
Journal of The
Electrochemical Society      

OPEN ACCESS

A System Identification Approach to Estimate
Lithium-Ion Battery Entropy Coefficients
To cite this article: W. D. Widanage et al 2025 J. Electrochem. Soc. 172 090514

 

View the article online for updates and enhancements.

You may also like
Layer-by-Layer Electrodeposition of Gold
and Ruthenium Using Self-Assembly for
Oxygen Reduction
Quinn A. Padovan, Nikhil C. Bhoumik and
Christopher J. Barile

-

Surfactant-Assisted Electrodeposition of
Manganese Carbonate for Efficient
Hydrogen Evolution in an Acidic Medium
B. S. Krishnaveni, S. Harshini, S.
Sudharsan et al.

-

An Industrially Convenient Method of
Synthesizing Pore-free Aluminum Coating
Employing Unpurified First-Generation
Ionic Liquid Electrolyte
Rakesh Moharana, Aravindan
Sivanandam and Sudarsan Ghosh

-

This content was downloaded from IP address 129.13.194.163 on 07/10/2025 at 07:09

https://doi.org/10.1149/1945-7111/adfe1f
https://iopscience.iop.org/article/10.1149/1945-7111/adfeec
https://iopscience.iop.org/article/10.1149/1945-7111/adfeec
https://iopscience.iop.org/article/10.1149/1945-7111/adfeec
https://iopscience.iop.org/article/10.1149/1945-7111/adfe20
https://iopscience.iop.org/article/10.1149/1945-7111/adfe20
https://iopscience.iop.org/article/10.1149/1945-7111/adfe20
https://iopscience.iop.org/article/10.1149/1945-7111/adfe9a
https://iopscience.iop.org/article/10.1149/1945-7111/adfe9a
https://iopscience.iop.org/article/10.1149/1945-7111/adfe9a
https://iopscience.iop.org/article/10.1149/1945-7111/adfe9a
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsslDTHMGq9qxLWAw3AQfjD9YAkmcvhm1hSw722ooX8OUBVlKgBPrYfk2YfE1HtuQjXlVxn3yHIFvGm9-jJEojpCPJQwdwB-tBPfsVZWZKjiigJrlIbN9BGLacXI9Y4E6tWXV3IdG0_qKdbuQjWwiq1yCKAlhnScpiZY60vJ-Wkx6CubxsryMEuuhck7vwGNB0D6VIxQlI5zIHIh1CwgPuGTN8_F2Eq0pFUgaqODrhbYpGyGfQhBEpMntVoDqu1iqqyNE7eRvOFpp-cmk6OeOA15iyg2q2ejnqYkTvwIBKZfFa1GhY6VnVQTuY4bciXs5kfZS3EVLnlczMILvHaIH9lUUIqppsIFUxTFeJ42hqY5TuG5-ZPY-O0Y&sig=Cg0ArKJSzBnM_baGXIYF&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.el-cell.com/products/pat-battery-tester/pat-tester-x/pat-tester-x-8/%3Fmtm_campaign%3Diop-pdf-advert%26mtm_kwd%3DPAT-Tester-x-8%26mtm_source%3Dpdf%26mtm_placement%3Dqr-code


A System Identification Approach to Estimate Lithium-Ion Battery
Entropy Coefficients
W. D. Widanage,1,a,z m O. Queisser,2,b m S. Paarmann,2,3,c m L. Cloos,2 m and T. Wetzel2

1WMG, University of Warwick, Coventry CV4 7AL, United Kingdom
2Institute of Thermal Process Engineering (TVT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe,
Germany
3Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom

Improving lithium-ion battery thermal simulations requires identification of all the relevant heat source terms. While Joule heating
is always considered, reversible heat is important for mild to low C-rates, but is often ignored. Characterising reversible heat
requires determining the cell’s entropy coefficient as a function of the state-of-charge, which is experimentally time-consuming. In
this paper, we take a dynamic view point between the cell open-circuit-voltage and cell temperature to arrive at the entropy
coefficient. Called the kernel-based method, a system identification procedure in the frequency domain is developed to estimate the
entropy coefficient at each state-of-charge (SoC). The methodology is validated against the potentiometric method, which is
considered as the reference procedure. The entropy coefficient was estimated over 21 SoC points and compared against the
potentiometric approach and showed very good agreement across the entire SoC interval with a 57% reduction in time. All the
experimental data and the Matlab code for data processing and reproducing of the results is made available together with the paper.
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Lithium-ion batteries are indispensable in today’s decarbonisa-
tion strategies. From electrification of the transport sector, grid
storage, and consumer electronics, they play a crucial role as high
energy density and high efficiency energy storage devices.
Considerable research effort is underway to characterize and model
the physical behavior of lithium-ion batteries. Among these efforts,
modelling and simulation play an important role in the design and
control of the subsequent battery product.

