)

ΥNL
t (v + t2w) = ΥNL

t (v) + Om
(
t3
)

(4.30)

for all v, w ∈
(
Hm(R3)

)4.

(iii) For any t ≥ 0 and m ≥ 2, the following estimates concerning Om(t) and Om
(
t2
)

perturbations in the first and second argument of Υ̃NL
t , respectively, hold:

Υ̃NL
t (v + tz, tw) = Υ̃NL

t (v, tw) + Om
(
t3
)
, (4.31)

Υ̃NL
t (v, w + t2z) = Υ̃NL

t (v, w) + Om
(
t3
)

(4.32)

for all v, w, z ∈
(
Hm(R3)

)4.
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(iv) Let v0 ∈
(
Hm(R3)

)4 for some m ≥ 2 and T > 0. Assume that for all ε ∈ (0, 1),
the solution v = v(t) of the NL-subproblem from (4.12) exists on the interval [0, T ]
and remains uniformly bounded in Hm w.r.t. ε and t. Then, for the flow ΨNL

t of the
NL-subproblem, we have

ΨNL
t (v0) = etPεv0 + tRNL

1 (4.33)
ΨNL
t (v0) = etPεv0 + etPεΥNL

t (v0) + t2RNL
2 (4.34)

ΨNL
t (v0) = etPεv0 + etPεΥNL

t (v0) + etPεΥ̃NL
t

(
v0,ΥNL

s (v0)
)

+ t3RNL
3 (4.35)

for any 0 ≤ t ≤ T and some remainders RNL
j ∈

(
Hm(R3)

)4 with
∥∥∥RNL

j

∥∥∥
Hm

≤ C,
j = 1, 2, 3, for a constant C that depends on v0, but is independent of t and ε.

Note that the assumptions of part (iv) correspond to Assumption 4.1 (D) if we choose m =
m̂+ 6, T = τ and v0 from (4.15).

Proof. (i) Since esPε is an isometry in H2 for all s ∈ R by Lemma 4.3 and since H2 is an
algebra, we do indeed have ΥNL

t

(
v
)

∈
(
H2(R3)

)4 for all v ∈
(
H2(R3)

)4 and Υ̃NL
t

(
v, w

)
∈(

H2(R3)
)4 for all v ∈

(
H2(R3)

)4, w ∈ C
(
[0, t],

(
H2(R3)

)4), such that both operators are
well-defined. The same arguments yield the norm bound (4.26) for ΥNL

t . Further, the map
T is real-linear in the second argument by definition. The same thus also holds for Υ̃NL

t .
Finally, since Hm is an algebra for m ≥ 2, we have

∥T (v, w(s))∥Hm ≤ C ∥v∥2
Hm ∥w(s)∥Hm , s ∈ [0, t]

for some constant C. The norm bound (4.27) for Υ̃NL
t thus follows from the definition of Υ̃NL

t

and Lemma 4.3.

(ii) Let ṽ, w̃ ∈
(
Hm(R3)

)4 for some m ≥ 2 and t ≥ 0. Then, we have

F (ṽ + tw̃)(ṽ + tw̃) = (ṽ + tw̃)∗(ṽ + tw̃)(ṽ + tw̃)

= |ṽ|2 ṽ + t
(
|ṽ|2 w̃ + ṽ∗w̃ṽ + w̃∗ṽṽ

)
+ Om

(
t2
)

= F (ṽ)ṽ + T (ṽ, tw̃) + Om
(
t2
)

(4.36)

since Hm is an algebra for m ≥ 2. This in particular holds for ṽ = esPεv and w̃ = esPεw
for some v, w ∈

(
Hm(R3)

)4 and s ∈ [0, t]. Together with the definition of ΥNL
t and Υ̃NL

t and
with Lemma 4.3, this yields the first estimate (4.28). The second and third estimate follow
in the same way when the representations

F (ṽ + tw̃)(ṽ + tw̃) = F (ṽ)ṽ + Om(t) (4.37)

or

F (ṽ + t2w̃)(ṽ + t2w̃) = F (ṽ)ṽ + Om
(
t2
)

are used instead of (4.36).

(iii) For the first estimate, one can use the fact that

T (v + tz, tw) = T (v, tw) + Om
(
t2
)
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(note that here, the second argument of T itself is already of Om(t)). Further, the real-
linearity of T in the second argument yields

T (v, w + t2z) = T (v, w) + t2T (v, z) = T (v, w) + Om
(
t2
)
.

Both estimates can then be shown with similar strategies as in (ii).

(iv) Duhamel’s formula for the solution v of the NL-subproblem yields

v(t) = ΨNL
t (v0) = etPεv0 − ietPε

∫ t

0
e−sPε [F (v(s)) v(s)] ds, t ∈ [0, T ]. (4.38)

Since Hm is an algebra for m ≥ 2, (4.33) directly follows.

To obtain (4.34), we would like to use (4.33) with t = s to replace v(s) inside the integral in
(4.38). Similar to (4.37), note that for an O(s) approximation of F (v(s))v(s), one can drop
components in v(s) that are of O(s). More precisely, we have

F (v(s)) v(s) − F
(
esPεv0

)
esPεv0 = Om(s)

for all s ≥ 0. Together with (4.38) and Lemma 4.3, this yields (4.34).

For the expansion (4.35) of ΨNL
t , we replace v(s) in the integral of (4.38) by the representation

(4.34) obtained just before, which yields

ΨNL
t (v0) = etPεv0 + etPεΥNL

t

(
v0 + ΥNL

s (v0) + t2e−sPεRLDE
2

)
.

First using (4.30) and then (4.28) (note ΥNL
s (v0) = Om(s) according to (4.26)) implies the

final representation (4.35).

Full NLDE

Similar to the LDE-subproblem and the NL-subproblem, we now derive different expansions
of solutions of the full NLDE (4.10). Having defined the operators ΥLDE

t , ΥNL
t and Υ̃NL

t

before, those expansions can be stated relatively easy.

For the fixed initial data u0 = ψε(tn) from this section, we assumed that the solution of the
NLDE remains uniformly bounded in Hm̂+6 for all ε ∈ (0, 1) and t ∈ [0, T1] in Assumption 4.1.
However, we will divide the Strang splitting step into two half steps later. In particular, we
also have to consider expansions of the solution of the NLDE with initial data Ψ τ

2
(u0). If

τ ≤ T1, then Assumption 4.1 implies that no matter if v0 = u0 or v0 = Ψ τ
2
(u0), we can be

sure that Ψt(v0) is in Hm̂+6 for all t ≤ τ
2 and that ∥Ψt(v0)∥

Hm̂+6 is uniformly bounded w.r.t. t
and ε. Keeping that in mind helps to understand the setting of the next lemma.

Lemma 4.6. Let Ass. 4.1 (A)-(C) hold. Further, let t ≤ τ
2 arbitrary and let v0 = u0 or

v0 = Ψ τ
2
(u0). Then, we have

Ψt(v0) = etPεv0 + tRNLDE
1 , (4.39)

Ψt(v0) = etPεv0 + etPεΥLDE
t (v0) + etPεΥNL

t (v0) + t2RNLDE
2 , (4.40)

Ψt(v0) = etPεv0 + etPεΥLDE
t (v0) + etPεΥLDE

t

(
ΥLDE
s (v0)

)
+ etPεΥLDE

t

(
ΥNL
s (v0)

)
+ etPεΥNL

t (v0) + etPεΥ̃NL
t

(
v0,ΥNL

s (v0)
)

+ etPεΥ̃NL
t

(
v0,ΥLDE

s (v0)
)

+ t3RNLDE
3 , (4.41)
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where RNLDE
j ∈

(
Hm̂+6−2j(R3)

)4 are remainders with
∥∥∥RNLDE

j

∥∥∥
Hm̂+6−2j

≤ C, j = 1, 2, 3, for
some constant C that depends on v0, but is independent of t and ε.

Proof. Let v(s) = Ψs(v0), s ∈ [0, t], be the solution of the NLDE (4.10) with initial data v0.
According to the discussion above, we have v(s) ∈

(
Hm̂+6(R3)

)
for all s ∈ [0, t] with uniform

norm bound in ε and s. Duhamel’s formula yields

Ψt(v0) = etPεv0 + etPε

∫ t

0
e−sPεLεv(s) ds− ietPε

∫ t

0
e−sPε [F (v(s))v(s)] ds. (4.42)

Combining the arguments of the proof of Lemma 4.4 (ii) (LDE-subproblem) and Lemma 4.5
(iv) (NL-subproblem) yields the first representation (4.39). Inserting (4.39) for t = s into
(4.42) once again and treating the remainder RNLDE

1 as in the proofs just mentioned also
yields the second representation (4.40). Finally, we insert (4.40) for t = s into (4.42). Using
the linearity of Lε, we obtain

Ψt(v0) = etPεv0 + etPεΥLDE
t (v0) + etPεΥLDE

t

(
ΥLDE
s (v0)

)
+ etPεΥLDE

t

(
ΥNL
s (v0)

)
+ etPεΥLDE

t

(
s2e−sPεRNLDE

2

)
+ etPεΥNL

t

(
v0 + ΥLDE

s (v0) + ΥNL
s (v0) + s2e−sPεRNLDE

2

)
.

Recall that RNLDE
2 is uniformly bounded in

(
Hm̂+2(R3)

)4. Thus, using the norm bound
(4.17) for ΥLDE

t and the fact that Om̂+2(t2)-contributions in the argument of ΨNL
t lead to

Om̂+2(t3) remainders according to (4.30), we find

Ψt(v0) = etPεv0 + etPεΥLDE
t (v0) + etPεΥLDE

t

(
ΥLDE
s (v0)

)
+ etPεΥLDE

t

(
ΥNL
s (v0)

)
+ etPεΥNL

t

(
v0 + ΥLDE

s (v0) + ΥNL
s (v0)

)
+ Om̂

(
t3
)
.

Finally, (4.28) allows separating the three addends in the argument of ΥNL
t . Since ΥLDE

s (v0) ∈(
Hm̂+4)4 and ΥNL

s (v0) ∈
(
Hm̂+6)4, this comes at the cost of an additional Om̂+4(t3)-remainder.

All in all, the last claim (4.41) follows.

4.3.2 Step 2: Expansions of Lie splitting steps

The Strang splitting step described in (4.14) can be interpreted as two consecutive Lie split-
ting steps in reversed order. More precisely,

u0
ΨNL

τ̃−→ u 1⃝
ΨRO

τ̃−→ u 2⃝
ΨLDE

τ̃−→ u 3⃝ and u 3⃝
ΨLDE

τ̃−→ u 4⃝
ΨRO

τ̃−→ u 5⃝
ΨNL

τ̃−→ u 6⃝ (4.43)

with τ̃ = τ
2 . In the local error analysis in Section 4.3.3, we will consider the error of each

Lie splitting step separately, i.e. we will compare u 3⃝ to Ψτ̃ (u0) and u 6⃝ to Ψτ̃ (u 3⃝), and only
afterward combine both errors in a suitable way. This is why we now want to combine the
expansions of the flows of the subproblems from Section 4.3.1 to derive expansions of the Lie
splitting steps up to terms of order O

(
τ̃3) = O

(
τ3).

In the following resulting lemmas, we introduce colors that help to keep track of the origin
of all resulting terms when several expansions are combined.
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Lemma 4.7. Let Assumption 4.1 hold. Then, we have

u 3⃝ = eτ̃Pεu0 + eτ̃PεΥNL
τ̃

(u0) + eτ̃PεΥ̃NL
τ̃

(
u0,ΥNL

s (u0)
)

+ eτ̃PεΥLDE
τ̃

(u0) + eτ̃PεΥLDE
τ̃

(
ΥNL
τ̃

(u0)
)

+ eτ̃PεΥLDE
τ̃

(
ΥLDE
s (u0)

)
+ τ3RLie

1 ,

where RLie
1 ∈

(
Hm̂(R3)

)4 with
∥∥∥RLie

1

∥∥∥
Hm̂

≤ C for some constant C independent of τ and ε.

Proof. By Assumption 4.1 (D), we know that the solution of the NL-subproblem with initial
data u0 remains uniformly bounded in Hm̂+6 over the interval [0, τ̃ ] = [0, τ2 ]. In particular,
u 1⃝ ∈

(
Hm̂+6(R3)

)4 with norm bounded independently of ε and τ . Further, Lemma 4.3 then
yields the same for u 2⃝. Thus, the third order expansion (4.21) of ΨLDE

t gives

u 3⃝ = eτ̃Pεu 2⃝ + eτ̃PεΥLDE
τ̃

(u 2⃝) + eτ̃PεΥLDE
τ̃

(
ΥLDE
s (u 2⃝)

)
+ τ̃3RLDE

3 .

Next, we insert u 2⃝ = ΨRO
τ̃

(u 1⃝) = e−τ̃Pεu 1⃝ to obtain

u 3⃝ = u 1⃝ + eτ̃PεΥLDE
τ̃

(
e−τ̃Pεu 1⃝

)
+ eτ̃PεΥLDE

τ̃

(
ΥLDE
s

(
e−τ̃Pεu 1⃝

))
+ τ̃3RLDE

3 . (4.44)

Finally, we replace u 1⃝ = ΨNL
τ̃

(u0) in each addend by the appropriate representation from
Lemma 4.5 (iv) which only leads to Om̂

(
τ3) remainders. In the first term, we can replace

u 1⃝ by its expansions (4.35) up to third order terms, yielding the purple terms in the claim
and the additional Om̂+6(τ3) remainder τ̃3RNL

3 (which of course also is in
(
Hm̂(R3)

)4). In
the second term, we replace u 1⃝ by its expansion (4.34) up to second order terms and use the
linearity of ΨLDE

τ̃
to separate all addends. We obtain

eτ̃PεΥLDE
τ̃

(
e−τ̃Pεu 1⃝

)
= eτ̃PεΥLDE

τ̃
(v0) + eτ̃PεΥLDE

τ̃

(
ΥNL
τ̃

(v0)
)

+ τ̃2eτ̃PεΥLDE
τ̃

(
e−τ̃PεRNL

2

)
.

The first two terms are exactly the green terms in the representation from the claim. Ad-
ditionally, the uniform Hm̂+6-bound of RNL

2 together with Lemma 4.3 and the norm bound
(4.26) of ΥLDE

τ̃
imply that the last term overall yields another Om̂+4(τ3) remainder. Finally,

in the blue term in (4.44), we use the expansion (4.33) up to first order terms. Together with
the linearity of ΥLDE

t , we obtain

eτ̃PεΥLDE
τ̃

(
ΥLDE
s

(
e−τ̃Pεu 1⃝

))
= eτ̃PεΥLDE

τ̃

(
ΥLDE
s (v0)

)
+ eτ̃PεΥLDE

τ̃

(
ΥLDE
s

(
τ̃e−τ̃PεRNL

1

))
.

