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Abstract

A neural network-based method is developed to fast optimize EMC3-EIRENE input parameters,
enabling EMC3-EIRENE to produce synthetic data that closely match experimental
measurements on Wendelstein 7-X. Initially, an EMC3-EIRENE simulation database covering a
range of key input parameters is generated. Trained on this database, a feed-forward neural
network (FNN) surrogate model efficiently maps EMC3-EIRENE input parameters to synthetic
signals corresponding to experimentally observed physical quantities. Subsequently, the trained
surrogate model is incorporated into a Bayesian inference framework with Dynamic Nested
Sampling to infer posterior distributions of the EMC3-EIRENE input parameters. In this step,
the FNN-predicted synthetic data are compared with the experimental data, and the likelihood
function explicitly accounts for the measurement uncertainties of the selected diagnostics.
EMC3-EIRENE simulations using the maximum a posteriori estimates derived from these
posterior distributions reproduce experimental measurements with satisfactory accuracy.

a See Grulke et al 2024 (https://doi.org/10.1088/1741-4326/ad2f4d) for the W7-X Team.
Authors to whom any correspondence should be addressed.
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This neural network-based method significantly reduces computational costs and the need for
manual parameter tuning, and it can be generalized to other similar modeling codes.

Keywords: machine learning, Bayesian inference, EMC3-EIRENE, Wendelstein 7-X

(Some figures may appear in colour only in the online journal)

1. Introduction

Edge plasma transport modeling plays a crucial role in under-
standing edge plasma behavior and optimizing the design
of fusion devices. This is particularly important for devices
with complex three-dimensional edge structures, such as
Wendelstein 7-X (W7-X), where boundary diagnostics are
limited to localized regions, complicating transport analysis.
The three-dimensional transport code EMC3-EIRENE [1],
which integrates the fluid model EMC3 [2] with the kinetic
neutral particle transport code EIRENE [3], can effectively
handle configurations with complex edge structures, and has
been widely applied in both tokamaks and stellarators for
interpreting experimental observations and conducting pre-
dictive simulations [4—12]. However, since EMC3-EIRENE
describes anomalous transport with a diffusion model, free
input parameters (the cross-field transport coefficients) are
unavoidable and need to be determined by comparison with
the experimental data. Achieving alignment between EMC3-
EIRENE simulations and diagnostic measurements typically
requires repeated manual parameter adjustments, making the
process both time-consuming and computationally intensive.
To overcome this problem, it is essential to establish a clear
relationship between EMC3-EIRENE input parameters and
the experimental measurements, and to develop an automated
procedure that rapidly determines the code inputs. In this con-
text, a neural network-based surrogate model provides a prom-
ising solution.

Recently, machine learning has been widely applied in
fusion research, including the plasma control [13-15], dis-
ruption predictions [16-18], and simulation accelerations
[19-21], owing to its exceptional capabilities in classifica-
tion, regression, and pattern recognition. In this study, we
propose a combined approach that integrates a feed-forward
neural network surrogate model with a Bayesian inference
framework utilizing Dynamic Nested Sampling [22]. Initially
trained on an EMC3-EIRENE simulation database, the feed-
forward neural network (FNN) surrogate learns relationships
between input parameters and the synthetic signals of selec-
ted diagnostics. Bayesian inference is then employed to sys-
tematically determine the posterior distributions of EMC3-
EIRENE input parameters by quantitatively comparing the
surrogate-generated synthetic data with experimental meas-
urements, explicitly incorporating measurement uncertainties.
Notably, this process can be completed within minutes on a
standard office computer. By using this approach, multiple
repetitions of EMC3-EIRENE simulations that were tradition-
ally required can be simplified into a single simulation. At the

same time, it ensures that the simulation results closely align
with experimental diagnostic data within the capabilities of
EMC3-EIRENE.

The remainder of this paper is organized as follows:
section 2 details the experimental diagnostics and the database
generation for neural network training. Section 3 presents the
neural network architecture and Bayesian inference method.
In the section 4, the performance of the proposed method is
comprehensively evaluated using experimental data. Finally,
section 5 summarizes this work.

