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Chapter 1

Introduction

In 1928, British physicist Paul Dirac proposed a new evolution equation [Dir28], with the
aim of accurately describing the behavior of electrons and other spin-1/2 particles within the
framework of special relativity. In particular, Dirac’s equation, in contrast to the Schrédinger
equation, also applies to particles travelling at velocities near the speed of light. It has not
only become one of the fundamental equations in relativistic quantum mechanics, but also
led to the prediction of antimatter as a new form of matter [And33].

The equation proposed by Dirac is nowadays known as the free Dirac equation. In dimen-
sionless form, it can be written as

. 3
O () = —5Tev(ta),  To=—ie ) a0+ (1.1)

J=1

for t > 0,2 € R3. Here, ¢ = 9°(t,x) € C* is the vector-valued wave function. The operator

7T-, sometimes called the free Dirac operator, is self-adjoint on the Sobolev space (H 1(R?’))4
[Tha92, Theorem 1.1]. It contains the Dirac matrices oy, j = 1,2,3, and /3, which are given

by
o 0 O'j . . IQ 0
a]_<0.j 0)7 .7_172737 /3_<0 _IZ>

They in turn are determined by the Pauli matrices

(o1 (o =i (1 0
=11 0) 271 o) 7 lo —1)"

A special role is played by the parameter € = v/c € (0,1), which is the ratio of the velocity v
of the moving particle and the speed of light ¢ [BMP98; Bao+16b; Bao+17]. There are two
important parameter regimes. The first one is the relativistic regime, where v is close to the
speed of light, such that ¢ is close to 1. The other one is the nonrelativistic limit regime. This
corresponds to quantum mechanical systems describing particles much slower than the speed
of light. Thus, € <« 1 is small in this case, but it is not small enough to neglect relativistic
effects. In this regime, solutions of the Dirac equation exhibit rapid oscillations in time with
frequency proportional to 1/¢2. Understanding this oscillatory behavior will be crucial for
this thesis, which is why we discuss it in detail at the end of the introduction.

In applications, it is interesting to observe how particles behave under an external electro-
magnetic field and when particle self-interaction is taken into account [HC09; Mer10; Sol70;



Thi58]. Then, an electromagnetic potential W and a nonlinearity are included in the Dirac
equation. The two most prominent examples for the latter are the Soler model [Sol70] and
the Thirring model [Thi58]. In this work, we consider the nonlinear Dirac equation (NLDE)
in the nonrelativistic limit regime ¢ < 1 in the form [Bao-+16b; CW20)]

O (1) = =5 Tou (6, 2) — W (6, 2) (1, 2) — F(U (1, 2) i (1, ),
1118(07 :L‘) = ¢init(x)7

with nonlinearity F' given by

(1.2)

F(v) =y (v*Bv)B + 72 [v]* L.

The parameters vi,72 € R determine the kind of self interaction as well as the interac-
tion strength. For ;3 = 0, the Soler model is obtained, whereas the case v9 = 0 cor-
responds to the Thirring model. The electromagnetic potential W = W (t,z) € C**4
is composed of an electric scalar potential V' (t,z) € R and a magnetic vector potential
A(t,x) = (A1(t, ), As(t, x), A3(t,z))T € R®. With the matrices from above, W is given by

Wi(t,z)=V(t,x)ls — Z Aj(t,x)a;. (1.3)
j=1

From an analytical point of view, it has been proven that there exist solutions of the NLDE
on time intervals independent of ¢ [CW20; Naj92]. For smooth initial data, those solutions
remain smooth in space, but as for the free Dirac equation, they oscillate rapidly in time
with frequency proportional to 1/e? [Bao+16a; CW20]. The oscillations go hand in hand
with time derivatives that are unbounded w.r.t. €. In the left half of Figure 1.1, the temporal
evolution of a typical solution of the NLDE is illustrated. Here, a version of the NLDE in
one space dimension is considered, a point xy € R in space is fixed, and the real part of the
first component of a solution ¢ at xg is observed over time. Comparing the lines for the two
different values of & confirms that the frequency of the oscillations is proportional to 1/£2.

Since solutions of the NLDE remain smooth in space, standard methods can be used for
space discretization. However, the oscillatory nature of solutions poses major problems for
time discretization. Standard time integration schemes typically face two issues when they
are applied to oscillatory problems. On the one hand, some methods are only stable under a
severe step size restriction. Even in the linear case where 1 = 75 = 0 in (1.2), stability of the
leapfrog scheme, for example, is only obtained for small enough step sizes 7 < Ce? for some
constant C' dependent on the spatial mesh width [Bao+17]. Thus, for small values ¢ < 1,
only tiny step sizes are possible. On the other hand, even if a method is stable, it might suffer
from a poor accuracy. The reason is that error constants often depend on the size of time
derivatives of the exact solution. Those derivatives grow very large in the case of the NLDE
for small € < 1 (corresponding to high frequencies of the oscillations). In [Bao+16b], several
standard methods applied to the NLDE in the nonrelativistic limit regime were analyzed. For
a Crank—Nicolson scheme, the authors did prove unconditional stability, but also that the
error of the time discretization (in a suitable norm) is of order O(72/%). Thus, even for tiny
step sizes T ~ 3, good accuracies cannot be expected. For Strang splitting, they showed that
the error is bounded by C72/e* for some constant C. Even though this is an improvement,
the same problems remain. All those methods thus require enormous computational costs
for acceptable accuracies.

To obtain better results, tailor-made time integration schemes have to be constructed. This
means that the schemes have to be adapted to the structure of the PDE under consideration.
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Figure 1.1: Temporal evolution of solutions of a 1D-analogue of the NLDE (left), the trans-
formed Dirac equations (right, solid lines), and the semi-nonrelativistic limit system (right,
dashed lines) for two different values of . All functions are considered for the same point xg
in space, whereas time varies. Each line represents the real part of the first component of the
respective function. Note that only a far smaller interval is shown on the y-axis in the right
plot.

In the nonrelativistic limit regime, the ultimate goal must be to obtain error bounds that
are independent of e (uniformly accurate schemes) or even improve for smaller values of
€. There has been some progress in this direction. First of all, it was shown in [BCY21]
that if no magnetic potential is present, i.e. A; = 0 for j = 1,2,3 in (1.3), and if special,
nonresonant step sizes are employed, then the error of Strang splitting improves to (’)(7'3/ 2)
uniformly in €. For the NLDE with magnetic potential, three other schemes have been
proposed. In [CW18], the authors introduced the multiscale time integrator (MTI). They
work with a multiscale formulation of the NLDE, which allows them to construct a time
integration scheme with error in O (min {72 + €2, 72/£%}). This implies that the error reduces
quadratically with decreasing step size 7 > ¢, until an accuracy of (9(52) is achieved for
T = €. For step sizes €2 < 7 < ¢, no further improvement of the accuracy is expected. Only
for step sizes 7 < €2, quadratic convergence in 7 sets in again, but with an error constant
proportional to 1/¢2. In view of this error behavior, the scheme is particularly interesting
when an accuracy of order 0(52) is sufficient, which might be the case for small €. However,
the fine-scale corrections lead to a very complicated method, cf. [CW18, Eq. (2.29)-(2.31)].
A different strategy has been proposed in [LMZ17]. Here, the authors separate the fast and
slow time scales in the NLDE, which leads to a non-oscillatory augmented problem, for which
they are indeed able to construct a uniformly accurate method of second order in the time
step size. However, this separation implies having an additional variable in the augmented
problem. The extra dimension leads to far larger computational cost. In [CW22], the second-
order nested Picard iterative integrator (NPI-2) has been presented. The NPI-2 also achieves
second order convergence uniformly in e. It is derived by first iterating Duhamel’s formula,
which yields representations of the solution involving several integrals. In those integrals, one
carefully distinguishes slowly varying parts from highly oscillatory parts. The former ones
can be approximated, whereas the latter parts are integrated exactly. If carried out correctly,
the approximation errors in this strategy do not depend on the size of any time derivative
of the solution. This is why it is very well suited for highly oscillatory problems from an
accuracy point of view. However, the nonlinear nature of the PDE causes a large increase in
the number of terms with each iteration of Duhamel’s formula. The resulting method is very



complicated, in the sense that it takes the authors two pages to write down the final scheme
in its full glory. This not only makes implementation and debugging extremely difficult, but
also reduces the method’s efficiency, since a large number of terms has to be computed in
each time step. Furthermore, a rigorous error analysis would be very tedious, which is why
the authors of [CW22] only presented it for a first-order scheme.

After having reviewed the few works that already exist on time integration of the NLDE
in the nonrelativistic limit regime, it becomes clear why the subject is so difficult. The
main challenge is to construct numerical schemes that can cope with both the oscillatory
behavior of solutions and the nonlinear nature of the NLDE. Handling the oscillations requires
special techniques, whilst the nonlinearity can make the application of said techniques very
sophisticated. In this thesis, we propose and analyze three new time integration schemes for
the NLDE. All of them take into account the special structure of the oscillations exhibited by
solutions of the NLDE, and in some cases even exploit them to their advantage. None of the
schemes is the best of the three. Instead, they all have their individual benefits. In particular,
the method of choice depends on the level of accuracy that the user wants to achieve.

The first step in the construction of all three methods is a transformation of variables through
which, roughly speaking, the dominating oscillations are filtered out. This transformation
goes back to [BMP98] and [CW20]. The result is the transformed Dirac equations, which
is a system of two coupled PDEs whose solutions ¢S and ¢ are “less oscillatory”, in the
sense that their first time derivatives are uniformly bounded w.r.t. e. However, the second
time derivative is still unbounded. This is illustrated by the solid lines in the right half of
Figure 1.1. They show the temporal evolution of the function ¢% from a solution of the
transformed Dirac equations. It becomes apparent that ¢ is still oscillatory. However, the
amplitude of the oscillations decreases fast enough with decreasing ¢ such that the size of
the first time derivative does not grow. The same holds for the function ¢ . The solution of
the original NLDE can exactly be reconstructed from a solution (¢7, ¢% ) of the transformed
system. More precisely, we have

U (t,x) = e ¢ (8, x) + eV 67 (1, ). (1.4)

The transformation is motivated by an eigenspace decomposition of the free Dirac operator
in Fourier space and is fundamental for all methods in this thesis. This is why we will present
it in detail at the end of this chapter.

Chapter 2 contains the paper [JK23]. Here, we consider time integration for the semi-
nonrelativistic limit system from [CW20]. This is a simplified version of the transformed
Dirac equations where a number of terms is omitted from the right-hand side of the PDEs.
The simplification comes at the cost of an 0(52) approximation error. Considering (1.4), we
thus have

VE () = e (1, 2) + €7 (1,2) + O(2).
where (¢, 9% ) is a solution of the new system. Here, O(eP), p € Ny, stands for a time- and
space-dependent function for which a suitable Sobolev norm is bounded by Ce? at all times
with some constant C' independent of €. As a consequence of the deliberations above, any
method that approximates solutions of the semi-nonrelativistic limit system cannot achieve
accuracies better than O (52) for the original NLDE. For small values of €, this will be sufficient
in some applications. The benefit of this new system are the simpler PDEs, but also that
the second time derivatives of its solutions are uniformly bounded w.r.t. €. This is again
confirmed by the right plot in Figure 1.1, where the dashed lines represent the function ¢

4
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Figure 1.2: Systems under consideration, their relation to the original NLDE, and the size of
their first two time derivatives w.r.t. .

from the semi-nonrelativistic limit system. No temporal oscillations are visible anymore, and
the function ¢ oscillates around ¢ on a small scale. All three systems under consideration,
their relation to the original NLDE, and the different temporal regularity of their solutions
are summarized in Figure 1.2. We will present a uniformly accurate second order method for
the semi-nonrelativistic limit system called the explicit exponential midpoint rule (EEMR).
The method is an exponential integrator that perfectly exploits the additional temporal
smoothness attained by considering the semi-nonrelativistic limit system. It is based on
applying Duhamel’s formula over a time interval of length 27, where 7 is the time step size,
and then approximating the resulting integrals via the midpoint rule. The approach requires
one less iteration of Duhamel’s formula than would normally be necessary to achieve the same
error order. This brings large benefits considering that the PDEs are nonlinear. Overall, a
two-step method with a very simple numerical flow is obtained. In particular, the EEMR is
far simpler than the MTI or the NPI-2, and yet has the same accuracy as long as an error of
O(g?) is sufficient.

The methods from Chapters 3 and 4 are developed for applications where an accuracy of
(9(52) is not enough, such that the EEMR does not provide adequate results. The contents
from Chapter 3 essentially correspond to the preprint [JK24], but it has been slightly modified
during the review process of a scientific journal. Here, we first revisit the NPI-2 scheme from
[CW22]. However, we formulate the method for the transformed Dirac equations instead of
the original NLDE, and employ slightly different techniques to approximate the slowly varying
parts. Working in the variables ¢5 allows us to identify terms in the NPI-2 scheme that are
expected to have only a limited impact on the result if nonresonant step sizes are used. We
then consider a simplified version of the NPI-2 scheme, where those terms are omitted. This
results in the nonresonant nested Picard iterative integrator (NRNPI), which is the main
accomplishment of this chapter. For 7 > me?/4, the NRNPI has the same accuracy as the
NPI-2 scheme if some a-priori known resonant step sizes are avoided. In particular, the error
is proportional to 72 in this regime, and accuracies up to O (54) can be achieved. For very
small step sizes 7 < me2/4, only linear convergence is observed, but with an error constant



that is proportional to 2. Altogether, the NRNPI performs especially well for very small

values of . In the error analysis of the NRNPI, a detailed look into the error accumulation
is necessary, since nonresonance effects that occur in the course of several time steps are
exploited. The error analysis is only manageable since we introduce a sophisticated notation
which allows writing both the full NPI-2 scheme and the NRNPI in a compact form. In fact,
before discussing the NRNPI, the error of the NPI-2 scheme itself has to be analyzed first.
This is worth mentioning since the authors of [CW22] refrained from doing so.

In Chapter 4, we introduce a new method based on splitting techniques. It is presented for
the first time here in this thesis. Splitting methods are usually not suitable for oscillatory
problems as their error constants grow very large with increasing frequency of the oscilla-
tions. For the classical splitting of the NLDE considered in [Bao+16b] and [BCY21], this
was discussed previously. However, we suggest a special splitting of the transformed Dirac
equation instead. The crucial benefit of this new ansatz is a reduced splitting error, which
is not as heavily affected by rapid oscillations as the classical ansatz. We will analyze the
resulting splitting error in detail. Furthermore, since the subproblems cannot be solved ex-
actly, we will also introduce efficient schemes to approximate their solutions. This will lead
to a method which we call the oscillation-rewinding splitting method (ORSM). The name is
motivated by a different interpretation of the new splitting ansatz. After all, we are able to
show that the error of the ORSM is in (9(72 /€). Thus, second order convergence is achieved
with an error constant that does increase with decreasing e, but only linearly. This means
that we expect the ORSM to outperform the NRNPI for very small step sizes, i.e. 7 < 71y for
some 7y < €2. In numerical experiments, however, we will see that the error is in fact even in
(9(7'2) if certain resonant step sizes, which can easily be identified, are avoided. Note that in
each time step of the ORSM, only the solutions of the subproblems have to be approximated.
This brings considerable advantages compared to the approximation of solutions of the full
(transformed) Dirac equation. In particular, it turns out that the ORSM also outperforms
the NRNPI for step sizes 7 > 7.

All three methods proposed in this thesis combined cover the entire spectrum of accuracies.
If for a desired accuracy the most suitable of the three integrators is chosen, one can always
outperform the methods that have previously been proposed in the literature for time inte-
gration of the NLDE in the nonrelativistic limit regime. To conclude this thesis, we provide
a direct comparison of all three methods in Chapter 5, in particular in dependency of the
computational costs invested. This once again clarifies the decision-making basis for choosing
the right scheme.

Since Chapters 2 and 3 of this thesis consist of a peer-reviewed article and a preprint sub-
mitted for publication in a scientific journal, respectively, they are completely self-contained.
Minor overlaps, especially in the introductions, are unavoidable. Chapter 4 was newly devel-
oped for this thesis and contains several references to previous chapters.

Decomposing the free Dirac operator

Before we begin discussing the time integration schemes, we want to understand the origin
and the structure of the oscillations in solutions of the NLDE in the nonrelativistic limit
regime. To this purpose, we will consider a decomposition of the free Dirac operator 7;. This
decomposition also motivates the introduction of the transformed variables ¢%, which are
fundamental throughout this thesis.

Let us omit the potential and the nonlinearity in the NLDE (1.2) for the moment. Thus, we



go back to the free Dirac equation (1.1). The effect of 7: can be observed best in Fourier
space. For a function u = u(x) € (H 1(R3))4 with Fourier representation

1 1

u(w) = Gy /R (RO 0O = /R () dr, ERY,

we have

1

3 .
Teu(z) (2 /RB (‘ igjzlajaj "‘ﬁ)em&ﬁ(f)df

1 ’ ir-&~
= a7 L (5;% +8 ) €a(6) de

Thus, application of Tz corresponds to multiplication of the Fourier transform at ¢ € R? with
the matrix

3
T(&) =e> a;g+peCh

j=1

Consequently, if we translate the PDE (1.1) into Fourier space, we obtain the ODE system

0T (1,6) = ~ 5 TP (1,€) (15)

for each ¢ € R3, with solution

it

(€)= e 2 FOGE(0, ). (1.6)

It can easily be checked that «j, j = 1,2,3 and §, and hence also 7:(§), are Hermitian
matrices. In particular, 72(§) is (unitarily) diagonalizable and only has real eigenvalues. The
factor 1/¢2 in front of TZ(€) enlarges the modulus of those eigenvalues considerably. However,
considering the additional i in front of 8%7;(5), it becomes apparent that the ODEs (1.5)
are not exploding or stiff, but instead highly oscillatory. A more detailed insight into the
oscillatory behavior can be gained by looking at the precise value of the eigenvalues. One
can easily check that the matrices 72(£) have the two eigenvalues

£A(6)  with  A(€) = /1 +e2[¢, (1.7)

each of them with geometric multiplicity two [BMP98]. The orthogonal projections onto the
two respective eigenspaces are given by

I (¢) = % <I4i 7;(5)) .

Ac(§)

In particular, we have
IZ(6)? =12(E), WHE)+IL(€) =1Li, and ILF(OIL () =IO () =0 (L8)
Altogether, the matrix 7-(£) can be decomposed as

Te(§) = A(OILT (6) — A<(TIZ (£)- (1.9)



This can be used to rewrite the solution (1.6) of (1.5) as

PF(1,€) = e MO (€)47(0,€) + 22O ()97(0,6).

In particular, the solution is obtained by multiplying the two eigenspace components of
1=(0,&) with highly oscillatory phases with ¢-dependent frequencies of opposite sign. This
suggests considering both eigenspace components separately, i.e. to write the solution as

V5 (1, €) = V. (£,€) + U= (£, €) with 5. (t,€) = [EE(E)0< (1, €) given by
0L(6) = MO0 (0,6), g (1,6) = MO E (0, ). (1.10)

The different frequency components of 125 (+,€) are now separated. The frequencies depend
on the Fourier mode ¢ € R3. However, the estimate

|A5<s>—1|=\m_1\:|¢%+1 <
g

shows that for all ¢ € R3, the main part of the frequencies FA.(£)/e? is given by F1/e?,
and only a bounded (w.r.t. ) part remains. In other words, if for each & € R® we multiply
the functions ¢% (-, €) in (1.10) with exp (£it/2), then the main temporal oscillations will be
filtered out. This is why we define the new functions

&2 |¢f?
2

(1.11)

-~ it~ ~ it~
() =e YL (4,8), T (tE) =e Y (E),  EERY
for which we obtain the formulas

A — 1 A — 1
g2 g2

5 () = exp it 0.0, (ke —ew (it )#£0.0).

In view of (1.11), the frequencies of the temporal phases are now bounded w.r.t. €.

All the considerations above can be translated to the original solution ¢ of the free Dirac
equation (1.1) in physical space using pseudo-differential operators. Applying the operator
A = VId — €2A to a function u € (H'(R3))*4, for example, corresponds to multiplication of
the Fourier transform of u at & € R? with the number A.(¢) from (1.7). Additionally defining
the projection operators

1
=3 (1d £ A'T:) (1.12)
in the same manner, we obtain the decomposition
To = AL — ATIC (1.13)

of the operator Tz, cf. Eq. (1.9). The properties of the projection matrices IT*(¢) from (1.8)
transfer to the projection operators:

(IF)?=1F, IF+07 =Id, and I =ICI0F =0. (1.14)

Further, analogously to before, we decompose the solution ° = 5 + % into the two
components ¢ = I1F [1)°] and define the two new functions ¢ by

O5L(t,7) = e EYE (1, 2) = T ITE [YF(t, 7). (1.15)



Since ¥ (t,x) = exp(:FEi—tQA[.;)l'[gE [¥5(0, x)], they fulfill
¢%.(t,x) = eTPIIT [YF(0, 2)] (1.16)

with the operator D, defined by

1

D. = 5 (A. ~1d). (1.17)

To put it another way, the functions ¢5 solve the PDEs

0L = FiD.¢%,  ¢L(0,z) = ITF [°(0, )] .

Eq. (1.11) implies that D; is a uniformly (w.r.t. ) bounded operator from H™*2 to H™ for
any m > 0, in contrast to the unbounded operator 6%7; in the free Dirac equation (1.1). The
filtering of the main part of the oscillations therefore leads to a uniformly (w.r.t. ) bounded
first time derivative of the resulting functions ¢%.

In the full NLDE (1.2), the operator 5%7; constitutes the dominant part of the right-hand side.
This is why the transformation of variables from (1.15) will bring the same benefits for the
temporal regularity. However, we are of course no longer able to write down the exact solution
explicitly as in (1.16). Instead, from the original NLDE (1.2), we can derive two PDEs for
the variables ¢5. Translating the potential term and the nonlinearity to the transformed
variables will lead to a coupling between both PDEs, and to more complicated right-hand
sides. Nevertheless, the resulting transformed Dirac equations are the cornerstone for all
subsequent chapters. In Chapter 2, they form the basis for deriving an analytic approximation
to solutions of the NLDE. Further, they make it possible to identify the different frequency
components in solutions of the NLDE, which is fundamental for exploiting nonresonance
effects to improve efficiency of a numerical scheme in Chapter 3. Finally, in Chapter 4, the
transformed Dirac equations will give the motivation for a new kind of splitting ansatz which
will result in a very efficient time integration scheme.
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Chapter 2

On numerical methods for the
semi-nonrelativistic limit system of
the nonlinear Dirac equation

This chapter consists of the paper [JK23], which is joint work with Tobias Jahnke and was
published in BIT Numerical Mathematics. In order to fit in with the rest of this thesis, the
layout was adapted and minor changes have been made to the notation.

TOBIAS JAHNKE AND MICHAEL KIRN

Abstract: Solving the nonlinear Dirac equation in the nonrelativistic limit regime
numerically is difficult, because the solution oscillates in time with frequency of
0(8_2), where 0 < ¢ < 1 is inversely proportional to the speed of light. Yongyong
Cai and Yan Wang have shown, however, that such solutions can be approximated
up to an error of (’)(52) by solving the semi-nonrelativistic limit system, which is a
non-oscillatory problem. For this system, we construct a two-step method, called
the explicit exponential midpoint rule, and prove second-order convergence of the
semi-discretization in time. Furthermore, we construct a benchmark method based
on standard techniques and compare the efficiency of both methods. Numerical
experiments show that the new integrator reduces the computational costs per time
step to 40% and within a given runtime improves the accuracy significantly.

2.1 Introduction

The Dirac equation describes the relativistic motion of spin-1/2 particles such as, e.g., elec-
trons, positrons, protons, neutrons, and quarks, under the influence of external electromag-
netic fields. Since its derivation by Dirac in [Dir28], it has become one of the cornerstones of
relativistic quantum mechanics; cf. [Tha92]. Nonlinear versions of the Dirac equation have
been proposed to model self-interaction of particles and other phenomena; see, e.g., [HC09;
Mer+10; Sol70; Thi58]. In the nonrelativistic limit regime, the Dirac equation involves a small
parameter 0 < € < 1 which is inversely proportional to the speed of light, and non-trivial
solutions oscillate in time with frequency of O (5*2). Using traditional numerical methods
to approximate such solutions is inefficient, because then the oscillations have to be resolved
with a tiny step size, which causes prohibitively large computational costs; cf. [Bao-+16b].
Hence, constructing and analyzing numerical methods for the nonlinear Dirac equation in
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the nonrelativistic limit regime is a considerable challenge.

In the special case that no magnetic potential is present, it was shown in [BCY21] that
the classical Lie-Trotter and Strang splitting with step size 7 have an error of O(Tl/ 2), but
uniformly in . For nonresonant step sizes, the accuracy improves to O(7) for Lie-Trotter and
(9(7’3/ 2) for the Strang splitting. In the general case (with magnetic potential), uniformly

accurate methods have been proposed and analyzed in [CW18; CW22; LMZ17]. Under
certain assumptions, the error of the time discretization with the multiscale time integrator
pseudospectral method from [CW18] is bounded by a constant times min{72 + £2, 2—;}, where
7 is the step size. This yields second-order convergence if 7 > ¢ or 7 < ¢ and, what is
more important, first-order convergence uniformly in €. The nested Picard iterative integrator
constructed in [CW22] converges even with order two in time and uniformly in . However, the
correct implementation of both methods is not easy, because they are based on complicated
expansions and involve a plethora of terms. A different approach was proposed in [LMZ17]
in one space dimension. The idea is to consider an augmented problem where the slow
and fast time scales are distinguished. A formal Chapman-Enskog expansion is used to
construct initial data for the augmented problem such that the corresponding solution has
three uniformly bounded time derivatives, which paves the way for the construction of a
uniformly accurate second-order scheme. However, the price to pay is that the augmented
problem involves one additional dimension representing the fast time scale, which increases
the numerical work significantly.

The nonlinear Dirac equation in the nonrelativistic limit regime has also been intensively
studied in analysis; cf. [CW20; MNOO3; Mat95b; Mat95a; Naj92]. It was shown that the
solution 1 (t, ) € C* can be approximated by

Vet ) = e/ ot x) + O(e) (2.1)

where 3 = diag(1,1,—1,—1) € R*** is a diagonal matrix, and where ¢ is the solution of a
nonlinear Schrodinger equation which does not depend on € and is thus easier to approximate
numerically. A precise formulation of this result and its proof are given in [CW20, Theorem
2.3]. The main result of [CW20], however, is that a better approximation

VE(t,x) = e_it/€2<pi(t, x) + eit/szgoe_(t, x) + 0(52> (2.2)

can be obtained, where ¢S are the solutions of two coupled semilinear PDEs called the
semi-nonrelativistic limit system; see [CW20, Theorem 2.2] or Theorem 2.3 below for details.
In contrast to the above-mentioned nonlinear Schrédinger equation, the semi-nonrelativistic
limit system does still involve the parameter €, but in contrast to the original problem, the
solution does not oscillate in time; cf. [CW20, Theorem 2.2]. Hence, (2.2) offers a way to
approximate the highly oscillatory solution of the nonlinear Dirac equation without having to
solve a highly oscillatory problem. Of course, one cannot expect the error of this approxima-
tion to be smaller than O(£?), but in this work we assume that this accuracy is sufficient. If
a higher accuracy is required, one has to use the uniformly accurate integrators from [CW22;
LMZ17] with a step size 7 < e, which is computationally intense.

Solving the semi-nonrelativistic limit system numerically is much easier than solving the
nonlinear Dirac equation in the nonrelativistic limit regime, but it is not straightforward.
For example, explicit Runge-Kutta methods suffer from severe CFL conditions, whereas fully
implicit methods come at the price of solving a large nonlinear system in every time step.
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Constructing splitting methods' in a straightforward way is not an option, either, due to the
particular structure of the semi-nonrelativistic limit system. These problems can be avoided
with exponential integrators. Such integrators are typically constructed by applying variation
of constants on the interval [t,,t,+1] (where ¢, = n7 are the times for which numerical
approximations are supposed to be computed) and approximating the convolution integral,
e.g. by expanding the nonlinearity in such a way that the integral can be solved analytically.
The corresponding techniques are nowadays well-known in the context of dispersive equations
and in particular highly oscillatory problems. Because of the special structure of the semi-
nonrelativistic limit system, however, such a method requires many forward and backward
Fourier transforms per time step, which is the dominating factor in the computational costs.
In this paper, we propose a non-standard second-order exponential integrator. The idea is to
apply variation of constants over the interval [t,_1,t,+1], which simplifies the treatment of
the nonlinearity a lot. This approach leads to a two-step method which we call the explicit
exponential midpoint rule. The new method is time-symmetric, simpler to implement, and
considerably more efficient than the standard second-order exponential integrator.

In Section 2.2 we introduce the nonlinear Dirac equation in the nonrelativistic limit regime
and sketch the derivation of the semi-nonrelativistic limit system as presented in [CW20].
Moreover, we specify our assumptions and quote a number of important results from [CW20].
Time-integrators for the semi-nonrelativistic limit system are constructed in Section 2.3. The
first method is an exponential integrator which is based on well-known techniques, and which
is therefore considered as a benchmark method. The second method is the explicit exponential
midpoint rule. For this integrator we carry out a detailed error analysis; cf. Theorem 2.10.
In Section 2.4 we test the efficiency of both methods in a numerical experiment. It turns
out that our new method reduces the computational costs per time step to about 40% and,
within the same runtime as the benchmark method, improves the accuracy by a factor of
about 4.6 in L? and 6 in H'. We explain the reason for these improvements.

2.2 Problem setting

2.2.1 Nonlinear Dirac equation in the nonrelativistic limit regime

We consider the nonlinear Dirac equation (NLDE)

O (t,) = =5 Tou (6, 2) = W (6, 2) (1, 2) — LF( (1, 2) (1, ),
U(0,2) = ¥ (@)

(2.3)

forz € R3and t > 0. In (2.3), ¢° := ¢°(t,z) € C* is the complex-valued vector wave function
with initial data ™ = ¢™it(z) € C*. The parameter ¢ > 0 is inversely proportional to the
speed of light and thus is very small in the nonrelativistic limit regime. Furthermore, 7. and
W denote the free Dirac operator and the electromagnetic potential, respectively, given by

3
T. = —iZaaj(?j + B, Wi(t,z) =V (t,x)Iy — ZAj(t,a:)aj, (2.4)

j=1 7j=1

'n [KSZ21] a splitting method for approximating the function ¢ in (2.1) was proposed. Our goal, however,
is not to compute ¢ in (2.1), but ¢% in (2.2), because then an approximation of ¢ up to 0(52) is feasible.
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where V(t,2) € R is the electric scalar potential and A(t,z) = (A1(t, ), ..., A3(t,z))7 is the
magnetic vector potential. The Dirac matrices

(L 0 (0 o
5‘(0 —Ig>’ aﬂ_(aj 0)

are determined by the Pauli matrices

0 1 0 —i 1 0
=11 o) 227\i o) P37 \o -1/

Finally, F is the nonlinearity given by F(v) = 1 (v*v)3 + y2 |v|* Is for 41,72 € R, where
v* = ©1 denotes the conjugate transpose and |v| = v/v*v the Euclidean norm of a vector
v, respectively. This type of nonlinearity is motivated by numerous applications in physics
and describes self-interaction of Dirac fermions; see, e.g., [HC09; Mer+10; Sol70; Thi58] and
the references in [Bao+16b; BCY21; CW18; CW22; LMZ17]. For simplicity, we assume that

~v1 = 0 henceforth, but all results and proofs can be adapted to the case 1 # 0.

Throughout this paper, we will use the following notation: ||v||;m denotes the standard
Sobolev norm of a scalar-valued function v € H™(R3), whilst for a C*-valued function v =
(v1,...,v4) € (H™(R3))?, we set

2 2
[0l =V Ioale + e+ sl
The following assumptions regarding the initial data and the potential W will be made.
Recall that W is determined by V and A; via (2.4).

Assumption 2.1. Let 0 < Ty < oo be an arbitrary fixed time. For some m > 2, we assume
that

- 4
(A) wlmt e (Hm<R3)) ,
(B) V,4;ec (0,1, H"(RY),  j=1,23.
The following theorem quoted from [CW20, Theorem 2.1] provides well-posedness of the

NLDE (2.3) and regularity of solutions.

Theorem 2.2. [CW20, Theorem 2.1] Under the assumptions (A) and (B), there is a time
Ty € (0,To] such that for any € € (0,1), the NLDE (2.3) admits a unique solution

e e C([o, ], E™®)Y) 0 c ([0, 7], (H™(RP)*)
with uniform estimates

sup  sup [[P°(t, )| ym < C,
c€(0,1) tel0,Ty]

where C' is independent of ¢.

The original formulation of this result in [CW20)] is slightly more general and applies also to
the case where the initial data in (2.3) depend on & to some extent.

Solving (2.3) numerically is a challenging task, because typical solutions oscillate in time
with frequency of O(¢72) due to the term —=Te°(t, x) on the right-hand side. Applying
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traditional time-integrators such as, e.g., Runge-Kutta or standard multistep methods is
inefficient, because such methods only achieve an acceptable accuracy if the ratio of the
step size and the highest frequency is small; see, e.g., [Bao+16b]. One possibility to solve
this problem is to construct special integrators which do not suffer from such a severe step
size restriction. This has been done in [CW18; CW22; LMZ17], but the implementation of
such methods is quite involved. In this paper we pursue a different goal. In [CW20] it was
rigorously shown that in the limit € — 0 the solution of the NLDE (2.3) can be approximated
up to (’)(52) by solving a non-oscillatory system of PDEs known as the semi-nonrelativistic
limit system; cf. (2.14) below. Since this accuracy is good enough in many applications, our
main goal is to construct a particularly efficient method for the semi-nonrelativistic limit
system. This is done in Section 2.3. Before that, we briefly outline the derivation of the
semi-nonrelativistic limit system given in [CW20].

2.2.2 Transformed Dirac equation

In this and the next subsection we summarize the main results from [CW20].