The first term is exactly the blue term in the claim, whereas the second term corresponds to
another Om̂+2(τ3) remainder due to (4.18). Overall, the assertion follows.

When establishing a similar result for the second Lie splitting step in (4.43), we assume for
the moment that we would start with the exact solution at time τ̃ = τ

2 (cf. Eq. (4.46) and
the discussion thereafter). That means we replace u 3⃝ by v0 = u( τ2 ), where u(t) = Ψt(u0),
and define v 1⃝, v 2⃝, v 3⃝ by the scheme

u

(
τ

2

)
= v0

ΨLDE
τ̃−→ v 1⃝

ΨRO
τ̃−→ v 2⃝

ΨNL
τ̃−→ v 3⃝.

In particular, we have v 3⃝ = ΨNL
τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(
u
(
τ
2
))))

.
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Lemma 4.8. Let Assumption 4.1 hold. Then we have

v 3⃝ = eτ̃Pεv0 + eτ̃PεΥLDE
τ̃

(v0) + eτ̃PεΥLDE
τ̃

(
ΥLDE
s (v0)

)
+ eτ̃PεΥNL

τ̃
(v0) + eτ̃PεΥ̃NL

τ̃

(
v0,ΥLDE

τ̃
(v0)

)
+ eτ̃PεΥ̃NL

τ̃

(
v0,ΥNL

s (v0)
)

+ τ3RLie
2

where RLie
2 ∈

(
Hm̂(R3)

)4 with
∥∥∥RLie

2

∥∥∥
Hm̂

≤ C for some constant C independent of τ and ε.

Proof. We proceed similarly as in the proof of Lemma 4.7. By Assumption 4.1 (D), we know
that the solution of the NL-subproblem with initial data v 2⃝ = ΨRO

τ̃
◦ ΨLDE

τ̃

(
u
(
τ
2
))

remains
uniformly bounded on the time interval [0, τ̃ ] = [0, τ2 ]. Thus, we can use the expansion (4.35)
of the flow of the NL-subproblem to represent v 3⃝ based on v 2⃝. Afterward, we can express
v 2⃝ via v 1⃝ by v 2⃝ = e−τ̃Pεv 1⃝. We obtain

v 3⃝ = eτ̃Pεv 2⃝ + eτ̃PεΥNL
τ̃

(v 2⃝) + eτ̃PεΥ̃NL
τ̃

(
v 2⃝,ΥNL

s (v 2⃝)
)

+ τ̃3RNL
3

= v 1⃝ + eτ̃PεΥNL
τ̃

(
e−τ̃Pεv 1⃝

)
+ eτ̃PεΥ̃NL

τ̃

(
e−τ̃Pεv 1⃝,ΥNL

s

(
e−τ̃Pεv 1⃝

))
+ τ̃3RNL

3 . (4.45)

Considering that v 1⃝ ∈
(
Hm̂+6(R3)

)4 (cf. the short discussion at the beginning of the proof
of Lemma 4.4 (ii)), the purple terms in the claim follow from the representation (4.21) for
v 1⃝. Further, for the second term in (4.45), we obtain with the representation (4.20) of v 1⃝

that

eτ̃PεΥNL
τ̃

(
e−τ̃Pεv 1⃝

)
= eτ̃PεΥNL

τ̃

(
v0 + ΥLDE

τ̃
(v0) + τ̃2e−τ̃PεRLDE

2

)
with a remainder RLDE

2 that is uniformly bounded in Hm̂+2 w.r.t. ε and τ . We know from
(4.30) that we can drop the RLDE

2 -part in the argument of ΥNL
τ̃

at the price of an Om̂+2(τ3)-
remainder. Using (4.17) and (4.28) afterward to separate the remaining arguments of ΥNL

τ̃

yields the green terms in the claim together with an Om̂+4(τ3)-remainder.

Finally, inserting the representation (4.19) for v 1⃝ in both arguments of the blue term in
(4.45) yields

Υ̃NL
τ̃

(
e−τ̃Pεv 1⃝,ΥNL

s

(
e−τ̃Pεv 1⃝

))
= Υ̃NL

τ̃

(
v0 + τ̃e−τ̃PεRLDE

1 ,ΥNL
s

(
v0 + τ̃e−τ̃PεRLDE

1

))
.

with remainder RLDE
1 that is uniformly bounded in Hm̂+4 w.r.t. ε and τ . According to

(4.29), dropping the RLDE
1 -part in the argument of ΥNL

s leads to an Om̂+4(τ2)-remainder
in the second argument of Υ̃NL

τ̃
, which in turn leads to an Om̂+4(τ3)-remainder in the end

due to (4.32). Further, (4.31) implies that omitting the RLDE
1 -part in the first argument of

Υ̃NL
τ̃

leads to another Om̂+4(τ3)-remainder. Overall, this also explains the blue term in the
claim.

4.3.3 Step 3: Combining the Lie splitting steps

In this subsection, we show how the error of the Strang splitting step (4.14) can be related
to the errors of two Lie splitting steps. The latter ones are then analyzed by comparing the
expansions of the Lie splitting steps from the previous subsection to the expansion of the
exact solution from Subsection 4.3.1.
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Lemma 4.9. Let Assumption 4.1 hold. Further, let u 6⃝ be the result after one splitting step
according to the scheme (4.14). Then, for the local error, we have

Ψτ (u0) − u 6⃝ = e
τ
2 PεR1

τ (Lε) + e
τ
2 PεR2

τ (Lε) + τ3Rloc

with

R1
τ (Lε) = ΥLDE

τ
2

(
ΥNL
s

(
e

τ
2 Pεu0

))
+ Υ̃NL

τ
2

(
e

τ
2 Pεu0,ΥLDE

s

(
e

τ
2 Pεu0

)
− ΥLDE

τ
2

(
e

τ
2 Pεu0

))
R2
τ (Lε) = e

τ
2 PεΥ̃NL

τ
2

(
u0,ΥLDE

s (u0)
)

+ e
τ
2 PεΥLDE

τ
2

(
ΥNL
s (u0) − ΥNL

τ
2

(u0)
)

and with a remainder Rloc ∈
(
Hm̂(R3)

)4 with
∥∥∥Rloc

∥∥∥
Hm̂

≤ C for some constant C indepen-
dent of τ and ε.

Proof. Let u(s) = Ψs(u0), s ∈ [0, τ ] be the exact solution of the NLDE on the time interval
[0, τ ] with initial data u0. The objective then is to analyze the difference u(τ) − u 6⃝. We will
start by dividing this difference into two parts. For that purpose, we express u 6⃝ and u(τ) as
u 6⃝ = ΨNL

τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(u 3⃝)
))

and u(τ) = Ψ τ
2

(
u
(
τ
2
))

. This allows the decomposition

u(τ) − u 6⃝ = Ψ τ
2

(
u
(
τ
2
))

− ΨNL
τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(
u
(
τ
2
))))

+ ΨNL
τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(
u
(
τ
2
))))

− ΨNL
τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(u 3⃝)
))

(4.46)

The difference in the first line corresponds to the local error made only in the second half of the
Strang splitting step (4.14), or, in other words, of the second Lie splitting step. Those errors
are responsible for the remainders contained in R1

τ (Lε). In the second line, the difference of
the arguments themselves is the local error made only in the first half of the Strang splitting
step (4.14), i.e., in the first Lie splitting step. However, both arguments are first inserted
in the flows of the subproblems from the second half of the splitting step, and it has to be
analyzed how this affects the error. This will lead to the remainders in R2

τ (Lε).

The proof can thus be divided into two parts accordingly.

Part 1: Error of the second Lie splitting step. We use the expansions up to O
(
τ3)-terms

for the exact solution and the Lie splitting step from Lemma 4.6 (applied with v0 = u( τ2 )
and t = τ̃ = τ

2 ) and Lemma 4.8, respectively. Comparing them yields

Ψ τ
2

(
u
(
τ
2
))

− ΨNL
τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(
u
(
τ
2
))))

= e
τ
2 PεΥLDE

τ
2

(
ΥNL
s

(
u
(
τ
2
)) )

+ e
τ
2 PεΥ̃NL

τ
2

(
u
(
τ
2
)
,ΥLDE

s

(
u
(
τ
2
)) )

− e
τ
2 PεΥ̃NL

τ
2

(
u
(
τ
2
)
,ΥLDE

τ
2

(
u
(
τ
2
)))

+ Om̂
(
τ3
)
. (4.47)

In the next step, u
(
τ
2
)

can be related to u(0) = u0. To this end, we use the easiest represen-
tation of the exact solution given by (4.39), i.e. u

(
τ
2
)

= e τ
2 Pεu0 + τ

2 RNLDE
1 with remainder

RNLDE
1 uniformly bounded in

(
Hm̂+4(R3)

)4. We will now see that this representation is suffi-
cient since the RNLDE

1 -term can be considered as an Om̂+4(τ)-perturbation of the arguments
which can be omitted at the cost of Om̂

(
τ3) remainders: According to (4.29), Om̂+4(τ)-

perturbations in the arguments of ΥNL
s only induce an Om̂+4(τ2) remainder. Additionally

inserting the result in ΥLDE
τ
2

, using its linearity and the norm bound (4.17) leads to an
Om̂+2(τ3) remainder. Overall, we have

ΥLDE
τ
2

(
ΥNL
s

(
u
(
τ
2
)) )

= ΥLDE
τ
2

(
ΥNL
s

(
e

τ
2 Pεu0

) )
+ Om̂+2

(
τ3
)
.
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Similar arguments involving (4.17), (4.31) and (4.32) allow replacing u
(
τ
2
)

by e τ
2 Pεu0 in the

other terms in (4.47) at the cost of additional Om̂+2(τ3) remainders, i.e.,

e
τ
2 PεΥ̃NL

τ
2

(
u
(
τ
2
)
,ΥLDE

s

(
u
(
τ
2
)) )

= e
τ
2 PεΥ̃NL

τ
2

(
e

τ
2 Pεu0,ΥLDE

s

(
e

τ
2 Pεu0

) )
+ Om̂+2

(
τ3
)
,

e
τ
2 PεΥ̃NL

τ
2

(
u
(
τ
2
)
,ΥLDE

τ
2

(
u
(
τ
2
)))

= e
τ
2 PεΥ̃NL

τ
2

(
e

τ
2 Pεu0,ΥLDE

τ
2

(
e

τ
2 Pεu0

))
+ Om̂+2

(
τ3
)
.

Combining all of the above and using the real-linearity of Υ̃NL
τ
2

in the second argument, one
obtains

Ψ τ
2

(
u
(
τ
2
))

− ΨNL
τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(
u
(
τ
2
))))

= e
τ
2 PεR1

τ (Lε) + Om̂
(
τ3
)
. (4.48)

Part 2: Propagated error of the first Lie splitting step. Similar to (4.47), one can
compare the expansions up to Om̂

(
τ3)-terms of the exact solution and the first Lie splitting

step from Lemma 4.6 (applied with v0 = u0 and t = τ
2 ) and Lemma 4.7, respectively, to

obtain

u
(
τ
2
)

− u 3⃝ = e
τ
2 PεΥLDE

τ
2

(
ΥNL
s (u0)

)
+ e

τ
2 PεΥ̃NL

τ
2

(
u0,ΥLDE

s (u0)
)

− e
τ
2 PεΥLDE

τ
2

(
ΥNL

τ
2

(u0)
)

+ Om̂
(
τ3
)

= R2
τ (Lε) + Om̂

(
τ3
)
. (4.49)

Since u0 ∈ Hm̂+6, the norm bounds of ΥLDE
t , ΥNL

t and Υ̃NL
t from (4.17), (4.26) and (4.27)

yield that R2
τ (Lε) = Om̂+2(τ2). Thus, (4.49) is equivalent to

u
(
τ
2
)

− u 3⃝ = τ2S1 + τ3S2 or u
(
τ
2
)

= u 3⃝ + τ2S1 + τ3S2 (4.50)

with S1 = 1
τ2 R2

τ (Lε) ∈
(
Hm̂+2(R3)

)4 and a suitable function S2 ∈
(
Hm̂(R3)

)4, both of them
being uniformly bounded in ε and τ . Analyzing the second line of (4.46) thus is equivalent to
answering the question of how Om̂+2(τ2) and Om̂

(
τ3)-perturbations of the argument affect

the result of the Lie splitting step. It would seem natural to use the expansions of the Lie
splitting step from Lemma 4.8 to this purpose. This would indeed result in the desired
representation. However, the presence of multiple operators of the kind ΥLDE

t would require
additional regularity of S1 and S2 that we do not want to invest. This is why we work with
the exact flows ΨLDE

t , ΨRO
t and ΨNL

t instead.

We start from the inside, i.e. with the flow of the LDE-subproblem. Its linearity implies

ΨLDE
τ
2

(
u
(
τ
2
))

− ΨLDE
τ
2

(u 3⃝) = τ2ΨLDE
τ
2

(S1) + τ3ΨLDE
τ
2

(S2) .

Since solutions of the LDE remain uniformly bounded if the potentials are sufficiently regular,
we have ΨLDE

τ
2

(S2) = Om̂(1) and ΨLDE
s (S1) = Om̂+2(1) for all s ∈ [0, τ2 ]. The second fact

together with Duhamel’s formula yields

ΨLDE
τ
2

(S1) = e
τ
2 PεS1 +

∫ τ
2

0
e( τ

2 −s)PεLεΨLDE
s (S1) ds = e

τ
2 PεS1 + Om̂(τ) .

Altogether, we have

ΨLDE
τ
2

(
u
(
τ
2
))

− ΨLDE
τ
2

(u 3⃝) = τ2e
τ
2 PεS1 + τ3S̃2
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for some function S̃2 that has the same properties as S2. Next, we apply the exact flow of
the RO-subproblem from Lemma 4.3 and obtain

ΨRO
τ
2

(
ΨLDE

τ
2

(
u
(
τ
2
)))

− ΨRO
τ
2

(
ΨLDE

τ
2

(u 3⃝)
)

= τ2S1 + τ3e− τ
2 Pε S̃2. (4.51)

Finally, we have to deal with the NL-subproblem. To this end, let v0 = ΨRO
τ
2

(
ΨLDE

τ
2

(
u
(
τ
2
)))

and w0 = ΨRO
τ
2

(
ΨLDE

τ
2

(u 3⃝)
)
. Eq. (4.51) then becomes

v0 − w0 = τ2S1 + τ3e− τ
2 Pε S̃2.