2. Experimental diagnostics and dataset generation

W7-X is a five-fold symmetric, quasi-isodynamic stellarator
equipped with an island divertor [23, 24]. Its magnetic config-
urations are established by adjusting the currents in both planar
and non-planar toroidal coil sets [25], and are commonly clas-
sified by the rotational transform at the plasma edge, ¢, = n/m,
where n and m are the toroidal and poloidal mode numbers,
respectively.

For this study, an EMC3-EIRENE simulation database has
been generated under the standard magnetic configuration
(tg = 5/5), and the analysis presented here focuses exclus-
ively on experiments performed in this configuration. The
edge diagnostics used to optimize the EMC3-EIRENE input
parameters include: (1) Divertor spectroscopy [26, 27], which
detects CII line emissions (426.8 nm) in the divertor region;
(2) Thomson scattering (TS) [28], providing radial electron
density and temperature measurements; (3) Divertor Langmuir
probes (LPs) [29], which measure ion saturation currents on
the horizontal divertors; (4) Divertor thermography [30], cap-
turing heat flux data on divertors. These diagnostics are chosen
because they are routinely available on W7-X and, together,
cover the plasma state both upstream and downstream in the
scrape-off layer (SOL). Figure 1(a) illustrates the locations of
these diagnostics on W7-X, and figure 1(b) shows the hori-
zontal line of sight (LOS) for the divertor spectroscopy at the
AEI 51 port, which covers a measurement range of 1 cm—
14.5 cm from the horizontal target plate. Since the current
EMC3-EIRENE physical model does not account for error
fields (which are also not exactly known experimentally) and
drift effects, it is unable to reproduce any up-down asym-
metry seen in experiments. Therefore, the ion saturation cur-
rents from the upper and lower divertor Langmuir probes are
averaged for comparisons between experimental and simu-
lated data. A similar approach is taken with the IR camera heat
flux measurements, where data from a cross-section near the
divertor Langmuir probes are selected.
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Figure 1. (a) The diagram of relevant diagnostic positions in W7-X, and () the horizontal line of sight (LOS) for the divertor spectroscopy.

To train the neural network model, an EMC3-EIRENE
simulation database is created for the standard configuration
of W7-X with a heating power of 6 MW. This database con-
sists of four independent parameters, namely the radiation
power fraction fy,q4, the separatrix electron density n, sep, and
the cross-field particle and thermal diffusivity D and y ;. It
contains 260 simulation cases, each randomly sampled from
all possible combinations of four radiation power fraction
levels (frag = 0.2, 0.4, 0.6, 0.8), nine separatrix electron dens-
ities (nesep = 2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0 x
10" m~3), five cross-field particle diffusivities (D =
0.3,0.5,0.7,0.9,1.1 m?> s~ 1), and four thermal diffusivities
(x1=0.6,09,1.2,1.5m?s™!). The cross-field particle dif-
fusivities of the main plasma species (hydrogen) and carbon
impurities, as well as the cross-field thermal diffusivities of
ion and electron, are set equal and assumed to be spatially uni-
form. In these simulations, carbon sputtered from the divertor

ok—

>, PECSY, menst + Y2 PECUS)

and baffle targets is the only radiator, with its source con-
trolled by the total radiated power. After setting the total
radiated power P4, EMC3-EIRENE iteratively solves the
plasma fluid, impurity transport and neutral equations until
the plasma parameters converge. During the iterative process,
the impurity transport model incorporates the ADAS database
to determine the carbon sputtering flux automatically. For the
FNN surrogate model, the input layer comprises these EMC3-
EIRENE input parameters, and the output layer represents the
synthetic signals generated by each simulation for the above-
introduced edge diagnostics. Most of the synthetic quantities
can be directly obtained from the standard EMC3-EIRENE
outputs, with the exception of the divertor CII signal. The latter
is integrated along the LOS of the divertor spectroscopy, using
the plasma density and temperature from EMC3-EIRENE and
the photon emissivity coefficient (PEC) data from ADAS [31].
The C II signal is calculated from