Models such as the Doyle-Fuller-Newman (DFN),1 which ac-
counts for physical mechanisms, to Equivalent Circuit Models
(ECM) that take a phenomenological approach are used to enable
such design and control applications. However, for any practical
usefulness, these models have to be thermally coupled, and not only
simulate the voltage response accurately but also simulate the cell’s
thermal behavior. Such models then facilitate the opportunities for
lithium-ion battery applications. Characterising the heat generation
source terms then becomes important for model development.

The total heat flow (in W) of a lithium-ion battery can be broadly
divided into two source terms known as irreversible heat (Qirr) and
reversible heat (Qrev).

= + [ ]Q Q Q 1irr rev

The total heat flow Q then appears as a source term in either a
lumped thermal model2 or spatially resolved thermal simulations to
predict the cell temperature.3,4 The reversible heat source term is at
times ignored for high current applications (typically ⩾ 1C), how-
ever for mild to low C-rates ( ⩽ 1C) the contributions from both
terms are similar or higher, and the reversible heat flow term should
be characterised and included.5

There are several factors that contribute toward the irreversible
heat, they are all exothermic and are the i) electrolyte heat loss, ii)
heat of mixing in the anode particles, iii) anode electrode Ohmic
loss, iv) anode polarization loss, v) cathode particle heat of mixing,
vi) cathode electrode Ohmic loss and vii) cathode polarization

loss.6,7 More recent work also includes heat due to OCV
hysteresis.8 Characterising all these heat source terms is experimen-
tally difficult, and often approximations are made when determining
the irreversible heat.

In comparison, reversible heat exhibits both exothermic and
endothermic behavior in different SoC regions. Figure 1 shows an
example of a 21700 5Ah LGM 50 cell (NMC cathode and Si/C
anode) undergoing a slow constant-current constant-voltage (CCCV)
charge in a 25 °C thermal chamber.9 Endothermic, “cooling” of the
cell (by around 0.5 K) is visible, which cannot be explained if only
the irreversible heat source is included.

The reversible heat arises due to the rate-of-change of entropy (S)
of the electrodes, = /Q T S td drev and is often approximated as

= [ ]Q T
S

t
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U

T

d

d
2rev

with U being the cell open-circuit-voltage (OCV), T is the cell
temperature (K) and I the cell current (A). The ∂U/∂T term in Eq. 2
indicates that the reversible heat is an electrode material property,
and while both electrodes contribute to Qrev, in this work we assume
a single OCV case and do not split Qrev into a contribution from the
anode and cathode (See7 for the individual electrode contributions).

Of the two heat source terms discussed, it is the reversible heat
source term that is of interest in this study, and in particular the ∂U/
∂T term which we define here as the entropy coefficient. The entropy
coefficient is a function of SoC, and it needs to be estimated for the
full SoC range. Typically, the entropy coefficient is measured either
with potentiometric or calorimetric approaches and with potentio-
metry often considered the reference approach, due to the experi-
mental simplicity.

The principle idea of a calorimetric approach is to have a non-
zero applied current and quantify, from the total heat, the amount of
irreversible heat and reversible heat that is generated, and with the
reversible heat quantified the entropy coefficient can be determined
(via Eq. 2), see for example10 and.11 Calorimetric techniques
however require prior knowledge about the cell thermal properties
(heat capacity and thermal conductivity) and parameters contributing
to the irreversible heat (e.g., the Ohmic resistance as a function of
SoC), to arrive at Qrev. Reliable estimates of these parameters arezE-mail: Dhammika.Widanalage@warwick.ac.uk
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therefore important to obtain accurate entropy coefficient estimates
in a calorimetric based approach.

The potentiometric approach, in comparison, does not rely on an
applied current or a prior thermal model, but involves the application
of step changes in temperature. This makes the procedure simple,
however, it leads to considerably long experimental times, as the cell
needs to equilibrate both thermally and electrochemically. Typical
reported values includes 4 to 10 hours per step change12 or 20 to 30
hours per SoC11 or 5 to 17 hours per SoC as observed and presented
later in this work. Hales et al.,13 for example, accelerated the
procedure with only one large temperature step at each SoC. Hu et
al.14 proposed a hybrid time-frequency method whereby a sinusoidal
temperature signal is applied during the voltage relaxation phase.
The excitation frequencies were chosen in such a way that a time
reduction by a factor of ten, compared to a potentiometric method,
was obtained but requires a correction to remove the voltage offset
due to relaxation. See Zhang et al.15 for a summary of the
potentiometric techniques highlighting the trade-off between accu-
racy and measurement time.