By performing an eigenspace decomposition in Fourier space, the operator 7. can be decom-
posed as [BMP98, Eq. (1.22)]

To = AL — AJIIZ (2.5)
with the scalar operator A. = v/Id — e2A and the two projection operators I given by

I = % (1d + (1d - £24)72 7). (2.6)

The identities I} + 117 = Id, IFTI- = I-TI7 = 0 and (IIF)? = I can easily be checked;
cf. [CW20]. As a mapping from (H™(R?))* to (H™(R3))* the projectors II¥ are uniformly
bounded w.r.t. ¢; cf. [BMP98, Lemma 2.1]. The decomposition (2.5) allows us to filter out the
main part of the temporal oscillations in a solution ¢° of the NLDE (2.3). This is achieved
by considering the functions

P05 (t, ) 1= T [ (¢, 7)) (2.7)

instead of )°. Substituting (2.7) into the NLDE (2.3) shows that ¢S and ¢° are the solution
of the two coupled PDEs

0% = FiDo% —ilIE [W (g5 + =21/=" 2 )]
—illE [ge(65, 67 1) (65 + 165 )| (2.8)
93.(0) = Ir [
with the differential operator
1 1
D.= 5 (A —1d)= 5 (Vid—2A —1d) (2.9)
and nonlinearity
e e — g |2 €2 2it/e? [ e \* 1€ —2it/e? [ 1€ \* 1€
9e(¢5, 0%, 1) = [0 + [0 7 + 75 (¢5)7 0% + e (02)"¢%,

cf. [CW20, Sect. 2.1]. From the solution ¢% of (2.8) we can reconstruct the solution ¥ of
the NLDE (2.3) by

Yo(tw) = e TS (1 ) + €5 (1), (2.10)
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In Fourier space, application of D, to a function v corresponds to multiplication of the Fourier
transform of v at & € R3 with

1 2 2
5.(6) = (\/1 T+ - 1) _ J%+ - e lo, ‘5” . (2.11)

This yields the bound

_

IPeollgn < 5 lellmee ¥ v € (HT2RE)Y, 0 € Ny, (2.12)
which means that the operator
De : (H"2(R*))* — (H™(R?))* (2.13)

is uniformly bounded w.r.t. € for all n € Ny. Hence, the first time derivative of a solution ¢5.
is uniformly bounded w.r.t. &, which is not true for a solution ¢ of the NLDE due to the
factor 1/ on the right-hand side. In this sense (2.8) is better suited for numerical purposes
than the original form (2.3) of the NLDE. However, solving (2.8) with standard methods
still suffers from severe step size restrictions, because the solution of (2.8) still oscillates
with the same frequency as the original problem, albeit with smaller amplitude. In the next
subsection, these oscillations are completely removed at the cost of an approximation error.

2.2.3 Semi-nonrelativistic limit system

Omitting the terms containing highly oscillatory exponential functions in (2.8) (including
those in the nonlinearity g) yields the semi-nonrelativistic limit system [CW20, Eq. (2.14)]

Orpl. = FiD-pl —illE [Wipd] — inallE | (|65 * + [ *) o2
?5(0) = TIF [

Well-posedness of (2.14) and regularity of solutions of (2.14) has been shown in [CW20)].
Furthermore, the authors proved that solutions of (2.14) provide approximations to a solution
of the original problem (2.3):

(2.14)

Theorem 2.3. [CW20, Theorem 2.2] Under the assumptions (A) and (B), there is a time
T, € (0,To] such that for any € € (0,1), the semi-nonrelativistic limit system (2.14) admits a
unique solution

pe€C <[0,T2], (Hm(]R3))4) n ¢t <[O,T2], (Hm—l(R3))4>
with uniform estimates

sup  sup [y < C
e€(0,1) t€[0,T3]

sup  sup ||0ppi m2 < C.
€€(0,1) t€[0,T3]

Moreover, o5 remain in the eigenspaces associated with 11Z, respectively. If in addition the

assumption V, A; € ct ([O,Tg],Hm_Q(R?’)) holds for j = 1,2,3, then the approximation error
is bounded by

P — €_it/62g03_ — eit/‘azgpE < Ce? (2.15)

Hm—2 —

sup
t€[0,T]
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with T'= min{Ty, T>} and for m > 4 we have

Soft € C2 <[07T2]7 (Hm72(R3))4> with sup sup HattSOiHHmle < C.
e€(0,1) tel0,T%]

In [CW20] this theorem is formulated in a more general way which, however, exceeds our
demands.

The inequality (2.15) implies that a solution of the NLDE (2.3) can be approximated up to
0(52) using a solution of the semi-nonrelativistic limit system. In this paper, we consider the
case where ¢ is small enough such that this approximation is satisfactory. Thus, instead of
developing time-integrators for the NLDE (2.3) or its transformed version (2.8), we can focus
on the simpler semi-nonrelativistic limit system (2.14). Solutions of (2.14) are not affected by
oscillations, because there is neither a factor e =2 on the right-hand side (in contrast to (2.3))
nor oscillating exponentials (in contrast to (2.8)). The solution only depends on € because
the projectors H? and the differential operator D, do, but in a non-critical way. In spite of
these advantages, solving (2.14) with standard methods is still not a good option. If explicit
Runge-Kutta or multistep methods are used, then the spatial discretization of the differential
operator D, causes severe CFL conditions, whereas a time step with an implicit method is
somewhat costly due to the nonlinearity and the projectors ch. Applying a splitting method
to (2.14) in a straightforward way is not feasible, because the sub-problems involving the
projectors Hgﬁ cannot be propagated exactly or particularly efficiently. These disadvantages
can be avoided by exponential integrators. Two such methods are presented and compared
in the next section.

2.3 Time integration methods for the semi-nonrelativistic limit
system

Our goal now is to compute approximations ¢’} ~ ¢% () of the solution of the semi-nonrel-
ativistic limit system at discrete times t,, = n7, where 7 > 0 is the step size. We propose two
exponential integrators which converge with order two in 7. The first one is constructed by
applying variation of constants over the interval [t,,t,+1], approximating the integrand in a
suitable way and computing the resulting integrals exactly. This strategy is, of course, not
new, and the related techniques have been used for various types of PDEs, in particular in the
context of highly oscillatory problems. We consider this first method only as a benchmark
method, and for this reason we refrain from an extensive error analysis. The main contribution
of this paper is the second time-integrator. The crucial idea is to use variation of constants
over the time interval [t,_1,t,+1] instead of [t,, t,+1], which makes the approximation of the
resulting integrals much easier. This leads to a novel exponential two-step method called the
explicit exponential midpoint rule (EEMR). This time-integrator is time-symmetric, simple
to implement, and considerably more efficient than the benchmark method. We present
a detailed error analysis for the EEMR and explain the speed-up observed in numerical
examples.

Assumptions and notation. In the end, we want to obtain error bounds in L?. Our
methods will rely on the uniform boundedness of the second time derivative of ¢4 in L?.
According to Theorem 2.3, this is given under the following assumptions that we will assume
for the rest of the paper:

(I) winit c (H4 (R3))4 ,
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(II) V,A;eC ([O,TO],H4(R3)) . j=1,2,3.
(IIl) V,A;€C! ([O,TO},H2(R3)> . j=1,23.
In order to prove convergence of the methods, we will also require the assumption
(V) V,4;€C*(0,To), Lo(R%)),  j=1,2,3.
Assumptions (I) and (II) coincide with Assumption 2.1 for m = 4.

To increase readability, we define the function space

Sr = O([0.7), (H'®®)Y) 0 C1((0,T), (H(E))")
N C2([0. 7], (LA(®)")

for T'= min{T},T»} from Theorem 2.3, which then states that if assumptions (I)—(III) hold,
then p1 € Sr with uniform bounds in €.

From now on we assume that ¢ is small but fixed. We can thus omit the index £ in our
notation such that the semi-nonrelativistic limit system (2.14) reads

Opr = FiDpy —ilIF W] — inoIl* [(\s0+\2 + \90—|2) soi}
N (2.16)
o4 (0) = IT* [4].

All bounds presented below are uniformly in ¢ in the sense that the constants do not depend
on €.

Let 7 € (0,7) be the time step size and let t, = nrt, n = 0,1,...,|T/7]. To improve
readability, we omit the spatial variable z on the solution and the potential in the following.
For a function f. = f.(s), we write f. = O(sP) for some p € Ny to express that

1fe($)ll 2 < Cs”

for s — 0 with some constant C' which does not dependent on s and ¢.

We will repeatedly use that there is a constant C' such that

lowl| 2 < Clvl g2 [wll g2 (2.17)
for all v € L?(R3), w € H?(R?) (where one of the functions may also be C*-valued), and

[ wll 2 < Cllvll g2 lwll g2 (2.18)

for all v € (L2(R3))*, w € (H?(R?))*. These inequalities follow from the Sobolev embedding
H%(R3) C Loo(R3).

2.3.1 The benchmark method

Using variation of constants, we can express the solution ¢+ of the semi-nonrelativistic limit
system (2.16) at time ¢, + 7 as

@i (tn +7) = e Ppu(ty) — i (04, 0, tn) — iv2l5 (P4, o, tn) (2.19)
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with Iji = Iji(cp+, o, ty) given by

Ili _ / e:Fi(T—S)DH:I: [W(tn + S) Pt (tn + S)] ds,
0

I = / e FilT—s) D+ m@r(tn +8)? + |o—(tn + s)|2) ot (tn + 8)} ds.
0

The operators eT(7=%)P and II* are both bounded in (L?(R3))*. Thus, in order to obtain
a third-order approximation (in 7) to the integrals, we need a second-order approximation
(in s) to the integrands. Under assumption (IV), W (t, + s) can be replaced by the Taylor
expansion

W(t, + 8) = W(tn) + s, W (t,) + 0(32) . (2.20)

Since the second time derivative of ¢+ is bounded in (L?(R?))* under assumptions (I)—(IIT),
we can also expand

(b + 5) = Pi(tn) + 504 (04 (tn), - (tn), ta) + O(?) (2.21)
with
O+ = O4 (01 (tn), p—(tn), tn) = Op+(tn)

being the first time derivative of ¢ at time ¢,. It is obtained by evaluating the right-hand
side of the PDE (2.16) at time t,:

Gi(‘a@-&-(tn)a Y- (tn)’ tn) =+ iDS"ﬂ:(tn) —iIT* [W(tn)soﬂ:(tn)]
— il [(Jos (t)]” + o (ta)*) @ (t)] . (222)

Before we continue by inserting (2.20) and (2.21) into (2.19), let us quickly comment on
an alternative approach to construct a second-order approximation to ¢ (t, + s). Using
variation of constants once again, but now over a time interval of length s, and fixing ¢4 as
well as W at time ¢,, inside the integrals yields

Paltn+3) = PP (ta) =1 [ FCTIPIE W () ()] dr
0

_i/oseﬁ(sr)oni [72 (|¢+(tn)|2+|¢_(tn)|2> @i(tn)] dr+0(52)_ (2.23)

This approach does only rely on boundedness of the first time derivative of ¢+ and thus is,
at first glance, feasible under lower regularity assumptions on the potential W and the initial
data. Unfortunately, inserting (2.23) into (2.19) leads to integrals which cannot be computed
analytically. In order to avoid this problem, we could use the formal approximations

PP (1) = i (tn) F isDipu (t) + O(s2)

/ ¢TI [o] dr = sITF [u] + O(sQ)
0

which can be rigorously justified for p+ € (H 4(R3))4 and v € (H 2(R3))4. Using these
approximations in (2.23), however, yields exactly the same second-order approximation to
o+ (tn, + s) as (2.21) together with (2.22).
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Now we continue the construction of the benchmark method. Inserting (2.20) and (2.21) into
IF yields

(@4, 0-tn) = (91 () - (1), ta) + O(7°)
where IiF = I} (o4 (tn), o (tn), ) is given by
I = [ RO I () (1) ds
+ /0 " ST IDIEE (W (6,01 + 0, W (t) oo (t)] ds

= Tp1 (Z|Ii7"D) H:t [W(tn)@:l: (tn)]
+ 72po(FiTD) T [W (£,)O4 + W ()0 (t1)] -

The functions p; and po are defined by

1 1
pi(z) = / e1=924p, pa(z) = / 9e(1 =02 qp, z € C, (2.24)
0 0

cf. [HO10, Eq. (2.10) and (2.11)]. They can be computed as

(2) = 62771 for z #£ 0, and (2) = 6227571 for z # 0,
Pz = 1 for =10 P70 for z = 0.

When inserting (2.21) into IQi, we can additionally drop all 0(32)—terms in the integrand
that arise due to the nonlinearity. Overall, we obtain

I (4 mtn) = I3 (9 (). (1), 1) + O(7°)
where I = I (o4 (tn), o (tn), tp) is given by

-/[\Qi — /T e?i(T*S)DH:I: [C:I: + SC;:] ds
0
= 7p1 (FirD) I (1] + 72pa (FirD) II* (4]
with ¢+ = (1 (90+(tn)a $— (tn)a tn) and C:II: = C:II: (SO-F (tn)7 $— (tn), tn) defined by

G = (lpr () + o (t)l) o (tn)

¢ = (ot () + lp— (t)?) O + 2Re ((©1) 1 (tn) + (O-) ¢~ (tn) ) o (t)

and ©4 from (2.22). A third-order approximation to ¢ (t, + 7) is obtained by simply
replacing the integrals I f[ and I;E in (2.19) by their approximations [ fb and IQi:

P+ (tn +7) = eTPo, (tn) — iff[(‘PJr(tn)a ©—(tn), tn)
~ el (pr (tn), - (tn). 1) + O(7°) . (2:25)
This approximation suggests a numerical method with local error of order (’)(73) which,
however, would not be stable. The reason for this instability is the term FiDy4 (t,), which
appears in O, cf. (2.22), and thus also in ¢,. A bound for the norm of D that is independent

of £ can only be established when interpreting D as mapping from H 2 to L%, cf. (2.13).
Hence, the L2-norm of O and thus ¢/, Ili and 12jE can only be bounded using the H2-norm
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of ¢ (ty), which would not be sufficient for stability. This is why we replace D in ©4 by a
filtered version

D(r) = (2.26)

as, e.g., in [CW19; CW22]. Tt is not difficult to show that for every 7 > 0, D(r) is a bounded
operator from L? to L? with | D(7)|| < 1, and that

~ T
|© = D)ol < 2 ollgs

for all v € (H*(R3))%. Since Theorem 2.3 yields that oy € C([0, T3], (H*(R3))*) under
assumptions (I) and (II), it follows that replacing D by D(r) in O+ and hence also in ¢/,
causes an error of O(7). But in I 13: and fzi, the terms including ©4 or ¢/, are multiplied by
a factor 72. Thus, substituting D(7) for D in the right-hand side of (2.25) causes only an
additional error of 0(7'3) and hence does not affect the overall approximation error. All in
all, this yields the numerical method

(P?t—i_l - (I);t((PT—&L-? 90717 tn)7 n € Ny, (227>
with the numerical flow
+/ n n _ _FitD, n Tt/ n n P = = () n
(I)T (90+’ —7tn) =€ P+ — III (@4_7 Qo—atn) - 17212 (90—&-7 —7tn)' (2'28)
fli and Ei correspond to fli and fQi, respectively, but with D replaced by 15(7) in ©4 and
¢, ie.
(@t @ tn) = T2 (FiTD) T [W ()]
+ 72pa (FiTD) I W (1) + W (t) |
(7, 0" tn) = 7p1 (FirD) T[] + 72ps (FirD) T ||
with

Ce = Ca (92, tn) = (It + o) o,
O1 = 01(¢}, 9" tn) = FID(7)} —iIL* [W(t)9k + 72Cs]
e =l 0% tn) = (| + [02]*) B +2Re (61)" L + (O-)7" ) ol
For an efficient implementation, the two integrals I £ and ’ygfg: can be combined to
P, @ tn) = TE (9L, 0 tn) + 7215 (€, 97 1)
= 7py (FirD) T [W (t,) 9" + y2(t]
+72ps (FATD) I [W (1) O + W (ba) 1k + 72k -
Under assumptions (I)—(IV) the local error in L? is bounded by C73 by construction. With

well-known techniques, it can be shown that under assumptions (I)—(IV) there are constants
70 > 0 and C such that for all step sizes 7 € (0, 79] the bound

¢ — et ., <CT2, n=1,2,.,|T/7]

for the global error holds. We omit the proof, because our focus is not on the benchmark
method. The step size restriction 7 < 73 is required to obtain uniform boundedness of the
numerical approximations in H?(R?), which is required for stability; for the EEMR this issue
is discussed in the proof of Theorem 2.10.
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Remark 2.4. The method (2.27)—(2.28) is certainly not new. We have described the con-
struction only for the convenience of the reader and in order to keep the paper self-contained.
In fact, (2.27)—(2.28) coincides with a “part” of the multiscale method for the NLDE (2.3)
which has been proposed in [CW18]. The idea is, roughly speaking, to make the ansatz

G () = e T o (8 a) + €Y o (8, x) + 1 (t, 2),

i.e. to decompose the solution of (2.3) into the part provided by the semi-nonrelativistic limit
system plus a rest r(t,x) which, according to (2.15), is only O(e?). Substituting this ansatz
into the NLDE and replacing Opp+ by (2.16) yields a PDE for r(t, x) with a rather complicated
right-hand side. Then, a numerical method for p1 and r is constructed in [CW18]. Within
this method the part which approximates pi is almost identical to what we call the benchmark
method. The only differences are that instead of (2.26) a different filter is used in [CW18],
and that the authors consider the full discretization in time and space.

Remark 2.5. In this work we only consider time discretizations. For a full discretization
in time and space on the torus, the benchmark method (2.27)-(2.28) can be combined with a
Fourier pseudospectral method, such that ¢t is approximated by a trigonometric polynomial.
All operators involving spatial derivatives (which includes the projectors 1T ) are applied
in Fourier space, whereas pointwise multiplications of functions such as, e.g., W (t,)¢'t or
W(tn)(:)i correspond to entry-wise multiplications of vectors. In order to compute all terms
required for one time step, the fast Fourier transform (FFT) or its inverse has to be applied
quite a number of times, and in spite of the efficiency of the FFT, this causes the dominating
part of the numerical work.

2.3.2 Explicit exponential midpoint rule

We will now propose and analyze a new exponential integrator which converges with order two
under the same regularity assumptions as the benchmark method, but which is conceptually
simpler, easier to implement and significantly faster. The new integrator is time-symmetric,
in contrast to the benchmark method. For time-dependent potentials, the new method does
not require evaluations of 9;W, which is convenient in situations where no explicit formula
for W (t, z) is available.

Construction

We again use variation of constants to express the solution ¢y of the semi-nonrelativistic
limit system at time ¢, + 7, but now over a time interval of length 27. This yields

0ty +7) = TP, (t, — 1) — L7 (94, 0, tn) — iv2I5 (04, 0, 1) (2.29)

with I = I oy, 0, t,), If = IF (o4, ¢, t,) given by

Ift _ / o FilT—s)D£ (W (tn + 8)p+(tn + 5)] ds,

-7

I = / FIPIE [(Jo, (ty + 5) + |9 (tn + 5)) @t + 5)] ds.

—T

*Note that I{ and IF are different from the integral terms which were denoted with I:¥ and I3 in the
previous section. Many other objects which appeared in the previous section such as, e.g., Ili, IQi, ot @,
etc., will be re-defined in a different way in this section.
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Under the assumptions (I)—(III), we know that ¢ € Sp with uniformly bounded (w.r.t.
¢) derivatives according to Theorem 2.3. If additionally assumption (IV) is fulfilled, then
according to the estimates (2.17) and (2.18) the same holds for the functions

I (Wes]  and %I [(lor 4+ lo- ) ou]

which appear in the integrands of Ili and Izi. For a function v € Sr, a third-order ap-
proximation to integrals of the form [7_ eF(T=5)Py(t, + s) ds is obtained by fixing v at the
midpoint t,, as the following lemma confirms.

Lemma 2.6. Let v € Sy and 7 € (0,T). Then,

H/ eF =Py (t,, + ) ds — / eFT=9Py(t,)ds|| < Cr®

—T

L2

for some constant C' that only depends on ||0pv|| 2 and ||0uv|| 2.

Proof. Since v is twice continuously differentiable, Taylor’s theorem yields
S
(tn + 8) = v(tn) + sOw(ty) + / (s = r)Ouv(ty + r)dr, s eR.
0

Thus,

T

/ ejFi(T_S)Dv(tn +s)ds = / ejFi(T_S)Dv(tn) ds + Ri(v,tn, 7) + Ro(v,tn, )

-7 -7

with the remainders

Rl(v,tn,T):/ seT =3P o,u(t,,) ds,

—T

Ro(v,tn, T) = / ejFi(T_S)D/ (s — r)Oyv(ty + ) drds.
0

—T
For Ro, we can derive the bound

T

ds max ||Ouv(tn +1)||)2

re[—r,7

Rawstus 7)lgz < [

-7
3

S
/ s—rdr
0
-

=3 H[laX | 00ty + 1) 2 < CT3. (2.30)
re|—7,7

We analyze the norm of R; in Fourier space. Recall that application of D corresponds to
multiplication with J.(§) in Fourier space, cf. (2.11). This yields

HRl(thn’T)H%Q - /R3 ’/ Seq:i(T_S)és(f) dS

/ seF199=(8) gg

—T

2 2
ot (©)] de

2 _— 2
dro(ta)(©)] e,

R3

where at/v(t\n) is the Fourier transform of dv(t,). Using e**0=(&) = 1 4 is.(€) p1(Fisd.(€))
and |p1(ix)| < 1Vx € R, we have
< ’/ sds

’ / seF199=(8) gg
273 73
<0+ 20 jae)l < Tier

+ ‘/_TT §%0:(€)p1(£isd.(€)) ds

-7
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where we used the bound (2.11) on 0.(§) in the last step. Overall, we have
2 3 2 — 2
IR (0t < <3£\ ) e de

A
< <3> 0t (231)
Since v € Sy, the assertion follows from (2.30) and (2.31). O

After fixing v at the midpoint as in the previous lemma, the remaining integral can be
computed as

/ eF =3Py (t,) ds = 27 p1 (F2irD)v(ty)
with p; from (2.24). Applying the lemma to the integrals Ili and Igt in (2.29) thus yields
psltn +7) = TP (b, ) — i — il + O(+?)

with I = Ii (04 (tn), o (tn), tn) and I3 = I (@ (t,), o (tn)) given by
I = 2rpy (F20r D)= [W (tn) o (tn)] (2.32)
I3 = 2rpy (F2rD)TEE (04 (ta)| + [io- () ) 0= (t0)] (2:33)

Omitting the O(73)-terms and replacing exact solutions with approximations ¢ ~ ¢4 (t,)
leads to the integrator

Pt — F (cpi, o, ot goﬁ—l,tn) ., neN (2.34)
with the numerical flow
F (0, om0t o ) = PP — (6 6 1)
— i ly (o1, ™). (2.35)

For an efficient implementation, we can again combine the two integrals IAljE and ’ygfzi to

TEn, @™ tn) = TE(@L, 0" tn) + 1215 (90, ™)
= 2rpy (F27D) I [W (ta) L + 72 (|02 + |7 *) 0] -

When using a Fourier pseudospectral method for space discretization on the torus, only one
FFT per time step is required in the computation of I* before being able to apply the
operators p; (F2i7D) II*. If the approximations obtained in the two previous steps are saved
in physical as well as in Fourier space, only one inverse FFT is necessary for retransforming
the result of (2.34)—(2.35) into physical space.

We call this method the explicit exponential midpoint rule (EEMR), because it can be re-
garded as the exponential counterpart of the classical explicit midpoint rule. Since (2.34)—
(2.35) is a two-step method, the first approximation o} ~ ¢ (t1) has to be computed with a
starting step. Only an accuracy of (9(72) is required for ¢}, and this can be achieved easily
by using variation of constants over a time span of length 7 as in the benchmark method and
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then approximating the integrals via the rectangle rule. After omitting the O(72)-terms and
replacing o4 (t1) with oL we obtain

. . 2 2
ok = e —irem i [(Wos (|02 +[e8)) 2] a0

To improve the accuracy of (!, one can replace (2.36) by n € N such steps with step size
T/n.

Remark 2.7. The idea to construct exponential multistep methods by applying variation of
constants over the time-interval [(n — €)1, (n + 1)7] for some £ > 1 has already been used
in [CPO6; Jah0j; JM19], but the PDEs and the methods considered in these references are
completely different. The exponential multistep methods reviewed in [HO10, Section 2.5] are
of Adams type, which is different from what we propose here.

Error analysis

Our goal is to prove that the EEMR (2.34)-(2.36) is indeed second-order convergent under
the regularity assumptions (I)—(IV), which are also required for the benchmark method. For
this purpose we reformulate the EEMR as a one-step method by introducing the vectors

01 (1) ol
(1) "

u(t) = , Up = 1|, n € N.
W=1eie—n o
o (t—1) e

We then have u,+1 = ®; (up,t,) for n € N with the numerical flow

OF (P, 9" 01 0" )
— n n n— n—
q)T (un;tn) — (I)T (Qp—i-v Y, §07-1|— y P atn) (237)
P4
ol
with ®F defined by (2.35). For vectors of the form v = (v1,...,v4)7 with four functions
V1, ..., 04 € (L2(R3))*, we define the norm

4
iz = > llojll 2
j=1

and analogously for the H™-norm for some m > 0. The following bounds for the local error
and the starting step are an immediate consequence of the construction of the EEMR.

Lemma 2.8. (a) Local error: Under assumptions (I)-(IV) there is a constant Cg, such
that the inequality

llultn +7) = @7 (ultn), tn)ll 2 < Cp,7° (2.38)
holds for all >0 and alln=1,2...,|T/7].

(b) Starting step: Let o) = p4(0) and let oL be computed with the starting step (2.36).
Under assumptions (I)-(IV) there is a constant Cg, such that the inequality

llu(tr) = uill 2 < Cry7? (2.39)

holds for some constant Cg,.

25



Proof. By definition of u, ®; and |||-||,> we have

lu(tn +7) — @7 (utn), tn)ll 2
= ||+ (b0 +7) = OF (o (tn)s (), @4 (b = 7)o (0 = 7)s 1),
+ H (tn +7) = D7 (P4 (tn), p—(tn), o+ (tn — 7), o (tn — T)’tn)HL? :

Since all approximations made during the construction of the method are 0(73), the bound
(2.38) follows. In a similar way, the bound for

llu(tn) = wille = or (t) = 4|, + o-(t) = 02|, (2.40)

can be shown with standard arguments. O

Next, we discuss stability. In order to simplify presentation, we will henceforth assume that
the electromagnetic potential W does not depend on time. In this case, the semi-nonrel-
ativistic limit system (2.14) is autonomous, and as a consequence the numerical flows ®F
defined in (2.35) and @, defined in (2.37) do not depend on ¢, either. This allows us to
omit the last variable in ®* and ®,, which makes the following equations easier to read. We
stress, however, that under Assumption (I)—(IV) the following proofs could be extended to a
time-dependent W at the cost of a more involved notation.

Lemma 2.9. Let W(t) = W be constant in time. Let vif, wF € (H*(R?))* for £ € {0,1} and
set v = (vi,v],v5,v5)T and w = (wi,wy,wy,wy)T. Under assumptions (I)-(1I) there is
a constant C's such that the stability estimate

@+ (v) = ®r(w)l 2 < (1 + Cs7) [[v = wll2 (2.41)
holds for all T > 0. The constant Cs depends on ||V || g2, 1Al 42, 7 = 1,2,3, vliH[ﬁ and
waHHQ, but not on T.

Proof. 1t follows from (2.37) and (2.35) that
l[®7(v) = Dr(w)lll 2
S I (wf vr) = If (wi,wy)
<[ e (vg —wy e en) = I (wywy)
vl —wl 0
U; —wy L2 0 L2
Z;(Ufravl ) Z2+( w;)
+ I{(vf,vl ) — IE( s wy ) ' (2.42)
0
0 12

Since e¥A™P {5 an isometry in L?, the first term on the right-hand side equals [|v — w)| 2.
Now we insert the definition (2.32) of I and use that p;(F2i7D) and the projectors IT* are
bounded operators in L?. Applying the estimate (2.17) for the product with the potential W
yields the inequality

<CTt va —wi

|l or) = T wp)| L (2.43)
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for some constant C' which depends on ||V|| ;2 and ||A;|| 2, j = 1,2, 3, but not on 7.

Now we will prove such a bound for the term IAQi containing the nonlinearity. The estimates
(2.17) and (2.18) imply the inequality

H (’UT’Q + ’vf’2> Uit - <’wﬂ2 + ‘wf‘Z) wli

<o (o ]

L2
LQ) (2.44)

P

with a constant C' which depends on ‘fo}p and leiHIﬁ Together with the arguments

mentioned above, we obtain

Hhi(vf,vf) - If(wf,wf)‘ ,<Cr (va - wf‘

L 7 va B w;Hm) (2.45)

for some constant C' which depends on vaEHHQ and wacHlp Combining (2.42), (2.43) and

(2.45) proves the assertion. O

We are now in a position to prove second-order convergence for the EEMR.

Theorem 2.10 (Global error of the EEMR). Assume that assumptions (1) and (II) hold and
that W does not depend on t. Let 7 > 0 be the step size and let ¢t be the approximations
obtained by (2.34) and (2.36) with step size T and initial data % = @4 (0) = IIF [pit].
Then, there are constants C' and 19 > 0 such that the global error bound

¢ — palta)],» <CT2, n=1,2,..[T/7]

holds for all T € (0, 79)].

Remark 2.11. Under the assumptions (I)—(1V) the theorem remains true for a time-depen-
dent potential W = W (t).

Remark 2.12. Under stronger reqularity assumptions on the initial data and the potentials,
one could of course obtain error bounds in higher-order Sobolev spaces. More precisely, to
obtain an identical error bound in H™, m > 0, one would require the initial data Y™ and
the potentials V, A; to be in H™ with

V,4; € CY([0,To), H"*(R%)) N C*([0,To], H™(R?)), j=1,2,3.
Proof. Set ®%(v) = v and define ®"(v) = ®,(®7~1(v)) recursively for n € N, such that ®”(v)
denotes the result of n steps of the EEMR in the one-step formulation with initial data v.

In order to prove the global error bound, we combine the local error bounds (2.38) and (2.39)
with the stability estimate (2.41) in the classical construction known as Lady Windermere’s
fan. Using a telescopic sum, we have for n = 1,2, ..., |T/7]

llut) = wall 2 = || @2 ulta)) - @27 )|

L2

< 5 [Jobuttn i) - B (e,
k=0

+ [ @nt utr)) — @2 )|

L (2.46)
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At this point, we would like to control the term
[l uttav) = @ (uttaie)| 1, = [|@ECultn-r)) = @5(@ (ultns)))

by applying the stability estimate (2.41) k times. A minor technical difficulty is the fact that
the constant Cg in (2.41) depends on the H2-norms of the two functions involved, which in
our situation are ®I(u(t, 1)) and ®I*(u(t,_r_1)), respectively, with 5 = 0,...,k — 1. In
order to obtain a corresponding bound for (2.47) with a constant which does not depend on
n, k or 7, we need that there are constants 7y and C such that

(2.47)

L2

max
jszOv'“? \_T/TJ
JHL|T/7)

H@i@(t@)\“m <C  forall 7€ (0,m). (2.48)

This estimate states, roughly speaking, that for a sufficiently small step size the numerical
approximations, starting from the exact solution at time ¢,, remain uniformly bounded in H?
on the time interval [0, T7].

In order to prove (2.48), two auxiliary results are needed. Firstly, under the assumptions of
Lemma 2.9, the inequality

@7 (v) = Dr(w)llg2 < (1 + ¢s7) [[Jo = wlll 72 (2.49)

holds for some constant ¢, which depends on ||v|| ;2 and ||w]| ;2. Note that in contrast to
(2.41), the H?-norm is used on both sides of (2.49). The estimate can be shown by adjusting
the proof of Lemma 2.9. Secondly, one has to prove that under the assumptions of Lemma 2.8,
the local error bound

llu(tn +7) = @ (u(tn))ll 2 < Cp,7? (2.50)

holds for some constant Cg, and for all 7 > 0 and n = 1,2,...,|7/7]. In contrast to (2.38),
the local error is measured in the H2-norm instead of L%, but the power of 7 is only 2 instead
of 3. The proof of (2.50) is straightforward. Having established (2.49) and (2.50), one can
prove (2.48) by induction. Since the procedure is essentially the same as, e.g., in [Lub08] or
[JMS17, Section 8], we omit this part.

Now we return to (2.46). Combining (2.48) with the stability estimate (2.41) yields under
the condition 7 < 7 that

n—2

lu(tn) = unllp2 < (1 + Cor)* llu(tn-i) = @r (ultns—1)ll 2
k=0

+ (L4 Cor)" ™ lu(t) — e
with a constant C, which only depends on ||V'|| 2, [|4;]l g2, = 1,2,3, and on C from (2.48).

Applying the local error bound (2.38) as well as the bound (2.39) for the starting step and
using that (n — 1)7 = t,—1 < T shows that

n—2 k n—1
Citn Citn
utn) = wallyz < Y- (14 552) O+ (14 ) cpr?

k=0 "
n—2

< Zec*t"CElTS +ec*tnCE27_2 < oCitn (tnCElTQ —|—CE27'2)
k=0

<(T 4 1)e%TCOpr?

with Cp = max{Cg,,Cg,}. This implies that [[u(t,) — us||;2 = O(7?) for all n > 1 and
thus ¢+ (t,) — go’j[||L2 = 0O(7?). O
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The EEMR for the semi-nonrelativistic limit system is thus indeed second-order accurate.
Both the solution and the numerical approximation still depend on & (see the remark at the
beginning of this section), but all bounds are uniform in e.

2.4 Numerical experiments

In this section, we present numerical results to illustrate our error analysis, and to compare
the efficiency of the EEMR and the benchmark method. For simplicity, we conduct our
experiments in one space dimension, where the NLDE can be reduced to the system

3##5(?5’ J)) = _Eig%wE@? .%') - iﬁ//(t7 x)wa(ta .f) - iﬁ(wa)wa(ta .T}),

t >0, z € R, for a two-component solution ¥°(t,r) € C? with initial data ¢°(0,2) =
Y°(z) € C* (see e.g. [Bao+16b]). Here, the differential operator T, the potential W and the
nonlinearity F' are given by

T = —ico10y + 03, W(t,z) =V(t,2)lo — A (t,x)o1,  F(v) =2 |[v|? L.

For simplicity, we omit the~™ in the following, and we chose 5 = 1. The properties of the
semi-nonrelativistic limit system, the construction of the numerical methods presented above
as well as the obtained error results can be formulated for this reduced system in exactly the
same manner.