(z+l (CX)

p k—s1Tlel +>_,PEC,

LCII = Z AS[Z (wij
i J

where Ly denotes the line-emission radiance, the calibrated
quantity routinely reported by spectroscopic diagnostics. As;
is the length of the ith LOS segment, and wj; is the ratio of the
overlap volume between grid cell j and LOS segment i to the
total volume of segment i. PEC™*®, PEC™ and PECX are the
photon emissivity coefficients for excitation, recombination
and charge exchange, respectively. n, is the electron density,
nst is the density of the z-times-ionized ion in metastable state
0, ny is the neutral-hydrogen density, p is metastable state, and
k, I label the upper and lower atomic levels. The factor wj; is
estimated with a Monte Carlo method. First, N; random points
are distributed inside LOS segment i. The ratio N" , where Nj; is

4 M)

n(z+1)+>

the number of points located inside grid cell j, yields wy;. This
approach avoids geometric intersection calculations. Finally,
standardization or normalization is crucial for handling the
wide variations in scale and range across different diagnostic
data. Without these preprocessing steps, large discrepancies
between feature ranges can cause gradient-based optimization
methods (e.g. backpropagation [32, 33]) to become skewed
toward features with larger numerical values, thereby hinder-
ing effective learning and making convergence more difficult.
In this work, all synthetic data are scaled by max-value nor-
malization. For each synthetic point we first find its maximum
value across the entire data set and then divide every sample by
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Figure 2. (a) Overall workflow of the proposed surrogate-assisted Bayesian inference method, (b) schematic representation of the

feed-forward neural network architecture.

this value. This places every feature in the [0, 1] range and pre-
vents variables with larger numerical values from dominating
the training process.

3. Methods

This section introduces the method for rapidly determining
EMC3-EIRENE input parameters that align with experimental
data. This method primarily comprises two stages: (1) con-
struction and training of a neural network surrogate model, and
(2) Bayesian inference employing Dynamic Nested Sampling.
The overall workflow and the neural network architecture are
illustrated in figure 2. In brief, the neural network serves as a
fast shortcut: for any trial set of EMC3-EIRENE input values
it instantly predicts the synthetic data that the full code would
produce. The Bayesian framework compares the synthetic data
predictions with the experimental measurements and, through
the measurement uncertainties, evaluates the likelihood of
each trial. This yields a probability-weighted rating of how
well every input set reproduces the measurements. Working
together, these two steps enable rapid exploration of the input
space while still providing reliable, uncertainty-aware estim-
ates of the best-fit parameters. The two stages are discussed in
detail in sections 3.1 and 3.2.

3.1. Feed-forward neural network

The feed-forward neural network surrogate model employed
here consists of an input layer, multiple hidden layers, and
an output layer, with fully connected neurons between adja-
cent layers. The input layer takes the EMC3-EIRENE input

parameters, the hidden layers perform nonlinear transform-
ations to extract higher-level features, and the output layer
generates the regression values for the synthetic data. Prior
to training, the entire EMC3-EIRENE simulation database—
consisting of input parameters paired with corresponding syn-
thetic diagnostic signals—is maximum-normalized and ran-
domly split into an initial training set (90%) and a test set
(10%). Hyperparameter optimization is conducted on the ini-
tial training set using an 8-fold cross-validation approach. In
each fold, the network is trained using seven subsets, while
the remaining subset validates model performance. The train-
ing loss is quantified by the mean squared error (MSE).
Hyperparameter tuning is executed via random search across
200 trials, incorporating L2 regularization to prevent overfit-
ting. Table 1 lists the hyperparameter search ranges along with
the optimized values. The final FNN architecture consists of
three hidden layers with 128 units per layer, exponential lin-
ear units (ELU) activation functions [34], and a linear out-
put layer. Additional optimized hyperparameters are an L2
regularization coefficient of 2.1 x 1075, a learning rate of
0.0017, and 200 training epochs with the Adam optimizer [35].
Figure 3 presents the mean training (red) and validation (blue)
losses over the eight cross-validation folds obtained with
the optimized hyper-parameters. Both curves stabilize after
roughly 100 epochs and converge to approximately 0.002,
indicating that the network has learned the underlying input-
output relationships. After hyperparameter tuning, the model
is retrained on the full initial training set using these optim-
ized hyperparameters. Performance evaluation on the inde-
pendent test set yields an MSE of about 0.002. The neural net-
work is implemented in TensorFlow [36] using the Keras [37]
frameworks.
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Table 1. Hyperparameter search ranges and optimized settings for neural network training.

