KIT | KIT-Bibliothek | Impressum | Datenschutz

Optical arbitrary waveform generation (OAWG) using actively phase-stabilized spectral stitching

Drayss, Daniel ORCID iD icon 1,2; Fang, Dengyang ORCID iD icon 1; Sherifaj, Alban 1; Peng, Huanfa 1; Füllner, Christoph ORCID iD icon 1; Henauer, Thomas 3; Lihachev, Grigory; Schmitz, Lennart 1; Harter, Tobias 1; Freude, Wolfgang 1; Randel, Sebastian 1; Kippenberg, Tobias J.; Zwick, Thomas 3; Koos, Christian 1,2
1 Institut für Photonik und Quantenelektronik (IPQ), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
3 Institut für Hochfrequenztechnik und Elektronik (IHE), Karlsruher Institut für Technologie (KIT)

Abstract:

The conventional way of generating optical waveforms relies on in-phase and quadrature (IQ) modulation of a continuous-wave (CW) laser tone. In this case, the bandwidth of the resulting optical waveform is limited by the underlying electronic components, in particular by the digital-to-analog converters (DACs) generating the drive signals for the IQ modulator. This bandwidth bottleneck can be overcome by using a concept known as optical arbitrary waveform generation (OAWG), where multiple IQ modulators and DACs are operated in parallel to first synthesize individual spectral slices, which are subsequently combined to form a single ultra-broadband arbitrary optical waveform. However, targeted synthesis of arbitrary optical waveforms from multiple spectral slices has so far been hampered by difficulties to maintain the correct optical phase relationship between the slices. In this paper, we propose and demonstrate spectrally sliced OAWG with active phase stabilization, which permits targeted synthesis of truly arbitrary optical waveforms. We demonstrate the viability of the scheme by synthesizing optical waveforms with record-high bandwidths of up to 325 GHz from four individually generated optical tributaries. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000185368
Veröffentlicht am 06.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Hochfrequenztechnik und Elektronik (IHE)
Institut für Mikrostrukturtechnik (IMT)
Institut für Photonik und Quantenelektronik (IPQ)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 29.09.2025
Sprache Englisch
Identifikator ISSN: 2047-7538
KITopen-ID: 1000185368
Erschienen in Light: Science & Applications
Verlag Springer Nature [academic journals on nature.com]
Band 14
Heft 1
Seiten Art.-Nr. 353
Nachgewiesen in Web of Science
Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page