KIT | KIT-Bibliothek | Impressum | Datenschutz

Pareto local search for a multi-objective demand response problem in residential areas with heat pumps and electric vehicles

Dengiz, Thomas 1; Raith, Andrea; Kleinebrahm, Max ORCID iD icon 1; Vogl, Jonathan ORCID iD icon 1; Fichtner, Wolf ORCID iD icon 1
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract:

In future energy systems characterized by significant shares of fluctuating renewable energy sources, there is a need for a fundamental change in electricity consumption. The energy system must adapt to the intermittent generation of renewable energy sources. This can be achieved by using flexible electrical loads, such as heat pumps and electric vehicles, with efficient control methods. In this paper, we introduce the Pareto local search method PALSS which employs heuristic search operations to solve the multi-objective demand response problem in residential areas, resulting in superior performance to existing approaches. Flexible electrical loads are shifted with the objective of minimizing the electricity cost and peak load while maintaining the inhabitants' comfort in favorable ranges. Furthermore, we extend PALSS by incorporating reinforcement learning into the search operations in the approach RELAPALSS. For the evaluation, we employ the dichotomous method to obtain solutions that are guaranteed to be Pareto-optimal, serving as benchmarks. The results demonstrate that PALSS outperforms state-of-the-art multi-objective evolutionary algorithms by 16% (18% for RELAPALSS) regarding the performance indicator Generational Distance and by 128% (130% for RELAPALSS) for the indicator Hypervolume. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000185307
Veröffentlicht am 02.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion – Deutsch-Französisches Institut für Umweltforschung (DFIU)
Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 0360-5442
KITopen-ID: 1000185307
Erschienen in Energy
Verlag Elsevier
Band 335
Seiten 138063
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page