Hyperparameters Search space Optimized values
Learning rate 0.0001-0.1 0.0017
Number of hidden layers 2,3,4,5 3
Units per hidden layer 32, 64, 128, 256 128
Batch size 8, 16, 32, 64 16
L2 regularization coefficient 107°-1072 2.1 x 107%
Optimizer Adam Adam
Activation function ELU, ReLU, Leaky, Tanh ELU
Epochs 50, 100, 200 200
0.25 T T T
—Training loss
0.2 —Validation loss|
th 0.15 :
=
@
o 01 4
-l
0.05 71
0
0 50 100 150 200
Epochs

Figure 3. Evolution of average training and validation losses during 8-fold cross-validation with optimized hyperparameters.

A key question is whether the current database is suffi-
ciently large for reliable predictions. To investigate this, the
previously optimized hyperparameters and network architec-
ture are kept fixed, while only the trainset fraction (the pro-
portion of data allocated to training) is varied to examine how
test loss depends on the training set size. Figure 4 demon-
strates test loss versus the fraction of training set, with ten par-
allel training runs performed at each fraction. As the trainset
fraction increases from 0.05 to 0.95, the test loss decreases
and then converges. To quantify the convergence point we fit-
ted the mean loss curve with an exponential decay and eval-
uated how much the loss would still decrease if the trainset
were increased by another 5 %. When this additional gain
is < 1% of the current loss value, the improvement is con-
sidered negligible. According to this criterion, convergence is
reached at a trainset fraction of ~ 0.55. Beyond about 55%
of the full database, adding more samples produces virtually
no further reduction in test loss, indicating that the database is
already dense enough over the explored input parameter space.
Additionally, as the trainset fraction grows, the test losses from
the parallel runs exhibit reduced scatter, suggesting greater
consistency and stability in the model’s performance (i.e. the
model becomes less sensitive to the random split).

3.2. Bayesian parameter estimation via Dynamic Nested
Sampling

After training the FNN surrogate, we embed it in a Bayesian
inference framework employing Dynamic Nested Sampling
[22] to infer the EMC3-EIRENE input parameters that
best reproduce the experimental data. Bayesian inference
can provide the posterior probability distribution of EMC3-
EIRENE input parameters () given the experimental meas-
urements (D) and the FNN surrogate model (M). Bayes’ the-
orem gives

P(D|0,M) P (6|M)
P(DIM)

P(0\D,M) = 2)
where P (01D, M) represents the posterior distribution of the
input parameters 6 given the experimental measurements D
and the FNN model M. P(D|#,M) is the likelihood function
that quantifies the agreement between the FNN-predicted syn-
thetic data and the experimental measurements for a given
set of input parameters 6. P(0|M) is the prior distribution,
representing initial belief about input parameters 6 before
observing the experimental measurements D. P(D|M) is the
evidence (or marginal likelihood), calculated by integrating
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Figure 4. Test loss versus the fraction of the dataset used for training.

over the input parameters 6:
P(D\M) = /P(D\G,M)P(9|M)d9. 3)