Additionally, let v(s) = ΨNL
s (v0) and w(s) = ΨNL

s (w0), s ∈ [0, τ2 ] be the solution of the
NL-subproblem with initial data v0 and w0, respectively. Both exist and remain uniformly
bounded due to Assumption 4.1 (D). In this notation, it remains to analyze v( τ2 ) − w( τ2 ).
Duhamel’s formula, applied to both v and w yields

v
(
τ
2
)

− w
(
τ
2
)

= e
τ
2 Pε [v0 − w0] − i

∫ τ
2

0
e( τ

2 −s)Pε [F (v(s))v(s) − F (w(s))w(s)] ds. (4.52)

The difference between the two nonlinearities can be related to the difference of v(s) and
w(s) by introducing mixed terms. Further, using a similar ansatz as in (4.52), but with τ

2
replaced by s, one can check with a Gronwall-type argument that the difference v(s) − w(s)
remains proportional to the initial difference v0 − w0 in the sense that

∥v(s) − w(s)∥
Hm̂

≤ C ∥v0 − w0∥
Hm̂

, s ∈
[
0, τ2

]
,

for some constant C which depends on τ , but converges to 1 from above when τ → 0.
Considering the additional integral in (4.52) and that v0 − w0 = Om̂

(
τ2), we finally obtain

v
(
τ
2
)

− w
(
τ
2
)

= e
τ
2 Pε [v0 − w0] + Om̂

(
τ3
)

= e
τ
2 Pε

[
τ2S1

]
+ Om̂

(
τ3
)

Recalling the definition of v
(
τ
2
)

and w
(
τ
2
)

and considering that S1 = 1
τ2 R2

τ (Lε), this is
equivalent to

ΨNL
τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(
u
(
τ
2
))))

− ΨNL
τ
2

(
ΨRO

τ
2

(
ΨLDE

τ
2

(u 3⃝)
))

= e
τ
2 PεR2

τ (Lε) + Om̂
(
τ3
)
. (4.53)

After all, combining (4.46), (4.48) and (4.53) yields the claim.

4.3.4 Step 4: Analyzing the remainder terms

In Lemma 4.9, we were able to identify all terms that appear in the expansion of the Strang
splitting step, but not of the exact solution, and vice versa. This led to the remainders
R1
τ (Lε) and R2

τ (Lε), which are both in O
(
τ2) (for R2

τ (Lε), this was discussed in part 2 of the
proof of Lemma 4.9). We are, however, aiming for a better result. This will be achieved by
showing that the terms from R1

τ (Lε) cancel with those from R2
τ (Lε) to some extent, which

will yield the assertion from Lemma 4.2 in the end.

The crucial strategy will be to replace operators of the form etPε by suitable matrix approxi-
mations which will have a different commutative behavior. Establishing and analyzing those
approximations requires some preparation, which is the content of the next three lemmas.
Afterward, we will finally be able to prove Lemma 4.2.
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Lemma 4.10 (Lemma 2.1 in [BMP98]). Let m ≥ 1. The projectors Π±
ε allow the following

expansion w.r.t. ε:

Π±
ε = Π±

0 ± εRProj

where

Π+
0 =


1

1
0

0

 , Π−
0 =


0

0
1

1


and RProj is a uniformly (in ε) bounded operator from (Hm(R3))4 to (Hm−1(R3))4 (which is
the same in the “+” and the “-” case).

In all the expansions of the subproblems or the exact solution as well as in the remain-
ders R1

τ (Lε) and R2
τ (Lε) from Lemma 4.9, the projectors Π±

ε mainly appear within the
(unbounded) operator Pε = − i

ε2
(
Π+
ε − Π−

ε

)
. To ensure that all remainders are uniformly

bounded in ε, we always made sure that Pε is kept in the exponential, i.e., only appears in
the form

etPε = e−it/ε2(Π+
ε −Π−

ε ) = e−it/ε2Π+
ε + eit/ε2Π−

ε

for some t ∈ R. The crucial tool not only for the proof of Lemma 4.2, but also later for the
construction of an efficient method to solve the nonlinearity-subproblem in (4.12), will be
to replace the operators Π±

ε by their limits Π±
0 within operators of the form etPε . In other

words, we will approximate etPε by

etP0 := e−it/ε2(Π+
0 −Π−

0 ) = e−it/ε2Π+
0 + eit/ε2Π−

0 . (4.54)

Lemma 4.10 immediately implies an O(ε)-bound for the approximation error. However, the
following, crucial Lemma gives an alternative bound which is less obvious.

Lemma 4.11. Let m ≥ 1 and t ∈ R arbitrary. Then, for all v ∈
(
Hm(R3)

)4, we have∥∥∥etPεv − etP0v
∥∥∥
Hm−1

≤ C min
{
ε,

|t|
ε

}
∥v∥Hm

for a constant C independent of t, ε and v.

Proof. With Lemma 4.10, we obtain the representation

etPεv = e−it/ε2Π+
ε v + eit/ε2Π−

ε v = e−it/ε2 (Π+
0 + εRProj

)
v + eit/ε2 (Π−

0 − εRProj
)
v

= etP0v + ε
(
e−it/ε2 − eit/ε2)RProjv,

and we know that
∥∥∥RProjv

∥∥∥
Hm−1

≤ C ∥v∥Hm for a constant independent of v and ε. The
fact that eix − e−ix = 2i sin(x) for all x ∈ R together with the estimates |sin(x)| ≤ 1 and
|sin(x)| < |x| yields the assertion.

Since R1
τ (Lε) and R2

τ (Lε) from Lemma 4.9 are already in O
(
τ2), Lemma 4.11 implies that

using the approximation e τ
2 Pε ≈ e τ

2 P0 therein only leads to error terms that are of third order
in τ . However, we have to accept one ϵ in the denominator in the worst case. The crucial
difference between etPε and etP0 is that the former are pseudo-differential operators, whereas
the latter are matrices. Thus, different calculation rules apply, which we will make use of in
the proof of Lemma 4.2. Before we do this, we collect some properties of the matrices etP0 .
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Lemma 4.12. Let t ∈ R.

(i) For the conjugate transpose of etP0, we have (etP0)∗ = e−tP0. In particular, etP0 is
unitary, preserves the Euclidean norm and (etP0v)∗etP0w = v∗w holds for all v, w ∈ C4.

(ii) For the matrices αj, j = 1, 2, 3 in the magnetic potential, we have etP0αj = αje−tP0.

Proof. (i) The property (etP0)∗ = e−tP0 follows directly from the definition (4.54) of etP0

when considering that Π±
0 are real-valued diagonal matrices. The remaining properties then

are an immediate consequence.

(ii) Let j ∈ {1, 2, 3}. We have

Π+
0 αj =

(
I2 0
0 0

)(
0 σj
σj 0

)
=
(

0 σj
0 0

)
=
(

0 σj
σj 0

)(
0 0
0 I2

)
= αjΠ−

0

where each "0" stands for a 2 × 2 matrix with all entries being zero. Similarly, we find
Π−

0 αj = αjΠ+
0 . Altogether, the calculation

etP0αj =
(
e−it/ε2Π+

0 + eit/ε2Π−
0

)
αj = αj

(
e−it/ε2Π−

0 + eit/ε2Π+
0

)
= αje−tP0 ,

yields the claim.

Now, we are finally in the position to prove the local error estimate from Lemma 4.2.

Proof of Lemma 4.2. In Lemma 4.9, we have already established a representation of the local
error using the two remainders R1

τ (Lε) and R2
τ (Lε). Now, we analyze those remainders in

detail. We start by inserting the definitions of the auxiliary operators ΥLDE
t , ΥNL

t and Υ̃NL
t

from (4.16), (4.23) and (4.24). For the second argument of Υ̃NL
τ
2

in R1
τ (Lε) and the argument

of ΥLDE
τ
2

in R2
τ (Lε), this yields

ΥLDE
s

(
e

τ
2 Pεu0

)
− ΥLDE

τ
2

(
e

τ
2 Pεu0

)
= −

∫ τ
2

s
e−rPεLεe(r+ τ

2 )Pεu0 dr,

ΥNL
s (u0) − ΥNL

τ
2

(u0) = i
∫ τ

2

s
e−rPε

[
F
(
erPεu0

)
erPεu0

]
dr.

Thus, using the real-linearity of T , we obtain

R1
τ (Lε) = −i

∫ τ
2

0
e−sPεLεesPε

∫ s

0
e−rPε

[
F
(
e(r+ τ

2 )Pεu0
)

e(r+ τ
2 )Pεu0

]
dr ds

+ i
∫ τ

2

0
e−sPεT

(
e(s+ τ

2 )Pεu0, esPε

∫ τ
2

s
e−rPεLεe(r+ τ

2 )Pεu0 dr
)

ds,

R2
τ (Lε) = −ie

τ
2 Pε

∫ τ
2

0
e−sPεT

(
esPεu0, esPε

∫ s

0
e−rPεLεerPεu0 dr

)
ds

+ ie
τ
2 Pε

∫ τ
2

0
e−sPεLεesPε

∫ τ
2

s
e−rPε

[
F
(
erPεu0

)
erPεu0

]
dr ds.

The goal now is to exploit Lemma 4.11 in order to identify terms in R1
τ (Lε) and R2

τ (Lε) that
(essentially) cancel each other. We start by analyzing the nonlinear functions F and T . If
v ∈ (Hm+1(R3))4 for some m ≥ 2, then Lemma 4.11 yields∥∥∥F (etPεv

)
etPεv − F

(
etP0v

)
etP0v

∥∥∥
Hm

≤ C min
{
ε,
t

ε

}
∥v∥Hm+1
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for all t ≥ 0 and a constant C independent of t and ε. Further, using the fact that the matrix
etP0 preserves the Euclidean norm and commutes with scalars, we obtain

F
(
etP0v

)
etP0v = F (v) etP0v = etP0F (v) v.

Next, we replace the matrix etP0 by the operator etPε again. Lemma 4.11 then gives∥∥∥F (etPεu0
)

etPεu0 − etPε [F (u0)u0]
∥∥∥ ≤ C min

{
ε,
t

ε

}
∥v∥Hm+1 . (4.55)

Further, recall that T (v, w) = |v|2w + v∗wv + w∗vv. Thus, if v ∈ (Hm+1(R3))4 and w ∈
(Hm+1(R3))4 for some m ≥ 2, Lemma 4.11 yields∥∥∥T (etPεv, etPεw

)
− T

(
etP0v, etP0w

)∥∥∥
Hm

≤ C min
{
ε,
t

ε

}
∥v∥2

Hm+1 ∥w∥Hm+1

for all t ≥ 0 and a constant C independent of t and ε. With the properties from Lemma 4.12
and the fact that matrices commute with scalars, we obtain

T
(
etP0v, etP0w

)
= etP0T (v, w).

Again, we can replace etP0 by etPε using Lemma 4.11, which yields∥∥∥T (etPεv, etPεw
)

− etPεT (v, w)
∥∥∥
Hm

≤ C min
{
ε,
t

ε

}
∥v∥2

Hm+1 ∥w∥Hm+1 . (4.56)

We now want to use both (4.55) and (4.56) for R1
τ (Lε) and R2

τ (Lε). Since u0 ∈ (Hm̂+6(R3))4

by assumption, we can use (4.55) with m = m̂ + 5 and with t = r + τ
2 in R1

τ (Lε) and t = r
in R2

τ (Lε). Considering the two additional integrals and that the operator Lε is uniformly
bounded in ε at the cost of two spatial derivatives, this yields an Om̂+3(τ2 min{ε, τε}

)
re-

mainder. Further, using similar reasons, one can easily see that the first argument of T in
R1
τ (Lε) and R2

τ (Lε) is in (Hm̂+6(R3))4 and the second one is in (Hm̂+4(R3))4 with norm of
O(τ). Thus, (4.56) can be applied with m = m̂ + 3 and t = s in both R1

τ (Lε) and R2
τ (Lε),

yielding another Om̂+3(τ2 min{ε, τε}
)

remainder. Overall, we obtain

R1
τ (Lε) = R̃1

τ (Lε) + Om̂+3
(
τ2 min

{
ε,
τ

ε

})
,

R2
τ (Lε) = R̃2

τ (Lε) + Om̂+3
(
τ2 min

{
ε,
τ

ε

}) (4.57)

where

R̃1
τ (Lε) = − i

∫ τ
2

0
e−sPεLεesPε

∫ s

0
e

τ
2 Pε [F (u0)u0] dr ds

+ i
∫ τ

2

0
T

(
e

τ
2 Pεu0,

∫ τ
2

s
e−rPεLεe(r+ τ

2 )Pεu0 dr
)

ds

= − i
∫ τ

2

0
se−sPεLεe(s+ τ

2 )Pε [F (u0)u0] ds

+ i
∫ τ

2

0
T

(
e

τ
2 Pεu0,

∫ τ
2

s
e−rPεLεe(r+ τ

2 )Pεu0 dr
)

ds, (4.58)

R̃2
τ (Lε) = − ie

τ
2 Pε

∫ τ
2

0
T

(
u0,

∫ s

0
e−rPεLεerPεu0 dr

)
ds

+ ie
τ
2 Pε

∫ τ
2

0
e−sPεLεesPε

∫ τ
2

s
F (u0)u0 dr ds
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= − ie
τ
2 Pε

∫ τ
2

0
T

(
u0,

∫ s

0
e−rPεLεerPεu0 dr

)
ds

+ ie
τ
2 Pε

∫ τ
2

0

(
τ

2 − s

)
e−sPεLεesPε [F (u0)u0] ds. (4.59)

Before we continue, we divide the operator Lε from (4.9) into Lε = LDε + LV + LA with

LDε = −iDε

(
Π+
ε − Π−

ε

)
, LV = −iV (x), LA = i

3∑
j=1

Aj(x)αj .

The reason for this distinction is their different commutative behavior with regard to the
operator etPε or the matrix etP0 : LDε is a pseudo-differential operator which commutes with
etPε (recall that Dε corresponds to multiplication with a scalar in Fourier space). LV is a
scalar-valued function and thus commutes with etP0 . However, the matrix-valued function
LA commutes neither with etPε nor with etP0 . Since T is additive in the second argument,
we can divide R̃1

τ (Lε) and R̃2
τ (Lε) accordingly as

R̃1
τ (Lε) = R̃1

τ (LDε) + R̃1
τ (LV ) + R̃1

τ (LA),
R̃2
τ (Lε) = R̃2

τ (LDε) + R̃2
τ (LV ) + R̃2

τ (LA).
(4.60)

In the rest of the proof, we will analyze the LDε , LV and LA parts separately.

Part 1: R̃1
τ (LDε) and R̃2

τ (LDε). Since etPε and LDε commute, we obtain from (4.58) and
(4.59) with Lε replaced by LDε that

R̃1
τ (LDε) = −i

∫ τ
2

0
se

τ
2 PεLDε [F (u0)u0] ds+ i

∫ τ
2

0
T

(
e

τ
2 Pεu0, e

τ
2 Pε

∫ τ
2

s
LDεu0 dr

)
ds

= −i
∫ τ

2

0
s ds e

τ
2 PεLDε [F (u0)u0] + i

∫ τ
2

0

τ

2 − sds e
τ
2 PεT (u0,LDεu0)

+ Om̂+3
(
τ2 min

{
ε,
τ

ε

})
,

R̃2
τ (LDε) = −ie

τ
2 Pε

∫ τ
2

0
T

(
u0,

∫ s

0
LDεu0 dr

)
ds+ ie

τ
2 Pε

∫ τ
2

0

(
τ

2 − s

)
LDε [F (u0)u0] ds

= −i
∫ τ

2

0
s ds e

τ
2 PεT (u0,LDεu0) + i

∫ τ
2

0

τ

2 − s ds e
τ
2 PεLDε [F (u0)u0] .