Compared to existing techniques, where the entropy coefficient
(∂U/∂T) is treated as determining an unknown constant, a more
nuanced approach is considered here. The methodology developed

here is more akin to the potentiometric approach, in that the applied
current is zero, however we exploit the fact that the OCV is
dynamically related to the cell temperature. The main contribution
of the work is that we demonstrate how the entropy coefficient then
manifests as the steady-state gain of this dynamical system. Using
frequency domain system identification techniques, we develop a
persistent temperature profile to perturb the cell and estimate the
temperature-to-OCV dynamics; from which the entropy coefficient is
obtained. The method has the advantage that it can account for
transient OCV behavior and therefore strict OCV equilibrium is not
required for each SoC stage. The procedure is termed here as the
kernel-based method and the sections to follow detail the principle
idea and methodology followed to test and validate the method.

Other frequency based approaches have been developed for
entropy coefficient estimation, see for example.11,12,16 However,
these methods are in contrast to the frequency domain method
presented here. Firstly, they are calorimetric based and therefore
apply a non-zero current to heat the cell, rather than applying a
persistently exciting thermal load. As stated earlier this requires
quantifying the amount of irreversible and reversible heat that is
generated. To this end, the methods exploit the relationship that the
irreversible heat source term is non-linear with respect to the current

Figure 1. A C/3 CCCV charge current (a). Cell surface temperature response demonstrating reversible (endothermic) heat generation (b).
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(quadratic) while the reversible heat source term is linear with
respect to the current. As such by using a single frequency sinusoidal
current (ω) only the reversible heat source term contributes to the
fundamental frequency of the temperature response at ω, while the
irreversible heat source term contributes to the 2nd harmonic of the
temperature response at 2ω. Secondly, a thermal transfer function
that maps the reversible heat to the measured temperature is required
to calculate the reversible heat from the measured surface tempera-
ture, from which entropy coefficient can be determined; this differs
with the kernel-based method, where a transfer function mapping the
temperature to the measured OCV response is derived from which
the entropy coefficient can be determined.

One such frequency domain method was developed in Ref. 11
with a sinusoidal current and then extended to separate the entropy
coefficient to each electrode in Ref. 12 and more recently extended
with a square wave current in Ref., 16 which improves upon the
practicality over the use of a sinusoidal current. However, during the
implementation of the methodologies some assumptions are not
fulfilled, and further analysis into the approaches are required. For
example, to expedite the experimental procedure a DC offset is
added to the sinusoidal current in Ref., 11 as a result the irreversible
heat will also contribute to the fundamental frequency of the
temperature response at ω, and not only the reversible heat (and
the separation of the heat source terms is no longer possible).
Furthermore, the thermal transfer functions are a function of SoC,
however in these methods, they are typically estimated for a single
SoC (via a potentiometric approach16) and then used to derive the
entropy coefficient for the entire SoC range. While such frequency
based methods offer potential reduction in experimental time, further
mathematical and experimental analysis is therefore required to
determine the accuracy of the calorimetric frequency based ap-
proach.

Methodology and Experimental Setup

In this work, a system identification framework is followed
(Fig. 2a) to determine the entropy coefficient. The approach involves
the consideration of a model class (M) to which the device-under-
test belongs (a lithium-ion battery in this case), performing appro-
priate experiments (X ) to obtain the system response (D), applying
an identification routine (I ) to yield the model parameters, and
finally, evaluating the validity (V ) of the estimated model. Should the
estimated model fail at the validation stage, the model class and the
data generating experiments have to be re-evaluated and the process
repeated.

A schematic of how the battery is perturbed is shown in Fig. 2b.
A reference temperature profile Tref(n), with n = 0, 1, 2, … , is
applied to a Peltier element thermal controller (with a zero-order-
hold (ZoH) inter sample behavior of hold Δtzoh seconds) which
creates a continuous-time temperature profile and controls the cell
surface temperature (more details about Tref(n) is provided in the
Experiments section and an example in the Results section). The
measured cell surface temperature T(t), and corresponding OCV
response U(t) are sampled with a sample rate of Δt seconds to
generate the discrete-time data set D = { ( ) ( )}T t U t,n n , with
tn = nΔt and n = 0, 1, 2, … for the kernel estimation process.