As is common practice [Alv92; Bao+16b; BCY21; HLO6], we truncate the whole space prob-
lem to a bounded interval 2 = [a, b] which is large enough such that the truncation error
is negligible. We impose periodic boundary conditions and discretize €2 through the grid
points z; = (a +b)/2 + jh, j = =M, ..., M — 1 with mesh size h = (b — a)/2M for some
M € N. All spatial derivatives are then computed by Fourier pseudospectral techniques. For
our experiments, we utilize 2M = 256 grid points in space. We use the data from [Bao-16b;
CW22], i.e. we choose the interval 2 = [—16, 16], the initial data

ilnit(x) _ 6—:1@2/2, i2nit(x) _ 6—(w—1)2/2, zeQ
and the (time-independent) potential functions

l1—xz (z+1)?

V(tﬂﬁ):ma Al(tax)zm>

reQ, t>0.

For all following error plots, we compute approximations to solutions at time T" = 1 using the
presented methods, and compare them to reference solutions computed via MATLAB’s ode45
routine using the same spatial grid and very small tolerances. The error is always computed in
the L?-norm, approximated by [[v|7. ~ S |01|? for a scalar periodic function v € Ly ()

and ||v|; 2 = \/H'U-i—Hiz + o=z for a vector v = (vt,v™) of two scalar periodic functions
vt S LQ(Q)

Performing various numerical experiments, we have observed that an even number of time
steps gives slightly better results for the two-step method. Therefore, in all following plots,
the step sizes are chosen such that the number of time steps 7'/7 is even. The quality of
approximations after many time steps can be further improved by a very good approximation
to the solution at time ¢;. In the experiments below, we always use n = 3 substeps in the
starting step (2.36) to obtain an approximation at time ¢;. Increasing n further did not
improve the results significantly.
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Figure 2.1: Global error of the numerical methods presented in Section 2.3 at time 7" = 1.
Left: In comparison to a reference solution ¢4 of the semi-nonrelativistic limit system (2.16).
Right: In comparison to a reference solution ¢¢ of the NLDE (2.3).

Accuracy. Figure 2.1 shows the global error of both methods in dependency of the step size
7 in logarithmic axes. On the left-hand side, the approximations obtained by both methods
are compared to a reference solution 4 of the semi-nonrelativistic limit system (2.16). The
solid lines represent the benchmark method, the colored dashed lines the EEMR. Different
values of € are depicted through different colors, but the six lines coincide almost. The results
confirm that both methods are second-order accurate in the step size 7, and that the error
constants do not depend on €. For a fixed step size 7, both methods yield approximations
of nearly the same accuracy in this example. On the right-hand side of Figure 2.1, the
approximations are compared to a reference solution of the NLDE (2.3). Here the numerical
approximations ¢!} are interpreted as approximations to a solution ¢+ of the transformed
Dirac equation (2.8). Then, according to (2.10) the function

Y= e_it"/aQQDfL + et/ on n>1,
approximates a solution of the original problem (2.3). Since

l™ = w(t)llge = |7/ (61 = 64 (ta)) + /=" (2 = 6 ()
< H‘Pr-:— - ¢+(tn)HL2 + HSOE - (b—(tn)H[ﬂ )

L2

the overall error is composed of two parts:

e the approximation error of the numerical methods in comparison to the exact solution
of the semi-nonrelativistic limit system, which is of order O(7?),

o the difference between solutions of the semi-nonrelativistic limit system and the trans-
formed NLDE, which, for a fixed time T, is of order O(g?).

The overall approximation error is thus of order O(72) + O(¢?). Consequently, the O(72)-
terms are dominating for large step sizes 7 > ¢, and we observe second-order convergence
w.r.t. 7 until 7 = ¢ (this value is indicated by the vertical dashed-dotted lines). For 7 < ¢
however, the O(g?)-terms are dominating, and no further convergence is achieved when the
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Figure 2.2: Global error of the numerical methods presented in Section 2.3 at time T" =1 for
€ = 0.01. Left: Error over computation time. Right: Error over number of required Fourier
and inverse Fourier transforms.

step size 7 is reduced. Thus, applying the two methods to the semi-nonrelativistic limit
system allows us to compute very accurate approximations to the highly oscillatory solution
of the original NLDE in the nonrelativistic regime, where ¢ is very small.

Efficiency. Whilst the experiments above suggest that both methods perform equally well,
they do not take into account the computational effort required for one time step in each
method. In the EEMR, we have symmetry of the integration interval of the integrals I 1i and
12i in the variation of constants formula. This is why the required accuracy was achieved
by essentially only keeping the constant term of the Taylor expansions of the integrands.
In contrast to that, in the benchmark method, the linear terms of such Taylor expansions
had to be taken into account as well. Those terms include several pointwise multiplica-
tions of space-dependent functions (with the potential W or with the functions ¢4 itself)
as well as applications of the projectors II*. Whilst the former has to be done in physical
space, the latter can only be done in Fourier space. Consequently, computing those linear
terms requires additional (inverse) Fourier transforms, which are the dominating operations
in computational costs; cf. Remark 2.5. One time step of the benchmark method is thus sig-
nificantly more expensive than of the EEMR. In an efficient implementation, one time step
of the EEMR can be done using one Fourier and one inverse Fourier transform (where we
count one transformation of a function v = (v,v™)7, v* € (L?(Q))?, into or out of Fourier
space as one transform). One time step of the benchmark method, however, requires three
Fourier and two inverse Fourier transforms. Hence, the computational cost of a time step of
the benchmark method is about % times larger than one of the EEMR.

Figure 2.2 shows the results of numerical experiments comparing the efficiency of both meth-
ods. For the plot on the left-hand side, both methods have been applied using different step
sizes and their computation time has been measured. To lower the impact of background pro-
cesses, the average of multiple runs is taken, and the different step sizes are used in random
order. For each method, a reference line has been added that fits best to the measurement
points. Comparing the constants of those lines, one can see that for a given computation time,
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the error of the benchmark method is about 4.6 times larger than the error of the EEMR,
despite the fact that for this specific data, the EEMR performs a little worse for a fixed time
step size than the benchmark method. On the right-hand side, the number of Fourier and
inverse Fourier transforms is counted. Again, for a fixed number of Fourier transforms, the
error of the benchmark method is about 4.7 times larger than the error of the EEMR.

If the error is measured in the discrete H'-norm instead (cf. Remark 2.12), then the accuracy
of both methods for a fixed time step is almost indistinguishable for this model problem (data
not shown). For a fixed computation time, the error of the benchmark method in the discrete
H'-norm is six times larger than the error of EEMR (data not shown).

The reason for the observed factors is the following. Let w;(N;) be the numerical work
(measured in runtime or in number of FFTs) required for N; steps with the benchmark
method (j = 1) or the EEMR (j = 2), respectively. For a given N we have wi(N) ~ 3cN
and w2(N) ~ ¢N with some constant ¢ > 0. If we fix the numerical work w > 0 we can
thus perform N; =~ 25—15 steps with the benchmark method and Ny ~ % with the EEMR.
According to Figure 2.1 the error err;(N;) of both methods is err;(N;) ~ C’ij*2 with some

error constant C;. Hence, the errors for a fixed numerical work w are

err1(N1) = C1 <5C)2 and erra(Ny) = Cy (C)2 .
2w w
This implies that erri;(Ny) ~ %%erm (N). For the error in the L?-norm, the ratio % ~ 0.8
can be calculated from Figure 2.1, which yields erry(Ny) & 5erro(Na). For the error in H',
we have that % ~ 1, which yields err;(N7) =~ 6.25erry(N2). Although the values 5 and
6.25 are a bit larger than the observed factors 4.7 and 6, they predict approximately the
improvement obtained with EEMR.
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Chapter 3

Employing nonresonant step sizes
for time integration of highly
oscillatory nonlinear Dirac
equations

This chapter is based on the preprint [JK24], which was written in collaboration with Tobias
Jahnke and has since been accepted for publication in the IMA Journal of Numerical Analysis
(IMAJNA). The present version contains minor revisions to the preprint that were made
during the review process.

In contrast to the rest of this work and to other literature on the Dirac equation, in this
chapter the projectors onto the eigenspaces are defined by IS, = % (Id+ A7 17}) instead of
(1.12). In particular, the role of “+” and “—” is interchanged in the notation, and to avoid
confusion with exponents, the indices F1 are attached below. Similarly, the transformed
eigenspace components ¢ of a solution of the NLDE are now referred to as ¢<;. This
change in notation will allow a compact representation of otherwise complicated expressions
in Section 3.2.3 and thereafter. Furthermore, the functions p; and ps from (2.24) are from
now on called by their common names ¢; and ¢s. This was not done previously to avoid
confusion with the solution ¢ of the semi-nonrelativistic limit system, which will no longer
play a role in the following chapters.

TOBIAS JAHNKE AND MICHAEL KIRN

Abstract: In the nonrelativistic limit regime, nonlinear Dirac equations involve
a small parameter € > 0 which induces rapid temporal oscillations with frequency
proportional to e 2. Efficient time integrators are challenging to construct, since
their accuracy has to be independent of € or improve with smaller values of .
Yongyong Cai and Yan Wang have presented a nested Picard iterative integrator
(NPI-2), which is a uniformly accurate second-order scheme. We propose a novel
method called the nonresonant nested Picard iterative integrator (NRNPI), which
takes advantage of cancellation effects in the global error to significantly simplify
the NPI-2. We prove that for nonresonant step sizes 7 > %52, the NRNPI has the
same accuracy as the NPI-2 and is thus more efficient. Moreover, we show that for
arbitrary 7 < %52 the error decreases proportionally to e27. We provide numerical
experiments to illustrate the error behavior as well as the efficiency gain.
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3.1 Introduction

One of the most important partial differential equations (PDE) in particle physics are the
Dirac equations, which represents a well-established model for relativistic dynamics of elec-
trons, protons, neutrons, and other spin-1/2 particles in an external electromagnetic field
[Dir28; Tha92]. In order to include effects related to self-interaction of particles and other
phenomena, nonlinear versions have been introduced in [HC09; Mer+10; Sol70; Thi5g8]. Af-
ter a proper nondimensionalization, nonlinear Dirac equations involve a parameter ¢ > 0
inversely proportional to the speed of light; cf. [Bao+16b]. In the nonrelativistic limit regime,
this parameter is very small, and solutions exhibit rapid oscillations in time with frequency
proportional to e72. In this situation, traditional time integrators require a tiny step size
T ~ ¢72 and thus a huge number of time steps to produce an acceptable accuracy; see
[Bao+16b] for details.

The construction of numerical methods with a better convergence behavior is a major chal-
lenge. Several attempts have been made in this direction. If an accuracy of O(g?) is sufficient,
then one can solve the semi-nonrelativistic limit system, which is a non-oscillatory problem
and enables the approximation of solutions of nonlinear Dirac equations with said accuracy
[CW20]. For this purpose, the ezplicit exponential midpoint rule was proposed in [JK23],
which is a second-order integrator and consequently yields a total accuracy of (’)(52 + 72).
For very small step sizes 7 < €2, better accuracies can be achieved with the multiscale time
integrator pseudospectral method from [CW18], which has an error of O(min{r? + €2, 72/£%}).
This implies that the method is uniformly accurate with order one, i.e. that the error can be
bounded by C7 with a constant C' that does not depend on e. Splitting methods for nonlin-
ear Dirac equations in the nonrelativistic limit regime were analyzed in [BCY21]. Although
such methods usually suffer from a severe order reduction when applied to highly oscillatory
problems, it was shown that using special nonresonant step sizes yields convergence of the
Lie-Trotter splitting with the full order 1 and of the Strang splitting with order 3/2 indepen-
dently of €. However, the analysis in [BCY21] is based on the assumption that there is no
magnetic field.

Two second-order uniformly accurate methods were proposed in [LMZ17] and [CW22]. The
authors of [LMZ17] devised an approach which allows them to replace the highly oscillatory
Dirac equations by a non-oscillatory augmented problem. The price to pay is that the aug-
mented problem has one additional dimension, which originates from the separation of the
fast and slow timescales. In [CW22], uniformly accurate nested Picard iterative integrators
(NPI) of first and second order were constructed. This is done by iterating Duhamel’s for-
mula, approximating the slowly varying parts of the integrands, but integrating all highly
oscillatory phases exactly. However, the fact that the solution has to be expanded in a suit-
able way and appears three times in the nonlinearity has the consequence that the number
of terms in the numerical flow of the first-order scheme (NPI-1) is already rather large (cf.
Section 2.2 in [CW22]). For the second-order method (NPI-2), where Duhamel’s formula
has to be used twice, the ansatz leads to a plethora of complicated terms (cf. Section 2.3 in
[CW22]). This makes the implementation and debugging of the integrator quite difficult and
causes considerable numerical costs per time step.

In this work we construct and analyze a new method called the nonresonant nested Picard
iterative integrator (NRNPI). This method is a modification of the NPI-2, but contains only a
small portion of the terms in its numerical flow. In spite of this simplification, our integrator
has essentially the same accuracy as the NPI-2 if the step size is not extremely small and is
chosen in such a way that resonances in the error accumulation are avoided. The construc-
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tion is carried out for the transformed form of the nonlinear Dirac equations introduced in
[CW20]. We consider two different representations of this PDE and show how to use them to
reformulate the NPI-2 scheme for the transformed problem in a very compact and structured
way. This reformulation is crucial, because it allows us to identify all terms in the numerical
flow which are of O(72) and contain a factor of the type ¢!/ ¢* for some ¢ # 0, where n € N
and t, = n7 are the time points where the solution is approximated. Then, we obtain the
new NRNPI by simply omitting all these terms. In contrast to the NPI-2, the local error
of the NRNPI is clearly not of (’)(73) anymore, such that second-order convergence in the
classical sense cannot be expected. Nevertheless, we prove that the NRNPI behaves like a
second-order method for step sizes which are moderately small (7 > 7¢2/4) and not close to
certain resonant values. The reason is that for such choices of T the omitted terms do not
sum up critically in the error accumulation due to the exponential factor eldtr/ ¢* A similar
yet different technique has been used in [BCY21; Buc+18; GHO06; HL99; JM19; JLO3]. The
fact that the NRNPI achieves the same accuracy as the NPI-2 with a significantly smaller
number of terms improves the efficiency and facilitates implementation and debugging. We
remark that choosing a nonresonant step size is easy, because both the resonant and the
optimal step sizes are known a priori. For very small step sizes 7 < %52, we prove that the
NRNPI has an error of 0(527). In this range, the error of the second-order NPI-2 is smaller,
but this is only relevant if an extremely small error of 0(64) or less is required.

The paper is structured as follows. In Section 2 we introduce the nonlinear Dirac equations in
the nonrelativistic limit regime. We recall the transformation of variables from [CW20] and
present the two different representations of the resulting PDEs. With these representations,
we formulate the NPI-2 in the transformed variables and derive the NRNPI in Section 3.3.
In Section 3.4, we present a rigorous error analysis for the NRNPI. Our main results are the
global error bounds in Theorem 3.12 and Corollary 3.14. In particular, we show why there
is no significant error accumulation for nonresonant step sizes due to cancellation effects. To
keep the focus on the essentials, the proofs of a number of auxiliary results are postponed to
Section 3.6. In Section 3.5, we present several numerical experiments which corroborate our
error analysis and reveal certain interesting effects, which we discuss briefly. Finally, we test
the efficiency gain achieved with NRNPI.

3.2 Problem setting

3.2.1 Nonlinear Dirac equations in the nonrelativistic limit regime

The nonlinear Dirac equations (NLDE)
O = — Tl — WY —iF()g,  z€R% 1>0, (3.1)
€

with initial data ¢°(0,x) = 1™(z) describe the evolution of a complex-valued vector wave
function ¢ = (¢, ) € C*. The solution 1° depends on the value of a parameter ¢ € (0, 1).
In the nonrelativistic limit regime, this parameter is very small as it is inversely proportional
to the speed of light. The operator 7; and the function W = W (t,x) are the free Dirac
operator and the electromagnetic potential, respectively. They are given by

3
T = —iZEaj(?j + 8, W(t,x) =V (t,x)Iy — ZAj(t,x)aj. (3.2)
j=1 j=1
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where V(t,2) € R is the electric scalar potential and A(t,z) = (A1(t, ), ..., A3(t,z))7 is the
magnetic vector potential. The matrices

. IQ 0 o 0 O'j .
B_<O _12>7 aj_<0_j 0)5 3_132737

are the Dirac matrices, which are determined by the Pauli matrices

{01 (o i (1 0
=11 o) 227\i o) P37 \o -1/

Further, F is a nonlinearity of the form F(u) = 1 (u*Bu)8 + 2 |u|* I for 41,72 € R. Here,
u* =71’ denotes the conjugate transpose and |u| = vu*u the Euclidean norm of a vector u,
respectively. This type of nonlinearity is motivated by numerous applications in physics and
models self-interaction of Dirac fermions; see, e.g., [HC09; Mer+10; Sol70; Thi58] and the
references in [Bao+16b; BCY21; CW18; CW22; LMZ17]. In the rest of this paper, we limit
ourselves to the second type of nonlinearity, i.e. 71 = 0. However, analogous results could be
obtained for the case v; # 0. With no loss of generality, we set 72 = 1.

The kinetic part —E%Ewg of (3.1) causes oscillations in time with frequency of O(¢72). As a
consequence, classical numerical schemes can only be expected to converge if the step size is
significantly smaller than €2, which results in prohibitive numerical costs.

3.2.2 Function spaces and assumptions

Throughout, the Fourier transform of u € L?(R?) or u € (L? (]R3))4 and the inverse transform
are defined by

. 1

. 1 .
u(§) = @ny /R3 e w8y (z) da and u(z) = 573 / e (€) de,

(2m) R3

respectively. For m > 0 we equip the Sobolev spaces H™(R?) and (H m(R3))4 with the norm

e = ([, (1 16) ™ @) )

Since we will later decompose a solution of (3.1) into two components, we further define the
space

H™ = (H"(B)" x (H"(R?))"
for tuples u = (u—1,u41) of two functions u_1,u4q € (Hm(RS))4, and equip it with the norm
el = llu—sll gom + lusall g -

In the special case m = 0 we have H? = (LQ(R3))4 X (LZ(RS))4, and we write L? instead of
H? for clarity. Finally, we define B™(R) = {u € H™ : ||u|gm < R} to be the closed ball of
radius R in H™.

Having established the necessary notation, we collect some important Sobolev inequalities
that we will use frequently. There is a constant Cg > 0 such that

luvll gz < Cs lullgz [0l g2, we HA(R?), v e HA(R), (3-3)
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luvllpe < Csllullpe ol g2, ue L*(R?), v e HA(R?). (3-4)

In both cases, one of the functions may also be C*-valued. The first inequality (3.3) is
the classical bilinear estimate in a Banach algebra; cf. Theorem 4.39 in [AF03]. The sec-
ond inequality (3.4) follows from the Sobolev embedding H?(R3?) C L*°(R3) via [Juv| ;2 <
llull 2 [|v]] foo < Cs||ullz2 ||v] g2; cf. Theorem 4.12 in [AF03]. The counterparts of (3.3) and
(3.4) for two vector-valued functions read

I o)l e < Cs lullge [0l we (HERY), ve (H2(R?)Y, (3.5)
u*ol 2 < Cs lull gz ol gz we (LR, ve (HAR?)" (3.6)

The following assumptions regarding regularity of the initial data and the potential W (de-
termined by V and A; via (3.2)) are crucial in the construction of our methods and will thus
be made henceforth.

Assumption 3.1. Let 0 < T < oo be an arbitrary fived time. We assume that
(A)  V,A; € L™([0,T), H*(R?))

and that there is a constant Mex > 0 independent of € such that for the exact solution ¥° of
(3.1), we have

(B) sup sup [ (¢, )|l ga < Mex.
€€(0,1) te[0,T]

We remark that assumption (B) is always fulfilled for some 7" > 0 if the potential and the
initial data are sufficiently regular, in particular if V, 4; € L>([0,T], H*(R?)) for some T > T
and if ¢t € H4(R3), see [(W20, Theorem 2.1].

Assumption (A) together with the inequalities (3.3)—(3.6) yields the existence of some con-
stant Cy > 0 such that for all ¢ € [0, 7], we have

4
IW(t,Jullpe < Ow llull 2, we (L2(R?)),

(3.7)
IW (&, Yull gz < Ow llull e, u e (HAR?)™

3.2.3 Transformed Dirac equations

Whilst the uniform boundedness of solutions in (B) is a reasonable assumption, the time
derivative of a solution is in general unbounded w.r.t. € due to the term —6%721/15 on the right-
hand side of (3.1). In this subsection, we introduce a transformation of variables proposed in
[CW20] and state the PDEs for the new variables. These PDEs have the advantage that for
sufficiently smooth solutions, the right-hand side is uniformly bounded in e, which is favorable
for numerical approximation. A key step in the systematic formulation of the methods in
Section 3.3 will be to write those PDEs in an appropriate representation. In fact, it will later
turn out that two different representations of the PDEs are useful as each of them has its
individual advantages.

The transformation of variables used in [CW20] is based on the decomposition

To = AT — AT, (3.8)
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with the scalar operator A. and the two projection operators 11, given by

A, = VId — 22A, = % (Idi (Id—g2A)—%7;).

Here and below, Id denotes the identity operator. These pseudo-differential operators are
defined in Fourier space, for example

1 i .
Neule) = o [0S+ Rlel m)ac

and similar for IIS;. The decomposition (3.8) is obtained by performing an eigenspace de-
composition in Fourier space, see [BMP98, Eq. (1.22)] and [CW20, Section 2]. It was shown
in [BMP98] that for any m > 0 the operators

S (H™(R)" — (H™(RY))
are indeed projectors, i.e. ( ;1)2 =115, and that ||TI%4]| = 1.

The decomposition (3.8) allows us to filter out the main part of the temporal oscillations in
a solution ¢¢ of the NLDE (3.1). This is achieved by introducing two new functions ¢°; and
< 1 defined by

671 (1) = €SI [ (8, @) (@) = o VI [9F (¢, @) (3.9)

for t > 0 and € R3. To increase readability, we will omit the variable z from now on.
Assumption (B) together with the boundedness of the projectors immediately implies

sup  sup |61 ()| 4 < Mex, sup  sup (|65 (1) ga < Mex. (3.10)
€€(0,1) t€[0,T €€(0,1) t€[0,T

The original variable ° is determined from the pair ¢* = (¢, ¢% ) via

YE(t) = e G (1) + s (1) = Y I g (0). (3.11)

je{-1,+1}

Taking the derivative w.r.t. time in (3.9) and inserting the Dirac equations (3.1) yields the
PDEs

097y = —iDeg” ) — 1T (W) — eI [Ju o], 9%, (0) = I, [0,
Oriy = +iDogy — ie I (W] —ie ™I, [P ye] L 954(0) = 15, o™
with operator

D, = eiz (\/1—52A—Id).

In fact, considering the very similar structure of both PDEs allows us to write them in a
general way as

O = 0iDogf — ™IS (W] — 1o~ I |9 0f],  oe{-1,41}.  (3.12)
By expanding the product, we can represent the nonlinearity in terms of ¢° as

U = (7 e ) (7 e ) (7 e )

3
_ ijt/E2 5 * € 1€
- Z Z € ( —jl) ¢j2 NEX
j=—3 JeJg
jodd #J=j
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where J = {—1,+1}3 is the set of all multi-indices and #. = j; + j2 + j3 denotes the sum of
the entries of J = (j1,72,73) € J. Additionally replacing 1° in the potential-term of (3.12),
we obtain the transformed Dirac equations

o5 = oiDogs =i Y U (W]
je{—l 1}

—1i Z 3 elimtE [( < )95, 53] (3.13)

j=—3 JeJ
jodd #J=j

for o € {—1,+1}. In contrast to the operator —8%7; in (3.1), the leading differential operator
D, in (3.13) is uniformly bounded w.r.t. ¢ when considered as an operator from H™"2(R3)
to H™(R?) for m > 0; cf. [CW20]. More precisely, it fulfills the estimate

1
IPeullgm < 5 lullgmez,  ue (H™(R%), (3.14)

see [JK23, Eq. (2.8)]. Thus, Assumption 3.1 implies that the first time derivative of ¢, and

%1 is uniformly bounded in H? w.r.t. ¢, i.e. for o € {—1,+1} we have

sup sup [0 ()|l 42 < Cb (3.15)
e€(0,1) t€[0,T)

for some constant Cp. The same then obviously holds in the L?-norm. This fact will be
crucial in the construction and error analysis of our methods.

In the PDEs (3.13), one can clearly recognize the origin of each term, but the double sum
makes the right-hand sides somewhat complicated. An alternative representation of the PDEs
for °; and ¢ ; can be obtained by sorting the terms in (3.13) according to the arguments
in the exponential functions. For example, in the equation for ¢, i.e. o = —1 in (3.13), the
argument 2it/e? is obtained by the value j = +1. Next, one can check which terms appear
with the associated prefactor e2#/¢*. In the first sum in (3.13), this is

2y Wil

because for 0 = —1 and j = +1 the summand is ezit/EQHil [W¢S,] . In the second sum, we
have to take into account all multi-indices J = (j1,j2,J3) € J = {—1,+1}3 with #J = 1.
Those are (+1,+1,—1), (+1,—1,+1) and (—1,+1,+1), leading to the terms

=, [(@ba—l)* i1¢€—1] ) e [(¢il)*¢i1¢iﬂ ) and e [( +1) i1¢i1] .

Carefully proceeding similarly for all other exponents and for both values of o, one can obtain
the alternative representation

ud5, = oiD-¢5 — ie TS [(65)" 07,07,
— i (115 (W) + 105 [ (1674 + |05 7) 0, + (65)"6% 165 )
~i (15 W] + 105 [ (|62 + |65 [7) ¢ + (62,)" 507, ))
— eI [(67,)7 8565 - (3.16)
This can be written in the more compact form
D15 = 0iD- ¢S + Z FTEGD ()0, o e {-1,+1}, (3.17)

p=—4
p even
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where for each u = (u_1,u;1) € H2, 0 € {~1,+1} and p € {—4,-2,0,2}, the operators
Gf,p )(u) are defined by
()] = I [(4e) u—gv—0]
2><u>m TG (W] = i1 [(Ju-af” + usa]?) vog + (ug) ugve ]
G ()] = =TT [Wop] =TT | (jusf? o s [*) v + (o) o
G (w)

w)[v] := =1 [(u—g) * U]

for v = (v_1,v11) € L2 The linearity of the projectors IT5; and the estimates (3.3)-(3.7)

imply that for every v € H2, GS}’ )(u) are linear operators that map a tuple from L? to a
function in (LQ(R3))4 and a tuple from H? to a function in (HQ(R3))4.

(»)

In the derivation of our methods, we always consider the operators G With argument ¢°(t),
which are applied to the same function ¢°(¢). In short, we consider G (gba( ))[¢°(t)] where
°(t) = (¢°1(t), 9%, (t)) is a solution of (3.13) (or, equivalently, (3.17)) at some time ¢ > 0.
We just write G((,p ) (t) in this case to increase readability. However, in our error analysis, the

(»)

distinction between the argument of G
crucial.

and the function to which it is applied to will be

The representation (3.17) is the most compact form to write the PDEs for ¢Z, involving only
four addends in the sum. However, there is no common structure of the individual addends
G for different values of p. In contrast to that, each addend in the sums of (3.13) has exactly
the same structure, and only the indices j or j1, jo2, j3, determining which solution component
to be employed, differ. On the other hand, the representation in (3.13) is more involved due
to the distinction between the potential and the nonlinearity parts and the more complicated
composition of the exponents. In the next section, we will use both representations to make
the best possible use of their individual advantages.

3.3 Construction of time integration methods

In this section, we present the construction of two different time integration methods for the
NLDE. Both methods are based on the transformed Dirac equations (3.13) or (3.17) and will
therefore yield approximations

Q" = (¢, ¢lL1) = (621 (tn), 051 (tn)) = 07 (tn)

with ¢, = n7 for n =0,1,2, ... and a step size 7 > 0. The relation (3.11) between ¢* and )°
can then be used to construct approximations "™ & 1% (¢,) by

wn = e —ltn/E gbn 4 eltn/E +1’ n = O, 1, e (318)
Since

o — )l = [l /%% (621 — 6 (1) + €/ (61 — 5 ()|,
< (6% = 6% (bl 2 + 102 — 650l 2 = 16" — ()l (3.19)

any error bound concerning the accuracy of ¢" transfers directly to ¥™.

The first method constructed in this section is a uniformly accurate second-order time in-
tegrator. It is similar and not superior to the NPI-2 from [CW22]. However, we formulate
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the method in the transformed variables (¢, ¢% ) instead of the original variable 1)°. This
allows us to write the recursion formula in a spemal structure, which is fundamental for the
construction of the nonresonant nested Picard iterative integrator (NRNPI) in the second
part of this section. The NRNPI is a simplification of the first method, but in many cases
has the same accuracy and thus improved efficiency.

To make the formulas a little simpler, we assume that the potential W is time-independent
throughout the rest of the paper. We will explain later how and under which assumptions
the methods can be extended to time-dependent potentials. In case of a time-independent
potential, assumption (A) simplifies to V, A; € H?(R3).

We write f. = O(tP) for a function f. = f.(¢,x) and some p € Ny to express that

1fe(t, )l e < CFF

for ¢ — 0 with some constant C which does not depend on t and e.

3.3.1 Iterating Duhamel’s formula for the transformed Dirac equations

The method we present here is based on the idea of iterating Duhamel’s formula for the
transformed Dirac equations (3.13) twice, and then only approximating the slowly varying
parts in the integrals, whereas the highly oscillatory parts are integrated exactly. The same
strategy has been used in [CW22] and for oscillatory Klein-Gordon equations also in, e.g.,
[BFS18; CS22; Wan22; CZ22].

Duhamel’s formula for (3.13) yields the representation

Giltn+) =P tn) =1 3 [P [ )] ds
e{ 1,1}
_ Z 3 / APz =) tn )/ e |
j=—-3 JeJ
jodd #J=j

6 i, (tn + 5)7 05, (tn + )05, (tn + s)}ds (3.20)

for the solution ¢, o € {—1,+1}, at time ¢,41 = ¢, + 7. In order to obtain a uniformly
accurate second-order method, the main challenge is to approximate the highly oscillatory in-
tegrals up to (’)(73) by an expression where the unknown solution ¢%, is only evaluated at the
current time ¢,,. The first step to achieve this is to construct a sufficiently accurate approxima-
tion to ¢ (t,+s) and ¢ (¢, +s) by using Duhamel’s formula once again and approximating
non-oscillatory parts. To ensure stability, the differential operator D, : H™+2?(R3) — H™(R3)
is replaced by a filtered version in the second step. In the third step, we insert this represen-
tation into (3.20) and compute all remaining oscillatory integrals analytically.

Step 1: approximation of ¢% (¢, + s)

In order to approximate ¢§c1(tn + ), we apply Duhamel’s formula again, but this time to the
representation (3.17) of the PDEs for ¢%. This yields

G2 (tn + ) = 7P (1) + Z / oils=n)De poiltatn) /= GO (¢, + 1) dr. (3.21)

p=—4
p even
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Thanks to (3.15), we have
o5 (tn +1) = ¢ (tn) + O(r), r >0 (3.22)

for o0 € {—1,+1}. Using (3.22) and the fact that the exact solution is uniformly bounded in
H? at all times (even in H* by assumption (B)), we obtain

¢§1 (tn + r)*qﬁ% (tn + T)¢§3 (th +7) = ¢§1 (tn)*qug (tn)(rb;:; (tn) +O(r)

for any ji,j2,73 € {—1,41} and thus Ggp)(tn +7r) = Ggp)(tn) + O(r). Considering the
surrounding integral, fixing the solutions at time ¢,, in the functions Gﬁ.p ) in (3.21) produces
an error of O(s?). Further, we can use the following

Lemma 3.2. For any s € R, we have

; 1
Pl < oslulye.  we (HAEY)
. 1
Py — (Id + isDa)u’ o < g5 lulls we (H'R)"
Proof. Apply Taylor’s theorem in Fourier space. O

Using the first estimate inside and the second estimate outside the integrals in (3.21), we
overall obtain

2 s )
G (tn + 5) = ¢5(tn) + oisD5 (tn) + > / ePoitnt1)/% qr W () + (9(32) . (3.23)
0

p=—4
p even

Step 2: filtered operator

Whilst the order of accuracy in (3.23) is sufficient, using this representation would lead to
instabilities of the methods we are about to construct. The reason is that the operator D,
maps from H™F2(R3) to H™(R?) for m > 0, and hence causes a loss of regularity; cf. (3.14).
This is why we replace D, by the filtered version

_ sin(7Dy)

D.(t) : H™(R®) - H™(R?),  D.(r)= ——=,  7>0

as, e.g., in [CW19; CW22]. The filtered operator 7/7\5(7') has the properties that

|-, < e, e (RS (3.24)
[y < 3 Wl e (@) (3.29

for any m > 0. The first inequality is obvious, whereas the second one can easily be shown
by using Taylor’s theorem in Fourier space. Moreover, using the same techniques, it is not
difficult so show that

(0.~

.
< 2l (3.26)

for all u € (H4(R3))4 (see [CW19, Proof of Lemma 3.2]). Since the exact solution is assumed
to be in H*, property (3.26) implies that replacing D, by D. in (3.23) introduces an O(s7)
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error, which is unproblematic in view of the error order we want to achieve. Further, com-
bining the term oisD. (1)@ (ty) with GY (t,) = GY) (¢ (t))[¢° (t,)] motivates the definition
of the operators G (u) for each u = (u_1,uy1) € H2 by

GO(w)[v] := GO (w)[v] + oiD-(7)vs,

_ 7 (3.27)
GP ()] =GP (W],  pe{-4,-2,2}
for v = (v_1,v41) € L2. This leads to the representation
G5 (tn + 8) = ¢S (t,) + Z / ePoiltnt)/* qr G0 (4,) + (9(5 + 57) (3.28)

p=—4
p even

where we wrote G (t,,) instead of G (ngE (tn))[¢°(tn)] similar to before. Property (3.24)

ensures that for each v € H?, CA?S,O) (u) are indeed well-defined operators mapping from and
to L2 (details on this and other properties of the operators CA{(,p )

in Section 3.6). With the function ¢; given by

1 =l f C 0
o= [ [T ErzeCazo
0 1 for z =0,

are discussed in Lemma 3.17

Eq. (3.28) can equivalently be expressed as

G (L + 8) = ¢E.(tn) + Z ePoitn/e? g (pgs)égp>(tn)+o(s2+w). (3.29)
p=—4
p even

Step 3: Approximating the integrals in (3.20)

Eq. (3.29) can now be inserted into (3.20). At this point, it becomes clear why we established
two different representations of the PDEs for ¢: We would like our O(s?)-approximation of
@5 (tn + s) to be as simple as possible, which was achieved by using the representation (3.17).
When inserting (3.29) into (3.20), however, the similar structure of all terms provided by
representation (3.13) is essential such that we can take care of all of them at once instead
of considering every term individually, which would be very cumbersome as the nonlinearity
increases the number of terms even further.

