KIT | KIT-Bibliothek | Impressum | Datenschutz

Neuro-fuzzy control of commercial vehicles braking

Vučinić, Veljko ORCID iD icon 1; Aleksendrić, Dragan
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract:

Increasing dynamic performance and the general level of automation of commercial vehicles emphasize the issue of safety. Modern braking systems focus on sustaining vehicle stability, often degrading the brake performance. The major downgrades of the braking performance are nearly impossible to model using a classical mathematical approach, making them not feasible to use in real braking system controllers. In this paper, the use of combined Neural Networks and Fuzzy logic for the control of the braking system of a commercial vehicle while maximizing performance and sustaining stability is proposed. The control system comprises adhesion estimation, an inverse brake model, and a fuzzy logic controller to keep the system giving optimal control signals in various brake conditions while sustaining vehicle stability and steerability. The results based on a semi-trailer system reveal the success of the proposed AI-based braking system algorithm while braking under varying conditions.


Postprint §
DOI: 10.5445/IR/1000185229
Frei zugänglich ab 16.09.2026
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 16.09.2025
Sprache Englisch
Identifikator ISSN: 1432-7643, 1433-7479
KITopen-ID: 1000185229
Erschienen in Soft Computing
Verlag Springer
Band 29
Heft 17-18
Seiten 5449–5464
Vorab online veröffentlicht am 15.09.2025
Schlagwörter Braking system, Fuzzy logic, Artificial neural networks, Vehicle safety, Active safety
Nachgewiesen in OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page