The following subsections elaborate each of the system identifi-
cation steps, which are then applied and demonstrated in the Results
section.

Model class (M) - Kernel function and parametric form.—We
start with the recognition that the relationship between the cell
temperature and the cell OCV is dynamic in nature. This is
understood through the observation that a step change in cell
temperature leads to a gradual change in the cell OCV to a new
steady-state OCV value, as is seen when performing potentiometric
experiments (see for example Fig. 9a and further observations
explained in the Supplementary material S1.2). Assuming that the
temperature-OCV dynamics are linear, time-invariant, and stable, the

most general model class to predict the cell OCV is via a convolution
of the cell temperature with a kernel function, as shown in Eq. 3.

( ) = ( ) ( ) [ ]U t z g t z T d t t t, , 3
t

t

0 1
0

1

In Eq. 3, U(t, z) is the OCV signal at a particular SoC (z), T(t) is
the cell temperature and g(t, z) is the (unknown) kernel function (also
known as the impulse response) relating the cell temperature to the
OCV signal at that particular SoC. The time limit t0 corresponds to a
starting time instant where the cell is (ideally) at thermal and
electrochemical equilibrium and the time limit t1 corresponds to an
end time instant over which T(t) is applied.

The quantity of interest, however, is the entropy coefficient term
∂U/∂T. By taking the derivative of Eq. 3d with regard to the cell
temperature T it leads to

( ) = ( ) [ ]U z

T
g z d, . 4

t

t

0

1

Since SoC is a given and can be treated as a constant while the
temperature is changing, the unknown kernel function in Eq. 4 can
be written as gz(t) implying that it is a function for a given SoC. Eq. 4
can then be written as

Figure 2. The typical system identification approach (a) and a schematic of
how the battery temperature is perturbed (b). The process requires due
consideration of the experiments (X ) to provide an input-output data set
D = { ( ) ( )}T t U t,n n , and a choice of the model class (M) to which the
physical system belongs. The application of the identification procedure, I ,
then provides an estimate of the model candidate ( ˆ ( ˆ)m ), which upon
validation may require changing the assumed model class or performing
further experiments (denoted by the dashed line in Fig. 2a).

dSince we assume that the OCV-temperature kernel function g(t, z) is time-invariant,
but depends on SoC, ∂U/∂T can be written without an explicit dependence on time t.
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= ( ) [ ]U
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0

1

Equation 5 indicates that the entropy coefficient is simply the
integral of the impulse response (at a particular SoC), which from
linear system theory is known as the steady-state gain of the transfer
function between, in this case, the cell temperature and the OCV
response. If the dynamics are non-linear higher order kernels need to
be included. The signal design and identification approaches
discussed in the Experiments and Identification sections are designed
such that non-linear effects are minimised and that a best-linear
approximate (in the mean square sense) of the kernel function is
obtained. This aligns with the potentiometric method which fits a
linear relationship between the cell temperature and the OCV
response. Similarly, if the dynamics are time-varying there would
not be a steady-state gain and the entropy coefficient will be time-
varying.

Estimating a transfer function of a dynamical system is a standard
problem in system identification, and is typically not performed with
step signals (as done when conducting potentiometric experiments),
but rather with input signals that are more persistently exciting over a
certain frequency bandwidth. A step signal can be understood as only
perturbing a system at DC frequency (f = 0 Hz), while a persistently
exciting signal perturbs the system at multiple frequencies allowing a
transfer function to then be estimated. By estimating a transfer
function of the OCV-temperature dynamics at higher frequencies, we
can evaluate its steady-state gaine, and from the interpretation of
Eq. 5, this then is the entropy coefficient for that particular SoC.

In this work, we do not directly fit a transfer function to the input-
output data D = { ( ) ( )}T t U t,n n (the cell temperature and the
corresponding OCV response); instead, we first obtain a non-
parametric estimate of the kernel function gz(t), in the frequency
domain G(ω), with ω being the angular frequency (rad s−1), and then
parameterise G(ω) via a standard transfer function G(s), with s the
Laplace variable (Eq. 6).