When inserting (3.29) into the nonlinearity in (3.20), this gives rise to a number of O(s?)
terms which lead to a total error of (9(7'3). After all, we can express each component of the
exact solution ¢ = (¢°,¢% ) at time t,, + 7 as

05 (tn + 7) = €7TPEGE (80) = 13 (bn, 67 (bn)) — L2 (tn, 6% (ta)) + O(7%), (3.30)

o € {—1,+1}. Here, we define

L(tu)= Y ei(j_g)s%/ 7 T=8)D= i) T 5 ITE (W,
je{-11} ‘

+ Z Z el o+pi) 7 / i (T=8)Dz (11— )28901(])2; )dst’, [Wégp)(u)[uﬂ

je{-1,1} p="4

p even

43



for t > 0 and v = (u_1,u41) € H2, such that Il(t,,#°(t,)) is the O(73)-approximation to
the integrals in (3.20) containing products with the potential W. Further, I2 is given by

-
2 i(j—o) oi(1—8)De [i(j—0) 5 e |, * o
IZ(t,u) Z Z e / e ‘e 2 ds Il |ulj uj,ug,
j=—3 JeJ 0
jodd #J=j
3

2 o L T — i(j—0o)=3 pjliS ~
i ]_Z—S Jze;Y pZ_:z; ¢ - +p]1) / 7 S)Deel(J )22 S(Pl( e2 ) ds Hi [(G(—pj)1 (u) [u])*ubuj?»}
j odd #J=j p even

3

2
(j—o+pj2) —8)De i(j—0)% pjis «  Ap) ,
+ ;3 Jze; pZ;le ? 2/ e7i(r=8)Pz 2 51 ( = )dsHi [u_lejQ (u)[u]um}
é’odd #J=j p even

3

2 ..
£33 3 i [Fertrm el g (B s T [u 0, G ()l

2
j=—3 JeJ p=—4 €
j odd #J=j p even

which means that 12(t,, ¢°(t,)) is the O(73)-approximation to the integrals in (3.20) account-
ing for the nonlinearity. The integrals in I} and I? do no longer involve the exact solution
¢°. Instead, they are operators that can be computed and applied analytically. For 9,( € Z,
we have

Ay (9) := /OT ol (T=8)De gids/e? g — 76167/62901 (iT (UD6 — %Id)),

B5(6,¢) == /0 ’ eUi(ffswasei&s/E?gpl(%) ds (3.31)
i (i (o2 = G0)) = o7 (o2 - THE0)) ) o
7'2e176/€2<p2 (iT (O’DE — %Id)), (=0,

where the function - is given by

for z = 0.

z)—1
2):/196(19)zd6:{fl(z) for z € C, 2z # 0,
0 1

Thus, we obtain

tu)y = Y U AL( — o)IIE Wy
je{_Ll}
2
+ Y Y TR (o (WGP (w)u]]  (3.32)

.76{ 1’1} p=—4

p even

44



and

3
Ltw) = Y Y UTEA (G = )T [(ugy) wjyuz)

j=-3 JeJ
jodd #J=j

3 2

+ Z Z Z elli—o+pi )t/e? B, (j — o, pj1)IL [(é(_pj)l(u)[u])*upuja}

j=—-3 JeJ p=—4
j odd #J=j p even

3 2
3 X X TR, (- o i) [(uy, )G (),

j=-3 JEJ p=-4
j odd #J=j p even

2
L3S Y e, () i () un G W)l . (3.33)

j=—3 JeJ p=—4
j odd #J=j p even

Specification of the time integrator and local error bound

Eq. (3.30) immediately suggests a time integrator: Replacing ¢°(t,) by numerical approxima-
tions ¢" = (¢™1,¢",) (thus also replacing G¥(t,) = G¥) (¢ (tn))[6° ()] by G (¢™)[¢"])

and omitting the O(r3) terms yields the recursion
"t = dxpi(tn, ¢"), n=0,1,2,... (3.34)
with the numerical flow’

—irDe _in —ir?
e T ruy — i (Fu) — 12,4 (¢, “)>. (3.35)

Onpr(t,u) = (e+iTDEU+1 _ iI}rl(t,u) _ iI_%(h w)

The operator ®xp; does of course depend on the step size 7 and on ¢ (as IL; and I3, do).
However, we refrain from marking this dependency explicitly in order to keep the notation
simple. The method (3.34) is fully explicit. If the exact solution ¢° = (¢ |, ¢% ) of (3.13) is
in H* for all times, then by construction its local error

GEL = ¢ (tnt1) — Pxpr(tn, 6 (tn)), n € Ny,

is bounded by

<cr? (3.36)

gn-i—l”
el

for some constant C that is independent of 7 and . This is one of the ingredients which
would be necessary to prove that the scheme is second-order accurate independently of &,
which, however, is not our objective. Instead, this estimate will turn out to be useful for the
error analysis of the NRNPI in the next subsection.

Remark 3.3. If the potential W = W (t,z) is time-dependent, a similar method can easily
be derived. In the inner application of Duhamel’s formula, that is Eq. (3.21) in step 1, the
potential W appearing in Gg_Q) and G((fo) is then evaluated at time t, + r, but approrimating
W(t, + 1) = W(ty) is sufficiently accurate here. In the outer application of Duhamel’s
formula from (3.20), W is evaluated at time t,,+s. For a sufficient accuracy, the linearization

Wty + s) = W(ty) + sO,W(t,) has to be employed here. In step 3, the strategies remain

'In general, we combine two functions u_1,u+; € H™(R?) to a tuple (u_1,u+1) € H™. Only occasionally,
we stack two such functions into a vector for the sake of presentation.

45



unaltered, but the additional term sO,W (t,,) has to be taken into account. One can check that
the additional assumptions

V,Aj € CH[0,T), H*(R?),  V,A; € C*([0,T], L*(R?))

are necessary for a rigorous local error and stability analysis in L2.

Remark 3.4. The NPI-2 proposed in [C'W22] is based on the same ideas. There are however
some differences. Firstly, they work in the context of the original Dirac equations (3.1). This
means that they cannot apply an approximation of the type V= (t, + r) ~ = (t,) (as we did
for the transformed variables, cf. (3.22)), since this would induce large errors when € is small
due to the oscillatory dynamics of 1¥°. This is why in [CW22], the approzimation

Gt + 1) = (77T 4+ &I ) 0F (1) + O(), 7> 0

was used instead, which is again motivated by Duhamel’s formula together with the decom-
position (3.8). Secondly, they employed slightly different strategies for approximating the
remaining, slowly varying parts. In the end, their NPI-2 scheme is still very similar to the
method we presented in (3.34), which is why we will also refer to our version as NPI-2. How-
ever, having formulated the method in the transformed variables ¢ = (¢ 1, ¢% ) allows us to
have a detailed look at the frequencies of the highly oscillatory phases involved. This will be
crucial for the derivation and analysis of our simplified method in the following section.

3.3.2 Nonresonant nested Picard iterative integrator (NRNPI)

For the NPI-2 (3.34), one can derive a second-order global error bound with a constant that
does not depend on ¢, as mentioned in [CW22, Sec. 4]. To do so, one has to combine the local
error bound (3.36) with suitable stability estimates and a standard Lady Windermere’s fan
argument. Even though second-order convergence uniformly in ¢ is a very favorable property,
the efficiency of the NPI-2 is to some extent limited by the huge amount of terms that have
to be computed in each time step: the numerical flow (3.35) contains evaluations of I and
I3, which in turn involve multiple sums. Each addend then requires the computation of a
product of several functions in physical space and the application of operators in Fourier
space. The total numerical work to compute one time step of this method is thus very large.

Our goal now is to omit a significant number of terms in the numerical flow without affecting
the accuracy, or only to a small extent. For this purpose, we return to the representation
(3.30) of an exact solution ¢ = (¢° 1, ¢ ) of (3.13) at time ¢,, + 7, which provided the basis
for the method from the previous section. Here, it is worthwhile to consider the structure of
the actual addends that appear in the sums of I} and I2 more closely. Let us take a look,
for instance, at the last three lines of I2, cf. Eq. (3.33). If I2 is evaluated with arguments t,,
and ¢°(t,) as in (3.30), then each of the addends is of the type

el /= B, (8, OTIE [2(tn)] (3.37)
for some q € {—6,—4,-2,0,2,4,6}, 0,¢ € Z and some function z of the form
z(t) = u(t) v(t)w(t) (3.38)

where u,v and w each are either ¢S for some o € {—1,+1} or (A;S,p)(&(-))[gbs(-)] for some
o€ {-1,+1}, p € {—4,—-2,0,2}. We suggest a method where all terms of the type (3.37)
with ¢ # 0 are omitted, and are thus included in the local error instead. This may come as a
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surprise since those terms are only in O(72) due to the norm bound of B, (6, ¢). Hence, in a
standard error analysis based on the classical Lady Windermere’s fan argument, neglecting
such terms would reduce the global error order from two to one. However, we expect that
actually such terms will not critically sum up in the error accumulation. The reasons for this
conjecture are the following: Firstly, the terms in (3.37) contain the prefactor el?n/ ¢* This
is a complex number oscillating on the unit circle throughout the time steps. For ¢ # 0, two
consecutive numbers el%n/=* and eldtn+1/e* = ¢ia7/e%glatn/e* 4o not point in the same direction
in the complex plane as long as a nonresonant step size is chosen, meaning that

2me?

T/ 1 e,  TAE for all k € Z.
Secondly, the boundedness of the first time derivative of a solution ¢* = (¢° 1, ¢% ) of (3.13)
implies that z only varies slowly (in a sense that is made precise later on) in the course of
several time steps. The same holds for B, (6, ()IIS [z(t,)] since the operator B, (9, ¢)II5 does
not depend on n. Those two facts are later used in a summation-by-parts argument (cf.
proof of Thm. 3.12) to show that neglecting terms of the form (3.37) with nonzero exponent
in the prefactor, i.e. ¢ # 0, has indeed only little impact on the accuracy. Terms of a similar
structure that we will also omit are additionally found in I1(t,, ¢%(t,)).

Let us now establish our new method in detail. In each of the last three lines of I2, defined
n (3.33), we only keep the terms for the value of p for which the exponent in the prefactor
is zero. In the second line of I2, for example, we only keep the term for the value of p for
which j — o + pj1 = 0. Since 1/j; = j; for j; € {—1,+1}, this is the case for p = ji (o — j).
Thus, for each multi-index J € 7, there is exactly one value of p for which the exponent is
zero, whereas the terms for the other three values of p are omitted in our simplified method.

Analogously, in the third and fourth line of I2, we only keep the term for p = jo(o — j) or
p = j3(o — j), respectively. In the second line of I}, we keep the term for the value of p for
which j —o+pj =0, i.e. p =07 — 1. Thus, as before, we always keep exactly one out of four
terms here. Overall, we replace I}(t,u) and I2(t,u) in the numerical flow (3.35) of the full
method by JL(t,u)[u] and J2(t,u)[u] where for u = (u_1,us1) € H? the operators J1(t, u)
and J2(t,u) are given by

Je(tul] = 37 @0 AL (j - oI5 (W
je{_lvl}
+ > Bo(j— o0 — I (WG V)], (3.39)
je{—l 1}

J2 t u Z Z J o)t/s A (] —O’)H [ ijluhvj?,}

j=-3 JeJg
j odd #J—j

+ E E By(j — 0,0 — j)IL; (é(_]jlfa_]))(u)[u]) uj2”j3}
i—3 Jea -
Jodd #J=j

3 L
+ > Y Bo(j—o.0— I _u*,le%Q( ]))(u)[u]ng}
j=—3 JeJ
jodd #J=j

3 . e
+ 2 Y Bolj— o0 — )L [u” G )] (3.40)
Toas 457,
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v = (v_1,v41) € L2. The reason why we distinguished between the arguments u and v is
that now, for every u € H2, J1(t,u) and J2(t,u) are linear operators. This will be crucial in
the error analysis.

After all, the nonresonant nested Picard iterative integrator (NRNPI) is given by the recursion

¢n+1 = (I)NRNPI(tTH ¢n)[¢n]a n= 0) 17 2’ s

with the numerical flow

(3.41)

ONrNpr(t, u)[v] = (e_iTDEv—l - it]ll(t, ) [’U] — iJEl(t, u) [v])

et ey —iJL (1 u) o] — 192, (¢, u)[v]

for v € H? and v € L2. Again, we do not express the dependency of ®xgnpr on 7 and e
explicitly. The linearity of J}(t,u) and J2(t,u) directly implies the linearity of ®xgryp1(t,u)
for fixed u € H2.

Remark 3.5. The terms J} and J2 have to be computed in every time step. They include
products of the numerical approximations ¢ with the potential and with themselves in the
nonlinearity. Those products have to be computed in physical space. The result has to be
transformed to Fourier space, since afterward the projectors and the operators A, or B, have
to be applied. Considering the computational effort, (inverse) Fourier transforms are the
dominating operations in each time step. It is thus crucial to reduce their number as much
as possible. In the second line of J} and the last three lines of J2, for each j € {—3,—1,1,3},
the respective operator is always identical. Consequently, by a reordering of the sums, only
two Fourier transforms per index j are required (one for the case 0 = —1 and o = +1
respectively). The same holds for the first lines of J: and J2.

Remark 3.6. Again, the method can easily be extended to time-dependent potentials W =
W (t,x). To do so, one can take the corresponding extension of the full NPI-2 from Remark
3.3 and omit terms according to the strategies from above. Consequently, the same additional
assumptions on the potential W as in Remark 3.3 are required.

Remark 3.7. The techniques from this section can be used to construct similar time inte-
grators for other equations, such as the Klein-Gordon-Dirac system.

3.4 Convergence of the NRNPI

In this section, we analyze the convergence of the NRNPI. First, we discuss the local error.
In contrast to the NPI-2, the NRNPI involves local error terms which are only in (9(72), but
have a special structure in return. This will be the topic of the first lemma in this section.
Then, we state two technical lemmas concerning stability of the numerical flow. The proofs
of those lemmas are postponed to Section 3.6. Instead, we will continue by presenting and
proving our main theorem, which is a convergence result for the NRNPI. In particular, we
show that although the local error of the NRNPI is increased, its special structure ensures
that the global error is not affected in many cases (in a sense to be made precise below). In
all proofs, C' always denotes a constant that may change from line to line, but is independent
of 7 and e.

The local error

= 9% (tp1) — Pxrpl(tns 6° (60))[0° ()]
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of the NRNPI in the (n+ 1)-st step can be decomposed into two parts: The local errors Eﬁlﬁ%

of the full NPI-2 and those originating from omitting terms of the full method (3.34), which

we collect in fgl?fl, ie.

= <Z>E(tn+1) - @NPI(tnv ¢€(tn)) + (I)NPI(tm ¢E(tn)) - (I)NRNPI(tm (z)E(tn))[(bg(tn)]‘ (3'42)

n+1 n—+1
_ZNPI - edlff

From (3.36), we have )Hz{@}” < O73. Comparing (3.35) and (3.41), we further find

tn)] =121 (tn, ¢

tn)] — LlH tn, ¢ (tn) )

(tn)] — 12 (tn, ¢ (tn)) )
( )

tn)] — LZH tn, % (tn

ol (Jl 1(tn; % (tn)) 07
diff i1 (tn, ¢°(tn))[6°
. ( (tna ¢8( n

+i

T2 (b, 64 (¢

(
(
[¢°
[

This representation allows us to derive the following lemma concerning the structure and

properties of Egl'ffl

)
n)

~— ~—

Lemma 3.8. Let Assumption 3.1 hold and let ¢° be the exact solution of (3.13). Set Q =
{—6,—-4,-2,2,4,6}. Then, we can write

et = > 72eldn/? Ey (3.43)
q€Q
for some Ej € H?2 that fulfill
|l < ena flE - Bl <0

forn=0,1,...,|T/7| with some constant C independent of T, n and e.

The proof can be found in Section 3.6. The next lemma addresses the stability of the numer-
ical flow CDNRNPI-

Lemma 3.9. Let Assumption 5.1 (A) hold. Then, for R > 0, we have

(1) lI@xrnpr(t, w)[v]llgz < (1+C7) flollgz, we B*(R),v € L?
(i) [(@xrnpi(t, u) —1d) [v][lg2 < C7 [|v]lg2 u € B*(R),v € H?,
(@ii) || Pxrapr(t, w)[v] — Pxrnpr(t, @)[o]lgz < CTflu =@z,  w, @0 € B*(R),

for allt > 0. In all cases, the constant C' depends on R, but not on T and €.

Lemma 3.8 implies that the local error of the NRNPI is at least in O(7?) for all step sizes 7.
A Lady Windermere’s fan argument and Lemma 3.9 yield a first-order global error bound
which is uniform in e. We will see later, however, that the accuracy of NRNPI is actually
much better; cf. Corollary 3.14.

In preparation for the following lemma, we define the (linear) operators @Kf{iNPI for n,k € Ny
by

Opp prlul = OnrNpr(ta-1, 6" (I)NRNPI(tn—27¢n72){ (I)NRNPI(tka¢k)[U]]]a kE<n

k
D\ rnprlY] = v, k>n
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for u € L2. If u = ¢" is the numerical approximation after k steps, then application of @ﬁ’gNPI
with n > k corresponds to performing another n — k steps, such that @ﬁ’ﬁNPI(qbk) = ¢" is
the numerical approximation after n steps. However, note that even if u # ¢* is an arbitrary
function, the numerical approximations ¢¥, ..., ¢" are used in the numerical flow operators
dNgrypr- In order to be able to state a stability estimate for (I)Kfl]{NPI and in the further error

analysis, we require the following

Assumption 3.10. There is a constant 1y independent of € such that for all T < 19 and
e € (0,1), the numerical approximations ¢™ remain uniformly bounded in H?:

" € B?(Myum) foralln=0,1,...,|T/7|

for some constant Myum independent of T and €.

In fact, one can prove with a bootstrapping argument that this assumption is indeed fulfilled
if the step size is sufficiently small, cf. [JK23; Lub08]. This step size restriction is not critical,
since it is independent of e.

Lemma 3.11. Under Assumptions 5.1 (A) and 5.10, we have for all k,n € N with k,n <
|T/7]| that

et |[lull 2 for allu € L2

ke
H‘(I)71\LIRNPI[U] H L2 <

for some constant C independent of n,k, T and €.

In the proof of this lemma (see Section 3.6.4), Lemma 3.9 (i) will be applied recursively.
Assumption 3.10 guarantees that the constant C' therein can always be chosen identically,
and in particular independently of 7 and e.

We are now in a position to state and prove an error estimate for the NRNPI, which is the
main result of this paper.

Theorem 3.12. Let Assumptions 5.1 and 3.10 hold and let 19 be the comstant from the

latter. Further, for e € (0,1) arbitrary, let ¢° be the exact solution of (3.13) and let ¢™ be the

numerical approximations of the NRNPI for any step size T < 179 with T ¢ {%7752, gmsz, k€

N}. Then, the error bound

o< () ~ "l < €. (1+ =01, |T)],

K(71-,5)> ™

holds for some constant C, independent of T and & and with

K(1,e) == min
qe{2,4,6}

ehrr/et 1. (3.44)

According to (3.19), the theorem directly yields an error bound for the approximations 9™ =
1 (t,) defined in (3.18):

Corollary 3.13. Under the assumptions of and with the constant Cy from Theorem 3.12,
we have

1
9™ — = (tn)|| 12 < O (1 + K(m)) 2, n=0,1,..|T/7].
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Before we continue with the proof of Theorem 3.12, it is crucial to note that the right-hand
side of the estimate contains the 7-dependent number 1/K(7,¢), which might be very large
if an unsuitable step size is chosen. We now discuss to what extent ensuring K (7,e) % 0 is
possible. For a fixed value of ¢, we distinguish two cases. If 7 > %52, then one can choose
the step sizes

(2k—-1) ,

r="—net, keN. (3.45)

It follows from (3.44) that K(7,e) = /2 for this choice of 7. One can check that this is the
maximal possible value, which is why we call the step sizes (3.45) optimal. On the other
hand, one should avoid the resonant step sizes

T = gﬂez or T= §7r52, keN, (3.46)
for which K (7,e) = 0. This is the reason why these step sizes were excluded in Theorem 3.12.
For a step size in between the optimal and the resonant ones, the size of 1/K(7,¢) and thus
of the error bound depends on how close it is to a resonant step size. This is illustrated in
Figure 3.1 (a) in Section 3.5, where the function 7 — % is plotted for € = 0.01 together
with markers of the optimal and the resonant step sizes. In practice, however, we recommend
replacing a given step size by the closest optimal step size, which is at most %52 away.

Ifr < %62, on the other hand, it is no longer possible to ensure that K(7,¢) % 0 since

K(1,e) = 0 for 7 — 0. Instead, we can only show the lower bound

4V2 1
T

i27 /&2 : 2
of27/e% 1‘ = 2sin(7/e%) > 2

K(1,e) = min
q€{2,4,6}

: 2
equ/a _ 1‘ —

where we used that

ef® — 1| = \/(cos(x) —1)2 +sin?(x) = \/2 — 2cos(x) = 2sin (3) for x € [0, 27]

and that sin(z) > 2V2, for z € (0,7%). This implies

T

<1+ 1 >2<2+7r 2<<1+1>7T2
T T e°T — | =T,
K(T,¢) 44/2 V2/ 4

which means that the error of the NRNPI decreases only linearly, but in return, the error
constant is proportional to £2. Altogether, we obtain the following

Corollary 3.14. In the setting of Corollary 5.153, we have

2

1
[™ — = (tn)|l 2 < Cx (1 + ) 72 for optimal T > —&°,

V2

1 T 7T
n _ € < i 2
1k (0 (tn)HLQ < Ck (1+ ﬂ) 45 T for T < 45 .

NE

In the first case, the error of the NRNPI is not larger than the one of the full NPI-2, even
though many terms have been omitted from the numerical flow. Only if extremely small
errors of less than (9(54) are required, the second case, where the NRNPI is inferior, becomes
relevant.
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Proof of Theorem 3.12. Let e™ = ¢°(t,) — @™ be the global error at time ¢,,. The linearity of
ONrypi(t, u) for fixed u allows decomposing e” as

"= ¢%(tn) — PNrNPI(tn-1, 0" 1) [@" ] = 0" + d" + Pxrxpr(ta-1, 0" )"
with " = ¢°(t,,) — PnrNPI(tn—1, @° (tn—1))[¢° (tn—1)] being the local error and
d" := NrNPI(tn—1, ¢ (tn—1))[0° (tn—1)] — PxrNPI(tn—1, 8" )[¢° (tn—1)] (3.47)

accounting for perturbations in the linear flow operator ®xrnp1. Dissolving the recursion
formula yields

="+ d" + Oxppr(tao1, ") [ﬁn_l + d" ! 4 dxripr(tn_o, ¢n_2)[€n_2]]

n
k
= N rnpr 7] + Z (I)NRNPI (3.48)
k=1

Here, we used the definition and linearity of @KI’?{NPI and that ¥ = ¢(ty) — ¢ = 0. Again
using the linearity of CI)%’{;NPI and the decomposition of the local error £¢ from (3.42), the
first sum can be decomposed to
= k " k - k
) k ) k , k

> PNrner ] = D Ppnpr[Bpt] + Y PXrner [l - (3.49)

k=1 k=1 k=1
Now, the lemmas established before allow deriving suitable bounds for the norm of each of
the sums appearing in (3.48) or (3.49). In the first sum of (3.49), we can “afford” to lose one
T since E’&PI is in 0(7'3). Thus, we can use triangle inequality together with Lemma 3.11 to
obtain
n

; m PXhnp1 [ENPI} i

L2 = k=1

<Y CeCinrd < 0T 72, (3.50)

n
n,k k
Z (bNRNPI [ENPI] NPI H

k=1

3

k=1

To control the second sum in (3.49), however, we rely on cancellation of errors from different
time steps, such that a more sophisticated analysis is required here. Recalling the structure
of Zf’hﬁ from Lemma 3.8 and using summation by parts, we have

n n
nk k .2 iqty_1/€% Fmk k—1
Z PNRNPI [édifr} =T Z Z € PNrNer | g
k=1 qeQ k=1

n
_ .2 ,n n—1 igti_1/e?
=77 ®\rnp [Eq ] > et/

q€Q k=1
7 55 (e [EEY] — 0t [4]) Do e
qeQ k=1 =
Since ®\rnprl-] = Id, we obtain
> ot ]| <23 g[S e
k=1 L2 v
+72 > Z ‘H(I)NRNPI [Ek 1} - q)lT\Lfl]DiJl\rnlDl {Ek] iqtj-1/€?
qeQ k=1
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In the first term, only the complex numbers oscillating on the unit circle are summed up. For
nonresonant step sizes, the modulus of this sum does not grow with n since by the geometric
sum formula, we have

n—1 iqtn/e? _
igte_/e?| _ gty /e?| _ (eiq7/52)k _ eldtn/e 1 < 2 < 2
I;::O elat/e2 _ 1| — !eitzf/a2 — 1‘ ~ K(1,¢)

for all ¢ € Q. Together with the uniform bound for the norm of E;‘_l from Lemma 3.8, we

infer that the first term is in O(%) Further, using the properties of ®nrypr and CD%’QNPI

from Lemmas 3.9 and 3.11, respectively, and the properties for the error components F; from
Lemma 3.8, we obtain for £k <mn — 1 that

H’(I)NRNPI {Ek_l} — PNRAPI [Eﬂ
< mq{l\lIf{NPI {Ek_l} - (I)%I;NPI [Ek}

= ‘Hq’ﬁl}kmm {Ek ' Ek}

vo ([ ®Ner [B5] - @Rk [£5]

o || R [t o) |25 - £
Cin (‘I)NRNPI(tka ¢*) — Id) [E(ﬂ
<elnCr 4 enCr H’ {Eﬂ ‘HH2 < CreT,

k—1 k
Eq —Eq L2+e

Overall, we have

CTeCT
y+ 7y Z Cre— TQK(T7 =l (3.51)

<7'22C

L2 qeQ qeQ k=1 6)

IN

NRNPI [Edlff}

Now, it remains to control the second sum in (3.48). Recall the definition of d* from (3.47).
Since ¢ (ty_1) € B2(Mey) and ¢* ' € B2(Myum) by Assumptions 3.1 and 3.10, respectively,
we can use Lemma 3.9 (iii) with R = max{Mex, Mpum} to obtain

llaellgs < 7 | = Or [

o (i) — 67|,

L2’

The triangle inequality together with Lemma 3.11 then yields

n n n
7k n —
SCTTNES D of 1Y I o M DR
k=1 k=1 k=1
Finally, combining (3.48) - (3.52), we have
2 1 Sl
n < - —
el < €7 (14 5 ) + 07 3 [l
The discrete Gronwall Lemma inequality implies
1 1
H|6 |||L2 > 0T + K(T, E) € > 0T + K(T,E) € )
which completes the proof. O

Remark 3.15. Since the local errors of the NRNPI contain those of the NPI-2 ((%p;) and
additionally the terms that have been omitted from it (Edlﬁ ), the error analysis of the NRNPI
is more involved than of the full NPI-2. Nevertheless, we were able to present it in detail
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in the proof above. This is worth mentioning since in the work [CWZ22], where the authors
presented the original version of the NPI-2, they refrained from an error analysis due to the
plethora of terms in the numerical flow. It was the structured formulation of the NPI-2 and
the NRNPI in (3.32)-(3.35) and (3.39)-(3.41), respectively, that made the error analysis in
this section manageable. In fact, Lemmas 3.9, 5.11 and 3.17 could easily be extended to
the NPI-2. A wuniform second-order global error bound could then be proven with standard
techniques and without requiring summation by parts.

Remark 3.16. The entire error analysis can also be carried out in H" instead of L? if more
reqularity is available. For error bounds in H", we only have to replace H* by H*1" in
Assumptions 3.1 (A) and 5.10 as well as H* by HY™ in Assumption 3.1 (B). If r > 3/2,
then H" is an algebra, which simplifies things because (3.3) and (3.4) can then be replaced by
the single inequality

luvll e < Cs ullge [0l g, w € H'(R?), v € H'(R?),
and (3.5) and (3.6) by

* 4 4
lutvll g < Cs lul ol ue (H' (D), ve (HR)

3.5 Numerical illustrations

In this section, we illustrate the results of our error analysis for the NRNPI by numerical
experiments. Furthermore, we compare the efficiency of the NRNPI and the NPI-2.

3.5.1 Problem setting and details about the numerical computations

For simplicity, we consider the NLDE in one space dimension, where it can be reduced to
e (t,x) = —;127”;1/;5(15,9;) —iW(t, 2)v°(t, ) — iF()Y(t,z), t>0, z€R

with a two-component solution (¢, z) € C? and

7\-; = —160'161» + 03, W(t,.’L') = V(t,l‘)[g - Al(t,l')O'l, ﬁ(u) = |u]2 IQ,

see e.g. [Bao+16b]. To keep notation simple, we omit the tilde in the following. For this
reduced system, the construction of the NRNPI as well as the error analysis can be carried
out in exactly the same manner.

In the numerical computations, we have to replace the unbounded domain by a sufficiently
large, but bounded interval Q = [a,b] and impose periodic boundary conditions as, e.g.,
in [Bao+16b; BCY21; CW22]. For the space discretization, we define grid points x; =
(a+b)/2+jh,j=—M,..., M — 1, with mesh size h = (b—a)/2M for M = 128 and compute
all spatial derivatives by Fourier pseudospectral techniques.

The initial data, the potential functions and the interval {2 are chosen as in [Bao+16b; CW22],
ie.

.. 2 L. e 1\2 1 — X (Z]}' —+ 1)2
Pa) = e ) = R, v = 18 A @) = LD
for x € Q = [-16,16]. We consider time intervals [0, 7] with two slightly different values

of T' which are specified below. All numerical computations on [0,7] are carried out with
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Figure 3.1: The behavior of the function 7 — #25) (left) compared to the error at time
T = 0.33607 of the NRNPI (right) for € = 0.01. In both plots, the axis limits for the step size
7 are the same. The green dots depict the function values for the optimal step sizes (3.45).
Further, the vertical gray lines mark the resonant step sizes (3.46), where we distinguish
between the multiples of me? (dash-dotted) and the additional multiples of “752 (dashed) or
Wai (dotted). The black lines are first (solid) and second (dashed) order reference lines.

step sizes 7 = T/N, where N € N is the number of time steps. This means, in particular,
that not all positive real numbers are possible step sizes, which will be important later on.
We apply both the NPI-2 and the NRNPI to compute approximations ¢, ..., ¢~ via (3.18).
For all error plots, we then compare the approximations ¢V at the final time ¢ty = T with
a reference solution ¢ (7T") of the NLDE. To compute the latter, we use the same spatial grid
and applied MATLAB’S ode45 routine with very small absolute and relative tolerances. All
errors are measured in the L?-norm, which is approximated by [jul|7: ~ SM 1 |a|? for a

periodic function u € (LQ(Q))2 with Fourier coefficients i € C2,k € Z.

3.5.2 Accuracy

First, we want to observe how the accuracy of the NRNPI depends on the step size 7. While
doing so, we pay special attention to the performance of the NRNPI for optimal step sizes
(3.45) and for resonant step sizes (3.46). This is why we choose T in such a way that for
e € {0.005,0.01,0.02}, many of the optimal and resonant step sizes are hit by 7 = T'/N for
some N € N. A suitable choice is T' = 0.336m =~ 1. Then, for ¢ = 0.02, the resonant step
sizes T = gwsz with k& € N have the form 7 = T/N for some N € N if
- E -2 _ il 4 _ @

“EkrT T 2%k 2k

is an integer, which is true if k € {1,...,8,10,12,14,15,16...}. The same holds for e = 0.01
or ¢ = 0.005, because dividing € by 2 in (3.53) simply corresponds to multiplying N by 4.
Similar considerations can be made for resonant step sizes of the form 7 = gwaz and for the

optimal step sizes (3.45).

Figure 3.1 (b) shows the L?-error of the NRNPI for ¢ = 0.01 at the final time 7" = 0.3367
in dependency of the time step size 7. By comparing the red line with the black dashed
reference line, one can see that for 7 > %52, the error of the NRNPI is indeed proportional

N (3.53)
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Figure 3.2: Left: L2-error of the NRNPI (solid) and the NPI-2 (dashed) at time T = 0.33607
in dependency of the step size 7 for three different values of . Right: L?-error of the NRNPI
at time T' = 1 in dependency of ¢ for five different step sizes 7, namely 79 = 0.02 and
fractions thereof. The filled markers correspond to e-values for which the respective step size
is optimal.

to 72 if optimal step sizes (represented by the green markers) are chosen. The error can,
however, be much larger for step sizes close to the resonant step sizes (depicted by the gray
vertical lines). For 7 < %52 (i.e. left of the leftmost green marker), only linear convergence
is observed. This error behavior agrees perfectly with the Corollaries 3.13 and 3.14. What
comes as a surprise is that not all resonant step sizes seem to be harmful, because in contrast
to the function 7 +— #25) depicted in (a), the error plot in (b) does only have a spike at
some of the resonant step sizes. This interesting effect will be discussed below.

The way how this error behavior changes for other values of ¢ is illustrated in Figure 3.2 (a).
The red line is the same as in Figure 3.1 (b), but the corresponding results for ¢ = 0.02
(blue) and e = 0.005 (yellow) are added. It can be seen that the error constant of the linear
convergence for 7 < %aQ decreases significantly with e, which again corroborates our error
analysis; cf. Corollaries 3.13 and 3.14. The dashed lines in blue, red, and yellow show the error
of the full NPI-2. As expected, all of them almost coincide, because the NPI-2 is uniformly
accurate. Comparing the solid colored lines with the dashed ones shows that for nonresonant
step sizes the NRNPI has almost exactly the same accuracy as the NPI-2, although a huge
number of terms of the latter have been omitted in the former. Only for very small step
sizes, the accuracy of the NPI-2 is better, because then the (’)(752)—errors of the NRNPI are
larger than the (9(7'2)—err0rs of the NPI-2. More precisely, this is the case if 7 < Ce? for some
constant C. In this experiment, the value C = %’T can be observed. However, we emphasize
that at the threshold 7 = Ce? the error has already been reduced to (9(54), which should be
sufficient for most applications.