Here, we used (4.56) once more for R̃1
τ (LDε) (with m = m̂ + 3 and t = τ

2 ), yielding another
remainder term. Further, we used the real-linearity of T in the second argument for both
terms. Since ∫ τ

2

0
s ds = 1

8τ
2 =

∫ τ
2

0

τ

2 − s ds, (4.61)

all terms in R̃1
τ (LDε) apart from the remainder appear in R̃2

τ (LDε) with opposite sign. Thus,

R̃1
τ (LDε) + R̃2

τ (LDε) = Om̂+3
(
τ2 min

{
ε,
τ

ε

})
. (4.62)

Since R1
τ (LDε) and R2

τ (LDε) originated from the errors in the first and the second Lie splitting
step, respectively, this means that the O

(
τ2) errors from the first Lie splitting step cancel

with those of the second one up to Om̂+3(τ2 min
{
ε, τε

})
remainders.
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Part 2: R̃1
τ (LV ) and R̃2

τ (LV). Next, we consider (4.58) and (4.59) with the scalar-valued
function LV = −iV (x) instead of the operator Lε. We first note that for v ∈ (Hm̂+6(R3))4,
Lemma 4.11 together with the regularity assumption on V implies∥∥∥et1PεLV et2Pεv − et1P0LV et2P0v

∥∥∥
Hm̂+5

≤ C min
{
ε,
τ

ε

}
∥v∥

Hm̂+6

for all t1, t2 ∈ R with |t1| , |t2| ≤ τ and a constant C independent of τ and ε. Considering
that LV commutes with etP0 for any t ∈ R and using Lemma 4.11 in the reverse direction,
we have ∥∥∥et1PεLV et2Pεv − e(t1+t2)PεLV v

∥∥∥
Hm̂+5

≤ C min
{
ε,
τ

ε

}
∥v∥

Hm̂+6 .

Together with the surrounding integrals in (4.58) and (4.59), we obtain

R̃1
τ (LV ) = −i

∫ τ
2

0
se

τ
2 PεLV [F (u0)u0] ds+ i

∫ τ
2

0
T

(
e

τ
2 Pεu0, e

τ
2 Pε

∫ τ
2

s
LV u0 dr

)
ds

+ Om̂+5
(
τ2 min

{
ε,
τ

ε

})
= −i

∫ τ
2

0
s ds e

τ
2 PεLV [F (u0)u0] + i

∫ τ
2

0

τ

2 − s ds e
τ
2 PεT (u0,LV u0)

+ Om̂+5
(
τ2 min

{
ε,
τ

ε

})
,

R̃2
τ (LV ) = −ie

τ
2 Pε

∫ τ
2

0
T

(
u0,

∫ s

0
LV u0 dr

)
ds+ ie

τ
2 Pε

∫ τ
2

0

(
τ

2 − s

)
LV [F (u0)u0] ds

+ Om̂+5
(
τ2 min

{
ε,
τ

ε

})
= −i

∫ τ
2

0
s ds e

τ
2 PεT (u0,LV u0) + i

∫ τ
2

0

τ

2 − s ds e
τ
2 PεLV [F (u0)u0]

+ Om̂+5
(
τ2 min

{
ε,
τ

ε

})
,

where we again used (4.56) for R̃1
τ (LV ). As before, with (4.61), we obtain

R̃1
τ (LV ) + R̃2

τ (LV ) = Om̂+5
(
τ2 min

{
ε,
τ

ε

})
. (4.63)

Part 3: R̃1
τ (LA) and R̃2

τ (LA). Finally, we look at (4.58) and (4.59) with the matrix-valued
function LA = i∑3

j=1Aj(x)αj instead of the operator Lε. As in the LV -case, we obtain∥∥∥et1PεLAet2Pεv − et1P0LAet2P0v
∥∥∥
Hm̂+5

≤ C min
{
ε,
τ

ε

}
∥v∥

Hm̂+6

for v ∈
(
Hm̂+6(R3))4 and for all t1, t2 ∈ R with |t1| , |t2| ≤ τ . However, LA and etP0 do not

commute for any t ̸= 0. Instead, Lemma 4.12 (ii) yields

LAetP0 = e−tP0LA (4.64)

for all t ∈ R. This in particular implies et1P0LAet2P0v = e(t1−t2)P0LAv, and thus∥∥∥et1PεLAet2Pεv − e(t1−t2)P0LAv
∥∥∥
Hm̂+5

≤ C min
{
ε,
τ

ε

}
∥v∥

Hm̂+6 .
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Applying this for v = u0 and for v = F (u0)u0 in (4.58) and (4.59) gives

R̃1
τ (LA) = −i

∫ τ
2

0
se−(2s+ τ

2 )P0LA [F (u0)u0] ds

+ i
∫ τ

2

0
T

(
e

τ
2 Pεu0,

∫ τ
2

s
e−(2r+ τ

2 )P0LAu0 dr
)

ds+ Om̂+5
(
τ2 min

{
ε,
τ

ε

})

= −i
∫ τ

2

0
se−(2s+ τ

2 )P0 dsLA [F (u0)u0]

+ i
∫ τ

2

0

∫ τ
2

s
T
(
e

τ
2 P0u0, e−(2r+ τ

2 )P0LAu0
)

dr ds+ Om̂+5
(
τ2 min

{
ε,
τ

ε

})
, (4.65)

R̃2
τ (LA) = −ie

τ
2 Pε

∫ τ
2

0
T

(
u0,

∫ s

0
e−2rP0LAu0 dr

)
ds

+ ie
τ
2 Pε

∫ τ
2

0

(
τ

2 − s

)
e−2sP0LA [F (u0)u0] ds+ Om̂+5

(
τ2 min

{
ε,
τ

ε

})
= −ie

τ
2 Pε

∫ τ
2

0

∫ s

0
T
(
u0, e−2rP0LAu0

)
dr ds

+ ie
τ
2 Pε

∫ τ
2

0

(
τ

2 − s

)
e−2sP0 dsLA [F (u0)u0] + Om̂+5

(
τ2 min

{
ε,
τ

ε

})
(4.66)

where we also replaced e τ
2 Pε by e τ

2 P0 in the first argument of T in R̃1
τ (LA). To analyze (4.65)

and (4.66) further, we need to take a detailed look at terms of the form T
(
et1P0u0, et2P0LAu0

)
for any t1, t2 ∈ R. The definition of T , cf. (4.25), together with the properties from
Lemma 4.12 (i) yields

T
(
et1P0u0, et2P0LAu0

)
=
∣∣∣et1P0u0

∣∣∣2 et2P0LAu0 + 2Re
((

et1P0u0
)∗

et2P0LAu0
)

et1P0u0

= et2P0LA [F (u0)u0] + 2Re
(
u∗

0e(t2−t1)P0LAu0
)

et1P0u0.

Since LA = i∑3
j=1Aj(x)αj by definition and since the matrices αj are Hermitian, the matrix

LA is skew-Hermitian. Additionally using Lemma 4.12 (i) and (4.64), we obtain(
e(t2−t1)P0LA

)∗
= (LA)∗

(
e(t2−t1)P0

)∗
= −LAe−(t2−t1)P0 = −e(t2−t1)P0LA.

This means that the matrix e(t2−t1)P0LA is also skew-Hermitian, which in turns implies that

Re
(
u∗

0e(t2−t1)P0LAu0
)

= 0.

Overall, we find

T
(
et1P0u0, et2P0LAu0

)
= et2P0LA [F (u0)u0] .

This can be used with t1 = τ
2 , t2 = −(2r+ τ

2 ) in (4.65) and with t1 = 0, t2 = −2r in (4.66) to
obtain

R̃1
τ (LA) = −i

(∫ τ
2

0
se−(2s+ τ

2 )P0 ds−
∫ τ

2

0

∫ τ
2

s
e−(2r+ τ

2 )P0 dr ds
)

LA [F (u0)u0]

+ Om̂+5
(
τ2 min

{
ε,
τ

ε

})
,
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R̃2
τ (LA) = −ie

τ
2 Pε

(∫ τ
2

0

∫ s

0
e−2rP0 dr ds−

∫ τ
2

0

(
τ

2 − s

)
e−2sP0 ds

)
LA [F (u0)u0]

+ Om̂+5
(
τ2 min

{
ε,
τ

ε

})
.

Since one can check that∫ τ
2

0
se−2sP0 ds = τ2

4 e−τP0φ2(τP0) =
∫ τ

2

0

∫ τ
2

s
e−2rP0 dr ds,∫ τ

2

0

∫ s

0
e−2rP0 dr ds = τ2

4 φ2(−τP0) =
∫ τ

2

0

(
τ

2 − s

)
e−2sP0 ds,

we finally obtain

R̃1
τ (LA) = Om̂+5

(
τ2 min

{
ε,
τ

ε

})
, R̃2

τ (LA) = Om̂+5
(
τ2 min

{
ε,
τ

ε

})
. (4.67)

Note that in contrast to parts 1 and 2, we could consider R̃1
τ (LA) and R̃2

τ (LA) separately
here. This means that for the magnetic potential part of Lε, there are actually no O

(
τ2)

error terms from the individual Lie splitting steps.

After all, Eq. (4.67) together with (4.57), (4.60), (4.62) and (4.63) as well as Lemma 4.9 yield
the claim.

4.3.5 Numerical experiment

To validate the local splitting error estimate from Lemma 4.2, we conduct a numerical exper-
iment where we choose various step sizes τ and three different values of ε, and we observe the
error between the result obtained after applying one step of the splitting scheme (4.14) with
step size τ on the one hand side and the exact solution at time t = τ on the other hand side.
Since we can neither solve the full NLDE nor the LDE- and the NL-subproblems exactly, we
approximate each of its solution with Matlab’s ode45-solver using very small tolerances.
The results can be considered as “exact”, in the sense that the overall error is dominated by
the (local) splitting error. As in Sections 2.4 and 3.5.1, we switch to the NLDE in one space
dimension for the experiment, and we use the same initial data and potentials. Since H1(R)
is an algebra, it is sufficient to choose m̂ = 1 in Assumption 4.1. Consequently, the error is
measured in the H1-norm. The results are shown in Figure 4.2.

To understand the consistency of the error bound with the observed error, first note that for
the right-hand side of the local error estimate from Lemma 4.2, we have

min
{
τ3

ε
,max

{
τ2ε, τ3

}}
=


τ3, ε < τ,

τ2ε, ε2 < τ ≤ ε,
τ3

ε , τ ≤ ε2.

In particular, for τ > ε, we obtain a local error bound that is of third order in τ uniformly
in ε, which is what we observe in Figure 4.2 by a comparison with the black, dash-dotted
reference line. For ε2 < τ ≤ ε, a local error proportional to τ2ε is expected. The dotted
reference lines in Figure 4.2, which are of the form C3τ

2ε for a joint constant C3, reveal that
indeed, the error can be capped by said bound in this step size regime. However, for most
step sizes ε2 < τ ≤ ε, a better, but irregular error behavior is actually observed. Finally, for
step sizes τ ≤ ε2, Lemma 4.2 yields an O

(
τ3

ε

)
local error bound. This is exactly what we see

with the help of the dashed reference lines in Figure 4.2, which are of the form C2
τ3

ε with a
constant C2 that is the same for all three values of ε depicted.
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Figure 4.2: Local error in H1 of the splitting scheme (4.14) in dependency of the time step
size τ for three different values of ε. Note that the dashed third order reference lines all use
the same constant C2, and the dotted second order reference lines the same constant C3.

4.4 Solving the subproblems and final method

So far, we assumed that all three subproblems in (4.12) can be solved exactly, which, however,
is not the case for the LDE- and the NL-subproblem. In this section, we discuss how the
solutions of these subproblems can be approximated. Since we know from Lemma 4.2 that
the local splitting error itself is in Om̂

(
min

{
τ3

ε ,max
{
τ2ε, τ3}}), we aim for an accuracy of

the same size for each subproblem. As for the NPI-2 method from Section 3.3.1, the key
strategy is to iterate Duhamel’s formula and then integrate all oscillatory parts exactly, but
approximate slowly varying parts. However, in contrast to Section 3.3.1, having split the
NLDE into several subproblems brings some significant advantages. The LDE-subproblem
is linear, such that the number of terms does not increase dramatically for each additional
iteration of Duhamel’s formula. Furthermore, the NL-subproblem only contains the dominant
part Pε of the differential operator − i

ε2 Tε and no potentials. It turns out that this leads to
special properties of solutions of the NL-subproblem which yield major simplifications in
the integrals of Duhamel’s formula. All in all, the solutions of both subproblems can be
approximated efficiently.

We first discuss the NL-subproblem and then the LDE-subproblem in Subsections 4.4.1 and
4.4.2, before combining both results to state the final time integrator in Subsection 4.4.3.
As in Section 4.3.1, we will analyze the approximation error in Hm for a generic value of m
when talking about the NL-subproblem, whereas we chose the particular value m = m̂ from
Assumption 4.1 for the LDE-subproblem.

4.4.1 The nonlinearity-subproblem

For the nonlinearity-subproblem, we assume that we start with initial data u0 ∈
(
Hm+1(R3))4

for some m ≥ 2, and that the solution with said initial data exists over the whole time interval
[0, τ ] and remains uniformly bounded in Hm+1 w.r.t. ε and t. This is especially fulfilled with
m = m̂ in the setting of Assumption 4.1. We already established the expansion

ΨNL
τ (u0) = eτPεu0 + eτPεΥNL

τ (u0) + eτPεΥ̃NL
τ

(
u0,ΥNL

s (u0)
)

+ Om+1
(
τ3
)
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in Lemma 4.5 (iv). Inserting the definition of ΥNL
t and Υ̃NL

t gives

ΨNL
τ (u0) = eτPεu0 − ieτPε

∫ τ

0
e−sPε

[
F
(
esPεu0

)
esPεu0

]
ds

− ieτPε

∫ τ

0
e−sPεT

(
esPεu0,−iesPε

∫ s

0
e−rPε

[
F
(
erPεu0

)
erPεu0

]
dr
)

ds

+ Om+1
(
τ3
)
. (4.68)

If we omit the remainders, then this representation is obviously explicit since it only depends
on the initial value u0. Furthermore, as etPε = e−it/ε2Π+

ε + eit/ε2Π−
ε , the integration variables

s and r only appear within scalar-valued, space-independent functions. In the integrals,
those functions can thus be separated from all operators. All in all, this implies that the
representation can indeed be computed analytically for given u0. On top of that, it is a
uniform third order in τ approximation to the exact solution ΨNL

τ (u0). This is exactly what
we aim for in this section. However, this representation is fairly complicated, in particular
due to the composition of the nonlinearities in the second integral. Additionally, the fact
that both applications of the projectors and products of space-dependent functions appear
multiple times implies that the representation is expensive to compute numerically (after a
suitable space discretization) since it requires several Fourier transforms to switch between
Fourier and physical space. This is why we aim for a simpler representation.