A broader parameter space is adopted than that originally
covered by the EMC3-EIRENE database, specifically fi,q =
0.1—0.9, nesep=1-8x10"m™3, D, =0.1—-13m?s™!,
x 1 = 0.3 — 1.8 m?s!. Truncated Gaussian priors are used for
Jraa and n, s, because experimental observations constrain
their feasible ranges, while uniform priors are chosen for
the cross-field particle diffusivity D and thermal diffusiv-
ity x 1. Synthetic data predicted by the FNN for input para-
meters that fall marginally outside the original database still
closely match new EMC3-EIRENE simulations, confirming
that the modest enlargement of the search domain is justified
(see figure 7). In the likelihood function, experimental meas-
urement errors are assumed to be Gaussian. In addition to the
four diagnostics mentioned above, the bolometer-derived radi-
ated fraction frad,exp 1S incorporated to better constrain EMC3-
EIRENE input parameter f;,q. Without this constraint, f;,g may
sometimes deviate significantly from the experimental meas-
urement fraq,exp.- Dynamic Nested Sampling (implemented in
the dynesty package [38, 39]) adaptively allocates samples
based on the likelihood and prior, computes the evidence, and
produces accurate posterior distributions. Compared to stand-
ard Nested Sampling [40, 41], Dynamic Nested Sampling
allocates samples more efficiently, enhancing both parameter
estimation and evidence calculation accuracy. In our work-
flow, dynesty performs the Bayesian inference and a feed-
forward neural-network surrogate of EMC3-EIRENE replaces
the costly forward model. From the diagnostic measurements
and their uncertainties, this method infers the most probable
input parameters (frad, Mesep, D1 and x 1) used for conven-
tional EMC3-EIRENE code. Using these inferred inputs, a
single full EMC3-EIRENE run produces 3D edge-plasma sim-
ulation consistent with the diagnostic measurements.

4. Performance evaluation of the proposed method
using experimental data

In this section, the applicability of the proposed surrogate-
assisted Bayesian method is evaluated by comparing EMC3-
EIRENE simulation results with experimental measurements
from a density ramp-up discharge (#20181010.028) with
the standard magnetic configuration. This discharge cov-
ers different divertor operational regimes for assessing the
performance of the method. Figure 5 shows the temporal
evolution of main plasma parameters during this discharge.
As the line-integrated electron density rises, the bolometer-
detected radiation power increases correspondingly. While
the line-integrated electron density reaches and remains at
the detachment threshold (~ 11.7 x 10'°m~2), the radiation
power gradually increases, eventually establishing a stable
detachment. After 6.5 s, once divertor nozzle hydrogen fuel-
ing is turned off, the plasma density begins to decrease, caus-
ing the radiation level to progressively decline. We selected
three different time points (¢1, 2, and #3) with the correspond-
ing radiation fractions (fi,g = PI; ;‘:H) of 20%, 50%, and 80%,
to assess the performance of the proposed method in different
plasma scenarios.

Before performing Bayesian inference, it is crucial to
quantify the uncertainties for each experimental diagnostic.
Figures 7-9 present detailed diagnostic profiles at each selec-
ted radiation fraction. As the Thomson scattering system on
W7-X was not optimized for boundary measurements, its edge
error bars are relatively large. In this discharge, Thomson
scattering is performed at a temporal resolution of 30 Hz,
and measurements from five consecutive time points around
each selected moment are averaged. The overall uncertain-
ties for Thomson scattering (ors) are estimated by combin-
ing the measurement uncertainties and temporal variability

2 2 :
\/Jmeasurement + o—[ime’ Where Omeasurement 1S

the average uncertainty of the five individual measurements,

as follows o1s =
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Figure 5. Time evolution of a density ramp-up detachment discharge (#20181010.028) on W7-X, including (a) ECRH heating power and
total radiated power, (b) line-integrated electron density, (c¢) diamagnetic energy, and (d) toroidal plasma current. Dashed vertical lines

indicate three specific times selected for parameter estimation.

and oyne 1s the standard deviation of these measurements.
For ion saturation current and heat flux on targets, significant
asymmetries exist between measurements at different divertor
locations, greatly exceeding instrumental uncertainty. Thus,
the uncertainty for these diagnostics is estimated using the
standard deviation of the asymmetric values. For the divertor
CII radiance measurements, the uncertainty has not been pre-
cisely quantified. Therefore, based on empirical experience,
we assume an uncertainty of 30% (i.e. ocy = 30% X Icp).
Similarly, the bolometer-derived radiation fraction uncertainty
is set at 20%.