Figure 3.2 (b) illustrates how the error of the NRNPI scales for several fixed step sizes,
but varying values of €. Here, the special choice of T" made before is no longer necessary,

1/2
such that we use T' = 1 instead. In the regime ¢ < (%{) , i.e. for 7 > %52, only values
of £ have been chosen for which the respective step size is one of the optimal step sizes

7 = 27e? from Eq. (3.45), ie. e = ((21164_2)#)1/2 for some k& € N. Those values of ¢ are

depicted by the filled markers. The numbers k£ = 1,2,3 (furthermost right filled markers)
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and k = 6,11,21,41, ... (other filled markers) were chosen for a suitable distribution on the
logarithmic axis. Apart from the one for k£ = 1, all markers for the same step size are nearly
at the same height, which again confirms that the error is independent of € for optimal step
sizes T > %52, in accordance with Corollary 3.14. In contrast, in the regime 7 < %82 (empty
markers), a comparison with the reference line yields that the error scales quadratically with
€, as predicted by Corollary 3.14.

All in all, the numerical experiments agree nicely with the main results of our error analysis.
However, these experiments also suggest that in practice, the performance of the NRNPI
is even better than predicted by theory. The following three aspects are interesting in this
context.

Resonant but harmless step sizes. In view of Figure 3.1, it seems that not all resonant
step sizes (3.46) do indeed cause a large error. In fact, apart from the furthermost left, all
spikes appear at multiples of w2, and there are no spikes at those multiples of ”752 or %52 that
are not a multiple of me? as well. Those step sizes had to be excluded such that the terms
of the form (3.37) for ¢ = +4 or ¢ = £6, respectively, do indeed have prefactors pointing in
different directions on the complex plane. As an example, we analyze the term in the second
line of (3.33). Here, one combination of indices leading to the value ¢ = 6 in the exponent is
J=(1,1,1), 0 = —1 and p = 2. The corresponding term that has been omitted for the flow
of the NRNPI, evaluated for a solution u = ¢°(t,) = (¢%(tn), 9% (tn)) of the transformed
Dirac equations, is

= By (4,211, [(GA (@ (8a)) 67 (tn)])” 051 (bn) 95 (1) (3.54)
with
G (67 (1)) 6% (tn)] = —iT1% ) (651 (tn))* 6% 1 (£n) 07 1 (tn)]

Noting that ¢, and ¢%; are in the range of the opposing projectors II° ; and II¢ ;, respec-
tively, and considering an expansion of I1S; w.r.t. €, it was shown in [CW19, Eq. (3.25) and
(3.26)], however, that

1(651())" %1 ()| 2 < Cer |2y [ugla (3)]]] 2 < Ce, 154 [ugZy ()]l < C

for any s € [0,T], any sufficiently regular, scalar-valued function u, and a constant C' inde-
pendent of . This yields
< Ce2.

|62 @ et < Cor 12, [(GRUS* 1) (E0)])” 5 (ta) 5 ()]

L2

¢

Thus, the terms in (3.54) are actually not only in O(72), but even in O(72¢?) and hence also
in O(73) for r > %52. Consequently, in our error analysis, we do not rely on non-accumulation
of the error terms obtained by omitting terms of the form (3.54). All other terms with ¢ = 6
or ¢ = —6 in the exponent can be analyzed in a similar way, which explains the absence of
spikes at

k
T:§m2, ke N\ {3,6,9,...}

in Figures 3.1 (b) and 3.2 (a), and which implies that the corresponding step size restriction
is actually not necessary. A corresponding analysis for ¢ = +4, however, does not cover all
terms, such that we do not have a full explanation for the other missing spikes.
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Figure 3.3: L2-error of the NRNPI (solid, circles) and the NPI-2 (dashed, diamonds) at time

T = 1 in dependency of the computing time for two different values of . Each marker

corresponds to an approximation with a different step size.

Bounded error for resonant step sizes. By definition of K(7,¢), the function 7 +—
72/K(7,¢) has a singularity at the resonant step sizes (3.46), which is illustrated in Fig-
ure 3.1 (a). Hence, Corollary 3.13 suggests that the error of the NRNPI would be unbounded
if a resonant step size was used. In contrast, Figure 3.1 (b) reveals that even at those resonant
step sizes where spikes indeed appear, the error grows only to a finite level. There are two
explanations for this. First, NRNPI is a first-order uniformly accurate method for all step
sizes T, as we have seen in the discussion after Lemma 3.9. Indeed, the furthermost left large
spikes for the different values of € in Figure 3.2 (a) could be capped by a first-order reference
line. Secondly, an alternative error bound can be derived by once more analyzing the norm
of the operators B, (4, () contained in the terms (3.37) that have been omitted from the nu-
merical flow of the full NPI-2. By the definition of B, (9, (), cf. (3.31), and of the ¢;-function,
we have

2 T . . .
B, (6,¢) = fC/o 71 (T=5)De gids/e? (eICS/E2 — 1) ds

for ¢ # 0, such that an O(re?) bound in operator norm follows. In the case ¢ = 0, the same
bound easily follows by integration by parts. Together with the local error terms from the
full NPI-2, the local error of the NRNPI can be shown to be in O(re? + 73), which in turn
can be used to derive the bound C(g? + 72) for the global error. In particular, for 7 < ¢
(including resonant 7), the error is limited by Ce?. This explains the constant height of all
spikes for a given value of &.

Accuracy for non-optimal but nonresonant step sizes. Whilst the optimal step sizes
(3.45) provide a suitable choice for 7, many other nonresonant step sizes yield equally good
results.

3.5.3 Efficiency

In the convergence analysis and the illustrations before, we have seen that for optimal step
sizes in the regime 7 > %52, the NRNPI yields equally accurate results as the NPI-2 applied
with the same step size. However, since the numerical flow of the NRNPI was obtained by
omitting many terms of the flow of the NPI-2, each time step of the former is significantly
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cheaper than of the latter. In other words, if a certain computing time is available, more
steps of the NRNPI can be conducted, yielding an improved accuracy. To show this effect,
we apply both methods for different step sizes and then evaluate the error in dependency of
the computing times required. In the regime 7 > %82, only nonresonant step sizes are used.
The results are depicted in Figure 3.3. A comparison of the constants of the two second-order
reference lines therein shows that for large step sizes, the error of the NRNPI is approximately
3/16 = 18.75% of the one of the NPI-2 for a fixed computing time. Conversely, to achieve a
given accuracy which is not extremely high (i.e. errors not smaller than %, up to a constant),
the necessary computing time of the NRNPI is around /3/16 ~ 43.3% of that of the NPI-2.
In fact, it can be checked that the numerical flow of the NRNPI contains only around 32%
of the terms of the flow of the NPI-2. The reason why this does not quite correspond to the
improvement in terms of computing time is some computational overhead which is equally
expensive for both methods, such as, e.g., the evaluation of all G*S,” )—operators or the evolution
of the kinetic part.

For 7 < 252 the error of the NRNPI is bounded by Cie?r with a constant C; according to
Corollary 3.14, whereas the error of the NPI-2 is bounded by Co7? for some Cy. Hence, the
NPI-2 is more accurate for 7 < (C1/C3)e?. This means that if 7 is sufficiently small, the full
second order of NPI-2 starts to pay off and compensates the higher costs per time step, such
that the NPI-2 outperforms the NRNPI. This is reflected by Figure 3.3: The point where
the solid line crosses the dashed line of the same color has an ordinate (= error at time 7')
of approximately %, i.e. 1078 for the blue lines (¢ = 0.01) and 1.6 - 10~7 for the red lines
(¢ = 0.02). Since ¢ is assumed to be small, however, we believe that such a high accuracy is
not required in many applications.

All in all, the NRNPI offers a significant efficiency gain as long as the desired accuracy is not
extremely high. Moreover, the substantial reduction of the number of terms facilitates the
implementation and in particular the debugging.

3.6 Proof of auxiliary lemmas

In this chapter, we present the proofs of the Lemmas 3.8, 3.9 and 3.11. In preparation thereto,

we prove an additional lemma concerning properties of the operators C:’((Tp ) in Section 3.6.1. In

several parts of the proofs, we will have to use that differences of two identically-structured
products of two or three functions can be related to differences of the individual functions by
inserting intermediate terms. In particular, we have

v —uv=u" (v—0)+ (u—u)" v, (3.55)

wow — 00w = uv (w—w) +u* (v—0)w+ (u—u)" VW 3.56)
for w, v, w,u,v,w € (LQ(R3))4.

3.6.1 Properties of the operators @gp)

Lemma 3.17. Let Assumption 5.1 hold and let R > 0. For eachu € B2(R), p € {—4,-2,0,2}
and o € {—1,1}, the operators @Sf’) (u) are linear operators with the properties

i A C
(@) HG‘(’p)(u)[”]’ ST vl for all v € L2,
@) 6P, < ol for allv e B2,
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g S Cllvllga  for all v e H*.

(iii) |G ()]
Moreover, the inequalities
w |
@ [P -EP@E|,,
i) [P - GP @)W

< Cllu— ullgz

L < Cllu =l

hold for all u,u,v € B2(R). In all cases, the constant C' does depend on R, but not on T and
€.

Proof. (i) Let u = (u_1,uy1) € B%(R) and v = (v_1,v41) € L2. Then, for three indices
J1,Jo2, js € {—1,+1}, the inequalities (3.4) and (3.6) yield

sz, < C& Nl o Nl g ol 2 < CER2 ol o

Together with the bound (3.7) for products with the potential W, the fact that ||[II%, || = 1,
and the estimate (3.24) for the norm of D.(7), the assertion follows from the definition of
)

(ii) As in (i), but using that H? is an algebra instead of inequalities (3.4) and (3.6).
(iti) As in (ii), but using the estimate (3.25) instead of (3.24) for D.().

(iv) Let u,u € B2(R). First, note that with (3.24), we have

|03 us — oD, < |[Belr) e — ], <+ Il

2

For three indices j1,7j2,73 € {—1,+1}, a decomposition of the form 3.56 together with the
inequalities (3.4) and (3.6) imply that

s wiawss = 05, s |, < BCER? JJu— e
On top of that, (3.7) yields
Wy = Wil 2 = W (uj = )] 2 < Ow [llu = a2
for j € {—1,+1}. Now the assertion follows from ||II%; || = 1 and the definition of G,

(v) Instead of (3.24), we use the estimate (3.25) to obtain

1 ~
< 5 llu =l -

Halpg(T)ua — 01D (7)1, 253

< o]

Considering that the L?-norm is bounded by HZ2-norm, the rest then follows exactly as in
(iii).

(vi) Let u,u,v € B2(R). Since here G (u) and égp)(a) are applied to the same function
v, the terms including the operator D, or the potential W vanish. For the remaining terms,
one can proceed similarly as in (iii). O
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3.6.2 Lemma 3.8: structure of the local error of the NRNPI

Proof of Lemma 3.8. Let o € {—1,+1}. The terms that have been omitted in J2(t,, ¢°(t,))
[¢°(t,)] compared to I2(t,,¢°(t,)) are exactly those of the form (3.37) with ¢ # 0, i.e.
q € Q, and with z given by (3.38). Those terms omitted in J2(t,, #°(t,))[¢(tn)] compared
to I}(tn, ¢°(t,)) are also of the form (3.37) with ¢ € Q, but with

2(t) = WGP (¢7(1))[¢°(1)] (3.57)

for some j € {—1,+1}, p € {—4,—2,0,2}. For each ¢ € Q, collecting all corresponding terms
of the form B, (6, ()IIE [2(¢n)], combining those for ¢ = —1 and for ¢ = +1 in a tuple and
extracting the factor 72 defines the functions Ey.

Considering that the time derivative of ¢5; is uniformly bounded w.r.t. & in H?, Taylor’s

theorem yields ] 5 (tnt1) — ¢;(tn)HH2 < C7 and thus also

e, (3.58)

|85 (tns1) = 5 (20)]

with the constant C' = Cp from (3.15). Further, since for all ¢t € [0, 7], ’gbj(t)’ ” < Mex

by (3.10), we have ¢°(t) = (¢°(t), 951 (t)) € B4(2Mex) C B?(2Mey). Now it follows from
Lemma 3.17 (v) that

|G (6t )6 (tnn)] = G (88t (1)

2 S C o (tny1) — ¢ (tn) gz < CT
(3.59)

for j € {—1,+1} and some constant C' which depends on My, but not on 7 and «.

Now, we first analyze the case where z is of the type (3.38). Regardless of whether u = ¢Z
oru = égp)(gbg())[gba(-)], from (3.10) and Lemma 3.17 (iii), we know that wu(¢,) € (Hz(R?’))4

with uniform bound in ¢ and n. The same holds for v(¢,) and w(t,) and thus for z(¢,). On
top of that, the estimates (3.58) and (3.59) yield

[u(tni1) — ultn)ll 2 < C7
and the same estimate for the functions v and w. Consequently, for the difference

2(tnt1) = 2(tn) = (u(tn41)) 0 () w(tnt1) — (ultn)) v(tn)w(tn),

a decomposition of the form (3.56) together with the Sobolev inequalities (3.4) and (3.6)
yields

[2(tnt1) = 2(tn)l 2 < CT.
When z is of the form (3.57), the same estimate follows from (3.59) together with the bounds
for products with the potential (3.7). Since |[TI%;|| = 1 and since B, are linear operators with
norm proportional to 72, we obtain

1Bo (8, OTIZ [2(ta)lll g2 < O, [|Bo (8, I [2(tn41)] — Bo (8, O [2(ta)] ]| 2 < O,

such that the assertion follows. O
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3.6.3 Lemma 3.9: stability of the numerical flow of the NRNPI

Proof of Lemma 3.9. (i) Let v € B%(R) and v = (v_1,v41) € L2. Since ¢“7P= is an
isometry in L%, we obtain
)

loxeneit )l < > ([|e™vo
oe{-1,41}

=+ Y (R,

ce{—1,+1}

+ |t ]|, + | 72wl

L2>'

Each addend of J1(¢,u)[v] and J2(¢,u)[v] contains an operator A, or B,. We know that
A5 (0)|| < C7 and ||B,(5,¢)|| < Cr%forallo € {~1,+1}, (,§ € Z. According to Lemma 3.17

(i), we have H@Sp) (u)[v]HL2 < C|v[lg,2 for some constant C' that depends on R, but not on
7. Using that u € B2(R) together with the estimates (3.4), (3.6) and (3.7) yields

for some constant C' that depends on R, but not on 7. The assertion then follows.

o (8 u)[v]

stl| , < orlvlls, |

2t )], < OT lolls

(ii) Let u € B2(R) and v = (v_1,v+1) € H2. Then, we have
I(@xnrNpr(t; u) —1d) [v] |2

< >

oe{-1,+1}

( eon—DE Uy

+ [ ol

2(tw)lo]]

— Vg L2

)

Since v, € (HQ(R?’))4 for o € {—1,41}, Lemma 3.2 yields

2 < O llvel e -
Moreover, we know from the proof of part (i) that

HJ;(t,u)[v]HL2 < O7||1v]lgg2 »

2t )], < C7Iollus
because [[vf|p2 < |[|v]|gz. Altogether, the assertion follows.

(ii) Let u = (u—1,u1), = (Ug1,U-1), v = (v—1,V41) € B2(R). Since in both ®xrypi1(t, u)[v]
and ®xryp1(t, @)[v], the evolution operators e*™P= act on the components v_; and v, of
the same function v, we have

l®xrnpr(tw)] = Oxpert Dl < > (|[Iotwk] = T @)
oce{—1,+1}

L2

F(t,u)[v] = 3 (¢, 0[]

)

We proceed by discussing the second term first. Both J2(t,u)[v] and J2(t,u)[v] are given by
(3.40), only with u replaced by @ in the latter case (whereas the function v in the second
argument is the same). Combing the corresponding double sums, the difference of J2(t, u)[v]
and J2(t,%)[v] consists of four double sums which we analyze individually. The first one is
given by

3
Z Z elli=o)t/<? As(j — o)IIE (u"‘_jluj? —ﬂ*_hﬁp) Vj, . (3.60)

j=—-3 JeJ
jodd #J=j
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With (3.4) and the fact that ||vj,|| 2 < [|v]|gz < R, we obtain

o~
u*jlu.YZ

o~ ) )
A decomposition of the form (3.55) together with (3.6) and |lujll 2 < [|ullgz < R for
j € {—1,+1} leads to

Combining both estimates and considering that the operators A, and II; have norm bounded
by C7 and 1, respectively, yields a bound of the form C7 ||u — @||y2 for the L?-norm of the
first double sum (3.60).

* ~% ~
U_jy Ujy — U_j, Ujy L2

<2CsR||u—allgz -

The second double sum in the difference J2(t,u)[v] — J2(t,u)[v] is

S Y B - 00 ) (@5 ) s, — (G4 P @) ) ).
j=-3 JeJ
Jodd #J=j

First using a decomposition of the form (3.55) together with estimate (3.6) and then applying
Lemma 3.17 (ii) and (iv), we find

|(GEE P @)u]) wy, — (G5 @) lal)
< Cy ( HG(Jl o— J))(u) [u] — @(jy(U—j))<ﬁ) [ﬁ]‘

—J1
+|[GUe D (@l

L2

o sl

ol = 12

< Sipu—a
— T L2

for some constant C' dependent on R. Having established this bound, estimating the L?-norm
of the second double sum works in the same way as for the first one. The 7 in the denominator
is not a problem, since it is compensated by the extra 7 we get from the bound of the norm
of B,. Analogously, one can proceed for the third double sum in the difference of J2(t,u)[v]
and J2(t,)[v].

In the fourth double sum

> Y Boli—ov0 = DI [u;,un G )l - @, 0, G @)
o 5,

the functions u or u appear in all three factors of the products. Thus, a decomposition of the
form (3.56) instead of (3.55) is required here. Apart from that, the same arguments as for the
previous sums lead to a bound of the form C7 [|u — @l||y2 for some constant C' independent
of 7 and e.

It remains to analyze the difference of J!(¢,u)[v] and J!(¢,u)[v]. Each of them consist of
two sums, cf. Eq. (3.39). Since both J1(¢,u) and J1(¢,u) are applied to the same function v,
the first sums vanish in the difference. The difference of the remaining sums can be treated
similarly as those above. O
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3.6.4 Lemma 3.11: Stability of ®f o,
Proof of Lemma 3.11. Let u € L2. For k > n the assertion is trivial because @ﬁ’éNPI = Id.

For k < n, CIJE’QNPI is given by

n1 @NRNPI(tn72,¢n_2)[ (I)NRNPI(tk7¢k)[U]H'

k
Prnpr(w) = Pnrypi(tn—1, ¢

Now, we can apply Lemma 3.9 (i) for ®xrnpi1(ts, #*), then for ®xrupr(tei1, #°T!) and so
forth. The constant of the lemma can be chosen identically each time by Assumption 3.10.
Thus, we obtain
nk n—k Ctn\" Ctn
[|efnpi)] . < @+ CTF llullge < (1+=2) Ml < e flulls

which proves the assertion. ]
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Chapter 4

Splitting methods for (transformed)
Dirac equations

4.1 Introduction

The technique of iterating Duhamel’s formula, which built the basis in constructing the
NPI-2 scheme in the previous chapter, is a very powerful tool as it allows finding explicit
approximations of the solution after a time step of given size 7. More precisely, it is possible
to construct approximations of arbitrary order in 7 that are independent of the highest
occurring frequency of the temporal oscillations, see [CW19] and [CW22] for the linear and
nonlinear Dirac equation.

However, this technique has the major disadvantage that the approximations (and thus the
numerical time integrators) become more and more complicated with increasing order in 7.
In the case of the transformed Dirac equation, the O(s?) approximation (3.29) of ¢% (¢, + s),
o € {—1,+1} is still rather clear. However, inserting this representation in the integrals of
Duhamel’s formula once again (especially in the integral containing the nonlinearity) led to
the very involved third order approximation (3.30) of ¢5(t, + 7). The enormous amount
of resulting terms was only manageable by a sophisticated notation. Implementation and
debugging of the resulting method and the limited efficiency caused by the large computa-
tional effort required for each time step remain drawbacks of this ansatz. The NRNPI scheme
brought significant improvements on those issues, but the remaining number of terms is still
not particularly small.

Splitting methods are in strong contrast to this. They divide the considered PDE into two (or
more) subproblems and propagate each of them after the other in a specific order. Solutions
of the individual subproblems are typically far easier to approximate than of the full PDE.
Ideally, one can exploit special properties of the subproblems that even allow solving each of
them exactly. The NLDE (1.2), for example, can be split into the two subproblems

oF = —gisz, Op° = —iWy* — iF (). (4.1)

Both of them can indeed be solved exactly in the case y; = 0 [Bao+16b]. For the first
subproblem, the decomposition (1.13) yields that

W (to + 1) = e P T yE (1) = (e—izte*imanj + eizteiwfng) ¥F (to) (4.2)
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for all tg > 0 and ¢ > 0. The operators e**P= and IIF can easily be applied in Fourier space.
Further, if 41 = 0, one can check that F'(1°) remains constant in time within the second
subproblem, which allows solving it exactly. If the potential W is time-independent, then the
solution is given by

Yt + 1) = TV )y (1), (43)

Here, the argument of the exponential function is a 4 x 4-matrix for each € R3, and its
exponential can easily be computed using a diagonalization [Bao+16b]. Numerical schemes
can be constructed by combining the exact flows (4.2) and (4.3), e.g., using Strang splitting.
For a given step size T, approximations "™ & 1)°(t,) to the exact solution at the discrete time
points t, = n7, n = 0,1, ..., are then computed via the procedure

PO =B ETyn YR = WPy gt — i E Ty (44

Together with space discretization by Fourier spectral methods, the resulting scheme was
named time-splitting Fourier pseudospectral method (TSFP) by the authors of [Bao+16b].
The iteration (4.4) is very simple, and each time step is very cheap to compute. If only the last
approximation ¥ at some final time Tl is of interest, then both half steps can be combined,
such that only one Fourier transform/ inverse Fourier transform is required before/after each
application of the operator e "=2 ¢

However, also spitting methods come with a major drawback, namely that they are usually not
suitable for oscillatory problems as the error constant is strongly affected by fast oscillations.
In the case of the NLDE, it was shown in [Bao+16b] that the error of the TSFP scheme is in
(9(7'2 / 54). Useful results can therefore only be expected for small step sizes 7 < 2. Further,
the authors proved that there exists a number Ky € N such that the error is in O(72/£?)
if the special step size 7 = 2me?/K is employed for some K € N with K > Kj. Despite
this being a significant improvement, the occurrence of €2 in the denominator is a serious
disadvantage. A more detailed understanding of the error behavior of the TSFP scheme can
be obtained by looking at a numerical experiment. To this purpose, we again consider the
NLDE in one space dimension as in Sections 2.4 and 3.5.1 with the same initial data and
potentials, and approximate its solution using Strang splitting with different step sizes 7.
The resulting L?-error at the final time 7 = 1 in dependency of 7 is illustrated in Figure 4.1.
For step sizes 7 > €2, a very irregular error behavior is observed. The error oscillates within
a corridor with upper bound of O(1) and lower bound of O(7), cf. the black dotted reference
line. Only for 7 < €2, second order convergence is observed. However, the error constant
indeed is proportional to e~2 as a comparison with the dashed reference lines reveals. This
seems to hold for all step sizes 7 < €2, not only for the special step sizes 7 = 2me?/K,
Ko< KeN.

For the sake of completeness, we note that the error bounds improve if no magnetic potential
is present [BCY21]. However, since this is not the case we are interested in, we refrain from
further details.

In this chapter, we will employ a different strategy of splitting the NLDE than the one briefly
discussed above. The crucial advantage of this new strategy is that the splitting error behaves
far more favorable than before, in the sense that it is less critically affected by the oscillatory
nature of solutions of the NLDE. More precisely, we will prove that the error is in

o(m{m{}})
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Figure 4.1: L?-error of the TSFP scheme at time 7' = 1 in dependency of the tiéne step size
7 for three different values of €. The dashed reference lines are of the form C'Z; for a joint
constant C.

%2) This means that the error constant only increases linearly

if ¢ decreases (no matter if 7 < €2 or 7 > £2). In numerical experiments, we will even see
that the error is in (9(72) uniformly in e if some specific resonant step sizes are avoided.
This improvement comes at the cost of more challenging subproblems than those in (4.1). In
fact, approximating the solution of each of them will again require the technique of iterating
Duhamel’s formula. It will turn out, however, that applying said technique only to the
subproblems instead of the full NLDE will bring notable improvements.

and thus in particular in O(

Overall, the method we construct and analyze in this chapter is an interplay between iterating
Duhamel’s formula and splitting methods. It makes use of the advantages of both techniques,
whereas their disadvantages only occur to a small extent.

As in the previous chapters, we only consider the case v = 0 for the nonlinearity of the
NLDE (1.2) and set y2 = 1 without loss of generality. Further, we present details only for
time-independent potentials, but later give a remark on how to incorporate time-dependent
potentials as well.

The new splitting strategy is described very simply: We divide the transformed Dirac equation
(2.8) into the two subproblems

P = FID L —IIE [ (EPE 4 o2/ GLDE) | (4.5)

oY = —iIIE [go (AL (1), oNE(8), 1) (AT + 220/ 6N (4.6)

i.e. the linear transformed Dirac equations and the PDEs containing only the nonlinear
terms. Then, in order to obtain an approximation ¢t ~ ¢% (tn41) to the solution ¢5 of
the full transformed Dirac equation at the next time step t,4+1 = t, + 7 out of the previous
iterate ¢t ~ ¢% (t,), both subproblems are combined via Strang splitting in the following
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way:

1. Solve (4.6) (nonlinearity) for ¢ € [t,,t, + 5] with initial data ¢7.
Denote the result by ¢%.

2. Solve (4.5) (transformed LDE) for ¢ € [t,, t,41] with initial data ¢$.
Denote the result by ¢2.

3. Solve (4.6) (nonlinearity) for ¢ € [t, + Z,tn41] with initial data ¢$.
Denote the result by ¢ =: ¢1+.

(4.7)

Note that the specification of the precise time interval is necessary as the PDEs (4.5) and (4.6)
are not autonomous. The role of both subproblems in Strang splitting could, of course, also
be interchanged, see Remark 4.15 for a motivation of our choice. The improved smoothness
of the transformed Dirac equation (which was discussed in Sections 2.2.2 and 3.2.3) gives
hope for a lower splitting error. However, the presence of the operator D, and the projectors
[T+ makes solving the subproblems non-trivial.

We will proceed as follows in this chapter. First, we will translate the splitting ansatz (4.5)
- (4.6) into the original variables ¥ in Section 4.2. On the one hand, this will give an
interesting new perspective on the splitting ansatz. On the other hand, we will also conduct
the analysis of the splitting error in the original variables in Section 4.3. For this analysis,
we will still assume that the subproblems can be solved exactly, but this is not the case
in practice. Instead, we will discuss numerical methods to approximate their solutions in
sections 4.4.1 and 4.4.2. This will allow us to present our proposed time integrator for the
NLDE in Section 4.4.3. We then conduct a full error analysis in Section 4.5 and finally
illustrate our estimates in numerical experiments in Section 4.6.

4.2 Splitting ansatz in original variables

Recall that the transformed Dirac equation was derived by introducing the new variables
PeL(t) = eiit/‘€2112E [4)%(t)]. Thus, by definition, ¢% (¢) is in the range of IT= for all ¢ > 0. The
original variable ¢° can always be reconstructed by v°(t) = e~/ e o5 (t) + elt/e® ge (t).

Now, let ¢¥PE and ¢Y" be the solution of the subproblems (4.5) or (4.6), respectively. By

the structure of both PDEs, it is obvious that if the initial data is in the range of I1¥, then

the same holds for the solutions ¢YPF and ¢ of the subproblems at any later time. Thus,

if we define the new variables ¥/*P* and ¥ by
—i 2 i 2 —i 2 i 2
YEPB (1) = e PR (1) 4 o= DB (1), N (1) = e N (1) + o7 N (1),
then it is always possible to reconstruct ¢P¥ and ¢} by
it /e it /2
SR () = HEE [WPE@)] o) = B [N (e)]

With ¢*PE and 4NV it is possible to write the subproblems (4.5) and (4.6) more conveniently
as

at¢iDE _ q:ie:l:it/aZ,DEHg: [wLDE] . ieiit/aQHEi {Wq/}LDE} :
0o} = —ie IS [P
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which in turn can be used to derive the PDEs

at'QDLDE — _6% (H;r _ Hg_) [d}LDE] _ IDE <H;- _ H;) [T,Z)LDE] _ lwwLDE’
. (4.8)
Nt = =5 (I — 10 ) [N — P (N

Since the differential operator — 7 from the NLDE (1.2) can be decomposed as
i 1 i
- + -\ _ + -\ _; + -
_527;—1(D€+82Id) (HE —HE) f—€—2<1'[5 —HE) —iD, (HE —HE),

cf. (1.13) and (1.17), the first PDE is, unsurprisingly, the linear Dirac equation in the
original variables. However, for the further analysis, it will be more convenient to distinguish
the unbounded part (w.r.t. ¢)

P. = —512 (-7

of the operator —%7: from the bounded part —iD. (II —II7). Instead, we combine the
latter part with the potential W by introducing the linear operator

€

L. := —iD, (Hj - H—) W (4.9)
The PDEs from (4.8) can then be written as

at¢LDE —P wLDE +L Q,Z)LDE
8”][)NL _ PszL _ iF(?ﬁNL)TZJNL.

Thus, in the second PDE, the nonlinearity appears together with the dominating part of the
operator — ;7. Using the notation introduced above, the full NLDE (1.2) can be written as

O = Pap® + Lp® — iF (YP°)y°. (4.10)

We can now tell how the PDEs (4.5) and (4.6) of both subproblems look like in the original
variables ¥"PP and N, However, since the definition of those variables explicitly depends
on time, one has to take special care to appropriately choose the initial data in each substep.
Consider, e.g., the transition from the first to the second step in (4.7). Since ¢% is the
solution of the first substep at time ¢, + 7, the corresponding value in the variable AL

1/}@ — efi(thr%)/EQ(bi) + ei(tn+g)/52¢9

In the second substep in (4.7), however, ¢ is taken as initial data at time t,,. The corre-
sponding value in the variable ¥"P® thus is

e I/ GD 4 /G0 = TN [P0) + T[] = Py ®, (4.11)
where we used that
otPe — o—it/e? (I -112) _ eqt/ﬁﬂj + eit/52H€—

for all ¢ € R due to the special properties of the projectors (1.14). Since the function in (4.11)
is the solution of the initial value problem

RO = —pyRO YRO(0) = y@
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after a time interval of length 7, this means that the transition of the data between the
substeps in the variables “PF and 4™ can be interpreted as "rewinding" the dominating
part of the operator 7, or, in other words, "Rewinding the dominating Oscillations (RO)".
The same considerations hold for the transition between the second and third substep in
(4.7).

All in all, the splitting given by (4.5) - (4.7) can equivalently be interpreted as splitting the
full NLDE (4.10) into the three subproblems

8t1/}LDE _ PngDE + ﬁEwLDEa
RO = —PyRO, (4.12)
8{[[)NL — 7)€,¢}NL _ iF(Q]Z)NLMﬁNL

and combining their solutions according to the scheme

WNL WRO \yLDE QRO QN

Pt D p® 2 @ Dy @ 2 0 2 0 oyt 201 (4.13)
where WEPE WRO and WXV are the exact flows of the three (autonomous) subproblems in
(4.12), respectively, over a time interval of length ¢. The value ¥® has not been introduced
so far on purpose, since we will divide the full LDE-step into two substeps for the analysis of
the splitting error later. Combining all right-hand sides in (4.12) yields the right-hand side
of the full NLDE (4.10) again. Thus, (4.12) can be considered as a special splitting of the
NLDE into three terms, and (4.13) is the corresponding Strang splitting scheme.

Although the motivation for this kind of splitting originates from the transformed Dirac
equation, we will work in the original variables for the rest of this chapter. The reasons for
this are, on the one hand, the more compact form of the PDEs from the LDE- and the NL-
subproblem and, on the other hand, the autonomy of all subproblems. Both make notation
considerably easier. The fact that we have to consider a three-term instead of a two-term
splitting does not cause any significant problems, since the solution of the RO-subproblem is
trivial.

4.3 Local splitting error

Before we discuss how the solutions of all three subproblems in (4.12) can be approximated,
we analyze the local splitting error of the approach (4.13) under the assumption that each
subproblem could be solved exactly. To this purpose, let uy = ¥°(¢,) be the exact solution
of the full NLDE at some time ¢,. We analyze the difference between ¥, (up) and u® in
dependency of 7 and &, where ¥, is the exact flow of the NLDE over a time interval of length
t and u® is defined according to the scheme

\IlgL \III}O \I]I;_DE \III;;_DE \1,13_0 \Ing
up — u® S u® 5 u® s u® 2 y® 20, (4.14)

In contrast to (4.13), we used that the exact flow of the LDE-subproblem fulfills WLPE —
PLDE o YLDE 414 introduced the intermediate value u®.
2 2

Of course, establishing an error bound requires some assumptions. First of all, for the initial
data ug and for all € € (0, 1), the exact solution of the NLDE must exist on the whole time
interval [0, 7]. Furthermore, the solution has to be sufficiently regular in space, with uniform
norm bounds in €. Both properties are non-trivial considering the nonlinear nature of the
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PDE, but for sufficiently small time intervals, these properties are guaranteed by Theorem 2.2
under suitable assumptions on the potential W and on ug. But also the NL-subproblem in
(4.12) is, of course, nonlinear, and the same properties as for the full NLDE are required
for its solutions on time intervals of length 7. Here, we additionally have to keep in mind
that the NL-subproblem appears twice in (4.14), with initial data vy = ug or with vy = u®.
Furthermore, we will divide the full time step into two half steps for the analysis at some
point. This is why the initial data vy = \Iflgo o \IJI;DE (u (%)), where u(t) = W(up), will
be relevant as well. For all those choices of vy and all ¢ € (0,1), we have to assume that
the solution of the NL-subproblem exists on the time interval [0, ], is sufficiently smooth
in space, and remains uniformly bounded w.r.t. ¢ and t. Again, this is not a far-fetched
assumption. Instead, one could show with a standard fixed point argument that this is true
at least for all 7 < 7y for some number 75 > 0 independent of £. All precise requirements are
listed in the following.