To this purpose, we can make use of the approximation etPε ≈ etP0 again in the second
integral. This approximation in particular allowed deriving the estimates (4.55) and (4.56).
Using the former one first with t = r (and considering the two surrounding integrals) and
the latter one afterward with t = s (and considering the surrounding integral and that the
second argument of T is of Om+1(τ)), we obtain∫ τ

0
e−sPεT

(
esPεu0,−iesPε

∫ s

0
e−rPε

[
F
(
erPεu0

)
erPεu0

]
dr
)

ds

=
∫ τ

0
T

(
u0,−i

∫ s

0
F (u0)u0 dr

)
ds+ Om

(
τ2 min

{
ε,
τ

ε

})
.

Further, the definition (4.25) of T yields

T

(
u0,−i

∫ s

0
F (u0)u0 dr

)
= sT

(
u0,−i |u0|2 u0

)
= s

(
−i |u0|2 |u0|2 u0 + 2Re

(
−i |u0|2 u∗

0u0
))

= −is |u0|4 u0,

such that we obtain the representation∫ τ

0
e−sPεT

(
esPεu0,−iesPε

∫ s

0
e−rPε

[
F
(
erPεu0

)
erPεu0

]
dr
)

ds

= −iτ
2

2 |u0|4 u0 + Om
(
τ2 min

{
ε,
τ

ε

})
.

This simplified the second integral in (4.68) immensely. Overall, we have

ΨNL
τ (u0) = ΦNL

τ (u0) + Om
(

max
{
τ3, τ2 min

{
ε,
τ

ε

}})
= ΦNL

τ (u0) + Om

(
min

{
τ3

ε
,max

{
τ2ε, τ3

}})
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where we define ΦNL
τ to be the numerical flow of the nonlinearity-subproblem, given by

ΦNL
τ (u) = eτPεu− ieτPε

∫ τ

0
e−sPε

[
F
(
esPεu

)
esPεu

]
ds− τ2

2 eτPε |u|4 u. (4.69)

Using (4.55) in the remaining integral as well is not a good idea, since there is only one
surrounding integral, such that the local error order w.r.t. τ would be reduced. However,
computing the remaining integral, and thus applying the whole operator ΦNL

τ , does not cause
any problems and, in particular, is not very expensive from a numerical point of view. To
understand this, we present a different representation of ΦNL

τ . First, we decompose

ΦNL
τ (u) = Π+

ε

[
ΦNL
τ (u)

]
+ Π−

ε

[
ΦNL
τ (u)

]
. (4.70)

For each component, using Π±
ε etPε = Π±

ε

[
e−it/ε2Π+

ε + eit/ε2Π−
ε

]
= e∓it/ε2Π±

ε , we have

Π±
ε

[
ΦNL
τ (u)

]
= e∓iτ/ε2Π±

ε [u] − ie∓iτ/ε2Π±
ε

[∫ τ

0
e±is/ε2

F
(
esPεu

)
esPεu ds

]
− τ2

2 e∓iτ/ε2Π±
ε

[
|u|4 u

]
= e∓iτ/ε2

(
Π±
ε [u] − Π±

ε

[
i
∫ τ

0
e±is/ε2

F
(
esPεu

)
esPεuds+ τ2

2 |u|4 u.
])

.

Introducing u+ = Π+
ε [u], u− = Π−

ε [u], we can compute∣∣∣e−is/ε2
u+ + eis/ε2

u−
∣∣∣2 = |u+|2 + |u−|2 + e2is/ε2(u+)∗u− + e−2is/ε2(u−)∗u+

and thus

F
(
esPεu

)
esPεu =

∣∣∣e−is/ε2
u+ + eis/ε2

u−
∣∣∣2 (e−is/ε2

u+ + eis/ε2
u−
)

= e−is/ε2 ((|u+|2 + |u−|2
)
u+ + (u−)∗u+u−

)
+ e−3is/ε2(u−)∗u+u+

+ eis/ε2 ((|u+|2 + |u−|2
)
u− + (u+)∗u−u+

)
+ e3is/ε2(u+)∗u−u−.

Finally, we arrive at

Π±
ε

[
ΦNL
τ (u)

]
= e∓iτ/ε2

(
u± − Π±

ε

[
i
∫ τ

0
e(±1−1)is/ε2 ds

((
|u+|2 + |u−|2

)
u+ + (u−)∗u+u−

)
+ i
∫ τ

0
e(±1−3)is/ε2 ds (u−)∗u+u+

+ i
∫ τ

0
e(±1+1)is/ε2 ds

((
|u+|2 + |u−|2

)
u− + (u+)∗u−u+

)
+ i
∫ τ

0
e(±1+3)is/ε2 ds (u+)∗u−u−

+ τ2

2 |u|4 u
])

. (4.71)

All remaining integrals can easily be computed. Now, for a moment, assume that we know
the Fourier representation of u+ and u− from the previous (sub)step and that we are seeking
the Fourier representation of the two eigenspace components Π±

ε

[
ΦNL
τ (u)

]
of ΦNL

τ (u) (see
Remark 4.15 for a corresponding discussion). Then, the remarkable thing about this repre-
sentation is that only two inverse Fourier transforms and two Fourier transforms are required,
namely to translate both u+ and u− into physical space, and to translate the functions in
the square brackets into Fourier space such that the projectors can be applied, respectively.
We summarize the results in the following
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Corollary 4.13. Let u0 ∈
(
Hm+1(R3))4 for some m ≥ 2 and let τ > 0. Assume that for

all ε ∈ (0, 1), the solution u(t) = ΨNL
t (u0) of the NL-subproblem from (4.12) exists on the

interval [0, τ ] and remains uniformly bounded w.r.t. ε and t. Then, for the numerical flow
ΦNL
τ of the nonlinearity-subproblem, given either by (4.69) or by (4.70) together with (4.71),

we have ∥∥∥ΨNL
τ (u0) − ΦNL

τ (u0)
∥∥∥
Hm

≤ C min
{
τ3

ε
,max

{
τ2ε, τ3

}}

for some constant C independent of τ and ε.

4.4.2 The LDE-subproblem

For the LDE-subproblem, we also already established an O
(
τ3) expansion in Lemma 4.4,

which helped us to analyze the splitting error in Section 4.3. To construct this expansion,
we always kept the dominating part Pε of the differential operator − i

ε2 Tε in the exponent
of the evolutionary operator in Duhamel’s formula, whereas the bounded operator −iDε is
considered as part of the inhomogeneity. Application of Dε comes with a loss of spatial
regularity, however. Since for the stability of the resulting method, we want to avoid this
wherever possible, we consider different expansions here where the full operator − i

ε2 Tε is
taken to the exponential in Duhamel’s formula. Thus, in contrast to (4.12), we write the
LDE-subproblem as

∂tψ
LDE = − i

ε2 TεψLDE − iWψLDE.

We assume that Assumption 4.1 holds (i.e., the same assumptions that were required for the
local error bound of the splitting step). In particular, we assume that we start with initial
data u0 ∈

(
Hm̂+6(R3)

)4. Further, let u(t) = ΨLDE
t (u0), t ∈ [0, τ ], be the exact solution for

said initial data. Then, Duhamel’s formula yields

u(t) = e− it
ε2 Tεu0 − i

∫ t

0
e− i(t−s)

ε2 Tε [Wu(s)] ds (4.72)

for all t ∈ [0, τ ]. From the regularity of the potentials and the fact that solutions of the LDE
remain uniformly bounded, we directly obtain

u(t) = e− it
ε2 Tεu0 + Om̂+6(t) .

Inserting this into (4.72) once again, with t replaced by s, yields

u(t) = e− it
ε2 Tεu0 − i

∫ t

0
e− i(t−s)

ε2 Tε
[
W e− is

ε2 Tεu0
]

ds+ Om̂+6
(
t2
)
.

Finally, taking t = τ in (4.72) and inserting the previous representation with t replaced by s
inside the integral, we find

u(τ) = e− iτ
ε2 Tεu0 − i

∫ τ

0
e− i(τ−s)

ε2 Tε
[
W e− is

ε2 Tεu0
]

ds

−
∫ τ

0
e− i(τ−s)

ε2 Tε

[
W

∫ s

0
e− i(s−r)

ε2 Tε
[
W e− ir

ε2 Tεu0
]

dr
]

ds+ Om̂+6
(
τ3
)
. (4.73)

All s- or r-dependent operators cannot be combined due to the potential W in between them,
such that the integrals cannot be computed analytically. Thus, it remains to approximate
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both integrals appropriately. To that purpose, we replace the slowly varying part of operators
of the form e− it

ε2 Tε by suitable Taylor approximations similar as for the NPI-2 method from
Section 3.3.1. More precisely, we use the decomposition (4.2) together with the approxima-
tions of eitDε from Lemma 3.2. For any m ∈ N0, combining (4.2) with the first approximation
eitDεu ≈ u yields

e− it
ε2 Tεu =

(
e− it

ε2 Π+
ε + e

it
ε2 Π−

ε

)
u+ Om(t) = etPεu+ Om(t) (4.74)

for u ∈
(
Hm+2(R3)

)4 and t ∈ [0, τ ], whereas the second approximation eitDεu ≈ Id + itDε

gives

e− it
ε2 Tεu =

(
e− it

ε2 (Id − itDε)Π+
ε + e

it
ε2 (Id + itDε)Π−

ε

)
u+ Om

(
t2
)

(4.75)

for u ∈
(
Hm+4(R3)

)4.

Using the second approximation (4.75) with t = s and m = m̂ + 2 in the first integral in
(4.73) and considering the assumptions on u0 and the potentials, we obtain∫ τ

0
e− i(τ−s)

ε2 Tε
[
W e− is

ε2 Tεu0
]

ds =
∫ τ

0
e− i(τ−s)

ε2 Tε
[
W
(
e− is

ε2 Π+
ε + e

is
ε2 Π−

ε

)
u0
]

ds

+ i
∫ τ

0
se− i(τ−s)

ε2 Tε
[
W
(
−e− is

ε2 DεΠ+
ε + e

is
ε2 DεΠ−

ε

)
u0
]

ds

+ Om̂+2
(
τ3
)
.

The additional factor s in the second integral therein allows using the first approximation
(4.74) with t = τ − s afterward. The same approximation can also be used for the second
integral in (4.73), namely with t = r, t = s− r and t = τ − s, respectively. Each application
comes at the cost of two spatial derivatives, which is why the assumption u0 ∈

(
Hm̂+6(R3)

)4
is necessary. Overall, we find

u(τ) = e− iτ
ε2 Tεu0 − iI1(u0) + I2(u0) − I3(u0) + Om̂

(
τ3
)

with

I1(u) =
∫ τ

0
e− i(τ−s)

ε2 Tε
[
W
(
e− is

ε2 Π+
ε + e

is
ε2 Π−

ε

)
u
]

ds,

I2(u) =
∫ τ

0
se(τ−s)Pε

[
W
(
−e− is

ε2 D̃εΠ+
ε + e

is
ε2 D̃εΠ−

ε

)
u
]

ds, (4.76)

I3(u) =
∫ τ

0
e(τ−s)Pε

[
W

∫ s

0

(
e− i(s−r)

ε2 Π+
ε + e

i(s−r)
ε2 Π−

ε

) [
W
(
e− ir

ε2 Π+
ε + e

ir
ε2 Π−

ε

)
u
]

dr
]

ds.

Note that for stability reasons, we replaced Dε by the filtered version D̃ε = sin(τDε)
τ that

was already used in Sections 2.3.1 and 3.3.1. Now, in each of the three integrals, only one
operator that depends on the integration variable appears. Apart from that, all integration
variables only appear within scalar functions that can be commuted to an arbitrary position.
This allows to compute all three integrals analytically, which is why we define the numerical
flow of the LDE-subproblem to be

ΦLDE
τ (u) = e− iτ

ε2 Tεu− iI1(u) + I2(u) − I3(u). (4.77)

Again, in order to ensure that the splitting ansatz yields an efficiency gain, we need to take a
look at the computational costs for each application of the numerical flow. In particular, we
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want to avoid unnecessary Fourier transforms. This is why we consider a different formulation
of ΦLDE

τ . As in the NL-subproblem, we divide the numerical flow

ΦLDE
τ (u) = Π+

ε

[
ΦLDE
τ (u)

]
+ Π−

ε

[
ΦLDE
τ (u)

]
(4.78)

into its two eigenspace components, set u± = Π±
ε [u] and make use of Π±

ε etPε = e∓it/ε2Π±
ε as

well as Π±
ε e− it

ε2 Tε = e∓it/ε2e∓itDεΠ±
ε for any t ∈ R. From the definition (4.77) of the numerical

flow, we obtain

Π±
ε

[
ΦLDE
τ (u)

]
= e∓iτ/ε2e∓iτDεu± − iΠ±

ε [I1(u)] + Π±
ε [I2(u)] − Π±

ε [I3(u)] . (4.79)

For the eigenspace components of the integrals I1 and I2, we observe

Π±
ε [I1(u)] = e∓iτ/ε2Π±

ε

[∫ τ

0
ei(±1−1)s/ε2e∓i(τ−s)Dε ds [Wu+]

+
∫ τ

0
ei(±1+1)s/ε2e∓i(τ−s)Dε ds [Wu−]

]
, (4.80)

Π±
ε [I2(u)] = e∓iτ/ε2Π±

ε

[
−
∫ τ

0
sei(±1−1)s/ε2 dsW D̃εu+ +

∫ τ

0
sei(±1+1)s/ε2 dsW D̃εu−

]
.

As a preparation for the last integral I3, we compute

W

∫ s

0

(
e− i(s−r)

ε2 Π+
ε + e

i(s−r)
ε2 Π−

ε

) [
W
(
e− ir

ε2 Π+
ε + e

ir
ε2 Π−

ε

)
u
]

dr

= se−is/ε2
WΠ+

ε [Wu+] + e−is/ε2
∫ s

0
e2ir/ε2 drWΠ+

ε [Wu−]

+ eis/ε2
∫ s

0
e−2ir/ε2 drWΠ−

ε [Wu+] + seis/ε2
WΠ−

ε [Wu−] ,

which then yields

Π±
ε [I3(u)] = e∓iτ/ε2Π±

ε

[∫ τ

0
sei(±1−1)s/ε2 dsWΠ+

ε [Wu+]

+
∫ τ

0
ei(±1−1)s/ε2

∫ s

0
e2ir/ε2 dr dsWΠ+

ε [Wu−]

+
∫ τ

0
sei(±1+1)s/ε2

∫ s

0
e−2ir/ε2 dr dsWΠ−

ε [Wu+]

+
∫ τ

0
sei(±1+1)s/ε2 dsWΠ−

ε [Wu−]
]
.