( ) = [ ]=

=
G s

b s

a s
. 6m

n
m

m

n
n

n
n

0

0

b

a

The non-parametric estimate G(ω) represents the frequency response
between temperature and OCV, and estimating it first offers
robustness when parameterising the model since it allows the
necessary frequency components to be selected over which to
parameterise G(s). In Eq. 6, the coefficient a0 is fixed to 1 while
the model orders nb and na are not predefined but found by solving a
model order selection problem (by minimising the Akaike
Information Criteria) 17,18.f

Experiments (X ) - Signal design for kernel estimation.—
Compared to the potentiometric method, several factors must be
considered when designing the temperature signal for the kernel-
based approach (for it to be a persistent excitation). The key
difference is that the signal characteristics are considered in the
frequency domain, while certain time domain constraints must be
fulfilled such that the resulting signal can be realised via the Peltier
elements of the thermal system. In practice, the temperature signal
should not vary too rapidly and remain constant over the zero-order-
hold (ZoH) duration (Δtzoh seconds) of the Peltier controller, before
either switching to a different value or remaining at the same
temperature value (see Experimental setup section for further
details). For a signal to be persistently exciting, it must inject power
over the range of frequencies for which the dynamics are to be
determined. We therefore start by considering the bandwidth ( fmin to
fmax) over which the temperature signal has to excite the battery
OCV and then consider the amplitude spectrum of the signal.

In relation to the signal bandwidth, the minimum frequency ( fmin)
is dictated by the time duration (also known as the signal period) of
the temperature signal (Tp), = /f T1 pmin Hz, and the maximum
frequency ( fmax) is an integer multiple of fmin, =f Kfmax min, as such
the kth frequency between fmin to fmax is given as

= [ ]f k f k H . 7k min exc

The value of K is the maximum number of harmonics that can be
excited and is upper bounded by the Nyquist frequency,

/( )f t1 2max zoh to avoid signal aliasing. In Eq. 7, Hexc is the set
of integer harmonics where signal power is present and can either
take all values up to K, Hexc = {1, 2, 3, …, K}, or only odd integers
with all the even harmonics suppressed, Hexc = {1, 3, 5…, K}, or a
combination, whereby all even harmonics are suppressed and for
instance harmonic multiples of 3 are furthermore suppressed,
Hexc = {1, 5, 7, 11, …, K}. There are benefits to the kernel estima-
tion process in having harmonics suppressed, instead of injecting
energy at all consecutive harmonics. The suppression of even
harmonics minimises possible inter-hamornic modulation, should
the OCV-temperature dynamics be non-linear, and will improve the
estimation of G(ω). Such signal designs have been used in the
literature for estimating current-voltage dynamics19 and operando
electrochemical impedance spectroscopy.20

The amplitude spectrum is governed by the desired temperature
interval (Tmin to Tmax) and the number of discrete levels (L) the signal
needs to cover. We start by assigning a unit amplitude over each
harmonic in the set Hexc (a flat spectrum) and Schroeder phases
(φk = − k(k − 1)π/∣Hexc∣) for each harmonic. For consecutive or odd
only harmonics, Schroeder phases generate low crest-factorg signals
and offers a good starting point for subsequent signal
modification.21,22 The signal is now fully defined in the frequency
domain, a flat spectrum with Schroeder phases and a bandwidth from
fmin to fmax, by taking the inverse Fourier transform (via the inverse
Fast Fourier Transform) we then obtain a time-domain signal, which
however will not span the desired temperature range (due to the unit
amplitude spectrum). To achieve the desired temperature range, the
resulting time signal is quantised into L levels and mapped to a
corresponding L level sequence that spans Tmin to Tmax (Guidance for
the temperature range is provided in the Discussions section). The
resulting signal, known as the reference temperature signal Tref(n),
will maintain a near-flat spectrum with any suppressed harmonics but
will have out-of-band harmonics (energy beyond fmax) (due to the L-
level signal quantisation). An example of a reference temperature
signal Tref(n) with its specifications is shown in the Reference
temperature profile section.

The OCV response is subsequently measured by applying this
reference temperature signal at each SoC point (several periods of
Tref(n) can be applied per SoC). The measured cell temperature
(T(tn)) and the corresponding OCV response (U(tn)) form the input-
output data set D = { ( ) ( )}T t U t,n n (as shown in Fig. 2a), which is
then used to perform model identification.