Figure 6 shows corner plots of the posterior distributions
for EMC3-EIRENE input parameters (frag, e sep, D1 and x 1)
obtained using the proposed method under the three selected
radiation fraction conditions. Diagonal plots display probabil-
ity distribution histograms, with the central dashed lines indic-
ating median parameter values and side dashed lines mark-
ing one-standard-deviation (o) uncertainty intervals. The spe-
cific median values and corresponding uncertainties (4+o and
—o) for each parameter are explicitly indicated above each
histogram. Below the diagonal, joint distributions between
parameter pairs are illustrated. Contours close to circular
indicate weak correlations between corresponding parameters,
whereas elliptical contours with distinctly inclined major axes
suggest stronger linear correlations.

To further validate these predictions, EMC3-EIRENE sim-
ulations were conducted using the input parameters cor-
responding to the maximum a posteriori (MAP) estimate,
which is the parameter set with the highest posterior like-
lihood, and the simulation results were then compared with
the experimental data. For radiation fractions of approxim-
ately 20%, 50%, and 80%, the MAP estimates were determ-
ined to be fag = 0.23, 0.60, and 0.79; nep = 2.92, 5.00,

and 4.87 x10”m~3; D, =1.34, 1.09, and 0.82 m? s~ !;
x 1 = 1.37, 0.82, and 1.34 m? s—'. Figure 7 compares EMC3-
EIRENE simulations, FNN surrogate predictions, and experi-
mental data for the 20% radiation fraction scenario, showing
profiles of electron density n,, electron temperature 7,, hori-
zontal divertor heat flux at a toroidal angle of —82°, divertor
ion saturation current jg,; from divertor Langmuir probes, and
divertor CII radiance measured by the AEI 51 spectroscopy
system. In each plot, black dots or solid lines represent experi-
mental measurements, blue crosses are the FNN surrogate pre-
dictions at the MAP input set returned by the Bayesian infer-
ence (shown only as an intermediate check), and red lines cor-
respond to EMC3-EIRENE simulation results obtained using
the MAP estimates. The FNN predictions and the EMC3-
EIRENE simulations agree well, demonstrating the FNN sur-
rogate model’s good performance in capturing the relation-
ship between the EMC3-EIRENE input parameters and syn-
thetic diagnostic data. Additionally, the EMC3-EIRENE res-
ults match the experimental measurements satisfactorily for
Ne, Te, jsat, and CII radiance, although the simulated heat flux
has a broader profile than the observed data.

For the scenario with a 50% radiation fraction, figure 8
shows that both the target heat flux and ion saturation current
decrease slightly, accompanied by a reduction in asymmetry.
The surrogate model maintains strong agreement with EMC3-
EIRENE simulations, further validating its applicability at
intermediate radiation levels. Comparison of EMC3-EIRENE
simulations with experimental data shows good agreement for
TS n,., T,, divertor heat flux, and divertor ion saturation, but
a discrepancy is observed in the spatial location of the CII
radiance peak. At an 80% radiation fraction, divertor heat flux
and ion saturation current decrease significantly, and impur-
ity ion penetration increases, shifting the CII radiance further
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Figure 6. Corner plots of posterior distributions of EMC3-EIRENE input parameters at different radiation fractions.