The integrals I2 and I3 can be combined and the potential W can be factorized, such that
we finally obtain

Π±
ε [I2(u) − I3(u)] = −e∓iτ/ε2Π±

ε

[
W

(∫ τ

0
sei(±1−1)s/ε2 ds

(
Π+
ε [Wu+] + D̃εu+

)
+
∫ τ

0
ei(±1−1)s/ε2

∫ s

0
e2ir/ε2 dr dsΠ+

ε [Wu−]

+
∫ τ

0
sei(±1+1)s/ε2

∫ s

0
e−2ir/ε2 dr dsΠ−

ε [Wu+]

+
∫ τ

0
sei(±1+1)s/ε2 ds

(
Π−
ε [Wu−] − D̃εu−

))]
.

(4.81)
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This representation reduced the number of Fourier transforms as much as possible. As in
Section 4.4.1, we assume that the Fourier representation of u+ and u− is known from the
previous (sub)step, cf. Remark 4.15. In order to compute the products Wu+ and Wu− that
appear in both I1 and I2−I3, we need u+ and u− in physical space, which requires two inverse
Fourier transforms. The result is required in Fourier space, such that two Fourier transforms
have to be performed. This then allows computing the Fourier representation of Π±

ε [I1(u)].
In the difference Π±

ε [I2(u) − I3(u)], however, another two inverse Fourier transforms of the
factors that are multiplied with W (which differ in the “+” and the “-” case) are required,
and two Fourier transforms immediately afterward. Thus, all in all, eight Fourier transforms
are necessary for the Fourier representation of both eigenspace components of ΦLDE

τ (u) in
(4.79).

All considerations from this subsection lead to the following

Corollary 4.14. Let Assumption 4.1 (A) and (B) hold and let τ > 0. Then, for the numerical
flow ΦLDE

τ of the LDE-subproblem, given either by (4.77) and (4.76), or by (4.78) - (4.81),
we have ∥∥∥ΨLDE

τ (u0) − ΦLDE
τ (u0)

∥∥∥
Hm̂

≤ Cτ3

for some constant C independent of τ and ε.

4.4.3 Final time integrator

After we have discussed the splitting ansatz in Section 4.2 and the approximation of the
subproblems in the previous subsections, we are now in the position to state the final time
integrator. To that purpose, we mimic the scheme (4.13), but replace the exact flows of the
LDE- and the NL-subproblem by the corresponding numerical flows. The RO-subproblem,
on the other hand, can be solved exactly, so that we can indeed utilize the exact flow. Thus,
the approximations ψn ≈ ψε(tn) to the exact solution of the NLDE at time tn are obtained
by the iteration

ψn+1 = Φτ (ψn) , n = 0, 1, . . . (4.82)

with the numerical flow

Φτ (u) = ΦNL
τ
2

◦ ΨRO
τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(u) . (4.83)

In the following, we will refer to this method as oscillation-rewinding splitting method (ORSM)
for the nonlinear Dirac equation. The rest of the chapter is devoted to a detailed analysis of
this method.

Remark 4.15. Solving the RO-subproblem with initial data u means computing etPεu =
e−it/ε2Π+

ε u+eit/ε2Π−
ε u for suitable t ∈ R. The projectors therein correspond to multiplication

with a matrix in Fourier space. Thus, either the representation of u in Fourier space or
the knowledge of the eigenspace components u± = Π±

ε [u] is required. Since the last step in
the numerical flows ΦNL

t and ΦLDE
t of the subproblems also involves applying the projectors,

cf. (4.71) or (4.78)-(4.81), the most efficient strategy is to start and end each subproblem
with the Fourier representation of both eigenspace components. As we have discussed before,
computing ΦNL

t or ΦLDE
t then requires 4 or 8 Fourier transforms, respectively. Thus, applying

the latter one is more expensive, which is why we chose the order of the subproblems in such
a way that the flow ΦLDE

t of the LDE-subproblem only has to be applied once per time step.
The total number of Fourier transforms for one step of the ORSM therefore amounts to 16.
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In contrast to that, each step of the TSFP scheme requires two Fourier transforms if only
the final approximation is of interest, cf. Eq. (4.4) and the short discussion afterward. This
is why we expect each time step of our method to be roughly eight times as expensive as a
classical Strang splitting step. However, this disadvantage is more than compensated for by
the better convergence behavior of our method, as will be discussed in Sections 4.5 and 4.6.

Remark 4.16. A similar method can be derived for time-dependent potentials W = W (t, x).
In this case, the same decomposition (4.12) of the NLDE as in the time-independent case is
used. Note that the right-hand side of the LDE-subproblem then is no longer autonomous.
Nevertheless, one can extend the analysis of the local (Strang) splitting error from Section 4.3
to time-dependent potentials. To that purpose, for fixed t ≥ 0 and arbitrary s ∈ [0, t], one can
replace evaluations W (t+s, x) of the potentials in Duhamel’s formula for the LDE-subproblem
or the full NLDE by the Taylor expansions

W (t+ s, x) = W (t, x) + O(s) , W (t+ s, x) = W (t, x) + s∂tW (t, x) + O
(
s2
)

(4.84)

(depending on whether the evaluations are surrounded by two integrals or one). This yields
similar expansions of the flow of the LDE-subproblem or the full NLDE as in Subsection 4.3.1.
They can then be combined to expansions of Lie splitting steps, and the local splitting error
can be analyzed in the same manner as in Subsections 4.3.2-4.3.4. Furthermore, those Taylor
expansions can also be used to construct a scheme to approximate solutions of the LDE-
subproblem. Of course, sufficient temporal regularity of the potential is required for (4.84).

Remark 4.17. The interpretation of the splitting ansatz from Section 4.2 also suggest an-
other splitting approach: Could one even rewind the full operator Tε instead of just the dom-
inating part? This would result in the splitting

∂tψ
LDE = − i

ε2 TεψLDE − iWψLDE,

∂tψ
RO = i

ε2 TεψRO, (4.85)

∂tψ
NL = − i

ε2 TεψNL − iF (ψNL)ψNL

of the NLDE instead of (4.12). Indeed, with a similar procedure as in Section 4.3, one
can obtain the same local error result as in Lemma 4.2. Furthermore, the RO-subproblem
can still be solved exactly, cf. (4.2), and the LDE-subproblem is identical to the one in
(4.12), such that its solution can be approximated in the same way. However, in the NL-
subproblem, the full operator − i

ε2 Tε appears instead of just the dominating part Pε. When
Duhamel’s formula is iterated for the NL-subproblem, finding a computable approximation
of the integrals requires the same Taylor approximations of the operator e− it

ε2 Tε that we used
in the LDE-subproblem. However, those Taylor expansions lead to an increased number of
terms and, as a consequence, more necessary Fourier transforms due to the appearance of
the operator Dε at multiple locations. In particular, the benefits of the NL-subproblem from
(4.85) over the full NLDE are only limited, whereas the splitting ansatz (4.12) allowed for
considerable simplifications when iterating Duhamel’s formula for the NL-subproblem.

4.5 Global error analysis
The goal of this section is to derive a global error bound for the ORSM (4.82). As usual, this is
achieved by first deriving a local error bound and then combining it with a stability estimate.
There are two different sources for (local) errors, namely the splitting of the full PDE into
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several subproblems and the approximation of the flows of the subproblems by numerical
schemes. Both errors have been analyzed separately in Sections 4.3 and 4.4, respectively.
However, for a local error bound for the full method (4.82), one has to keep in mind that the
latter errors are propagated by the subsequent subproblem-flows in (4.83). Thus, stability
estimates for the subproblems are already required in the local error analysis. The same
estimates also yield a stability estimate for the full method. This is why we will first discuss
stability in this section, and afterward the local error. Finally, all results are combined to
obtain the desired global error estimate.

Throughout this section, we will make the technical assumption τ ≤ 1, such that the estimate
τ2 ≤ τ holds. Although this is not a strong restriction anyway, it could also be replaced by
the bound τ ≤ τ0 for an arbitrary τ0 > 1. All constants would then additionally contain the
factor τ0.

4.5.1 Stability

Here, we derive stability estimates for the numerical flows of the NL- and the LDE-subproblem,
and of the full ORSM (4.82). Note that the flow of the LDE subproblem is linear, so that
the notion of stability simplifies. As in Subsections 4.3.1 and 4.4, we let m ≥ 2 arbitrary for
the NL-subproblem, but chose m = m̂ for the LDE-subproblem and the ORSM.

Lemma 4.18. Let 0 < τ ≤ 1.

(i) Let m ≥ 2 and let ΦNL
τ be the numerical flow (4.69) of the NL-subproblem. Then, we

have the uniform bound ∥∥∥ΦNL
τ (v)

∥∥∥
Hm

≤ C, v ∈
(
Hm(R3)

)4 (4.86)

for some constant that depends on ∥v∥Hm, but not on τ and ε. Further, the stability
estimate∥∥∥ΦNL

τ (v) − ΦNL
τ (w)

∥∥∥
Hm

≤ (1 + Cτ) ∥v − w∥Hm , v, w ∈
(
Hm(R3)

)4
, (4.87)

holds for some constant C that depends on ∥v∥Hm and ∥w∥Hm, but not on τ and ε.

(ii) Let Assumption 4.1 (A) hold and let ΦLDE
τ be the numerical flow (4.77) of the LDE-

subproblem. Then, for v ∈
(
Hm̂(R3)

)4, we have the uniform bound and the stability
estimate∥∥∥ΦLDE

τ (v)
∥∥∥
Hm̂

≤ C ∥v∥
Hm̂

,
∥∥∥ΦLDE

τ (v)
∥∥∥
Hm̂

≤ (1 + Cτ) ∥v∥
Hm̂

(4.88)

for some constant C independent of v, τ and ε.

(iii) Let Assumption 4.1 (A) hold and let Φτ be the numerical flow (4.83) of the ORSM.
Then, for v, w ∈

(
Hm̂(R3)

)4, the stability estimate

∥Φτ (v) − Φτ (w)∥
Hm̂

≤ (1 + CSτ) ∥v − w∥
Hm̂

holds for some constant CS that depends on ∥v∥
Hm̂

and ∥w∥
Hm̂

, but not on τ and ε.

Proof. (i) We first prove the stability estimate. To that purpose, consider the definition of
ΦNL
τ given by (4.69). Since eτPε is linear and an isometry according to Lemma 4.3, we know

that ∥∥∥eτPεv − eτPεw
∥∥∥
Hm̂

= ∥v − w∥
Hm̂

.
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Further, using a decomposition of the form (3.56) with u, v, w replaced by esPεv and ũ, ṽ, w̃
by esPεw together with the fact that Hm is an algebra for m ≥ 2, one easily obtains∥∥∥F (esPεv

)
esPεv − F

(
esPεw

)
esPεw

∥∥∥
Hm

≤ C ∥v − w∥Hm

for some constant C that depends on ∥v∥Hm and ∥w∥Hm . Similarly, we find∥∥∥|v|4 v − |w|4w
∥∥∥
Hm

≤ C ∥v − w∥Hm .

Combining all equations yields (4.87). The uniform bound (4.86) then follows by setting
w = 0 in (4.87) and using τ ≤ 1.

(ii) Again, we start with the stability estimate. Recall the representation (4.77) and (4.76)
of the flow ΦLDE

τ and the integrals I1, I2 and I3 contained therein. Since e− it
ε2 Tε is a unitary

operator in Hm̂ for all t ∈ R, we initially get that∥∥∥ΦLDE
τ (v)

∥∥∥
Hm̂

≤ ∥v∥
Hm̂

+ ∥I1(v)∥
Hm̂

+ ∥I2(v)∥
Hm̂

+ ∥I3(v)∥
Hm̂

.

Furthermore, the regularity of the potential W from Assumption 4.1 (A) together with the
fact that the projectors are isometries yield

∥I1(v)∥
Hm̂

≤ Cτ ∥v∥
Hm̂

, ∥I3(v)∥
Hm̂

≤ Cτ2 ∥v∥
Hm̂

.

Additionally using the estimate (3.24) for the filtered operator D̃ε and considering the addi-
tional factor of s in the integrand of I2, we finally obtain

∥I2(v)∥
Hm̂

≤ Cτ ∥v∥
Hm̂

,

such that the second estimate in (4.88) follows. The first estimate is then trivially obtained
from the first one by using τ ≤ 1.

(iii) Let v, w ∈
(
Hm̂(R3)

)4. Then, (4.87) yields∥∥∥ΦNL
τ
2

(v) − ΦNL
τ
2

(w)
∥∥∥
Hm̂

≤ (1 + C1τ) ∥v − w∥
Hm̂

for a constant C1 dependent on ∥v∥Hm and ∥w∥Hm . The fact that ΨRO
t is linear and is an

isometry in Hm̂ for all t ∈ R then implies∥∥∥ΨRO
τ
2

◦ ΦNL
τ
2

(v) − ΨRO
τ
2

◦ ΦNL
τ
2

(w)
∥∥∥
Hm̂

≤ (1 + C1τ) ∥v − w∥
Hm̂

.

Next, the linearity of ΦLDE
τ together with the stability estimate from (4.88) gives∥∥∥ΦLDE

τ ◦ ΨRO
τ
2

◦ ΦNL
τ
2

(v) − ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(w)
∥∥∥
Hm̂

≤ (1 + C1τ)(1 + C2τ) ∥v − w∥
Hm̂

for a constant C2 independent of τ , ε, v and w. Again using the properties of ΨRO
t yields∥∥∥ΨRO

τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(v) − ΨRO
τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(w)
∥∥∥
Hm̂

≤ (1 + C1τ)(1 + C2τ) ∥v − w∥
Hm̂

.
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Then, the stability estimate (4.87) gives∥∥∥ΦNL
τ
2

◦ ΨRO
τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(v) − ΦNL
τ
2

◦ ΨRO
τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(w)
∥∥∥
Hm̂

≤ (1 + C3τ)
∥∥∥ΨRO

τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(v) − ΨRO
τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(w)
∥∥∥
Hm̂

≤ (1 + C1τ)(1 + C2τ)(1 + C3τ) ∥v − w∥
Hm̂

.

The constant C3 therein depends on the norm of both arguments of ΦNL
τ
2

, i.e. on∥∥∥ΨRO
τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(v)
∥∥∥
Hm̂

and
∥∥∥ΨRO

τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(w)
∥∥∥
Hm̂

. (4.89)

In particular, since all flows depend on τ and ε, the same holds for C3. However, the uniform
bounds from (4.86) and (4.88) imply that both norms in (4.89) can be uniformly bounded
w.r.t. τ and ε, such that C3 can be chosen independently of ε and τ (but dependent on ∥v∥

Hm̂

and ∥w∥
Hm̂

). Finally, recognizing that multiple factors of the form (1 +Cτ) with τ ≤ 1 lead
to a factor of the same form again, only with a different constant C, yields the assertion.