Assumption 4.1. For some m > 2, let
(A) V,A; € H™O(RY), j =1,2,3,
(B) uo € (H™O(R?))".

Further, let Ty > 0 such that the NLDE with initial data uy admits a solution w on [0,T1] for

all € € (0,1) that remains uniformly bounded in (H%+6(R3))4 w.r.t. € and t. For this value
of T1, assume that

(C) T S Tl;
(D) for each € € (0,1) and for all the initial data

vy € {uo, u®, \ll%O o \I’I;DE <u (;))} , (4.15)

the NL-subproblem admits a solution on the time interval [0, 5] that is uniformly bounded
in H™*6 w.r.t. € and t.

Those assumptions will allow us to show the following bound for the local splitting error in
H'™ whose proof is the main objective of this section.

Lemma 4.2. Let Assumption /.1 hold. Further, let u® be the result after one splitting step
according to the scheme (4.14). Then, the local error estimate

3
1V (ug) — “©HH% < C'min {TE, max {7’28,7'3}}

holds for some constant C' independent of T and €.

A short discussion of the right-hand side of this error bound will follow in Subsection 4.3.5.
Here, we focus on its proof, which we divide into several steps by establishing multiple pre-
liminary lemmas. First, we will derive expansions of the flow of each subproblem and of the
exact solution up to terms of order O(7?) uniformly in €, cf. Subsection 4.3.1. Those of the
subproblems are then combined to expansions of the flows of Lie splitting steps in Subsec-
tion 4.3.2. This is fundamental since the Strang splitting step (4.14) can be divided into two
consecutive Lie splitting steps with reversed order of the subproblems. In Subsection 4.3.3,
we will then analyze the error in the Lie splitting steps by comparing the expansions of
their flows to those of the exact solution. Further, we will combine the results to find that
the error in the Strang splitting step only involves few remainder terms (apart from O(73)
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terms). Finally, in Subsection 4.3.4, we will use the special structure of the projectors to show
that all those remainders combined fulfill the desired bound from Lemma 4.2. After having
established the error bound, we then also observe the local splitting error in a numerical
experiment in Subsection 4.3.5 and compare it with the analytical estimate.

A major challenge in the analysis of the splitting error will be to keep track of the spatial
regularity of all terms involved (especially of the remainder terms). To facilitate this, we
introduce the following notation: For a C*-valued time- and space-dependent function f. =
fe(t, x), we write

fe(t, ) = O™(t7e)

for some m € Ny and p,q € Z if f.(t,-) € (Hm(R3))4 with || f(¢, )|l gm < CtPe? for some
constant C' independent of ¢ and .

4.3.1 Step 1: Expansions of the flows of the NLDE and all subproblems

We first discuss the flows of the subproblems from (4.12) and then the flow of the full NLDE.
Whenever the operator 7 is involved in a problem (that is, in the LDE-subproblem and in the
full NLDE), Assumption 4.1 (B) will be partlcularly important since the additional regularity
of the solution (H m+6 for an error bound in H m) is required here in order to obtain uniform
bounds in €. In contrast to that, in the NL- and the RO-subproblem, less strict assumptions
than Assumption 4.1 (B) would be sufficient. In fact, when discussing those two subproblems,
we will always work with initial data in H™ for a generic value m > 2, while having in mind
that m = m + 6 would be one admissible value.

RO-subproblem

The PDE of the RO-subproblem in (4.12) was chosen in such a way that it corresponds to
the flow \IJ?O = ¢~ tP=_ In particular, the flow is known and we do not require an expansion.
Instead, we only discuss an important property.

Lemma 4.3. For any m > 0 and any t € R, the flow WO = 7%= of the RO-subproblem in
(4.12) is an isometry from and to (Hm(R3))4.

Proof. Application of the operator e~P= corresponds to multiplication of the Fourier trans-
form at ¢ € R? with the matrix exp ( (IF (&) — H_(f))), where

£

3
mEE) = 5 14i7?<5>], Te€) =Y 0yt + 6
y1+e2fef j=1

Since aj, j = 1,2,3, and 3 are Hermitian, the same holds for the matrices 7z(€), IIZ(€)
and IIF () — 17 (€). The assertion then follows with a unitary diagonalization of I (&) —

£

112 (€). N

LDE-subproblem

Next, we tackle the LDE-subproblem in (4.12). To express its expansions in a compact form,
we define the auxiliary operator

TEPE O (04, (HA(R)') — (L2®%)",  TPPR) = /Otespaﬁaespfv(s)ds (4.16)
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for any ¢ > 0. We will usually just write TFPE(v(s)) instead of TFPE (s +— v(s)) to increase

readability. Further, for a time-independent function vy € (H 2(R3))4, we write TFPE(vg)
meaning that YFPF is applied to the constant function v(s) = vg, s € [0,1].

Having introduced the auxiliary operator above, we can now discuss different expansions of
WIPE This will be part (ii) of the following lemma. As a preparation, however, we first have
to consider some technical properties of TP in part (i).

Lemma 4.4. Let Ass. /.1 (A) hold.

(i) For anyt >0, YFPE is a well-defined, linear operator. Further, for any 0 < m < m+4,
we have

iR )], <€t sup lo@)lgnie. v (o (H®)Y) (47)

H s€[0,t]

and for any 0 < m < m + 2
frivs (s17%00)
for a constant C' independent of t, € and v.

(ii) Let vy € (HT?L+6(R3))4. Then, for the flow UIPY of the LDE-subproblem in (4.12), we

| <Ol ol ve ETHERY (1)

have
DB (10) = etPeyg + #RLDE, (4.19)
‘IJtLDE (vg) = etpfvo + ¢tPe T%DE(UO) + tQRIQJDE, (4.20)
‘IthDE(UO) — ePeyy + etPgT%DE(UO) + etPET%DE (TI;DE(UO)) + t3RI§DE (4.21)

o ; 4 . .
fort >0, where RYPE € (H™0721(R3))™ are remainders with ‘R?DEH ~ <,
Hm+6—2j

7 =1,2,3, for some constant C' that depends on vy, but is independent of t and .

Proof. (i) It is clear that the operator £, defined in (4.9) is linear and is uniformly bounded
w.r.t. € from H™2 to H™ for any 0 < m < m + 4 since the same holds for D and since W
is in H™*6 by assumption. Together with the properties of ' from Lemma 4.3, it then
follows from the definition that TP is well-defined on C ([0, t], (H? (R3))4>, that it is linear
and that the first estimate from the assertion holds. The second estimate follows by applying
the first estimate twice.

(ii) Let v(s) = WLPE(vy), s € [0,], be the solution of the LDE-subproblem with initial data
vg € (H™16 (R3))4. The regularity of the potentials guarantees that the solution v remains

uniformly bounded w.r.t. € in (H7?L+6(R3))4 for all s € [0,¢] [BMP98, Lemma 2.2]. Further,
Duhamel’s formula yields

t
\II%DE(UO) =e'Peug 4 €= / efsps»cav(s) ds. (4.22)
0

The first equation (4.19) thus follows directly from the properties of £. and e'P=. Iterating
Duhamel’s formula once again in (4.22) and using the linearity of all operators involved yields

t t s
WEPE (yg) = efPeyg 4 ! / e P L.ePeuy ds + oFe / e P L 5" / e P Lov(r) drds,
0 0 0
which immediately implies (4.20). Finally, (4.21) follows when employing (4.19) with ¢ = r

to replace u(r) by €% [vg] + rRIYPE in the double integral and using the properties of £. and
eP= once more. O
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NL-subproblem

Analyzing the NL-subproblem in (4.12) uses similar techniques. There are, however, some
difficulties arising from the nonlinearity. To begin with, for any ¢ > 0 we define the two
different auxiliary operators

YNL L (H2RI) — (H2R®)Y, YN (v) = —i /0 =P [F (ePv) ePe0] ds,  (4.23)

and
~NL 2(m3Y)4 234 234
TNV (HAR) x C([0,4), (HXR®)") — (H*(R?)",
. ¢
TrE (v, w) = —i/ e P (espfv,espgw(s)) ds (4.24)
0
with
T(v,w) = |[v]* w + v*wv + w*vv = |[v|* w + 2Re(v w)v. (4.25)

Only in the second argument of TFL, we allow for time-dependent functions. Similar to
before, we write YN (v, w(s)) instead of TN (v, s — w(s)), and YN (v, wg) for the constant
function w(s) = wo, s € [0, ¢].

As for the LDE-subproblem, the main purpose of the following lemma is to analyze different
expansions of WN" based on TEL and YN which is the content of part (iv). However, some
technical aspects of TN and YN have to be discussed first.

Lemma 4.5. (i) Foranyt >0, YN and "ftNL are well-defined. Further, "Iv"tNL is real-linear
in the second component and for any m > 2, the estimates

¥ @), < Gt ol ve (Hm®)", (4.26)
[T @, w()| ., < Ctlvllm s lw(s)lgm, v e (H &) (4.27)
e we C([0,4, (H"(R)")

hold for a constant C' independent of t, €, v and w.

(i) For any t > 0 and m > 2, the following estimates concerning O™(t) and O™ (t?)
perturbations of the argument of TNV hold:

TN (0 + tw) = TN (0) + TN (v, tw) + O™ (t?’) , (4.28)
T (0 + tw) = TN (v) + O™ (), (4.29)
T (0 + ) = T () + O™ (#) (4.30)

for all v,w € (H™(R3))*.

(iii) For any t > 0 and m > 2, the following estimates concerning O™(t) and O™ (t?)
perturbations in the first and second argument of YNV, respectively, hold:

TN (v + b2, tw) = TR (v, tw) + O™ (), (4.31)
TN (0, w + t22) = TNE (v, w) + O™ (t3> (4.32)

for all v,w, z € (Hm(R3))4.
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(iv) Let vy € (I—Im(R?)))4 for some m > 2 and T > 0. Assume that for all e € (0,1),
the solution v = v(t) of the NL-subproblem from (4.12) exists on the interval [0,T]
and remains uniformly bounded in H™ w.r.t. € and t. Then, for the flow YN" of the
NL-subproblem, we have

TNE (vg) = eP=vg 4 RN (4.33)
TN (vg) = eP=vg 4 eP= TN (vg) + t*RYT (4.34)
UNE (1) = etPevg + P TNE (1) 4 &P TNE (vo, TSNL(UO)) + 3R (4.35)

for any 0 < t < T and some remainders R?IL € (Hm(R3))4 with HR?ILHHM < C,
7 =1,2,3, for a constant C that depends on vy, but is independent of t and ¢.
Note that the assumptions of part (iv) correspond to Assumption 4.1 (D) if we choose m =

m+ 6, T =7 and vy from (4.15).

Proof. (i) Since "= is an isometry in H? for all s € R by Lemma 4.3 and since H? is an
algebra, we do indeed have Y (v) € (H2(R3))4 for all v € (H2(R3))4 and YN (v, w) €
(HQ(}R?’))4 for all v € (HQ(R3))4, weC ([O,t], (HQ(R3))4), such that both operators are

well-defined. The same arguments yield the norm bound (4.26) for YNV, Further, the map
T is real-linear in the second argument by definition. The same thus also holds for TNV,
Finally, since H"" is an algebra for m > 2, we have

1T, w(s) | < Cllollzpm [w($)ll g, 5 € [0,1]

for some constant C. The norm bound (4.27) for TN thus follows from the definition of TNU
and Lemma 4.3.

(ii) Let v,w € (Hm(R3))4 for some m > 2 and ¢ > 0. Then, we have
F(U+tw)(v + tw) = (v + tw)* (v + tw) (v + tw)
= o5+t (0”@ + 7" @0 + @) + O™ ()
= F(@)p + T(3, t@) + O™ (#?) (4.36)

since H™ is an algebra for m > 2. This in particular holds for ¥ = e*%ev and @ = e*P=w
for some v, w € (Hm(R3))4 and s € [0,#]. Together with the definition of TN and TNL and
with Lemma 4.3, this yields the first estimate (4.28). The second and third estimate follow
in the same way when the representations

F(@ + t0)(® + td) = F(®)7 + O™ (¢) (4.37)
or

F(@ +£29)(0 + £20) = F(@)5 + 0™ ()
are used instead of (4.36).

(iii) For the first estimate, one can use the fact that

T(v+ tz,tw) = T(v, tw) + O™ ()
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(note that here, the second argument of T itself is already of O™(t)). Further, the real-
linearity of T" in the second argument yields

T(v,w +t22) = T(v,w) + t*T(v, 2) = T(v,w) + O™ (tz) :

Both estimates can then be shown with similar strategies as in (ii).

(iv) Duhamel’s formula for the solution v of the NL-subproblem yields
t
v(t) = U (vg) = ey — ietpf/ e P [F (v(s)) v(s)] ds, t €[0,T]. (4.38)
0

Since H™ is an algebra for m > 2, (4.33) directly follows.

To obtain (4.34), we would like to use (4.33) with ¢ = s to replace v(s) inside the integral in
(4.38). Similar to (4.37), note that for an O(s) approximation of F(v(s))v(s), one can drop
components in v(s) that are of O(s). More precisely, we have

F(v(s)v(s) = F (espsvo) ePevg = O™(5s)

for all s > 0. Together with (4.38) and Lemma 4.3, this yields (4.34).

For the expansion (4.35) of N, we replace v(s) in the integral of (4.38) by the representation
(4.34) obtained just before, which yields

\IJ%\IL (vg) = ePeyy + e!Pe T%\IL (vo + TSNL(UO) + tQG_SPSRIgDE> .

First using (4.30) and then (4.28) (note YY(vg) = O™(s) according to (4.26)) implies the
final representation (4.35). O

Full NLDE

Similar to the LDE-subproblem and the NL-subproblem, we now derive different expansions
of solutions of the full NLDE (4.10). Having defined the operators YFPE YN and TN
before, those expansions can be stated relatively easy.

For the fixed initial data uy = ¥°(¢,) from this section, we assumed that the solution of the
NLDE remains uniformly bounded in H™+6 for all e € (0,1) and ¢ € [0,7}] in Assumption 4.1.
However, we will divide the Strang splitting step into two half steps later. In particular, we
also have to consider expansions of the solution of the NLDE with initial data Wz (uo). If
7 < Ty, then Assumption 4.1 implies that no matter if vg = ug or vog = ¥z (ug), we can be

3
sure that Wy(vo) is in H™*0 for all t < 7 and that ||¥:(vo)

HH;% is uniformly bounded w.r.t. ¢
and €. Keeping that in mind helps to understand the setting of the next lemma.

Lemma 4.6. Let Ass. 4.1 (A)-(C) hold. Further, let t < 7 arbitrary and let vo = ug or
vo = ¥z (ug). Then, we have
Wy (vg) = ePevg 4 tRYPE, (4.39)
Wy (vo) = v + eP=YPPE(vg) + e P= T} (vg) + *RYPE, (4.40)
Wy (v9) = vy + PN EPE (wg) + P TPPE (TLPE (wg) ) + = TEPE (T (u) )
P w0) + PN (w0, T (00)) + P (v, T(w0) )
+ t3RYEPE (4.41)
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where R?ILDE € (H7?L+6_27(R3))4 are remainders with HR?ILDEHH;L%?% <C,j=12,3, for

some constant C' that depends on vy, but is independent of t and €.

Proof. Let v(s) = ¥5(vo), s € [0,¢], be the solution of the NLDE (4.10) with initial data wvo.

According to the discussion above, we have v(s) € (H™6(R3)) for all s € [0, ] with uniform
norm bound in € and s. Duhamel’s formula yields

t t
Uy (vg) = ey 4 et”= / e P L v(s)ds — ietP* / e 5P [F(v(s))v(s)] ds. (4.42)
0 0

Combining the arguments of the proof of Lemma 4.4 (ii) (LDE-subproblem) and Lemma 4.5
(iv) (NL-subproblem) yields the first representation (4.39). Inserting (4.39) for ¢ = s into
(4.42) once again and treating the remainder RY“PE as in the proofs just mentioned also
yields the second representation (4.40). Finally, we insert (4.40) for ¢t = s into (4.42). Using
the linearity of L., we obtain

Wy (vo) = v + &P AEPE (wg) + PN EPE (TEPE (vy) )
+ etPET%DE (frlS\IL(,UO)) + tP TtLDE (s2e—ngR12\ILDE)

+ etPe T};IL (vo + T&DE(UO) + TSNL(UO) + sze*SPERgLDE) )

Recall that RYMPE is uniformly bounded in (H 7?”2(]1%3))4. Thus, using the norm bound
(4.17) for TEPE and the fact that O™2(¢2)-contributions in the argument of WM lead to
O™+ 2(¢3) remainders according to (4.30), we find

i (vo) = ePug + P TP (vg) + P TPPP (TLP(ug) ) + P TEPE (T2 (o) )
+ e!Per L (UO + TEPE () + TSNL(UO)) +om (t?’) .
Finally, (4.28) allows separating the three addends in the argument of TNV, Since TLPE(vg) €

(Ha+4)4 and T (vg) € (H’?’+6)4, this comes at the cost of an additional O™+4 (t3)-remainder.
All in all, the last claim (4.41) follows. O

4.3.2 Step 2: Expansions of Lie splitting steps

The Strang splitting step described in (4.14) can be interpreted as two consecutive Lie split-
ting steps in reversed order. More precisely,

YL YRO YLDE YLDE YRO YL
up — u® 5 u® 5 u® and u® — u® 5 u® 5 u® (4.43)

with 7 = 7. In the local error analysis in Section 4.3.3, we will consider the error of each
Lie splitting step separately, i.e. we will compare u® to ¥~(ug) and u® to U~(u®), and only
afterward combine both errors in a suitable way. This is why we now want to combine the
expansions of the flows of the subproblems from Section 4.3.1 to derive expansions of the Lie
splitting steps up to terms of order O(73) = O(73).

In the following resulting lemmas, we introduce colors that help to keep track of the origin
of all resulting terms when several expansions are combined.
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Lemma 4.7. Let Assumption /.1 hold. Then, we have

u® = e Peug + e TTNL(UO) + eT/PngL (uo, TL}IL(“OD

+ G?PE T%DE(U(O + 6?7?5 T%DE (TgL(’itoD + 6?7?5 T%DE <T£DE(uU)> + T3R%ie’

where R € (H%(R3))4 with HRIfie

s < C for some constant C' independent of T and €.

Proof. By Assumption 4.1 (D), we know that the solution of the NL-subproblem with initial
data uo remains uniformly bounded in H™%6 over the interval [0,7] = [0, Z]. In particular,

u® e (H 7%Jrﬁ(]R?’))ll with norm bounded independently of € and 7. Further, Lemma 4.3 then
yields the same for u®. Thus, the third order expansion (4.21) of W}'PE gives

u® = ¢ Peq®@ 4 7P T%DE(U@) +erPe T»I;DE (T%DE(U,@)> + FIRLPE,
Next, we insert u® = \Ifgo(u@) = e ™P=4® to obtain
u® = u® 4 7P T%DE (cf;pg'u®> terP Y%DE <Tf;DE (07;735u@>> + FIRIPE, (4.44)

Finally, we replace u® = \IlgL(uo) in each addend by the appropriate representation from

Lemma 4.5 (iv) which only leads to on (73) remainders. In the first term, we can replace
u® by its expansions (4.35) up to third order terms, yielding the purple terms in the claim
and the additional O™+6 (73) remainder 73RYL (which of course also is in (H TA”(R?’))AL). In
the second term, we replace u® by its expansion (4.34) up to second order terms and use the
linearity of \I/%DE to separate all addends. We obtain

o™ P: T%DE (O—ﬂ?su@) _ oP: T%DE (vo) + o™ P= T%DE <T§L<UO)> + 72o7Pe T%DE <C—T776R§TL) .

The first two terms are exactly the green terms in the representation from the claim. Ad-
ditionally, the uniform H™*6-bound of RY" together with Lemma 4.3 and the norm bound
(4.26) of T{;DE imply that the last term overall yields another o+ (73) remainder. Finally,
in the blue term in (4.44), we use the expansion (4.33) up to first order terms. Together with
the linearity of TP we obtain

o7 PeYLDE (TEDE (e’ﬁjﬁu@)) — o7PeyLDE (TL,DE (’Uo)) + o7PeyLDE (TLADE (;ef?PERII\IL» '

The first term is exactly the blue term in the claim, whereas the second term corresponds to
another O™*2(73) remainder due to (4.18). Overall, the assertion follows. O

When establishing a similar result for the second Lie splitting step in (4.43), we assume for

the moment that we would start with the exact solution at time 7 = 7 (cf. Eq. (4.46) and
the discussion thereafter). That means we replace u® by vg = u(%), where u(t) = ¥y(up),

and define v®,v® v® by the scheme
\I/,IiDE \I/RO \I/NL

T ; B B
u(2>zvo T @ Ty 0@ T 9,

. ® _ yNL (yRO (LDE (,, (T
In particular, we have v® = W3 (\I’l (‘I’z (U(g))))

2 2
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Lemma 4.8. Let Assumption 4.1 hold. Then we have

v® = Peyy + e T%DE(I'O) +e P T%DE (T%DE(i,'0)>

+ JRTEL(UO) tePe T; g (’Uo-/ T%DE(UO» e Pe YgL (“»‘0: T.]:L(’UO)) + 7Ry

where RY® € (H™(R?))* with ||RYe

un < C for some constant C' independent of T and €.

Proof. We proceed similarly as in the proof of Lemma 4.7. By Assumption 4.1 (D), we know
that the solution of the NL-subproblem with initial data v@ = \ILE”O o \ILITiDE (u (%)) remains
uniformly bounded on the time interval [0, 7] = [0, 5]. Thus, we can use the expansion (4.35)
of the flow of the NL-subproblem to represent v® based on v®. Afterward, we can express
v® via v® by v@ = e 7P=y®. We obtain

v® =@ e T;IL(L'@) + e T%”“ (1}®, TTL(@@D + PR

=v® 4o TRE (e*;ﬂ ’U®> +e7P- YL (e*;PE’U@, T (e*;ﬂv@)) +PRYE. (4.45)

Considering that v® € (H 7?“rfj(]R?’))ll (cf. the short discussion at the beginning of the proof
of Lemma 4.4 (ii)), the purple terms in the claim follow from the representation (4.21) for
v®. Further, for the second term in (4.45), we obtain with the representation (4.20) of v®
that

e TgL (0777}51/'@> =" T%L ('vo + T%Dh('vo) + 7’20777%73]2&]1)

with a remainder REPF that is uniformly bounded in H m+2 wrt. £ and 7. We know from
(4.30) that we can drop the RE¥PE-part in the argument of T}NL at the price of an O™2(73)-
remainder. Using (4.17) and (4.28) afterward to separate the remaining arguments of T»TNL

yields the green terms in the claim together with an O™+4 (73)-remainder.

Finally, inserting the representation (4.19) for v® in both arguments of the blue term in
(4.45) yields

AL (o=7Pey® YN (o=7Pey®)) = AL (1 4+ Fo T PeRLDE TNL (4o 4 7o TPeRLDEY)
T ) S T 1 ) S 1

with remainder REPF that is uniformly bounded in H™4 wrt. e and 7. According to
(4.29), dropping the RYPE-part in the argument of TY leads to an om+ (7%)-remainder
in the second argument of TgL, which in turn leads to an O™+4 (7‘3)—remainder in the end
due to (4.32). Further, (4.31) implies that omitting the RYPE-part in the first argument of

T,TNL leads to another O™+4 (73)-remainder. Overall, this also explains the blue term in the
claim. 0

4.3.3 Step 3: Combining the Lie splitting steps

In this subsection, we show how the error of the Strang splitting step (4.14) can be related
to the errors of two Lie splitting steps. The latter ones are then analyzed by comparing the
expansions of the Lie splitting steps from the previous subsection to the expansion of the
exact solution from Subsection 4.3.1.
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Lemma 4.9. Let Assumption /.1 hold. Further, let u® be the result after one splitting step
according to the scheme (4.14). Then, for the local error, we have

o (ug) — u® = e3P RY(L:) + 7T RE(Le) + TR
with
RE(L:) = TEPE (TN (e2P2up) ) + TRV (e2P=up, TEPP (e5P<ug) — TEPP (eP<uy) )

T

R2(L:) = e3P TN (g, TEPP(ug)) + e3P TE (120 (ug) — T3 ()

and with a remainder R"¢ € (H’?"L(IR?’))4 with HRIC’C
dent of T and €.

e < C for some constant C indepen-

Proof. Let u(s) = Us(up), s € [0,7] be the exact solution of the NLDE on the time interval
[0, 7] with initial data ug. The objective then is to analyze the difference u(7) —u®. We will
start by dividing this difference into two parts. For that purpose, we express u® and u(7) as

u® = \I/%IL (\Il%‘)”o (W%DE (u@))> and u(7) = ¥z (u(3)). This allows the decomposition

u(r) —u® =Wz (u(3)) - O (WO (WEPP (u(3))))
+ WX (W50 (WEPE (u (3)))) — 0BT (WEO (WP (u®))) (4.46)

The difference in the first line corresponds to the local error made only in the second half of the
Strang splitting step (4.14), or, in other words, of the second Lie splitting step. Those errors
are responsible for the remainders contained in RL(L.). In the second line, the difference of
the arguments themselves is the local error made only in the first half of the Strang splitting
step (4.14), i.e., in the first Lie splitting step. However, both arguments are first inserted
in the flows of the subproblems from the second half of the splitting step, and it has to be
analyzed how this affects the error. This will lead to the remainders in R2(L.).

The proof can thus be divided into two parts accordingly.

Part 1: Error of the second Lie splitting step. We use the expansions up to O(T?’)—terms

for the exact solution and the Lie splitting step from Lemma 4.6 (applied with vg = u(3)
T

and t = 7 = 3) and Lemma 4.8, respectively. Comparing them yields
W (u(3) - W (W50 (WP (u ()

T

= e3P X (0 (u (3)) ) + e3P XY (u(3) X0 (u(3)) )
— eI (u (3), TEPP (u (5))) + O™ (7%). (4.47)

In the next step, u (%) can be related to u(0) = ug. To this end, we use the easiest represen-

tation of the exact solution given by (4.39), i.e. u (%) = e2"=ug + ZRYPE with remainder
RAEDE yniformly bounded in (H™*4 (R3))4. We will now see that this representation is suffi-

cient since the RY*PE-term can be considered as an (’)TEH(T)—perturbation of the arguments
which can be omitted at the cost of O™(73) remainders: According to (4.29), O™ 4(r)-

perturbations in the arguments of TN only induce an Om+i (72) remainder. Additionally
inserting the result in YT%PF | using its linearity and the norm bound (4.17) leads to an
2

O™+2(73) remainder. Overall, we have

T%DE (TSNL (u(2)) ) _ T%DE (TSNL (eg%uO) ) 1+ omt2 (7_3) '
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Similar arguments involving (4.17), (4.31) and (4.32) allow replacing « (%) by e2”eug in the
other terms in (4.47) at the cost of additional O"™"2(73) remainders, i.e.,
TP (4 (). TP (u (5)) = e8P TR0, T8 (6570) ) £ 077(),
eg’PgTI%IL (u (2) 7T%DE (u (%)D _ e%PsTI%TL (egpguO’ TL%DE (egpsu(]» + Om+2 (73) _

Combining all of the above and using the real-linearity of TN in the second argument, one
2
obtains

Wy (u(3)) — OEF (UEO (PP (u () = 2P RE(L) + O™ (7). (4.48)

Part 2: Propagated error of the first Lie splitting step. Similar to (4.47), one can

compare the expansions up to on (7'3)—terms of the exact solution and the first Lie splitting

step from Lemma 4.6 (applied with v9 = ug and ¢ = 7) and Lemma 4.7, respectively, to

2

obtain

u (%) —u® = efPETIgDE (TIS\IL (uo)) + efpsTgL (on TP (uo) )

ZP.~LDE (~NL m(.3
—ez2 T% (T% (UO))+O (T )
= R2(L) + O™ (7). (4.49)

Since ug € H™6, the norm bounds of TEPE yNL and TNL from (4.17), (4.26) and (4.27)
yield that R2(L.) = O™"2(72). Thus, (4.49) is equivalent to

u(f) —u® = 28 + 138 or u (%) =u®+ 28 4+ 138, (4.50)
with §; = LR2(L.) € (H™2(R?))" and a suitable function S, € (H™(R?))", both of them
being uniformly bounded in € and 7. Analyzing the second line of (4.46) thus is equivalent to
answering the question of how O™%(72) and O™ (73)-perturbations of the argument affect
the result of the Lie splitting step. It would seem natural to use the expansions of the Lie
splitting step from Lemma 4.8 to this purpose. This would indeed result in the desired
representation. However, the presence of multiple operators of the kind T%DE would require

additional regularity of §1 and Sy that we do not want to invest. This is why we work with
the exact flows WFPE WRO and N instead.

We start from the inside, i.e. with the flow of the LDE-subproblem. Its linearity implies
LDE 7\\ _ @LDE (,,®\ _ 23,LDE 3,y LDE
vz (u (%)) vz (u®) =71 s (S1)+7 vz (S2) .

Since solutions of the LDE remain uniformly bounded if the potentials are sufficiently regular,

we have UEPE (Sy) = (9771(1) and WLPE(S)) = OT?LJrQ(l) for all s € [0, 5]. The second fact
2

together with Duhamel’s formula yields
PEPE(8) = 02728 + / P eGP L WEPE (8)) ds = o375 4+ O7(7) .
0
Altogether, we have

\I/I;DE (u (%)) — \IlIgDE (u®) = 72e37:8) + 738,
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for some function S, that has the same properties as So. Next, we apply the exact flow of
the RO-subproblem from Lemma 4.3 and obtain

VEO (WP (u (3))) - WEO (WEPE (u®) = 728 + e BTG (45))

Finally, we have to deal with the NL-subproblem. To this end, let vy = WEO (\IfIiDE (u (%)))
2 2
and wy = WO (\I'IEDE (u@)). Eq. (4.51) then becomes
2 2

_T o
vo — wo = 7281 + 1372728y,

Additionally, let v(s) = ¥*(vg) and w(s) = Ui (wp), s € [0,%] be the solution of the
NL-subproblem with initial data vy and wy, respectively. Both exist and remain uniformly
bounded due to Assumption 4.1 (D). In this notation, it remains to analyze v(%) — w(3).
Duhamel’s formula, applied to both v and w yields
v (3) —w (L) = ez [ug — wp] — 1/5 e279P= [F(v(s))u(s) — F(w(s))w(s)] ds.  (4.52)
0
The difference between the two nonlinearities can be related to the difference of v(s) and
w(s) by introducing mixed terms. Further, using a similar ansatz as in (4.52), but with 7
replaced by s, one can check with a Gronwall-type argument that the difference v(s) — w(s)
remains proportional to the initial difference vy — wp in the sense that

.
Jo(5) = w(s)l < Cllew — w5 s€ 0.7,

for some constant C' which depends on 7, but converges to 1 from above when 7 — 0.
Considering the additional integral in (4.52) and that vy — wy = O™ (7‘2), we finally obtain

v(f)—w(f) = 2= [ug — wo) + om (7'3> = e37: {7'231} +om (7'3>

Recalling the definition of v (Z) and w (%) and considering that Sy = %R2(L.), this is
equivalent to

~

(910 (B0 () - 93 (0 (9107 02) = PR 4 0P (). 50

2 2

After all, combining (4.46), (4.48) and (4.53) yields the claim. O

4.3.4 Step 4: Analyzing the remainder terms

In Lemma 4.9, we were able to identify all terms that appear in the expansion of the Strang
splitting step, but not of the exact solution, and vice versa. This led to the remainders
RL(L:) and RZ(L.), which are both in O(72) (for R2(L.), this was discussed in part 2 of the
proof of Lemma 4.9). We are, however, aiming for a better result. This will be achieved by
showing that the terms from R1(L.) cancel with those from R2(L.) to some extent, which
will yield the assertion from Lemma 4.2 in the end.

The crucial strategy will be to replace operators of the form e**= by suitable matrix approxi-

mations which will have a different commutative behavior. Establishing and analyzing those
approximations requires some preparation, which is the content of the next three lemmas.
Afterward, we will finally be able to prove Lemma 4.2.
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Lemma 4.10 (Lemma 2.1 in [BMP98]). Let m > 1. The projectors IIZ allow the following
expanston w.r.t. €:

IF = I + R

where

0 1

and RF™ is a uniformly (in ) bounded operator from (H™(R3))* to (H™ 1 (R?))* (which is
the same in the “+7” and the “-” case).

In all the expansions of the subproblems or the exact solution as well as in the remain-
ders RL(L.) and R2(L.) from Lemma 4.9, the projectors IIF mainly appear within the
(unbounded) operator P. = —Z (II7 —II7). To ensure that all remainders are uniformly
bounded in €, we always made sure that P, is kept in the exponential, i.e., only appears in
the form

2 (TTF 11— o2 422
elPe = omit/e* (I —II) _ o-it/e I+ e/e 11

for some t € R. The crucial tool not only for the proof of Lemma 4.2, but also later for the
construction of an efficient method to solve the nonlinearity-subproblem in (4.12), will be

to replace the operators Hgﬁ by their limits HSE within operators of the form e'P=. In other
words, we will approximate e‘7= by
elPo 1= o/ (5 Ty ) — o=it/* 1 | qit/* ] (4.54)

Lemma 4.10 immediately implies an O(g)-bound for the approximation error. However, the
following, crucial Lemma gives an alternative bound which is less obvious.

Lemma 4.11. Let m > 1 and t € R arbitrary. Then, for all v € (Hm(R?’))4, we have

Het'Pg v — etPOU

- id
s < Cnnin {2 S o

for a constant C' independent of t, € and v.