Identification (I ) - Non-parametric frequency response and
parametric transfer function estimation.—Rather than directly
fitting a parametric transfer function (Eq. 6) to the experiment data
set D, we first obtain a non-parametric estimate of gz(t), in the
frequency domain, followed by a parametric estimate. This inter-
mediate step helps to derive more reliable estimates, since the fitting
can be done on the excited frequency points (Eq. 7) while
minimising any non-linear and noise contributions. Acknowledging
that the temperature measurements will be imperfect (measurement
noise) and that the OCV may not have reached steady-state (transient
errors) with possible non-linear effects, an accurate relationship
between the OCV response and the temperature signal, in the
frequency domain, is as follows:

eThe steady-state gain is the value of the transfer function at f = 0 Hz.
fThe function selstruc from the MATLAB’s ident toolbox is used for selecting
the optimal model orders.

gThe crest factor is an indication of the compactness of a signal. It is the ratio of the
signal peak to the effective root-mean-square value of the signal over the frequency
band of interest
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= / [ ]

U G T H D E
k T k H2 8

k k k k k k

k p exc

In Eq. 8, G(ωk) is the temperature-to-OCV frequency response and is
the (unknown) kernel function gz(t) (in Eq. 5) in the frequency
domain. T(ωk) and U(ωk) are the Fourier coefficients of the
temperature and OCV signals respectively. H(ωk) is the transient
error, D(ωk) is any non-linear distortion error and E(ωk) is the
measurement noise, the effects of all of which should be minimsed
when estimating G(ωk). The suppression of even harmonics and the
use of periodic signals (as described in the Experiments section) is
motivated by this relationship, since such signals minimize the
influence of H(ωk) and D(ωk).

22

The classical approach of estimating G(ωk), given U(ωk) and
T(ωk), is by using window functions (such as a Hanning window) and
computing the ratio between the windowed cross-power spectrum
and auto-power spectrum (see23–25). Several advances in estimating
frequency response functions with a low variance (compared to
classical approaches) have been made and one such method is called
the Local polynomial method (LPM),26 which is employed in this
work. In the LPM method a low-degree complex-coefficient poly-
nomial (typically 2) is used to approximate the unknown frequency
response (G(ωk)) and transient error (H(ωk)) in the neighborhood of
each of the excited harmonics (k ∈ Hexc). The coefficients of the
unknown polynomials then appear linearly, and by solving a linear
least-squares problem for each harmonic in Hexc, a non-parameteric
estimate of the frequency-response ˆ ( )G k and its standard deviation
( ( )Ĝ k ) is obtained (an estimate for the transient response ˆ ( )H k is
also obtained, but its value is not used any further). For a more
detailed description of the LPM the reader is referred to,26 and for its
application in battery modelling please refer to.27,28

As a result of the LPM approach, the last design constraint on the
temperature signal (together with the bandwidth and amplitude
spectrum described in the Experiments section) is the number of
harmonics that should be included in Hexc (which corresponds to the
cardinality of the set Hexc). For a given complex-coefficient poly-
nomial of degree d, the number of unknown coefficients that must be
estimated is 2(d + 1), which sets a lower bound on the number of
harmonics as ∣Hexc∣ ⩾ 2(d + 1), and with d = 2 this means that Hexc

should at least have six harmonics (∣Hexc∣ ⩾ 6) to estimate the
temperature-to-OCV frequency response while minimising any
OCV transient errors. An example of a reference temperature signal
that fulfills these conditions is presented in the Reference tempera-
ture profile section.

With the non-parameteric estimate of ˆ ( )G k obtained (for a given
SoC), we can now fit a parametric transfer-function by minimising

the following weighted cost-function.

ˆ =
ˆ ( ) ( )

( )
[ ]

ˆ

G G
arg min

;
9

k H

k k

G k
2

2

exc

In Eq. 9, the definition of G(ωk;θ) is given in Eq. 6 with
s ≡ jωk and θ corresponds to the transfer-function coefficients

= [ … … ]a a a b b b, , , , , , ,n n1 2 0 1a b . Equation 9 is non-linear in the
parameters θ, for which a non-linear optimisaition routine is
required, and we employed the Levenberg-Marquardt algorithm as
the non-linear optimiser.

Once the optimal parameter set ˆ, per SoC is determined, the
steady-state gain of the transfer function G(s) (which is the entropy
coefficient as shown in the Model class section) is obtained by
setting s = 0. From Eq. 6 this corresponds to the ratio of b0/a0 and
with a0 set to 1 (as stated in the Model class section) the resulting
entropy coefficient is simply the value of b0, for that particular SoC.