4.5.2 Local error

The bounds for the local splitting error and for the local error of the schemes approximating
solutions of the subproblems from Sections 4.3 and 4.4, respectively, can now be combined
with the stability estimates from the previous subsection to obtain a local error bound for
the ORSM.

Lemma 4.19. Let Assumption 4.1 hold and assume τ ≤ 1 in addition. Further, let Φτ be the
numerical flow of the ORSM from (4.83) and let Ψτ be the exact flow of the NLDE. Then,
the local error estimate

∥Ψτ (u0) − Φτ (u0)∥
Hm̂

≤ CL min
{
τ3

ε
,max

{
τ2ε, τ3

}}

holds for some constant CL independent of τ and ε.

Proof. We divide the local error of the ORSM into the splitting error and the error introduced
by replacing the exact flows of the subproblems by the corresponding numerical flows. To
this purpose, let

u 6⃝ = ΨNL
τ
2

◦ ΨRO
τ
2

◦ ΨLDE
τ ◦ ΨRO

τ
2

◦ ΨNL
τ
2

(u0)

be the result of the splitting ansatz using exact flows of the subproblems as in (4.14) (with
the two half steps of the LDE-subproblem combined to one full step). Then, we can write

Ψτ (u0) − Φτ (u0) = Ψτ (u0) − u 6⃝ + u 6⃝ − Φτ (u0). (4.90)

From Lemma 4.2, we know that the bound

∥Ψτ (u0) − u 6⃝∥
Hm̂

≤ C min
{
τ3

ε
,max

{
τ2ε, τ3

}}
(4.91)

holds for the local splitting error, such that it remains to analyze the second difference in
(4.90). To this end, we introduce the two auxiliary values

v 6⃝ = ΦNL
τ
2

◦ ΨRO
τ
2

◦ ΨLDE
τ ◦ ΨRO

τ
2

◦ ΨNL
τ
2

(u0), w 6⃝ = ΦNL
τ
2

◦ ΨRO
τ
2

◦ ΦLDE
τ ◦ ΨRO

τ
2

◦ ΨNL
τ
2

(u0),
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where some of the exact flows are replaced by numerical flows. We then divide

u 6⃝ − Φτ (u0) = u 6⃝ − v 6⃝ + v 6⃝ − w 6⃝ + w 6⃝ − Φτ (u0), (4.92)

and consider all three differences separately. In each of them, exactly one of the flows differs.
First, with u 5⃝ = ΨRO

τ
2

◦ ΨLDE
τ ◦ ΨRO

τ
2

◦ ΨNL
τ
2

(u0), we have

u 6⃝ − v 6⃝ = ΨNL
τ
2

(u 5⃝) − ΦNL
τ
2

(u 5⃝). (4.93)

Since the solution of the NL-subproblem with initial data u 5⃝ remains uniformly bounded
in Hm̂+6 over the time interval [0, τ2 ] by Assumption 4.1 (D), we can apply the local error
estimate from Corollary 4.13 to obtain

∥u 6⃝ − v 6⃝∥
Hm̂

≤ C min
{
τ3

ε
,max

{
τ2ε, τ3

}}
.

In fact, we could even use the Hm̂+5-norm on the left-hand side, but Hm̂ is sufficient for our
purposes. For the second difference in (4.92), we introduce u 2⃝ = ΨRO

τ
2

◦ ΨNL
τ
2

(u0), such that

v 6⃝ − w 6⃝ = ΦNL
τ
2

◦ ΨRO
τ
2

◦ ΨLDE
τ (u 2⃝) − ΦNL

τ
2

◦ ΨRO
τ
2

◦ ΦLDE
τ (u 2⃝).

Again, Assumption 4.1 (D) guarantees that ΨNL
τ
2

(u0) is in Hm̂+6 with uniform norm bound
w.r.t. ε and τ . The same then trivially holds for u 2⃝. Thus, with the local error estimate
from Corollary 4.14, we arrive at∥∥∥ΨLDE

τ (u 2⃝) − ΦLDE
τ (u 2⃝)

∥∥∥
Hm̂

≤ Cτ3

and thus∥∥∥ΨRO
τ
2

◦ ΨLDE
τ (u 2⃝) − ΨRO

τ
2

◦ ΦLDE
τ (u 2⃝)

∥∥∥
Hm̂

=
∥∥∥ΨRO

τ
2

(
ΨLDE
τ (u 2⃝) − ΦLDE

τ (u 2⃝)
)∥∥∥

Hm̂
≤ Cτ3.

Then, we can then apply the stability estimate of the NL-subproblem from Lemma 4.18 (i)
with u = ΨRO

τ
2

◦ ΨLDE
τ (u 2⃝) and v = ΨRO

τ
2

◦ ΦLDE
τ (u 2⃝) to find

∥v 6⃝ − w 6⃝∥
Hm̂

≤ (1 + Cτ)
∥∥∥ΨRO

τ
2

◦ ΨLDE
τ (u 2⃝) − ΨRO

τ
2

◦ ΦLDE
τ (u 2⃝)

∥∥∥
Hm̂

≤ Cτ3. (4.94)

Finally, for the third difference in (4.92), we first note that∥∥∥ΨNL
τ
2

(u0) − ΦNL
τ
2

(u0)
∥∥∥
Hm̂

≤ C min
{
τ3

ε
,max

{
τ2ε, τ3

}}
thanks to Assumption 4.1 (D) together with Corollary 4.13. The same holds after applying
the flow ΨRO

τ
2

of the RO-subproblem to both arguments, since it is linear and an isometry.
The stability estimate of the LDE-subproblem from Lemma 4.18 (ii) then gives∥∥∥ΦLDE

τ ◦ ΨRO
τ
2

◦ ΨNL
τ
2

(u0) − ΦLDE
τ ◦ ΨRO

τ
2

◦ ΦNL
τ
2

(u0)
∥∥∥
Hm̂

≤ (1 + Cτ)
∥∥∥ΨRO

τ
2

◦ ΨNL
τ
2

(u0) − ΨRO
τ
2

◦ ΦNL
τ
2

(u0)
∥∥∥
Hm̂

≤ C min
{
τ3

ε
,max

{
τ2ε, τ3

}}
.

Treating the RO-subproblem as before and applying the stability estimate of the NL-sub-
problem afterward implies

∥w 6⃝ − Φu0∥
Hm̂

≤ C min
{
τ3

ε
,max

{
τ2ε, τ3

}}
. (4.95)

Combining (4.90)-(4.95) and using triangle inequality gives the desired result.
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Figure 4.3: Local error in H1 of the ORSM in dependency of the time step size τ for three
different values of ε. Note that the dashed third order reference lines all use the same constant
C2, and the dotted second order reference lines the same constant C3.

Before we combine Lemmas 4.18 and 4.19 to obtain a global error estimate, we repeat the
numerical experiment from Section 4.3.5, in which we observed the local error, but now for
the final splitting scheme (4.82). This means that the NL- and the LDE-subproblems are now
approximated with the numerical methods from Sections 4.4.1 and 4.4.2, respectively, instead
of solving them (almost) exactly using a very fine discretization. Comparing the results in
Figure 4.3 with those from Figure 4.2 shows that this barely affects the error behavior. For
τ > ε or τ ≤ ε2, both figures essentially correspond. Only the constants C1 and C3 have been
slightly modified, implying that the error constants are a little different. For some step sizes
ε2 < τ ≤ ε, smaller errors are observed in Figure 4.2. Nevertheless, the error is still capped
by the same reference lines in this regime (even with the same constant C2 in both figures),
which confirms the estimate from Lemma 4.19.

4.5.3 Global error

A bound for the global error of the ORSM can now be obtained from the local error bound
together with the stability estimate without any major difficulties. Before doing so, we have
to make suitable assumptions.

In the previous sections, we always chose a generic function u0 as initial data, for which we
made Assumption 4.1. Now, we switch to the NLDE (1.2) on an interval [0, T ] with initial
data ψε(0, x) = ψinit(x), such that we have to formulate a corresponding assumption.

Assumption 4.20. Let T > 0, m̂ ≥ 2 and let Assumptions 4.1 (A) on the potentials hold.
Further, assume the following:

(A) For all ε ∈ (0, 1), the NLDE (1.2) with initial data ψε(0, x) = ψinit(x) admits a solution
ψε on the time interval [0, T ] that remains uniformly bounded in Hm̂+6 w.r.t. ε and t.

(B) For all t0, t1 ≥ 0 with t0 + t1 ≤ T and all ε ∈ (0, 1), the NL-subproblem with initial
data ψε(t0) or ΨRO

t1 ◦ ΨLDE
t1 (ψε(t0)) admits a solution on the time interval [0, t1] that

remains uniformly bounded in Hm̂+6 w.r.t. ε and t, and the same holds on the interval
[0, t12 ] for the initial data ΨNL

t1/2 ◦ ΨRO
t1/2 ◦ ΨLDE

t1 ◦ ΨRO
t1/2 ◦ ΨLDE

t1/2 (ψε(t0)).
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In fact, if the initial data is in Hm̂+6, then we know from Theorem 2.2 that part (A) is fulfilled
at least for some T > 0. Starting from the uniform bounds for ψε, one could then additionally
prove that (B) is fulfilled for sufficiently small T by standard fixed point arguments applied
to all subproblems involved. The assumption from part (B) is required such that we can
apply the local error bound from Lemma 4.19 with u0 = ψε(tℓ) being the exact solution at
any time point tℓ ∈ [0, T ].

On top of that, we need to make an assumption on the boundedness of the numerical ap-
proximations starting from the exact solution at any time point tℓ, similar as in the proof of
Theorem 2.10. In order to do this, we recursively define the numerical flow over n successive
time steps by Φn

τ = Φτ ◦ Φn−1
τ , n ∈ N, and Φ0

τ = Id.

Assumption 4.21. There is a constant τ0 > 0 independent of ε such that for all τ ≤ τ0, we
have

max
n,ℓ=0,...,⌊T/τ⌋

n+ℓ≤⌊T/τ⌋

∥Φn
τ (ψε(tℓ))∥Hm̂

≤ C

for some constant C independent of τ and ε.

This assumption could be proven by a standard bootstrapping argument. As in the proof
of Theorem 2.10, we refer to [Lub08] and [JMS17]. However, note that unlike in said proof,
no additional stability and local error estimate is necessary. The reason for this is that we
assumed m̂ ≥ 2, such that Hm̂(R3) is an algebra, which led to the fact that the constant CS
in Lemma 4.18 (iii) only depends on the Hm̂-norm of the functions involved, but not on the
norm of higher-order Sobolev spaces.

With those assumptions, we can now state and prove a global error bound for the ORSM.

Theorem 4.22. Let Assumptions 4.20 and 4.21 hold and let τ0 be the constant from the
latter. Further, let 0 < ε < 1 and τ ≤ τ0. Then, for the numerical approximations ψn of the
ORSM (4.82) applied with step size τ , the global error bound

∥ψε(tn) − ψn∥
Hm̂

≤ C min
{
τ2

ε
,max

{
τε, τ2

}}
(4.96)

holds for some constant C independent of ε, τ and n.

Proof. The proof uses a Lady Windermere’s fan argument, similar as in the proof of Theo-
rem 2.10. To begin with, we can decompose the global error as

∥ψε(tn) − ψn∥
Hm̂

=
∥∥∥Φ0

τ (ψε(tn)) − Φn
τ (ψε(0))

∥∥∥
Hm̂

≤
n−1∑
k=0

∥∥∥Φk
τ (ψε(tn−k)) − Φk+1

τ (ψε(tn−k−1))
∥∥∥
Hm̂

for n = 1, . . . , ⌊T/τ⌋. We now apply the stability estimate from Lemma 4.18 (iii) k times in
each addend. In each application, the constant CS therein depends on the norm of the two
arguments involved, i.e. on

∥∥Φj
τ (ψε(tn−k))

∥∥
Hm̂

and
∥∥Φj+1

τ (ψε(tn−k−1))
∥∥
Hm̂

, j = k− 1, . . . , 0.
However, according to Assumption 4.21, all those norms are uniformly bounded, such that
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we can always choose the same constant CS in the stability estimate. We thus obtain

∥ψε(tn) − ψn∥
Hm̂

≤
n−1∑
k=0

(1 + CSτ)k ∥ψε(tn−k) − Φτ (ψε(tn−k−1))∥
Hm̂

=
n−1∑
k=0

(1 + CSτ)k ∥Ψτ (ψε(tn−k−1)) − Φτ (ψε(tn−k−1))∥
Hm̂

Next, Assumption 4.20 enables us to apply the local error estimate from Lemma 4.19 with
u0 = ψε(tn−k−1). This yields

∥ψε(tn) − ψn∥
Hm̂

≤
n−1∑
k=0

(1 + CSτ)kCL min
{
τ3

ε
,max

{
τ2ε, τ3

}}
.

Since

(1 + CSτ)k =
(

1 + CS
tk
k

)k
≤ eCStk ≤ eCST and nτ = tn ≤ T,

the estimate

∥ψε(tn) − ψn∥
Hm̂

≤ neCSTCL min
{
τ3

ε
,max

{
τ2ε, τ3

}}

≤ T eCSTCL min
{
τ2

ε
,max

{
τε, τ2

}}

follows, which yields the claim.

Since the minimum in the right-hand side of (4.96) is at most τ2

ε , Theorem 4.22 implies that
the ORSM is second-order convergent in the time step size, but the error constant involves the
factor ε in the denominator. This means that the error constant grows linearly for decreasing
ε. However, if Strang splitting is applied to the classical decomposition (4.1) of the NLDE,
then even in the best case τ ≤ ε2 the error constant increases quadratically with decreasing ε,
as discussed in Section 4.1. The ORSM thus gives a significant improvement over the TSFP
scheme.

On top of that, Theorem 4.22 predicts an even smaller error in some step sizes regimes. To
understand this, note that for the minimum in the right-hand side of (4.96), we have

min
{
τ2

ε
,max

{
τε, τ2

}}
=


τ2, ε < τ,

τε, ε2 < τ ≤ ε,
τ2

ε , τ ≤ ε2.

(4.97)

This means that for step sizes τ > ε, the error of the ORSM is proportional to τ2 with a
constant that does not grow with decreasing ε. For ε2 < τ ≤ ε, there is still some improvement
compared to the τ2

ε bound since τε = τ
ε ε

2 < τ2

ε . This improvement gets smaller the closer τ
is to ε2. Both facts are especially worth mentioning since the classical TSFP scheme shows a
very irregular error behavior for τ > ε2, cf. Figure 4.1. In particular, the error of the TSFP
scheme seems to be of O(1) in the worst case.

