KIT | KIT-Bibliothek | Impressum | Datenschutz

General Compilation and Mixed-Precision Partitioning: A Combined Approach for Adaptive On-Device Learning

Topko, Iuliia ORCID iD icon 1; Kreß, Fabian ORCID iD icon 1; Harbaum, Tanja ORCID iD icon 1; Becker, Jürgen 2
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The application of machine learning (ML) is becoming more widespread, with a growing number of use cases. The development of centralized data training and the exponential growth of data generation raise significant privacy and security concerns. To mitigate these issues, on-device transfer learning (TL) offers the ability for models to adapt to local data without relying on a cloud connection. TL can leverage the knowledge gained from pre-trained models, hence, accelerating the training process. In parallel, ML compilers have become an essential tool for deploying ML models on a wide range of hardware platforms. However, current ML compilers focus on optimizing inference, neglecting on-device TL that can address real-world challenges, such as model performance degradation and distribution shift. This article proposes a mixed-precision partitioning algorithm, which identifies optimal partitioning layers for retraining, and a general compilation approach, based on Apache TVM, that enables on-device TL for embedded systems. We provide performance measurements for embedded graphics processing units (GPUs), central processing units (CPUs), and an artificial intelligence (AI) accelerator, demonstrating a simplified deployment process for deep neural networks (DNNs) with integrated on-device training capabilities.


Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 1063-8210, 1557-9999
KITopen-ID: 1000185223
Erschienen in IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 33
Heft 11
Seiten 2975–2983
Nachgewiesen in Web of Science
Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page