Experimental setup.—The cell used in this study is a 3 Ah pouch
cell (SLPB8043140H5, Kokam Co., Ltd.) with a NCA-LCO cathode and
graphite anode.29 The kernel-based method requires a setup capable of
applying persistently exciting temperature profiles (as discussed in Secion
2.2). Therefore, a test setup with Peltier elements (ET-161-12-10-E,
Adaptive® Thermal Management) was realised which enables tempera-
ture changes at a rate of >10 K s−1. Figure 3 provides a schematic of the
rig. Between each of the large cell surfaces and two Peltier elements,
copper plates served as heat spreader. For evaluation, multiple calibrated
0.5 mm thermocouples of type K (ES Electronic Sensor GmbH) were
placed in notches in the copper plate facing the cell surface and the
feedback temperature for the Peltier elements was measured via a
PT1000. The outward-facing side of the Peltier elements were connected
to liquid cooling plates as heat sinks that were supplied with water from a
cryostat (CC-K6s, Huber Kältemaschinenbau SE). The setup is symme-
trical on both sides and the entire setup is compressed with springs for a
constant pressure and positioned inside a insulated box.

Thermal equilibrium of 25 °C was ensured before the cell was
charged with a CC-CV protocol (C/2, C/40 cutoff) to the upper voltage
limit of 4.2 V with an HPS cyler from BaSyTec GmbH. Starting from
100 % SoC, the cell was discharged in 5 % steps of the measured
nominal capacity to 0 % SoC with a C/2 current, giving 21 SoC break-
points in total. At each of the SoC break-points, a potentiometric
method is then conducted (the details of which are provided below)
prior to the kernel-based method. The control of the temperature signal
and voltage measurement (for both the potentiometric and kernel-based
methods) was automated in LabVIEW (National Instruments). The
Peltier element controllers (TEC16-24 KU2, head electronic) were also
operated in this routine and the temperature and voltage measurement

Figure 3. Schematic of the thermal rig used in the study.
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for evaluation was conducted with a multimeter (model 3706, Keithley
Instruments, Inc.).

For comparison of the kernel-based entropy coefficient, at each of
the SoC break-points, a standard potentiometric routine was per-
formed before the kernel-based method was conducted. The same
cell and the same test setup is therefore used, and both methods share
the same SoC values. For the potentiometric method temperatures
from 50 °C to 10 °C in 10 K steps were applied onto the cell while
the voltage was measured. The rest time per potentiometric
temperature step was event based. At least 1 h was allowed,
however, thermal and electrical equilibrium were ensured with a
further constraint that the changing rate falls below the threshold of
20 mK h−1 and 0.1 mV/h, respectively. However, at 100% SoC and
high temperatures (50 °C) some self-discharge of the OCV was
observed and the temperature set-point to 40 °C was done manually
after a time period of 1.7 hours (See Fig. S9 in the Supplementary
material).

Results

The various system identification stages, as described in the
Methodology and Experimental setup section, are applied and the

results of the intermediate stages leading up to the entropy
coefficient result is given in the following subsections. As validation
of the approach, the estimated entropy coefficients are compared
against the potentiometric method. During the experiments of the
kernel-based method three periods of the reference temperature

Table I. The values used to generate the reference temperature
signal Tref(n) for the kernel-based method.

Variable Value Description

Tmin 10 ∘C Minimum temperature
Tmax 50 ∘C Maximum temperature
L 5 Number of discrete temperature

levels
Tp 4 h Signal period
Δtzoh 300 s ZoH duration
Δt 2 s Data sampling time
fmax 1.2 mHz Maximum excited frequency
Hexc {1,3,5,7,9,11,13,15,17} Excited harmonic set

Figure 4. Reference temperature profile Tref(tn) of period Tp = 4 hours and spanning five temperature level applied to the Peltier controller (a). The FFT
magnitude of Tref(t) showing the excited odd harmonics with a fundamental frequency of f0 = 1/14400 Hz and maximum excited frequency of =f 1.2max mHz and
the suppressed even frequencies (b).
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profile were applied (as a form of redundancy and repeatability),
however the analysis and results presented below are all based on the
first period.

Reference temperature profile.—The details of the reference
temperature signal Tref(n) used in this study are first presented.
Through several evaluations, a signal period of Tp = 4 hours
was found to be a suitable duration for the temperature signal
(for each SoC point), which fixes the minimum frequency to

= / =f T1 0.0694pmin mHz (See the Discussions sectionfor a further
discussion on the choice of signal period). All even harmonics were
suppressed up to K = 17, Hexc = {1, 3, 5, 7, 9, 11, 13, 15, 17} (an
odd harmonic signal) which results in = =f f17 1.2max min mHz and a
cardinality of ∣Hexc∣ = 9 ⩾ 6. The signal was designed to cover a
temperature range of = °T 10min C and = °T 50max C with L = 5
discrete levels. Each discrete temperature value was held for a
minimum of Δtzoh = 5 minutes before either switching or remaining
at the same value. Table I summarises the parameter settings used to
generate the reference temperature profile.