Remark 4.23. In Theorem 4.22, we assumed that the exact solution of the NLDE and
the potentials are in Hm̂+6 for some m̂ ≥ 2. Those assumptions then allowed deriving a
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global error bound in Hm̂. In contrast to that, for the EEMR and the NRNPI schemes from
Chapters 2 and 3, we analyzed the global error in L2. Here, we only made the significantly
less strict assumption that the exact solution and the potentials are in H4. According to
[Bao+16b], the same regularity is also required for an L2 error bound of the TSFP scheme.

We conjecture, however, that the assumption m̂ ≥ 2 could be avoided in the sense that a global
error bound in L2 with the same right-hand side as (4.96) can be proven if the exact solution
and the potentials are in H6. To do this, one would have to derive a local error bound and
a stability estimate in L2 based on estimates of the form (2.17) and (2.18), similar as in the
previous chapters. Since the constant in the stability estimate would then depend on the H2-
norms of the functions involved, the uniform boundedness of the numerical approximations
in H2 for all ε and all step sizes τ below an ε-independent threshold τ0 would be required, as
in Eq. (2.48) or in Assumption 3.10. This bound could be proven in the same way as (2.48).
Since the procedure is identical as in the previous chapters, we refrained from doing so here.
Instead, we only presented the error analysis in Hm̂, m̂ ≥ 2, where the algebra property makes
things easier.

4.6 Numerical experiments
To close this chapter, we validate the global error bound of the ORSM from Theorem 4.22 in
a numerical experiment. We will see that in many cases, the error is even smaller than one
would expect from the theorem. Apart from that, we observe the efficiency of the new splitting
scheme in this section, in particular compared to the TSFP scheme (4.4). Furthermore, we
take a brief look at Lie splitting applied to the classical or the new splitting, i.e. (4.1) or
(4.12), of the NLDE.

All experiments are carried out on the 1D-version of the NLDE from Sections 2.4 and 3.5.1,
for which the splitting approach and the approximation of solutions of the subproblems,
including the error analysis, can be conducted in the same way as in the 3D-case. The only
difference is that in Assumption 4.20, we can replace the condition m̂ ≥ 2 by m̂ ≥ 1, since
this is sufficient for Hm̂(R) being an algebra. We will also use the same strategy for the
truncation of the domain and for space discretization as in the aforementioned sections, with
the same number of gird points 2M = 256. Further, we employ identical data. In all plots,
we observe the error at time T = 1 of approximations obtained via the methods described in
the previous sections compared to reference solutions that are computed on the same spatial
grid with Matlab’s ode45-solver applied with very small tolerances.

4.6.1 Accuracy

In the first experiment, we observe the H1-error of the ORSM in dependency of the step size
τ . For a periodic function v ∈

(
Hm(T([a, b]))

)2 with T([a, b]) = R/(b− a)Z, the Hm-norm of
v is approximated by

∥v∥Hm ≈

√√√√ M∑
k=−M

(
1 +

( 2πk
b− a

)2)m
|v̂k|22,

where v̂k, k ∈ Z, are the Fourier coefficient vectors of v. The results for three different values
of ε are depicted in Figure 4.4 in logarithmic axis. The results indeed obey the error bound
from Theorem 4.22, but there are even many cases where the error is smaller than expected.
To understand this, let us consider the different step size regimes from (4.97) one after the
other.

105



10
-4

10
-3

10
-2

10
-8

10
-6

10
-4

Figure 4.4: H1-error of the ORSM at time T = 1 in dependency of the time step size τ for
three different values of ε. The dotted reference lines are of the form C τ2

ε for a joint constant
C. The vertical lines mark the step sizes τ = kπε2, k = 1, . . . , 10 for the value ε = 0.005.

For τ > ε, the results correspond to the assertion from Theorem 4.22. An error proportional
to τ2 can be observed, as a comparison to the dashed, black, second-order reference line shows.
The error for the different values of ε cannot be distinguished, confirming the independence
of the error constant of ε.

Unexpectedly, the same holds for most step sizes in the regime ε2 < τ ≤ ε. Only for some
unfavorable step sizes, very thin peaks appear. The value of those unfavorable step sizes can
easily be identified from the plot. They are the multiples of πε2, as the vertical lines reveal
for the smallest of the three values of ε. Similar step sizes were identified as resonant step
sizes for the NRNPI-scheme from Chapter 3, cf. Eq. (3.46). Since the value of those step sizes
is known, it is no problem to avoid them. But even for those unfavorable step sizes, the error
does not grow arbitrarily large. Instead, the height of the furthermost left peak for each value
of ε (corresponding to the step size τ = πε2) is C τ2

ε for a constant C independent of ε. This is
confirmed by the colored, dotted reference lines. Those lines all have the form C τ2

ε for a joint
constant C, and they “touch” the furthermost left peak at its largest value. All other peaks
stay below those reference lines, which is what we would expect from Theorem 4.22 together
with Eq. (4.97). Similarly, for step sizes τ ≤ ε2 (i.e., further left than the furthermost left
peak), the error is of order O

(
τ2) independently of ε.

Since the uniformity of the error for step sizes in the regimes τ ≤ ε2 or ε2 < τ ≤ ε, but
not close to the values kπε2, k ∈ N, was not observed in the local error plots in Figures 4.2
or 4.3, this improved error behavior seems to be due to nonresonance effects in the error
accumulation, possibly similar as in Chapter 3. To understand this, a detailed analysis of
the structure of the local error terms that are in O

(
τ3

ε

)
would be required. The source of

those error terms is the approximation from Lemma 4.11. As an alternative to the bound
established in the lemma, one can deduce the representation

etPεv − etP0v = −2iε sin
(
t

ε2

)
RProjv, v ∈

(
Hm(R3)

)4
of the error from its proof. What this representation implies for the structure of the O

(
τ3

ε

)
local error terms and thus what the exact reason for the improved global error is, however,
remains an open research question.
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Figure 4.5: L2-error at time T = 1 of the ORSM (solid lines) and of the TSFP scheme (dotted
lines) in dependency of the total number of discrete Fourier transforms required in the course
of all time steps.

Overall, the accuracy of the ORSM for a fixed step size τ is far superior to that of the TSFP.
However, one has to keep in mind that each time step of the former scheme is more expensive
than a time step of the latter. Nevertheless, a large efficiency gain remains, as we will discuss
in the next subsection.

The remaining experiments all include comparisons of the ORSM to other methods. For
most of those methods, bounds of the L2-error have been studied. This is why from now on,
we will always measure the error in L2 (instead of, e.g., H1 as above). Of course, the error
bound in Hm̂ from Theorem 4.22 trivially implies the same bound for the error in L2.

4.6.2 Efficiency

Here, we want to observe if the improved accuracy of the ORSM compared to the TSFP
indeed yields an efficiency gain, i.e. if better accuracies can be achieved for fixed computation
times. A fair comparison of the efficiency of different methods is difficult since the runtime
of a numerical method heavily depends on the implementation (e.g. avoiding unnecessary
computations, vectorization and parallelization of operations, . . . ). However, after space
discretization, the most expensive operations that have to be carried out for computing a
time step of any method discussed in this work are (discrete) Fourier transforms and inverse
Fourier transforms. Thus, an alternative approach to assess efficiency of the different methods
is to observe the number of discrete Fourier transforms required. For a single time step of
the ORSM or the TSFP scheme, this number has been discussed in Remark 4.15.

In the next numerical experiment, both methods are applied for several different step sizes.
In each application, the error at time T = 1 is observed and the total number of Fourier
transforms for all time steps required to reach time T = 1 is counted. The results are
depicted in Figure 4.5. Since the number of Fourier transforms is proportional to the number
of steps N , and thus inversely proportional to the step size τ , the error of the ORSM is in
O
(
#FFT−2) uniformly in ε apart from the peaks corresponding to unfavorable step sizes

(see also the black reference line). For the TSFP scheme, we again have to distinguish the
cases τ ≤ ε2 (corresponding to a large number of time steps and thus of Fourier transforms)
or τ > ε2 (corresponding to small FFT numbers). In the first case, the error again decreases
quadratically with increasing number of FFTs, but with an error constant that is proportional
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Figure 4.6: L2-error at time T = 1 in dependency of the step size τ for Lie splitting applied
to the new splitting (4.12) (left) or the classical splitting (4.1) (right) of the NLDE.

to 1
ε2 . In contrast to that, one can again see the irregular error behavior in the second case.

The plot shows that in all cases, the ORSM is clearly more efficient for all three values of ε
depicted. Even though each of its time steps requires more Fourier transforms, it achieves
better accuracies for a fixed number of FFTs. This also holds at those points where peaks
appear due to unfavorable step sizes, but the largest efficiency gain is of course obtained for
step sizes not too close to them. Since the error constant of the TSFP scheme is proportional
to 1

ε2 (in the step size regime τ ≤ ε2), the efficiency gain is particularly large for small values
of ε.

4.6.3 Lie splitting

As supplementary information, we briefly discuss what error behavior one could expect if Lie
splitting instead of Strang splitting was applied to the new splitting (4.12) of the NLDE. In
the proof of Lemma 4.9, we have seen how the local splitting error of Strang splitting can
be related to the error of Lie splitting steps (with different orders of the subproblems), and
we have analyzed the latter, cf. (4.47) and (4.49). In particular, this analysis directly yields
that the local error of Lie splitting steps is of Om̂

(
τ2) uniformly in ε, and approximating the

projectors Π±
ε by the matrices Π±

0 is not necessary. Globally, one would thus expect uniform
first order convergence if the subproblems could be solved exactly. This is confirmed by the
left panel of Figure 4.6. Here, Lie splitting is applied to the splitting (4.12). When doing so,
the solutions of the LDE- and the NL-subproblems are approximated by Matlab’s ode45-
solver with very small tolerances, such that the approximations can be considered as exact.
For comparison, Lie splitting is also applied to the classical splitting (4.1) of the NLDE in the
right panel of Figure 4.6. As for Strang splitting, a very irregular error behavior is observed
for step sizes τ > ε2. For τ ≤ ε2, linear convergence is observed, with an error constant that
seems to increase only slightly with decreasing ε.
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Chapter 5

Conclusion and outlook

This thesis addressed the construction of time integration schemes for the NLDE in the
nonrelativistic limit regime. Three novel methods have been presented. The EEMR from
Chapter 2 allows approximating solutions of the NLDE with accuracies up to O

(
ε2) very

efficiently. However, since it only approximates solutions of the semi-nonrelativistic limit
system, it cannot achieve better accuracies. If an error of O

(
ε2) is not sufficient, the more

sophisticated NRNPI or ORSM schemes have to be employed. For the NRNPI from Chap-
ter 3, we proved that the error is proportional to τ2 for nonresonant step sizes τ ≥ πε2/4
and to τε2 for smaller step sizes. In particular, in the former step size regime, it has the
same accuracy as the NPI-2 scheme, even though many terms from the flow of the NPI-2
scheme were simply discarded. In numerical experiments, we observed that this can indeed
bring a significant efficiency gain. Finally, we proposed the ORSM scheme in Chapter 4.
This scheme was based on a splitting of the NLDE into several subproblems. We have seen
that approximations of solutions of those subproblems can be obtained far more efficiently
than of the full NLDE. Furthermore, we have analyzed the splitting error and obtained an
O
(
min

{
τ2

ε ,max
{
τε, τ2}}) error bound after all. The numerical experiments suggested that

the error is even in O
(
τ2) for all τ and ε if some resonant step sizes are avoided.

The accuracy of all three methods in dependency of the step size and of the number of
(inverse) Fourier transforms conducted is compared in Figures 5.1 and 5.2, respectively. This
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Figure 5.1: L2-error of the EEMR (blue), the NRNPI (red) and the ORSM (yellow) at time
T = 1 in dependency of the step size τ for ε = 0.02 (left), ε = 0.01 (middle) and ε = 0.005
(right). Only optimal step sizes were used for the NRNPI, and resonant step sizes were
avoided for the ORSM.
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Figure 5.2: As Figure 5.1, but with the error depicted in dependency of the total number of
discrete Fourier transforms required in the course of all time steps

not only summarizes the results of all chapters, but also facilitates the choice of an appropriate
method for users. In both figures, the three methods are distinguished by different colors,
and the results are depicted for three different values of ε in the columns. The NRNPI has
only been applied with optimal step sizes, and for the ORSM, resonant step sizes have been
avoided.

In Figure 5.1, one can see that for large step sizes τ ≥ ε, all three methods achieve roughly the
same accuracy. This is what one would expect from the error analysis. The error constant of
the ORSM seems to be slightly smaller than of the other two methods. Nevertheless, thanks
to the very simple iteration procedure, the EEMR is the most efficient of all three schemes in
this regime, as a look at Figure 5.2 confirms. For step sizes ε < τ ≤ ε2 (up to some constants),
from the theory we would expect the NRNPI to overtake the ORSM in terms of efficiency at
some point (under the assumption that resonant step sizes are avoided), as we were only able
to prove an O(τε) error bound for the ORSM in this regime, cf. (4.97). However, since in
this numerical experiment, an error proportional to τ2 is in fact observed for the ORSM and
since the splitting approach provides significant benefits for the computational work required
in each time step, the ORSM is the most efficient in this step size regime. This also holds for
step sizes τ < ε2. Here, the ORSM is the only scheme that is second order convergent in τ .
The fact that the expected factor of ε in the denominator of the error bound does not seem
to appear in practice further enhances the efficiency gain of the ORSM.

In Figure 5.2, the ORSM is always more efficient than the NRNPI. On top of that, the
construction of the NRNPI required first deriving the full NPI-2 scheme, and even though
the numerical flow of the latter has been simplified substantially, the numerical flow of the
NRNPI is still rather complicated. This makes implementation and debugging of the NRNPI
difficult. In contrast to that, the splitting approach used in the ORSM is easily explained,
and the numerical flows used to approximate the subproblems are comparably simple. This
suggests that the ORSM is in every respect superior to the NRNPI scheme. However, one
has to keep in mind that the improved error behavior (compared to the error bound) of
the ORSM is not always guaranteed, as it has so far not been explained analytically. In
theory, there might be data for which the NRNPI is in fact more efficient than the ORSM
in certain step size regimes. Furthermore, to establish our error bounds, stronger regularity
assumptions (in particular on the initial data and on the potentials) have been made for the
ORSM than for the NRNPI.

We believe that the improved accuracy that has been observed for the ORSM is systematic.
Proving this must be an important goal for future research considering the other favorable
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properties of the ORSM. On top of that, a new, special technique of splitting a PDE into
several subproblems, namely to include certain terms in all subproblems and to “rewind”
them in between, has been used for the construction of the ORSM. This raises the question
whether this strategy can also bring benefits for PDEs other than the NLDE. Exploring this
is another interesting topic to work on.
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