Proof. With Lemma 4.10, we obtain the representation
etPey = git/e? Mo+ eit/EQHE_v — e it/ (1‘[5r + ERPrOj> v + eit/e? (Ha - a—:RProj) v

i /e2 /22 ;
_ etPO,U +e (e it/e* _ elt/s )RPTOJU7

and we know that HRProijHm—l < C'||v||ym for a constant independent of v and . The

fact that e* — e~ = 2isin(x) for all # € R together with the estimates |sin(z)| < 1 and
|sin(z)| < |x| yields the assertion. O

Since RL(L:) and R2(L.) from Lemma 4.9 are already in O(72), Lemma 4.11 implies that
using the approximation e3P x~ e270 therein only leads to error terms that are of third order
in 7. However, we have to accept one ¢ in the denominator in the worst case. The crucial
difference between eP= and e!*0 is that the former are pseudo-differential operators, whereas
the latter are matrices. Thus, different calculation rules apply, which we will make use of in
the proof of Lemma 4.2. Before we do this, we collect some properties of the matrices et%o.
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Lemma 4.12. Lett € R.

(i) For the conjugate transpose of €0, we have (e/P0)* = e7tPo. In particular, e'Fo is
unitary, preserves the Euclidean norm and (e!Pov)*e!Pow = v*w holds for all v,w € C*.
(ii) For the matrices aj, j = 1,2,3 in the magnetic potential, we have etpoaj = aje_tpf’.

Proof. (i) The property (e70)* = e~t%0 follows directly from the definition (4.54) of ™o
when considering that H% are real-valued diagonal matrices. The remaining properties then
are an immediate consequence.

(ii) Let j € {1,2,3}. We have

Irb 0 0 o; 0 o; 0 o; 0 0
+ 2 Jjl _ il _ J — N TT
HOO@_(O 0) <aj o)‘(o 0>_<aj 0)(0 12>_0‘9H0

where each "0" stands for a 2 x 2 matrix with all entries being zero. Similarly, we find
Iy o; = oI . Altogether, the calculation

etpoozj _ (e—it/EQHa_ 4 eit/52H0_> o = a (e_it/aQHa I eit/g2na.) _ aje_tpo,
yields the claim. O
Now, we are finally in the position to prove the local error estimate from Lemma 4.2.

Proof of Lemma 4.2. In Lemma 4.9, we have already established a representation of the local
error using the two remainders R1(L.) and R%(L.). Now, we analyze those remainders in
detail. We start by inserting the definitions of the auxiliary operators TP TN and T%\TL
from (4.16), (4.23) and (4.24). For the second argument of TI%IL in RL(L.) and the argument

of T%DE in R2(L.), this yields

T
2

YLDE (egpgu(]) _ YLDE (egpgu()) — _ e P £ e3Py dr,
2

e

[V}

T (ug) — T3 (uo) = i/

s

e e {F (erpeuo) erpsuo} dr.
Thus, using the real-linearity of 1", we obtain
z s
RL(L.) = —1/2 e_spf[,gespf/ e P {F (e(”?)muo) e(r+5)7)€uo} drds
0 0

3 T 3 -
+i/ e 5P <e(5+2)775u0,esp5/ e "Pe L et E)Peyyy dr) ds,
0

s

R2

T

o .
(ﬁe) = —1e2pg/ e SPET <es775u0’es775/ e TPE[,EGTPEU(] d'l“) ds
0 0

- 3 3
+ ieipf/ e*spsﬁgespf/ e "Pe {F (erpfuo) erpfuo} dr ds.
0

s

The goal now is to exploit Lemma 4.11 in order to identify terms in RL1(L.) and R2(L.) that
(essentially) cancel each other. We start by analyzing the nonlinear functions F' and 7. If
v € (H™(R3))?* for some m > 2, then Lemma 4.11 yields

HF (etpfv) etPey — F (etpov) etPoy

) t
‘Hm < C'min {8, 5} 0]l grmsa
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for all £ > 0 and a constant C' independent of ¢t and . Further, using the fact that the matrix
ePo preserves the Euclidean norm and commutes with scalars, we obtain

F (e”’%) etPoy = F (v) e!Pov = 0 F (v) w.
Next, we replace the matrix e/ by the operator e”= again. Lemma 4.11 then gives

HF (etpsu()) ePeuy — P [F (ug) uo]H < C'min {s, Z} 0l grme+1 - (4.55)

Further, recall that T'(v,w) = |v|*w + v*wv 4+ w*vv. Thus, if v € (H™T1(R3))* and w €
(H™1(R3))* for some m > 2, Lemma 4.11 yields

t
HT (etpgv’ etpew) _ T (etPO,U’ etP0w> HH S len {E, } ||’U”§_Im+l H’UJHHm+1
m 9

for all t > 0 and a constant C independent of ¢t and €. With the properties from Lemma 4.12
and the fact that matrices commute with scalars, we obtain

T (etp%, etpow) = !PT (v, w).
Again, we can replace !0 by P using Lemma 4.11, which yields

7 (670, 6w) — T o,0)] < Cruim {g, z} [T — (4.56)

We now want to use both (4.55) and (4.56) for RL(L.) and R2(L.). Since ug € (HM+6(R3))4
by assumption, we can use (4.55) with m = m + 5 and with ¢ =r + Z in RL(L.) and t =
in R2(L.). Considering the two additional integrals and that the operator L. is uniformly
bounded in ¢ at the cost of two spatial derivatives, this yields an O™+3 (72 min{e, Z}) re-
mainder. Further, using similar reasons, one can easily see that the first argument of 7" in
RL(L.) and R2(L.) is in (H™5(R3))* and the second one is in (H™™4(R3))* with norm of
O(7). Thus, (4.56) can be applied with m = m + 3 and t = s in both RL(L.) and R2(L.),
yielding another om+3 (72 min{e, Z}) remainder. Overall, we obtain

RUL) = RL(L.) + O (72 min {5, Z}) ,

(4.57)
R2(L.) = RA(L.) + o3 <7’2 min {5, Z})
where
RA(L.) = —i/og e P L e /Os e2”% [F (ug) ug] drds
—i—i/og T (egpauo,/; e e L e3Py, dr) ds
= —1/0; se~ P L elst3)P: [F (up) up] ds
+1i /0 : T <e£7’su0, / : e P LTt 2)Peyy dr) ds, (4.58)

R2(L.) = —ie2”> / 2 <u0, / e P LoePeug dr) ds
0 0

+iesPe /2 e 5P L e5P: /2 F (ug) updrds
0 S
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crp. [ s _
= —1e2735/ T (U[)a/ e P L Peug dr) ds
0 0

+iezPe /05 <72— - s) e P LeP= [F (ug) ug) ds. (4.59)

Before we continue, we divide the operator L. from (4.9) into L. = Lp, + Ly + L4 with

g

3
Lp, = —iD. (IF ~T7), Ly =-iV(2), La=iY 4;(x)a;
j=1

The reason for this distinction is their different commutative behavior with regard to the
operator e!P= or the matrix et7o: Lp_ is a pseudo-differential operator which commutes with
e!P= (recall that D. corresponds to multiplication with a scalar in Fourier space). Ly is a
scalar-valued function and thus commutes with e/”0. However, the matrix-valued function
L4 commutes neither with e*P= nor with 7. Since T is additive in the second argument,

we can divide R1(L.) and R2(L.) accordingly as

Ry(Le) = Ry (Lp.) + Ry (Lv) + RE(La),

In the rest of the proof, we will analyze the Lp_, Ly and L4 parts separately.

Part 1: ﬁ/}_(ﬁpe) and ﬁf_([,m). Since e/”= and Lp_, commute, we obtain from (4.58) and
(4.59) with L. replaced by Lp_ that

Ri(Lp,) = —i/2 se2”= L, [F (ug) ug] ds + 1/5 T (egpsuo,e;% /5 Lp_ug dr) ds
S

0 0
= —i/a sdsez?= Lo [F (ug) ug) + i/a % — sdsez”=T (ug, Lp, up)
0 0

+ omt3 (7‘2 min {5, T}) )
€

R2(Lp,) = —ie2”* /5 T <U0,/ Lp, uo dr) ds + iez "= /E
0

0 ; (T — 5> Lp. [F (ug) uo] ds

2

T

= —i/5 sdsezP=T (ug, Lp,ug) + 1/2 % —sdse2”=Lp_ [F (ug) o] .
0 0

Here, we used (4.56) once more for R:(Lp.) (with m = m + 3 and t = %), yielding another
remainder term. Further, we used the real-linearity of 7" in the second argument for both

terms. Since
1
/ sds= =72 = /
0 8 0

all terms in ﬁi(ﬁps) apart from the remainder appear in ﬁ%(ﬁps) with opposite sign. Thus,

[SIR]
[

g — sds, (4.61)
RY(Lp.) +R:(Lp,) = o3 (7‘2 min {6, Z}) . (4.62)
Since RL(Lp.) and R2(Lp,) originated from the errors in the first and the second Lie splitting

step, respectively, this means that the (’)(72) errors from the first Lie splitting step cancel
with those of the second one up to O™ %3 (72 min {¢, Z}) remainders.
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Part 2: ’ﬁ}_(ﬁv) and ’ﬁf_(ﬁv) Next, we consider (4.58) and (4.59) with the scalar-valued

function Ly = —iV (z) instead of the operator £.. We first note that for v € (H’%J“G(]R‘?))‘l,
Lemma 4.11 together with the regularity assumption on V' implies

) T
‘H;L% < C'min {E, 8} ||UHH;+6

for all t1,te € R with [t1],[t2] < 7 and a constant C' independent of 7 and e. Considering
that £y commutes with €70 for any ¢t € R and using Lemma 4.11 in the reverse direction,
we have

Hetlpi L'VetQPEU —ehPo L'VetQPOU

) T
Hetﬂ?aﬁvetﬂ?sv - e(t1+t2)PE[’VUHH@+5 < C'min {5, 5} ||v||H;+6 .

Together with the surrounding integrals in (4.58) and (4.59), we obtain

0
+ Om+5 <7'2 min {5, T >
€

= —i/5 sdsezPe Ly, [F (up) uo] + i/5 % — sds e%PET(uo,ﬁvuo)
0 0

+ Om+5 (7‘2 min {5, T}) ,
€

R2(Ly) = —ie2 "= /j T (uo,/o Ly ug dr> ds + iezP= /j (; - s> Ly [F (uo) up] ds

+ Ot <7‘2 min {e, T})
€

-

ﬁi(ﬁv) = —i/§ sezP Ly, [F' (ug) uo] ds + i/5 T (egpsuo,egps /5 Ly ug dr) ds
0 s

= —i/§ sdse2P<T (ug, Lyug) + i/5 g — sdse2”=Ly [F (ug) uo]
0 0

+ Om+5 <T2 min {5, T}) ,
€
where we again used (4.56) for R1(Ly). As before, with (4.61), we obtain
RILy) +RE(Ly) = Ot (72 min {E, Z}) . (4.63)

Part 3: ﬁ}_([,A) and ﬁz([,A). Finally, we look at (4.58) and (4.59) with the matrix-valued
function L4 = 12?:1 Aj(x)o; instead of the operator L.. As in the Ly -case, we obtain

Hetlpi .CAetQva — ehtPo L'AetQP%

. T
e < Cmin e Th ol 2

for v € (H’?‘+6(R3))4 and for all t1,ty € R with |t1],|ta] < 7. However, £4 and 7 do not
commute for any t # 0. Instead, Lemma 4.12 (ii) yields

LaeTo =e oLy, (4.64)

for all ¢ € R. This in particular implies €10 £ 4ef2Poy = e(t1=t2)Po £ 44y and thus

t1Pe toPe _ (tl_tQ)PO ~
He Lae? 5y —e L v o

< Cin {e, 2L o]

s
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Applying this for v = up and for v = F(up)up in (4.58) and (4.59) gives

RYLA) = —i/§ se”H2PoL 4 [F (ug) ug) ds
0

+i/2 T <e§7’fuo,/ —rty )POEAUOdT> d3+om+5( min {€Z}>
0 S

=—i /5 se”5H2)Po ds £ 4 [F (ug) o)

a /;

RE(Ly) = —iez” 5 (uo, e 2P L 4uq dr) ds
T
2

+ie2P /05 ( s) “25P0L 4 [F (ug) ug) ds + O™ (TQ min {E, ;})
— _je3P / / Uug, € QTPOCAUO) drds

+iez /02 <2 - s) e 2P0 ds L 4 [F (ug) uo] + + omts <T min {5, Z}) (4.66)

where we also replaced 27 by €270 in the first argument of T in ﬁi([, A). To analyze (4.65)
and (4.66) further, we need to take a detailed look at terms of the form 7’ (ethO ug, e2Fo L Auo)

for any ti,to € R. The definition of T, cf. (4.25), together with the properties from
Lemma 4.12 (i) yields

T

ezF0yg, e~ (2rt3 )POEAtm) drds + Om+5< min {s, Z}) , (4.65)

2 *
T (etlpouo,etQP()ﬁAuo) = ‘etlpouo‘ 2P0 L Jug + 2Re ((etlpouo) et273°£,4u0) e1Poq

=et2Por, [F(ug)up] + 2Re (uae(tQ_tl)PoﬁAuo) 1Py,

Since L4 = 12?:1 Aj(x)a; by definition and since the matrices «; are Hermitian, the matrix
L 4 is skew-Hermitian. Additionally using Lemma 4.12 (i) and (4.64), we obtain

(e(tg—tl)P0£A>* — (L) (e(tQ—tl)Po)* — Lo (t2mt)Po — _o(tz—t)Pop
This means that the matrix e®2=t)Po£ 4 is also skew-Hermitian, which in turns implies that
Re (uae(trh)%ﬁAuo =0.
Overall, we find
T (etlpoug, etQPOEAuO) =el2Pop, [F (ug)uo] -

This can be used with t; = §,ty = —(2r+ %) in (4.65) and with ¢; = 0,3 = —2r in (4.66) to
obtain

ﬁi(ﬁ;ﬂz—i(/ se”(2s+3)Po g / / —(r+3 730drds> L4 [F (ug) uo)

—|—(9m+5(7 min {s E}),
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R2(L,) = —iez? (/ / ~2rPo dr ds —/ ( - s) e~ 2P0 ds) LA [F (uo) uo)
+ Om+5 (7'2 min {E, Z}) .

Since one can check that

2 so—25P T’ o TP 2 o
570 ds = 7e 0w (TPy) = e “"0drds,
0 s

[ [+ /2( o
0

we finally obtain
RELA) = omts <T min {5, ;}) , R2(L4) = omts <7'2 min {5, Z}) : (4.67)

Note that in contrast to parts 1 and 2, we could consider RL(£4) and R2(L4) separately
here. This means that for the magnetic potential part of L., there are actually no (9(7'2)
error terms from the individual Lie splitting steps.

After all, Eq. (4.67) together with (4.57), (4.60), (4.62) and (4.63) as well as Lemma 4.9 yield
the claim. ]

1\9\‘1

4.3.5 Numerical experiment

To validate the local splitting error estimate from Lemma 4.2, we conduct a numerical exper-
iment where we choose various step sizes 7 and three different values of €, and we observe the
error between the result obtained after applying one step of the splitting scheme (4.14) with
step size 7 on the one hand side and the exact solution at time ¢ = 7 on the other hand side.
Since we can neither solve the full NLDE nor the LDE- and the NL-subproblems exactly, we
approximate each of its solution with MATLAB’s ode45-solver using very small tolerances.
The results can be considered as “exact”, in the sense that the overall error is dominated by
the (local) splitting error. As in Sections 2.4 and 3.5.1, we switch to the NLDE in one space
dimension for the experiment, and we use the same initial data and potentials. Since H'(RR)
is an algebra, it is sufficient to choose m = 1 in Assumption 4.1. Consequently, the error is
measured in the H'-norm. The results are shown in Figure 4.2.

To understand the consistency of the error bound with the observed error, first note that for
the right-hand side of the local error estimate from Lemma 4.2, we have
£, 2 <1<e¢,

3 T
)T 2_ 3 _
min{ —,max<7°&,T =T
13
T 2

— T < €e”.

, e<T,

In particular, for 7 > &, we obtain a local error bound that is of third order in 7 uniformly
in e, which is what we observe in Figure 4.2 by a comparison with the black, dash-dotted
reference line. For €2 < 7 < ¢, a local error proportional to 72¢ is expected. The dotted
reference lines in Figure 4.2, which are of the form C372¢ for a joint constant Cs, reveal that
indeed, the error can be capped by said bound in this step size regime. However, for most
step sizes €2 < 7 < €, a better, but irregular error behavior is actually observed. Finally, for
step sizes 7 < €2, Lemma 4.2 yields an (’)( ) local error bound. This is exactly what we see

with the help of the dashed reference lines in Figure 4.2, which are of the form 02?3 with a
constant C5 that is the same for all three values of € depicted.
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Figure 4.2: Local error in H' of the splitting scheme (4.14) in dependency of the time step
size 7 for three different values of €. Note that the dashed third order reference lines all use
the same constant Co, and the dotted second order reference lines the same constant Cj.

4.4 Solving the subproblems and final method

So far, we assumed that all three subproblems in (4.12) can be solved exactly, which, however,
is not the case for the LDE- and the NL-subproblem. In this section, we discuss how the
solutions of these subproblems can be approximated. Since we know from Lemma 4.2 that
the local splitting error itself is in on (min {TE—S, max {725, 73}}), we aim for an accuracy of
the same size for each subproblem. As for the NPI-2 method from Section 3.3.1, the key
strategy is to iterate Duhamel’s formula and then integrate all oscillatory parts exactly, but
approximate slowly varying parts. However, in contrast to Section 3.3.1, having split the
NLDE into several subproblems brings some significant advantages. The LDE-subproblem
is linear, such that the number of terms does not increase dramatically for each additional
iteration of Duhamel’s formula. Furthermore, the NL-subproblem only contains the dominant
part P. of the differential operator —5%7:; and no potentials. It turns out that this leads to
special properties of solutions of the NL-subproblem which yield major simplifications in
the integrals of Duhamel’s formula. All in all, the solutions of both subproblems can be
approximated efficiently.

We first discuss the NL-subproblem and then the LDE-subproblem in Subsections 4.4.1 and
4.4.2, before combining both results to state the final time integrator in Subsection 4.4.3.
As in Section 4.3.1, we will analyze the approximation error in H™ for a generic value of m
when talking about the NL-subproblem, whereas we chose the particular value m = m from
Assumption 4.1 for the LDE-subproblem.

4.4.1 The nonlinearity-subproblem

For the nonlinearity-subproblem, we assume that we start with initial data ug € (H™(R3))*
for some m > 2, and that the solution with said initial data exists over the whole time interval
[0, 7] and remains uniformly bounded in H™*! w.r.t. ¢ and ¢. This is especially fulfilled with
m = m in the setting of Assumption 4.1. We already established the expansion

N (ug) = Peug + €PN () + PN (g, TV ug) ) + O™+ (79)
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in Lemma 4.5 (iv). Inserting the definition of TN and TN gives
T
UN (ug) = e™Peug — ieTPE/ e 5Pe [F (espsuo) espguo} ds
0

T S
— ie"P- / e 5P (espsuo, —iesPe / e "P- [F (erp5u0> erpfuo} dr) ds
0 0

4+ omtl <T3) _ (4.68)

If we omit the remainders, then this representation is obviously explicit since it only depends
on the initial value uy. Furthermore, as 'P= = e~/ EQH;F +eit/ EQH;, the integration variables
s and 7 only appear within scalar-valued, space-independent functions. In the integrals,
those functions can thus be separated from all operators. All in all, this implies that the
representation can indeed be computed analytically for given ug. On top of that, it is a
uniform third order in 7 approximation to the exact solution WN"(ug). This is exactly what
we aim for in this section. However, this representation is fairly complicated, in particular
due to the composition of the nonlinearities in the second integral. Additionally, the fact
that both applications of the projectors and products of space-dependent functions appear
multiple times implies that the representation is expensive to compute numerically (after a
suitable space discretization) since it requires several Fourier transforms to switch between
Fourier and physical space. This is why we aim for a simpler representation.

To this purpose, we can make use of the approximation etPe ~ !0 again in the second

integral. This approximation in particular allowed deriving the estimates (4.55) and (4.56).
Using the former one first with ¢ = r (and considering the two surrounding integrals) and
the latter one afterward with ¢ = s (and considering the surrounding integral and that the
second argument of T is of O™T1(7)), we obtain

T S
/ e P (esp& ug, —ie*7= / e e [F (erp5u0> erpfuo} dr) ds
0 0

:/ T(uo,—i/ F(uo)uodr> ds—i—(’)m(TQmin {5,2})
0 0

Further, the definition (4.25) of T" yields

S
T (uo, —i/ F (up) ug dr) =sT (ug, —i|uo\2u0)
0
=5 (—i luo|? |uo)? uo + 2Re <—i |ug|? USUQ)>
= —is ]u0\4u0,

such that we obtain the representation
T S
/ e 5P <esp5u0, —ie*Pe / e "Pe {F (erpguo) erpguo] dr> ds
0 0
2
=il |uo|* ug + O™ (7’2 min {E, T}) :
2 €
This simplified the second integral in (4.68) immensely. Overall, we have
UNE () = &N (ug) + O™ <max {7’3, 7% min {5, T}})
€

3
= N O™ min{ = 2, 73
> (uo) + <m1n{ - nax {T E,T }
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where we define ®N' to be the numerical flow of the nonlinearity-subproblem, given by
NL T 72 4
ONL(y) = ™oy — ie7e / e 5Pe {F (esp“:u) espsu} ds — ?GTPSM u. (4.69)
0

Using (4.55) in the remaining integral as well is not a good idea, since there is only one
surrounding integral, such that the local error order w.r.t. 7 would be reduced. However,
computing the remaining integral, and thus applying the whole operator ®N" does not cause
any problems and, in particular, is not very expensive from a numerical point of view. To
understand this, we present a different representation of <I>§L. First, we decompose

SN (u) = T | @M (u)| + 11 [@N(u)] . (4.70)
For each component, using [1Fe!"s = TTF [e*it/ I 4 cit/e? H;} — ¢Fit/="IT% | we have

. . T .
11 [@X ()] = 77/ I [u) - 16¥7/ 11 / VP (P P ds}
0

7'2 ; 2 4
— ?eqc”/a = [\u! u}

. T . 2
— oFiT/e? (ch [u] — ch [1/ ot/ (espgu) e*Peuds + % |u|4 u]) .
0
Introducing w4 = I} [u], u— =TI [u], we can compute
. . 2 . :
‘efls/€2u+ + els/€2u_‘ _ ’U+|2 + |u_‘2 + 6215/52 (u+)*u_ + e7213/,€2 (u_)*u+
and thus
. . 2, . .
F (espgu> espsu _ ’e—15/52u+ + els/azu_’ (e—15/52u+ + e1s/g2u_)
= e is/e? ((|u+\2 + \u_\Q) Uy + (u_)*u+u_> 4o dis/e? (u—) ugus

&0 (e o fu ) e (o) ) 0 )

Finally, we arrive at

= [@SL(u)} = FiT/e? (’U,:t —

i/OT e(F1-Dis/e* g ((|u+\2 + \u_\z) Uy + (u_)*u+u_)

+i/0 e(F1-3)is/<? g g (u_) utuy

+i/07 e(F1+1)is/e? g ((|U+|2 4 |u7|2> u_ + (U+)*U—U+)

+ i/o e(F1H3)is/* g g (ug) u—_u_
72

Jul* u
2

+

). (@.71)

All remaining integrals can easily be computed. Now, for a moment, assume that we know
the Fourier representation of uy and u_ from the previous (sub)step and that we are seeking
the Fourier representation of the two eigenspace components ITF {tﬁyL(u)} of ®NL(u) (see
Remark 4.15 for a corresponding discussion). Then, the remarkable thing about this repre-
sentation is that only two inverse Fourier transforms and two Fourier transforms are required,
namely to translate both uy and uw_ into physical space, and to translate the functions in
the square brackets into Fourier space such that the projectors can be applied, respectively.
We summarize the results in the following

92



Corollary 4.13. Let ug € (H™ ' (R3))* for some m > 2 and let T > 0. Assume that for
all € € (0,1), the solution u(t) = WN(ug) of the NL-subproblem from (4.12) exists on the
interval [0, 7] and remains uniformly bounded w.r.t. € and t. Then, for the numerical flow
®NL of the nonlinearity-subproblem, given either by (4.69) or by (4.70) together with (4.71),
we have

3
NL NL )T 2. .3
_ < _
H‘IJT (up) — @7 (uO)HHm < len{ - max {T T }}
for some constant C' independent of T and €.

4.4.2 The LDE-subproblem

For the LDE-subproblem, we also already established an O(73) expansion in Lemma 4.4,
which helped us to analyze the splitting error in Section 4.3. To construct this expansion,
we always kept the dominating part P. of the differential operator —6%7; in the exponent
of the evolutionary operator in Duhamel’s formula, whereas the bounded operator —iD; is
considered as part of the inhomogeneity. Application of D. comes with a loss of spatial
regularity, however. Since for the stability of the resulting method, we want to avoid this
wherever possible, we consider different expansions here where the full operator —5%7; is
taken to the exponential in Duhamel’s formula. Thus, in contrast to (4.12), we write the
LDE-subproblem as

atwLDE — _é%wLDE _ iwwLDE.

We assume that Assumption 4.1 holds (i.e., the same assumptions that were required for the
local error bound of the splitting step). In particular, we assume that we start with initial

data ug € (H%+6(R3))4. Further, let u(t) = WFPE(y), t € [0, 7], be the exact solution for
said initial data. Then, Duhamel’s formula yields

it U i(t—s)
u(t) = e 2 uy — i / e 2T [Wu(s)] ds (4.72)
0

for all t € [0, 7]. From the regularity of the potentials and the fact that solutions of the LDE
remain uniformly bounded, we directly obtain

u(t) = e_e%rsuo + (977”6(0 .

Inserting this into (4.72) once again, with ¢ replaced by s, yields

it t _i(t—s) _ s ~
u(t) =e" éTEuo — i/ e [We 627‘%0} ds + (’)m+6(t2) )
0

Finally, taking ¢ = 7 in (4.72) and inserting the previous representation with ¢ replaced by s
inside the integral, we find

_i(r=s)

iT T _is
u(r) = e = Fuy —i/ e e [We sZTEuo} ds
0

— /OT efi(TaigS)TE [W /Os efi(ss?)Tf [Wefe%nuo} dr} ds + Q™6 (7‘3> . (4.73)

All s- or r-dependent operators cannot be combined due to the potential W in between them,
such that the integrals cannot be computed analytically. Thus, it remains to approximate
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both integrals appropriately. To that purpose, we replace the slowly varying part of operators

of the form e~ 27 by suitable Taylor approximations similar as for the NPI-2 method from
Section 3.3.1. More precisely, we use the decomposition (4.2) together with the approxima-
tions of e*P= from Lemma 3.2. For any m € Ny, combining (4.2) with the first approximation
elPeqy ~~ v yields

it

e 2oy = (efs%H: + es%l_[g_) u+O"(t) = eu+ O"(t) (474)

for u € (H m+2(R3))4 and t € [0,7], whereas the second approximation e*P=u = Id + itD,
gives

it

e # Ty = (7 (Id — iDL + 22 (Id + DI ) u -+ O™ (1) (4.75)

for u € (Hm+4(R3))4.

Using the second approximation (4.75) with ¢ = s and m = m + 2 in the first integral in
(4.73) and considering the assumptions on ug and the potentials, we obtain

/T e_i(fsgS)TE [We_s%ﬁuo] ds = /T e_i<Ts;S)7; [W (e_c%ﬂj + ea%H;) uo} ds
+ i/T se_l(fs;S)TE {W (—e_;%DeHj + es%Dgl_IE_) uo} ds
0

+ Om+2 (7'3) )

The additional factor s in the second integral therein allows using the first approximation
(4.74) with t = 7 — s afterward. The same approximation can also be used for the second
integral in (4.73), namely with t =7, ¢t = s — r and t = 7 — s, respectively. Each application
comes at the cost of two spatial derivatives, which is why the assumption ug € (H m+6 (]R3))4
is necessary. Overall, we find

u(r) = "= Fug — i3 (ug) + Ta(uo) — Ts(ug) + O™ (7%)
with
T i(r—s) is is
Zl(u):/ e W (e F I 4 eI ) u] ds,
0
To(u) :/0 se(T=9)P [W (—e_ﬁiﬂj + ee%ﬁgl_[;> u] ds, (4.76)
T (7’—5)735 s 7i(557~) n i(SET) _ 7% i % _
Ig(u):/oe W/o e & II7 +e < II] {W(eaH8+eEH€)u}dr ds.

Note that for stability reasons, we replaced D. by the filtered version Zi = w that

was already used in Sections 2.3.1 and 3.3.1. Now, in each of the three integrals, only one
operator that depends on the integration variable appears. Apart from that, all integration
variables only appear within scalar functions that can be commuted to an arbitrary position.
This allows to compute all three integrals analytically, which is why we define the numerical
flow of the LDE-subproblem to be

it

OLPE(y) = e 2oy — iTy (u) + To(u) — Ts(uw). (4.77)

Again, in order to ensure that the splitting ansatz yields an efficiency gain, we need to take a
look at the computational costs for each application of the numerical flow. In particular, we
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want to avoid unnecessary Fourier transforms. This is why we consider a different formulation
of ®LPE. As in the NL-subproblem, we divide the numerical flow

() = T S5 ()| + 11 [21°F ()| (4.78)

into its two eigenspace components, set u+ = I1F [u] and make use of ITIFe!"s = eFit/ 521‘[2E as
it . .

well as [TFe ™ =27¢ = ¢Fit/*FiD T+ for any t € R. From the definition (4.77) of the numerical

flow, we obtain

IE [OPP (u)] = eF7/& TPy, — 2 (2, (u)] + TF [To(w)] - TTE [Ts(w)] . (4.79)
For the eigenspace components of the integrals Z; and Zs, we observe

I [Ty (u)] = 7/ IF

/T ei(j:1—1)8/<)52e:Fi(T_S)Ds ds [Wu+]
0

+/ el (F1+ 1)/ (FilT=8)D= [Wu—ﬂ ; (4.80)
0

I [To(u)] = 7/ 1IF

_/ sel(EF1-1)s/=? dsWﬁsu++/ sel(E1+1)s/2? dsW@;u_}.
0 0

As a preparation for the last integral 73, we compute

W/Os <e‘i(izf)n: Lo H;) (W (™1 e ) u dr

= se W/EWITH [Wuy] + e/ /0 27/ dr WIIF [Wu_]
+els/e /0 e 2/ qy WII, [Wug] + seis/e” WIS [Wu_],
which then yields

I [Z3(u)] = 77/ 12

/OT sel 108/ Qg WITE [Wuy

+ /OT Ql(F1-1)s/e? /OS 27/ dr ds WILS [Wu_]

+ /OT sel(F1+1)s/e? /OS e 2/ A ds WL [Wug]
+ /OT sel(F1HD)s/% g g WIIZ [WU]} .

The integrals Zo and Z3 can be combined and the potential W can be factorized, such that
we finally obtain

I [To(u) — Ty(u)] = —e T/ IIE

w (/ sel(F1-1)s/e% 4 g (H: Wuy] + 55”4.)
0
+ /T ei(:l:l—l)s/62 /s e?ir/£2 drds H;_ [WU_}
0 0
+/ sei(il‘H)S/EQ/ e~ 27/ dr ds I [Wuy]
0

0

+/0 sel(F1+1)s/e? g <H; (Wu_] — qu_)>

(4.81)
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This representation reduced the number of Fourier transforms as much as possible. As in
Section 4.4.1, we assume that the Fourier representation of u, and u_ is known from the
previous (sub)step, cf. Remark 4.15. In order to compute the products Wuy and Wu_ that
appear in both 7; and Zo—Z73, we need u4 and u_ in physical space, which requires two inverse
Fourier transforms. The result is required in Fourier space, such that two Fourier transforms
have to be performed. This then allows computing the Fourier representation of I [Z; (u)].
In the difference TIF [Z3(u) — Z3(u)], however, another two inverse Fourier transforms of the
factors that are multiplied with W (which differ in the “+” and the “-” case) are required,
and two Fourier transforms immediately afterward. Thus, all in all, eight Fourier transforms

are necessary for the Fourier representation of both eigenspace components of <I>I;DE(U) in
(4.79).

All considerations from this subsection lead to the following

Corollary 4.14. Let Assumption /.1 (A) and (B) hold and let T > 0. Then, for the numerical
flow ®LPE of the LDE-subproblem, given either by (4.77) and (4.76), or by (4.78) - (4.81),
we have

| 22°8 (o) = 87PB(wo) | < O7°

for some constant C independent of T and €.

4.4.3 Final time integrator

After we have discussed the splitting ansatz in Section 4.2 and the approximation of the
subproblems in the previous subsections, we are now in the position to state the final time
integrator. To that purpose, we mimic the scheme (4.13), but replace the exact flows of the
LDE- and the NL-subproblem by the corresponding numerical flows. The RO-subproblem,
on the other hand, can be solved exactly, so that we can indeed utilize the exact flow. Thus,
the approximations ¢™ & ¢°(t,) to the exact solution of the NLDE at time ¢, are obtained
by the iteration

P =, (Y1), n=0,1,... (4.82)
with the numerical flow

D, (u) = c1>1§L o \1:%0 o LPE o q,lgo o @gL (u). (4.83)
In the following, we will refer to this method as oscillation-rewinding splitting method (ORSM)
for the nonlinear Dirac equation. The rest of the chapter is devoted to a detailed analysis of
this method.

Remark 4.15. Solving the RO-subproblem with initial data uw means computing ePeu =
e*it/gﬂju—i—eit/gﬂgu for suitable t € R. The projectors therein correspond to multiplication
with a matriz in Fourier space. Thus, either the representation of uw in Fourier space or
the knowledge of the eigenspace components uy = Hai [u] is required. Since the last step in
the numerical flows ®N“ and ®}PF of the subproblems also involves applying the projectors,
cf. (4.71) or (4.78)-(4.81), the most efficient strategy is to start and end each subproblem
with the Fourier representation of both eigenspace components. As we have discussed before,
computing @%\H‘ or CI%DE then requires 4 or 8 Fourier transforms, respectively. Thus, applying
the latter one is more expensive, which is why we chose the order of the subproblems in such
a way that the flow @{“DE of the LDE-subproblem only has to be applied once per time step.
The total number of Fourier transforms for one step of the ORSM therefore amounts to 16.
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In contrast to that, each step of the TSFP scheme requires two Fourier transforms if only
the final approzimation is of interest, cf. Eq. (4.4) and the short discussion afterward. This
is why we expect each time step of our method to be roughly eight times as expensive as a
classical Strang splitting step. However, this disadvantage is more than compensated for by
the better convergence behavior of our method, as will be discussed in Sections 4.5 and /.0.

