KIT | KIT-Bibliothek | Impressum | Datenschutz

Minkowski tensors for voxelized data: robust, asymptotically unbiased estimators

Hug, Daniel ORCID iD icon 1; Klatt, Michael A.; Pabst, Dominik 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

Minkowski tensors, also known as tensor valuations, provide robust $n$-point information for a wide range of random spatial structures. Local estimators for voxelized data, however, are unavoidably biased even in the limit of infinitely high resolution. Here, we substantially improve a recently proposed, asymptotically unbiased algorithm to estimate Minkowski tensors for voxelized data. Our improved algorithm is more robust and efficient. Moreover we generalize the theoretical foundations for an asymptotically bias-free estimation of the interfacial tensors to the case of finite unions of compact sets with positive reach, which is relevant for many applications like rough surfaces or composite materials. As a realistic test case, we consider, among others, random (beta) polytopes. We first derive explicit expressions of the expected Minkowski tensors, which we then compare to our simulation results. We obtain precise estimates with relative errors of a few percent for practically relevant resolutions. Finally, we apply our methods to real data of metallic grains and nanorough surfaces, and we provide an open-source python package, which works in any dimension.


Volltext §
DOI: 10.5445/IR/1000185262
Veröffentlicht am 02.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000185262
Verlag arxiv
Umfang 40 S.
Schlagwörter Statistics Theory (math.ST), Disordered Systems and Neural Networks (cond-mat.dis-nn), Metric Geometry (math.MG), Probability (math.PR), 94A08, 68U10, 60D05, 53C65, 28A75, 62H35, 52A22
Nachgewiesen in OpenAlex
arXiv
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page