

Institute for Technical Physics (ITEP)

Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen, DE Poster-ID: 1-LP-IS.4 quoc.pham@kit.edu

Scaling Laws of Fully Superconducting H-Bridge Converter

Authors: Quoc Hung Pham and Prof. Dr.-Ing. Mathias Noe

Efficiency

since the resistance in on-state is zero, no voltage drop occurs across the switch and the output voltage is equal to the input voltage.

$$\eta_{\text{el}} = \frac{P_{out}}{P_{\text{in}}} = \frac{v_{\text{out}} \cdot i_{\text{out}}}{v_{\text{in}} \cdot i_{\text{in}}} = \frac{i_{\text{out}}}{i_{\text{in}}} = \frac{1}{1 + \frac{2R_{\text{load}}}{R_{\text{off}}}}$$

$$0.8$$

$$0.6$$

$$0.995$$

$$0.4$$

$$0.995$$

$$0.985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9885$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$

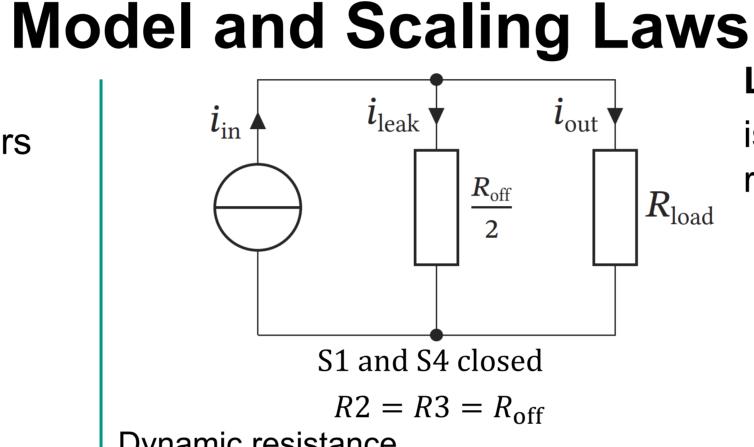
$$0.9985$$

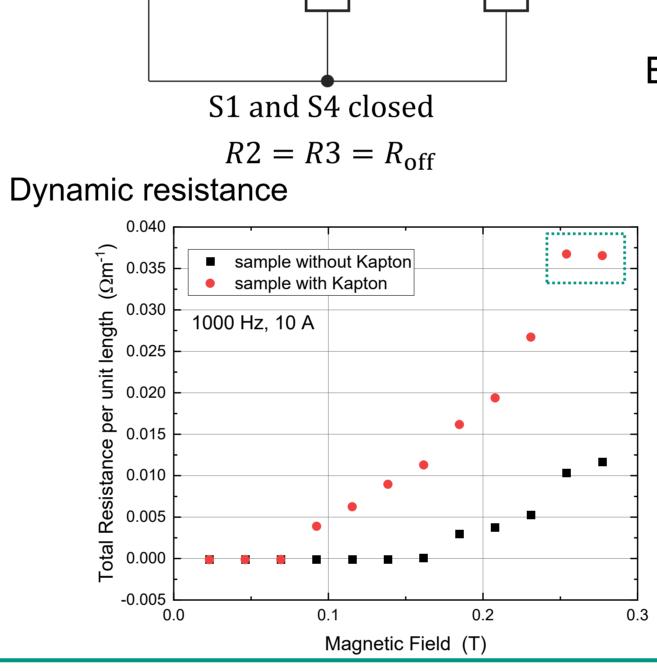
$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.9985$$


$$0.9985$$


$$0.9985$$

$$0.9985$$

$$0.9985$$

$$0.$$

Leakage Current / Voltage

is dependent on the off-state resistance R_{off} and the load resistance R_{load}

$$i_{\text{leak}} = \frac{2R_{\text{load}}}{R_{\text{off}}} i_{\text{out}}$$

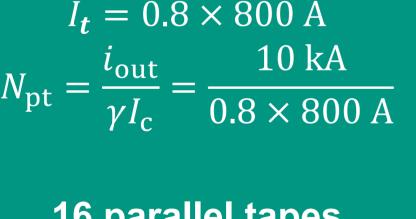
 $\mathsf{IR}_{\mathsf{load}}$

Example: $i_{\text{leak}} = 0.01i_{\text{out}}$, $v_{\text{out}} = 10 \text{ V}$, $i_{\text{out}} = 10 \text{ kA}$ $R_{\text{load}} = \frac{10 \text{ V}}{10 \text{ kA}} = 1 \text{ m}\Omega$ $R_{\text{off}} = \frac{2R_{\text{load}}}{0.01} = 0.2 \Omega$

$$R_{\rm off,tape} = 16 \times R_{\rm off} = 3.2 \ \Omega$$
 $l_{tape} = \frac{R_{\rm off,tape}}{R_{\rm tot}}$

Datasheet	Fujikura
Width	12 mm
Ic	880 A
Substrate	Hastelloy C276, 38 µm ± 3 µm
Silver	2 μm top / 1 μm bottom
Sc	2.8 um

Demonstrator Design and Optimization


Objective: Design of a fully superconducting H-bridge inverter with an output voltage 10 V and a current of 10 kA.

Step 2

Determines number of parallel HTS tapes. $I_t = 0.8 \times 800 \,\text{A}$

Step 1

Current capacity

16 parallel tapes

Determines minimum off-state resistance. $i_{\text{leak}} = 0.01 i_{\text{out}}$ $R_{\text{load}} = \frac{\mathbf{10 V}}{10 \text{ kA}} = 1 \text{ m}\Omega$ $R_{\rm off} = 2R_{\rm load} rac{i_{
m out}}{i_{
m leak}}$ $R_{\rm off,min} = 0.2 \Omega$ $R_{\rm off,tape} = 16 \times 0.2 \,\Omega$

 $=3.2 \Omega$

Output voltage / Leakage current

Parameter	HTS tape (old)	HTS tape	HTS tape
Width (mm)	12	12	48
Critical current (A)	338	800	3200
Off-state resistance (mΩm ⁻¹) (measured)	119.8	35	35
Number of parallel tapes per switch	37	16	4
Sc length per switch (m)	2300	1448	90.5
Total length (km)	10.1	6.3	0.398

Step 3 Tape length of one switch In active magnetic field

$$R_{\text{tot}} = 35 \text{ m}\Omega\text{m}^{-1}$$
(at 1000 Hz / 207 mT)
$$l_{tape} = \frac{3.2 \Omega}{0.035 \Omega\text{m}^{-1}}$$
= 91.43 m

 $16 \times 91.43 \text{ m} = 1.45 \text{ km}$

Step 4 Tape length of the whole circuit 4 switches and interconnection (additional 10 %)

6.3 km

- For a 10 V / 10 kA demonstrator with a state of the art superconductor a total of 6.3 km of superconducting tape is needed
- Less parallel strands are needed to meet the design current capacity
- 40 % reduction in tape length compared to a superconductor with ~0.5 Ic
- Further optimization:
 - Prospect width of 40 mm to 120 mm from various manufacturers
 - Higher critical current, therefore less parallel tapes
 - Same dynamic resistance

Conclusion and Outlook

- Upscaling of a superconducting inverter based on experiments and measurements towards an output of 10 V and 10 kA.
- The required conductor lengths depend heavily on the critical current of the superconductor. State-of-the-art conductors require lengths of 6.3 km.
- The use of wider superconductors significantly reduces the length of the superconductor in the magnetic field by 90%.
- Experimental investigation of wide superconductors is necessary in order to build a larger demonstrator.