away from the target. Figure 9 shows a slight increase in
the difference between the EMC3-EIRENE simulations and
FNN predictions, which may be attributed to relaxed con-
vergence criteria for higher radiation fraction cases in the
training database (where a relative change of less than 1%
is considered converged, compared to less than 0.7% for
lower fi,q cases). Similar to the 50% fi.q scenario, the spa-
tial mismatch between simulated and experimental CII radi-
ance peaks persists, aligning with observations reported in
previous studies [26]. One possible explanation for this dis-
crepancy is the assumption of uniform cross-field transport
coefficients in EMC3-EIRENE. In reality, spatial variations
in these coefficients can modify the balance between paral-
lel and perpendicular transport, thereby influencing impurity
distributions [42, 43]. Another potential factor might be the
absence of drift effects in EMC3-EIRENE. Significant radi-
ation asymmetry is observed in experiments [9, 44], but the
lack of drift effects in EMC3-EIRENE may prevent the simu-
lation from reproducing the CII radiance. Overall, within the
capabilities of EMC3-EIRENE, the proposed method achieves
satisfactory agreement between simulated and measured dia-
gnostics across different radiation fractions. Nevertheless,

comprehensive validation of synthetic divertor spectroscopy
predictions requires further investigations.

5. Summary

In this study, a 260-case EMC3-EIRENE simulation data-
base was generated by scanning four key input parameters—
namely the radiation power fraction f,4, separatrix elec-
tron density 7, sp, and cross-field particle diffusivity D and
thermal diffusivity y ;. A feed-forward neural network was
then trained to map the EMC3-EIRENE input parameters to
synthetic diagnostic data, using 8-fold cross-validation and
random search for hyperparameter optimization. Compared to
full EMC3-EIRENE simulations, the trained FNN surrogate
model can quickly predict synthetic diagnostic data from a
given input parameter set.

The trained FNN surrogate model was embedded in
a Bayesian inference framework using Dynamic Nested
Sampling to estimate the posterior distributions of EMC3-
EIRENE input parameters by incorporating experimental
diagnostic measurements along with their associated
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Figure 7. Comparison between experimental data, FNN surrogate predictions, and EMC3-EIRENE simulations using MAP input

parameters at 20% radiation fraction.
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Figure 8. Comparison between experimental data, FNN surrogate predictions, and EMC3-EIRENE simulations at 50% radiation fraction.

uncertainties. Because the surrogate generates synthetic
data almost instantaneously, the inference is greatly accel-
erated and a comprehensive exploration of parameter space
is achieved. Full EMC3-EIRENE simulations conducted with
MAP estimates of input parameters at different radiation frac-
tion levels showed satisfactory agreement with experimental
observations, highlighting the effectiveness of the proposed
method.

In summary, the neural-network surrogate gives rapid pre-
dictions across the input-parameter space, and the Bayesian
framework compares those predictions with the experimental
data while fully accounting for the measurement uncertain-
ties. Together, these two tools make it possible to find the
EMC3-EIRENE inputs that best match the observations, espe-
cially the otherwise unknown free parameters cross-field trans-
port coefficients. The main highlights of our work focus on
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Figure 9. Comparison between experimental data, FNN surrogate predictions, and EMC3-EIRENE simulations at 80% radiation fraction.

the post-experimental physical analysis, which can be sum-
marized in the following three points: (1) A Bayesian neural
network fast infer the cross-field transport coefficients that
characterize the edge plasma transport properties, thereby
helping to understand the transport behavior under different
plasma conditions; (2) The Bayesian neural network performs
an uncertainty-aware inversion that yields posterior estimates
for fraq and n, sep, updating their uncertainties using all selected
diagnostics. (3) By feeding the Bayesian-inferred inputs (fi.q,
Neseps D1 and x 1) into EMC3-EIRENE, a single run repro-
duces the 3D edge plasma distributions consistent with the
experimental observations, eliminating the need for extensive
parameter scans. This work is focused on developing and val-
idating the method’s feasibility. The current EMC3-EIRENE
database is still being expanded and therefore does not yet
cover the full W7-X operating space, for example the com-
plete range of heating powers, and different magnetic config-
urations. Future work will expand the database and extend the
range of synthetic data, thereby broadening the applicability
of the neural network-based method.
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