Remark 4.16. A similar method can be derived for time-dependent potentials W = W (¢, x).
In this case, the same decomposition (4.12) of the NLDE as in the time-independent case is
used. Note that the right-hand side of the LDE-subproblem then is no longer autonomous.
Nevertheless, one can extend the analysis of the local (Strang) splitting error from Section J.5
to time-dependent potentials. To that purpose, for fized t > 0 and arbitrary s € [0,t], one can
replace evaluations W (t+s, x) of the potentials in Duhamel’s formula for the LDE-subproblem
or the full NLDE by the Taylor expansions

W(t+s,xz)=W(t,z)+ O(s), W(t+s,x)=W(t,x)+ soW(t,x) + O(sQ) (4.84)

(depending on whether the evaluations are surrounded by two integrals or one). This yields
similar expansions of the flow of the LDE-subproblem or the full NLDE as in Subsection /.3.1.
They can then be combined to expansions of Lie splitting steps, and the local splitting error
can be analyzed in the same manner as in Subsections 4.3.2-4.3./. Furthermore, those Taylor
expansions can also be used to construct a scheme to approximate solutions of the LDE-
subproblem. Of course, sufficient temporal reqularity of the potential is required for (4.84).

Remark 4.17. The interpretation of the splitting ansatz from Section 4.2 also suggest an-
other splitting approach: Could one even rewind the full operator Tz instead of just the dom-
inating part? This would result in the splitting

i :
O PF — _gz];d]LDE — W LPE,

RO = LT yRO, (4.85)
g

BNt = _é%wNL _ iFwNLW)NL

of the NLDE instead of (4.12). Indeed, with a similar procedure as in Section 4.3, one
can obtain the same local error result as in Lemma /.2. Furthermore, the RO-subproblem
can still be solved exactly, cf. (4.2), and the LDE-subproblem is identical to the one in
(4.12), such that its solution can be approximated in the same way. However, in the NL-
subproblem, the full operator —8%7} appears instead of just the dominating part P.. When
Duhamel’s formula is iterated for the NL-subproblem, finding a computable approximation
of the integrals requires the same Taylor approximations of the operator e_s%775 that we used
in the LDE-subproblem. However, those Taylor expansions lead to an increased number of
terms and, as a consequence, more necessary Fourier transforms due to the appearance of
the operator De at multiple locations. In particular, the benefits of the NL-subproblem from
(4.85) over the full NLDE are only limited, whereas the splitting ansatz (4.12) allowed for
considerable simplifications when iterating Duhamel’s formula for the NL-subproblem.

4.5 Global error analysis

The goal of this section is to derive a global error bound for the ORSM (4.82). As usual, this is
achieved by first deriving a local error bound and then combining it with a stability estimate.
There are two different sources for (local) errors, namely the splitting of the full PDE into
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several subproblems and the approximation of the flows of the subproblems by numerical
schemes. Both errors have been analyzed separately in Sections 4.3 and 4.4, respectively.
However, for a local error bound for the full method (4.82), one has to keep in mind that the
latter errors are propagated by the subsequent subproblem-flows in (4.83). Thus, stability
estimates for the subproblems are already required in the local error analysis. The same
estimates also yield a stability estimate for the full method. This is why we will first discuss
stability in this section, and afterward the local error. Finally, all results are combined to
obtain the desired global error estimate.

Throughout this section, we will make the technical assumption 7 < 1, such that the estimate
72 < 7 holds. Although this is not a strong restriction anyway, it could also be replaced by
the bound 7 < 7y for an arbitrary 7y > 1. All constants would then additionally contain the
factor 7.

4.5.1 Stability

Here, we derive stability estimates for the numerical flows of the NL- and the LDE-subproblem,
and of the full ORSM (4.82). Note that the flow of the LDE subproblem is linear, so that
the notion of stability simplifies. As in Subsections 4.3.1 and 4.4, we let m > 2 arbitrary for
the NL-subproblem, but chose m = m for the LDE-subproblem and the ORSM.

Lemma 4.18. Let 0 < 7 < 1.

(i) Let m > 2 and let ®NY be the numerical flow (4.69) of the NL-subproblem. Then, we
have the uniform bound

|2 @] <

S0 ve (H™(R?))* (4.86)

for some constant that depends on ||v|| ym, but not on T and €. Further, the stability
estimate

|oN ) = N (w)|| < AH+CT) o= wlym,  vwe (HMRY)Y,  (487)

holds for some constant C that depends on ||v|| ym and ||w|| ym, but not on T and €.

(ii) Let Assumption 4.1 (A) hold and let ®LPF be the numerical flow (4.77) of the LDE-

subproblem. Then, for v € (Hﬁ(R3))4, we have the uniform bound and the stability
estimate

|0 PP @) 2 < Cllollms ||JoFR)|

H

for some constant C' independent of v, T and €.

(iii) Let Assumption /.1 (A) hold and let ®, be the numerical flow (4.83) of the ORSM.
Then, for v,w € (Hm(R3))4, the stability estimate

2 (0) = Do (w)], 7 < (1+Cs7) o — wl,
holds for some constant Cg that depends on HUHH; and Hw||H;1, but not on T and €.
Proof. (i) We first prove the stability estimate. To that purpose, consider the definition of

®NL given by (4.69). Since e™”* is linear and an isometry according to Lemma 4.3, we know
that

Py — eTPSwHH;l = v — wHH?n .
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Further, using a decomposition of the form (3.56) with u, v, w replaced by e*F=v and w, v, w
by e*P=w together with the fact that H™ is an algebra for m > 2, one easily obtains

HF (GSPEU) eSPs,U _F (eSP5w> espstHm < C HU _ wHHm
for some constant C' that depends on ||v|| ym and ||w||ym. Similarly, we find
4 4
1ol v = fwl*w| < Cllo = wllgm
Combining all equations yields (4.87). The uniform bound (4.86) then follows by setting

w =0 in (4.87) and using 7 < 1.

(ii) Again, we start with the stability estimate. Recall the representation (4.77) and (4.76)

it
of the flow ®LPF and the integrals Z;, Z, and Z3 contained therein. Since e 2 s a unitary
operator in H™ for all ¢t € R, we initially get that

|22 @) o < Ioll s + 1Ty + 122 + 1T @

Hrn Hm

Furthermore, the regularity of the potential W from Assumption 4.1 (A) together with the
fact that the projectors are isometries yield

1),z <Crloll s 1T,z <O ol z -

Additionally using the estimate (3.24) for the filtered operator D, and considering the addi-
tional factor of s in the integrand of Z5, we finally obtain

IZ2(0)] o < CT 0]l i

such that the second estimate in (4.88) follows. The first estimate is then trivially obtained
from the first one by using 7 < 1.

(iii) Let v, w € (H™(R®))*. Then, (4.87) yields

H(I)%IL(U) - <I>1§L(w)H ~<(1+07) v —w| 5

H

for a constant C; dependent on |[v||;m and ||w]|m. The fact that WEO is linear and is an
isometry in H™ for all ¢t € R then implies

w50 0 23H(0) - WEO 0 0¥ (w) | o < (14 i) o — w1z

Hm

Next, the linearity of ®P¥ together with the stability estimate from (4.88) gives

Hq)I;DE o \I,P%{o o (I)%IL(U) — @LDE \111:%{0 o @%TL(@U)HHQ < (1+Ci7)(1+ Cor) |Jv — wHHa

for a constant Co independent of 7, €, v and w. Again using the properties of WEO yields

|00 0 OLPE 0 wEO o @3 (v) — WHO 0 1P o WO o BX(w)||
2 2 2 2 2 2 Hm™
<

(1+Ci7)(1 4 Cor) ||v — w||H;L .
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Then, the stability estimate (4.87) gives
H(I>1§L o ¥ROo @I;DE o ¥RO o CI’EIL(U) — oY o PO, CI’I;DE o RO o eI (w)H ~
2 2 2 2 2 2 2 2 Hm
< (1+ Cy7) H\IE;O 0 ®PF 0 WO 0 oX(v) — WO 0 &LPP 0 WHO o qﬂgL(w)H ~

Hm
<1+ Cir)(1+ Cor)(1+ Cs7) v — w7 -

The constant C3 therein depends on the norm of both arguments of ®¥", i.e. on
2

PRO 5 pLDE o RO 4 <I>1§L(U)
2 T p)

P A e

2

In particular, since all flows depend on 7 and &, the same holds for C3. However, the uniform
bounds from (4.86) and (4.88) imply that both norms in (4.89) can be uniformly bounded
w.r.t. 7 and €, such that C can be chosen independently of € and 7 (but dependent on H’UHH;L

and HwHH;L). Finally, recognizing that multiple factors of the form (14 C7) with 7 <1 lead
to a factor of the same form again, only with a different constant C, yields the assertion. [

4.5.2 Local error

The bounds for the local splitting error and for the local error of the schemes approximating
solutions of the subproblems from Sections 4.3 and 4.4, respectively, can now be combined
with the stability estimates from the previous subsection to obtain a local error bound for
the ORSM.

Lemma 4.19. Let Assumption 4.1 hold and assume 7 < 1 in addition. Further, let O, be the
numerical flow of the ORSM from (4.83) and let W, be the exact flow of the NLDE. Then,
the local error estimate

|V, (ug) — @ (uo)| ,,» < Cpmin 7—3 max {725 73}
T T Hm = e’ )

holds for some constant C, independent of T and €.

Proof. We divide the local error of the ORSM into the splitting error and the error introduced
by replacing the exact flows of the subproblems by the corresponding numerical flows. To
this purpose, let

u® = \IIIEIL o \I/PE{O o \I/,IF’DE o \III;{O o \IJIEL(UO)
2 2 2 2

be the result of the splitting ansatz using exact flows of the subproblems as in (4.14) (with
the two half steps of the LDE-subproblem combined to one full step). Then, we can write

U (up) — D (ug) = ¥r(ug) — u® +u® — &, (ug). (4.90)

From Lemma 4.2, we know that the bound

3
1%+ (ug) — u®|[ , ~ < C'min {Tg,max {725,73}} (4.91)

holds for the local splitting error, such that it remains to analyze the second difference in
(4.90). To this end, we introduce the two auxiliary values

0@ = ol o \Ilréo o \I/I;DE o \Illz”o o \IIIEL(UO), w® = oo \Illz”o o <I>£‘DE o \IJPE{O o \IflgL(uo),
2 2 2 2 2 2 2 2
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where some of the exact flows are replaced by numerical flows. We then divide
u® — & (uy) = u® —0v® + v® —w® + W® — B, (up), (4.92)
and consider all three differences separately. In each of them, exactly one of the flows differs.
First, with u® = WEO o WLPE o YRO o WL (44), we have
2 2 2
u® —v® = \III%IL(U@) - @gL(u@). (4.93)

Since the solution of the NL-subproblem with initial data u® remains uniformly bounded
in H™*6 over the time interval [0, 5] by Assumption 4.1 (D), we can apply the local error
estimate from Corollary 4.13 to obtain

3
[u® — @]~ < C'min {Tg, max {7'25, 7'3}} .

In fact, we could even use the H m+5_norm on the left-hand side, but H m is sufficient for our
purposes. For the second difference in (4.92), we introduce u® = W80 o WT(yg), such that
2 2

v® —w® = NV o RO o YLPE (@) _ L 6 YRO o LPE (@),
2 2 2 2

Again, Assumption 4.1 (D) guarantees that Ui (ug) is in H m+6 with uniform norm bound
2

w.r.t. ¢ and 7. The same then trivially holds for u®. Thus, with the local error estimate
from Corollary 4.14, we arrive at

w2 ) - @R )| o < or®

and thus

#5370 9P ) — w30 0 PR = [ (9777 ) e PF ) g s o

|15

Then, we can then apply the stability estimate of the NL-subproblem from Lemma 4.18 (i)
with u = WEO o ULPE(4@) and v = UEO o LPE(4@) to find
2 2

< Cri. (4.94)

[0® = w® i < (14 C7) |50 0 WEPP(u®) — WHO 0 9LPE(e)| - <

Finally, for the third difference in (4.92), we first note that
3
)T
H\III%IL(uO) - (I)I%IL(UO)HH;L < C'min {5, max {7’26, 7'3}}

thanks to Assumption 4.1 (D) together with Corollary 4.13. The same holds after applying
the flow WRO of the RO-subproblem to both arguments, since it is linear and an isometry.

2
The stability estimate of the LDE-subproblem from Lemma 4.18 (ii) then gives
O O
HCI)EDE o \I/% o \PgL(uo) — @%DE o \II% o <I)1§L(uo)HH;\1

<(1+Cr) H‘P%O o \IlgL(uo) - \IJ%O o (I)%IL(UO)HH% < Cmin {j,max {7’25, 73}} .

Treating the RO-subproblem as before and applying the stability estimate of the NL-sub-
problem afterward implies

°©_ ¢ < O'mi T 2. 73 4.95
||w® — “OHH;L— min ?,maX{T 6,7'} . (4.95)

Combining (4.90)-(4.95) and using triangle inequality gives the desired result. O
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Figure 4.3: Local error in H' of the ORSM in dependency of the time step size 7 for three
different values of €. Note that the dashed third order reference lines all use the same constant
(5, and the dotted second order reference lines the same constant Cj.

Before we combine Lemmas 4.18 and 4.19 to obtain a global error estimate, we repeat the
numerical experiment from Section 4.3.5, in which we observed the local error, but now for
the final splitting scheme (4.82). This means that the NL- and the LDE-subproblems are now
approximated with the numerical methods from Sections 4.4.1 and 4.4.2, respectively, instead
of solving them (almost) exactly using a very fine discretization. Comparing the results in
Figure 4.3 with those from Figure 4.2 shows that this barely affects the error behavior. For
T > e or 7 < €2, both figures essentially correspond. Only the constants C; and Cs have been
slightly modified, implying that the error constants are a little different. For some step sizes
e2 < 1 < ¢, smaller errors are observed in Figure 4.2. Nevertheless, the error is still capped
by the same reference lines in this regime (even with the same constant Cy in both figures),
which confirms the estimate from Lemma 4.19.

4.5.3 Global error

A bound for the global error of the ORSM can now be obtained from the local error bound
together with the stability estimate without any major difficulties. Before doing so, we have
to make suitable assumptions.

In the previous sections, we always chose a generic function ug as initial data, for which we
made Assumption 4.1. Now, we switch to the NLDE (1.2) on an interval [0, 7] with initial
data ¥°(0, z) = 1™ (z), such that we have to formulate a corresponding assumption.

Assumption 4.20. Let T > 0, m > 2 and let Assumptions /.1 (A) on the potentials hold.
Further, assume the following:

(A) Foralle € (0,1), the NLDE (1.2) with initial data ¢°(0,z) = ™ (z) admits a solution

A~

Y° on the time interval [0,T] that remains uniformly bounded in H™*® w.r.t. ¢ and t.

(B) For all to,t1 > 0 with to +t1 < T and all ¢ € (0,1), the NL-subproblem with initial
data ¥ (tg) or WRO o WEPE (y2(ty)) admits a solution on the time interval [0,t1] that
remains uniformly bounded in H™5 w.r.t. ¢ and t, and the same holds on the interval

[0, %] for the initial data \IIE% o \I/ﬁ% o \IJ%IDE o \I!g% o \IJ%BQE (V= (to)).
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In fact, if the initial data is in H™*6, then we know from Theorem 2.2 that part (A) is fulfilled
at least for some T' > 0. Starting from the uniform bounds for 1, one could then additionally
prove that (B) is fulfilled for sufficiently small T' by standard fixed point arguments applied
to all subproblems involved. The assumption from part (B) is required such that we can
apply the local error bound from Lemma 4.19 with uy = ¥°(ty) being the exact solution at
any time point ¢, € [0, 7.

On top of that, we need to make an assumption on the boundedness of the numerical ap-
proximations starting from the exact solution at any time point t,, similar as in the proof of
Theorem 2.10. In order to do this, we recursively define the numerical flow over n successive
time steps by ®” = &, 0 ®? ! n €N, and ®Y = Id.

Assumption 4.21. There is a constant 19 > 0 independent of € such that for all 7 < 19, we
have

n €

~ <

n,z:$%¥T/TJ 127 (¥ W))”Hm =C
n+L<|T/7)]

for some constant C' independent of T and €.

This assumption could be proven by a standard bootstrapping argument. As in the proof
of Theorem 2.10, we refer to [Lub08] and [JMS17]. However, note that unlike in said proof,
no additional stability and local error estimate is necessary. The reason for this is that we
assumed m > 2, such that H™(R3) is an algebra, which led to the fact that the constant Cg

in Lemma 4.18 (iii) only depends on the H"-norm of the functions involved, but not on the
norm of higher-order Sobolev spaces.

With those assumptions, we can now state and prove a global error bound for the ORSM.

Theorem 4.22. Let Assumptions /.20 and /.21 hold and let 79 be the constant from the
latter. Further, let 0 < e <1 and 7 < 19. Then, for the numerical approximations Y™ of the
ORSM (4.82) applied with step size T, the global error bound

2

n : T
12 () = 9" = < C'min {E,max {m?}} (4.96)
holds for some constant C independent of €, T and n.

Proof. The proof uses a Lady Windermere’s fan argument, similar as in the proof of Theo-
rem 2.10. To begin with, we can decompose the global error as

105 (tn) = 67y = @0 (w5 (1)) — @2 ((0))|

Hm

< 5 [0 5 (i) — 957 ()
k=0

H

forn=1,...,|T/7]. We now apply the stability estimate from Lemma 4.18 (iii) k times in
each addend. In each application, the constant Cg therein depends on the norm of the two
arguments involved, i.e. on ||®1 (@Z’E(tn—k))HHa and || @71 (wg(tn—k—l))HHav j=k—1,...,0.
However, according to Assumption 4.21, all those norms are uniformly bounded, such that
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we can always choose the same constant Cg in the stability estimate. We thus obtain

I
—

n

19 (tn) = 9"l < DL+ Com)* 9 (tnr) = Br (¥ (b))l

T T
= O

(1 + CST)k H\I]T (w5<tnfk71)) - (wa(tnfkfl))u
0

Hm

i

Next, Assumption 4.20 enables us to apply the local error estimate from Lemma 4.19 with
ug = Y= (tp_k—1). This yields

n—1 3
.
12 (tn) = "2 < (1 + Cs7)*Cp min {6, max {2, 73}} .
k=0
Since
k " _ CsT
(1+Cg7) :<1+CSI<:) <eVstk < evs and nt=t, <T,
the estimate

3
€ YR TN CsT . T 2 3
| (tn) — ||Hm < ne Cme{ . , max {T e, T }}
{7—2 2 }
—,max{ra,v' }
€

follows, which yields the claim. O

< Te%TCp min

Since the minimum in the right-hand side of (4.96) is at most é, Theorem 4.22 implies that
the ORSM is second-order convergent in the time step size, but the error constant involves the
factor € in the denominator. This means that the error constant grows linearly for decreasing
e. However, if Strang splitting is applied to the classical decomposition (4.1) of the NLDE,
then even in the best case 7 < 2 the error constant increases quadratically with decreasing e,
as discussed in Section 4.1. The ORSM thus gives a significant improvement over the TSFP
scheme.

On top of that, Theorem 4.22 predicts an even smaller error in some step sizes regimes. To
understand this, note that for the minimum in the right-hand side of (4.96), we have

2

) T, e<T,
T
mln{,max{Te,TQ}}: Te, €2 <71 <e¢, (4.97)
3 2
2
=, v <en

This means that for step sizes 7 > ¢, the error of the ORSM is proportional to 72 with a

constant that does not grow with decreasing e. For €2 < 7 < ¢, there is still some improvement
T2 : T2 72 CR

compared to the - bound since 7e = Z&“ < —-. This improvement gets smaller the closer 7

is to £2. Both facts are especially worth mentioning since the classical TSFP scheme shows a

very irregular error behavior for 7 > €2, cf. Figure 4.1. In particular, the error of the TSFP

scheme seems to be of O(1) in the worst case.

Remark 4.23. In Theorem /.22, we assumed that the eract solution of the NLDE and
the potentials are in H™S for some m > 2. Those assumptions then allowed deriving a
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global error bound in H™. In contrast to that, for the EEMR and the NRNPI schemes from
Chapters 2 and 3, we analyzed the global error in L?. Here, we only made the significantly
less strict assumption that the exact solution and the potentials are in H*. According to
[Bao+16b], the same regqularity is also required for an L? error bound of the TSFP scheme.

We conjecture, however, that the assumption m > 2 could be avoided in the sense that a global
error bound in L? with the same right-hand side as (4.96) can be proven if the evact solution
and the potentials are in HS. To do this, one would have to derive a local error bound and
a stability estimate in L* based on estimates of the form (2.17) and (2.18), similar as in the
previous chapters. Since the constant in the stability estimate would then depend on the H?-
norms of the functions involved, the uniform boundedness of the numerical approximations
in H? for all € and all step sizes T below an e-independent threshold 19 would be required, as
in Eq. (2.48) or in Assumption 3.10. This bound could be proven in the same way as (2.48).
Since the procedure is identical as in the previous chapters, we refrained from doing so here.
Instead, we only presented the error analysis in H™, m > 2, where the algebra property makes
things easier.

4.6 Numerical experiments

To close this chapter, we validate the global error bound of the ORSM from Theorem 4.22 in
a numerical experiment. We will see that in many cases, the error is even smaller than one
would expect from the theorem. Apart from that, we observe the efficiency of the new splitting
scheme in this section, in particular compared to the TSFP scheme (4.4). Furthermore, we
take a brief look at Lie splitting applied to the classical or the new splitting, i.e. (4.1) or
(4.12), of the NLDE.

All experiments are carried out on the 1D-version of the NLDE from Sections 2.4 and 3.5.1,
for which the splitting approach and the approximation of solutions of the subproblems,
including the error analysis, can be conducted in the same way as in the 3D-case. The only
difference is that in Assumption 4.20, we can replace the condition m > 2 by m > 1, since
this is sufficient for H"(R) being an algebra. We will also use the same strategy for the
truncation of the domain and for space discretization as in the aforementioned sections, with
the same number of gird points 2M = 256. Further, we employ identical data. In all plots,
we observe the error at time 7" = 1 of approximations obtained via the methods described in
the previous sections compared to reference solutions that are computed on the same spatial
grid with MATLAB’s ode45-solver applied with very small tolerances.

4.6.1 Accuracy

In the first experiment, we observe the H'-error of the ORSM in dependency of the step size
7. For a periodic function v € (H™(T([a, b])))2 with T([a,b]) = R/(b— a)Z, the H™-norm of

v is approximated by
M 2\ ™
271']43 —~ 12
”UHH"" ~ $ Z <1 + <b— CL> ) ‘vk‘Q)
k=—M

where vy, k € Z, are the Fourier coefficient vectors of v. The results for three different values
of € are depicted in Figure 4.4 in logarithmic axis. The results indeed obey the error bound
from Theorem 4.22, but there are even many cases where the error is smaller than expected.
To understand this, let us consider the different step size regimes from (4.97) one after the
other.
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Figure 4.4: H'-error of the ORSM at time T = 1 in dependency of the time step size 7 for
2
three different values of e. The dotted reference lines are of the form C'*- for a joint constant
C. The vertical lines mark the step sizes 7 = kne?, k= 1,...,10 for the value € = 0.005.

For 7 > ¢, the results correspond to the assertion from Theorem 4.22. An error proportional
to 72 can be observed, as a comparison to the dashed, black, second-order reference line shows.
The error for the different values of ¢ cannot be distinguished, confirming the independence
of the error constant of ¢.

Unexpectedly, the same holds for most step sizes in the regime €2 < 7 < e. Only for some
unfavorable step sizes, very thin peaks appear. The value of those unfavorable step sizes can
easily be identified from the plot. They are the multiples of 7e?, as the vertical lines reveal
for the smallest of the three values of €. Similar step sizes were identified as resonant step
sizes for the NRNPI-scheme from Chapter 3, cf. Eq. (3.46). Since the value of those step sizes
is known, it is no problem to avoid them. But even for those unfavorable step sizes, the error
does not grow arbitrarily large. Instead, the height of the furthermost left peak for each value
of £ (corresponding to the step size 7 = 7e?) is C é for a constant C independent of . This is
confirmed by the colored, dotted reference lines. Those lines all have the form C 7?2 for a joint
constant C, and they “touch” the furthermost left peak at its largest value. All other peaks
stay below those reference lines, which is what we would expect from Theorem 4.22 together
with Eq. (4.97). Similarly, for step sizes 7 < 2 (i.e., further left than the furthermost left
peak), the error is of order O(7?) independently of ¢.

Since the uniformity of the error for step sizes in the regimes 7 < 2orel<r< g, but
not close to the values kme?, k € N, was not observed in the local error plots in Figures 4.2
or 4.3, this improved error behavior seems to be due to nonresonance effects in the error
accumulation, possibly similar as in Chapter 3. To understand this, a detailed analysis of
the structure of the local error terms that are in O<§> would be required. The source of
those error terms is the approximation from Lemma 4.11. As an alternative to the bound
established in the lemma, one can deduce the representation

t .
etPey — e!Poy = —2iesin (2) REroly, vE (Hm(R3))4
£

of the error from its proof. What this representation implies for the structure of the O(?)

local error terms and thus what the exact reason for the improved global error is, however,
remains an open research question.
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Figure 4.5: L?-error at time T = 1 of the ORSM (solid lines) and of the TSFP scheme (dotted
lines) in dependency of the total number of discrete Fourier transforms required in the course
of all time steps.

Overall, the accuracy of the ORSM for a fixed step size 7 is far superior to that of the TSFP.
However, one has to keep in mind that each time step of the former scheme is more expensive
than a time step of the latter. Nevertheless, a large efficiency gain remains, as we will discuss
in the next subsection.

The remaining experiments all include comparisons of the ORSM to other methods. For
most of those methods, bounds of the L2-error have been studied. This is why from now on,
we will always measure the error in L? (instead of, e.g., H' as above). Of course, the error
bound in H™ from Theorem 4.22 trivially implies the same bound for the error in L?.

4.6.2 Efficiency

Here, we want to observe if the improved accuracy of the ORSM compared to the TSFP
indeed yields an efficiency gain, i.e. if better accuracies can be achieved for fixed computation
times. A fair comparison of the efficiency of different methods is difficult since the runtime
of a numerical method heavily depends on the implementation (e.g. avoiding unnecessary
computations, vectorization and parallelization of operations, ...). However, after space
discretization, the most expensive operations that have to be carried out for computing a
time step of any method discussed in this work are (discrete) Fourier transforms and inverse
Fourier transforms. Thus, an alternative approach to assess efficiency of the different methods
is to observe the number of discrete Fourier transforms required. For a single time step of
the ORSM or the TSFP scheme, this number has been discussed in Remark 4.15.

In the next numerical experiment, both methods are applied for several different step sizes.
In each application, the error at time T = 1 is observed and the total number of Fourier
transforms for all time steps required to reach time T = 1 is counted. The results are
depicted in Figure 4.5. Since the number of Fourier transforms is proportional to the number
of steps IV, and thus inversely proportional to the step size 7, the error of the ORSM is in
O(#FFT~2) uniformly in € apart from the peaks corresponding to unfavorable step sizes
(see also the black reference line). For the TSFP scheme, we again have to distinguish the
cases T < €2 (corresponding to a large number of time steps and thus of Fourier transforms)
or 7 > e2 (corresponding to small FFT numbers). In the first case, the error again decreases
quadratically with increasing number of FF'Ts, but with an error constant that is proportional
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Figure 4.6: L?-error at time 7' = 1 in dependency of the step size 7 for Lie splitting applied
to the new splitting (4.12) (left) or the classical splitting (4.1) (right) of the NLDE.

to 6% In contrast to that, one can again see the irregular error behavior in the second case.
The plot shows that in all cases, the ORSM is clearly more efficient for all three values of ¢
depicted. Even though each of its time steps requires more Fourier transforms, it achieves
better accuracies for a fixed number of FFTs. This also holds at those points where peaks
appear due to unfavorable step sizes, but the largest efficiency gain is of course obtained for
step sizes not too close to them. Since the error constant of the TSFP scheme is proportional

to E% (in the step size regime 7 < £2), the efficiency gain is particularly large for small values
of e.

4.6.3 Lie splitting

As supplementary information, we briefly discuss what error behavior one could expect if Lie
splitting instead of Strang splitting was applied to the new splitting (4.12) of the NLDE. In
the proof of Lemma 4.9, we have seen how the local splitting error of Strang splitting can
be related to the error of Lie splitting steps (with different orders of the subproblems), and
we have analyzed the latter, cf. (4.47) and (4.49). In particular, this analysis directly yields
that the local error of Lie splitting steps is of O™ (72) uniformly in e, and approximating the
projectors I1F by the matrices H(jf is not necessary. Globally, one would thus expect uniform
first order convergence if the subproblems could be solved exactly. This is confirmed by the
left panel of Figure 4.6. Here, Lie splitting is applied to the splitting (4.12). When doing so,
the solutions of the LDE- and the NL-subproblems are approximated by MATLAB’s ode45-
solver with very small tolerances, such that the approximations can be considered as exact.
For comparison, Lie splitting is also applied to the classical splitting (4.1) of the NLDE in the
right panel of Figure 4.6. As for Strang splitting, a very irregular error behavior is observed
for step sizes T > 2. For 7 < €2, linear convergence is observed, with an error constant that
seems to increase only slightly with decreasing e.
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Chapter 5

Conclusion and outlook

This thesis addressed the construction of time integration schemes for the NLDE in the
nonrelativistic limit regime. Three novel methods have been presented. The EEMR from
Chapter 2 allows approximating solutions of the NLDE with accuracies up to (’)(52) very
efficiently. However, since it only approximates solutions of the semi-nonrelativistic limit
system, it cannot achieve better accuracies. If an error of O(e?) is not sufficient, the more
sophisticated NRNPI or ORSM schemes have to be employed. For the NRNPI from Chap-
ter 3, we proved that the error is proportional to 72 for nonresonant step sizes 7 > we?/4
and to 7e? for smaller step sizes. In particular, in the former step size regime, it has the
same accuracy as the NPI-2 scheme, even though many terms from the flow of the NPI-2
scheme were simply discarded. In numerical experiments, we observed that this can indeed
bring a significant efficiency gain. Finally, we proposed the ORSM scheme in Chapter 4.
This scheme was based on a splitting of the NLDE into several subproblems. We have seen
that approximations of solutions of those subproblems can be obtained far more efficiently
than of the full NLDE. Furthermore, we have analyzed the splitting error and obtained an
O(min {%2, max {7¢, 72}}> error bound after all. The numerical experiments suggested that

the error is even in (’)(7‘2) for all 7 and ¢ if some resonant step sizes are avoided.

The accuracy of all three methods in dependency of the step size and of the number of
(inverse) Fourier transforms conducted is compared in Figures 5.1 and 5.2, respectively. This

, £=10.02 e =001 £ =10.005
5 10°
£
Qe
~ 10%¢ i
I
& 10
<L
g —e—EEMR
i . —o—NRNPI
S 1078} L UTSS |4
e} ___'0(7_2)
S
104 107 1072 1010 107 1072 1010 107 1072 107!

step size T step size 17 step size T

Figure 5.1: L%-error of the EEMR (blue), the NRNPI (red) and the ORSM (yellow) at time
T =1 in dependency of the step size 7 for ¢ = 0.02 (left), ¢ = 0.01 (middle) and € = 0.005
(right). Only optimal step sizes were used for the NRNPI, and resonant step sizes were
avoided for the ORSM.
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Figure 5.2: As Figure 5.1, but with the error depicted in dependency of the total number of
discrete Fourier transforms required in the course of all time steps

not only summarizes the results of all chapters, but also facilitates the choice of an appropriate
method for users. In both figures, the three methods are distinguished by different colors,
and the results are depicted for three different values of ¢ in the columns. The NRNPI has
only been applied with optimal step sizes, and for the ORSM, resonant step sizes have been
avoided.

In Figure 5.1, one can see that for large step sizes 7 > ¢, all three methods achieve roughly the
same accuracy. This is what one would expect from the error analysis. The error constant of
the ORSM seems to be slightly smaller than of the other two methods. Nevertheless, thanks
to the very simple iteration procedure, the EEMR is the most efficient of all three schemes in
this regime, as a look at Figure 5.2 confirms. For step sizes ¢ < 7 < £2 (up to some constants),
from the theory we would expect the NRNPI to overtake the ORSM in terms of efficiency at
some point (under the assumption that resonant step sizes are avoided), as we were only able
to prove an O(7e) error bound for the ORSM in this regime, cf. (4.97). However, since in
this numerical experiment, an error proportional to 72 is in fact observed for the ORSM and
since the splitting approach provides significant benefits for the computational work required
in each time step, the ORSM is the most efficient in this step size regime. This also holds for
step sizes 7 < 2. Here, the ORSM is the only scheme that is second order convergent in 7.
The fact that the expected factor of ¢ in the denominator of the error bound does not seem
to appear in practice further enhances the efficiency gain of the ORSM.

In Figure 5.2, the ORSM is always more efficient than the NRNPI. On top of that, the
construction of the NRNPI required first deriving the full NPI-2 scheme, and even though
the numerical flow of the latter has been simplified substantially, the numerical flow of the
NRNPI is still rather complicated. This makes implementation and debugging of the NRNPI
difficult. In contrast to that, the splitting approach used in the ORSM is easily explained,
and the numerical flows used to approximate the subproblems are comparably simple. This
suggests that the ORSM is in every respect superior to the NRNPI scheme. However, one
has to keep in mind that the improved error behavior (compared to the error bound) of
the ORSM is not always guaranteed, as it has so far not been explained analytically. In
theory, there might be data for which the NRNPI is in fact more efficient than the ORSM
in certain step size regimes. Furthermore, to establish our error bounds, stronger regularity
assumptions (in particular on the initial data and on the potentials) have been made for the
ORSM than for the NRNPI.

We believe that the improved accuracy that has been observed for the ORSM is systematic.
Proving this must be an important goal for future research considering the other favorable
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properties of the ORSM. On top of that, a new, special technique of splitting a PDE into
several subproblems, namely to include certain terms in all subproblems and to “rewind”
them in between, has been used for the construction of the ORSM. This raises the question
whether this strategy can also bring benefits for PDEs other than the NLDE. Exploring this
is another interesting topic to work on.
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