Figure 4a shows the samples of this reference temperature signal
plotted against time (Tref(tn) with tn = nΔtzoh) and the corresponding
frequency domain plot is shown in Fig. 4b.

The frequency domain plot is obtained by computing the Fast-
Fourier-Transform (FFT) of the reference temperature signal and the
excited odd-harmonics, suppressed even-harmonics and the out-of-
bound harmonics are explicitly labelled in the plot. This reference
temperature profile was applied at each of the 21 SoC points, starting
from 100% SoC to 0% SoC in steps of 5% SoC.

For a given SoC, the signal is applied to the Peltier element thermal
controller (described in the Experimental setup section) with a sampling
rate of Δt = 2 seconds. As stated in the Methodology and Experimental
setup section, the analysis uses the measured cell temperature rather than
the reference temperature. The average of the six thermocouples (labelled
1 to 6 in Fig. 3), corresponding to three on either side of the cell, is used
to denote the measured cell temperature ¯ ( )T tn .

Figure 5a shows one period (Tp = 4 hours) of the reference
temperature, applied at 80% SoC and the corresponding (averaged)
cell surface temperature ( ¯ ( )T tn ) sampled every Δt = 2 seconds. The
comparison shows good agreement between the reference and the
measured average temperature, indicating good PID controller
settings for the Peltier controller. This agreement ensures repeat-
ability of the measurements and that the frequency spectrum of the
measured signal is as close as possible to the reference signal that is
elaborated below.

Figure 5. One period of the reference temperature Tref(tn) (orange) applied at 80% SoC, and average measured cell surface temperature ¯ ( )T tn over thermocouples
1-6 (green) (a). The corresponding OCV response U(tn) at 80% (b).

Journal of The Electrochemical Society, 2025 172 090514



The corresponding OCV response, over the 4 hours, is shown in
Fig. 5b. The Fig. shows a clear dynamic behavior in the OCV
response to the applied temperature and a peak-to-peak variation of
approximately 3 mV is observed for a temperature change of 40 K.

As the subsequent analysis is performed in the frequency domain,
the frequency content of the measured average temperature ( ¯ ( )T tn )
and OCV response (U(tn)) is provided in Fig. 6. The non-zero signal
energy observed at the suppressed even-harmonics (in relation to the
reference temperature profile, see Fig. 4b) indicates contributions
from the Peltier controller. Ideally, if the Peltier PID controller
yielded instantaneous responses, the suppressed even harmonics of
the measured temperature (in Fig. 6a) will be zero. Similarly, the
non-zero energy levels in the even harmonics of the OCV response
(Fig. 6b) has contributions from the non-ideal Peltier controller, non
steady-state OCV transient effects and possible non-linear distor-
tions. If the OCV signal was at steady-steady and with no non-linear
distortions, the suppressed even harmonics in Fig. 6b will also be
exactly zero.

The excited-odd harmonics Hexc (indicated in Fig. 6) are then
used to estimate the non-parametric frequency response and para-
metric transfer-function of the temperature-to-OCV dynamics, while

minimising the effect of transient errors (and possible non-linear
distortions) as described in the Identification section.

Non-parametric response and parametric transfer function
fit.—The non-parameteric frequency response, ˆ ( )G k , between
OCV and temperature, is now estimated using the excited harmonic
set in a given OCV response and average cell surface temperature (as
shown in Fig. 6). This is achieved via the Local Polynomial Method
(LPM) with a polynomial degree of 2 as described in the
Identification section. The magnitude ( Ĝ ), phase ( Ĝ) and standard
deviation ( Ĝ) of the estimates as a function of frequency for 80%
SoC is shown in Fig. 7. The standard deviation of the estimate
(Fig. 7a) is approximately 20 dB lower denoting a high reliability of
the temperature to OCV frequency response.

With the non-parameteric frequency response in place, we
parameterise it via a transfer function as explained in the
Identification section, which subsequently will provide the entropy-
coefficient for that particular SoC. Rather than prescribing a model
order (values for nb and na in Eq. 6) a model order sweep is
performed (using Matlab’s selstruc from the System
Identification toolbox) that provides a good starting model order

Figure 6. The FFT magnitude of the measured average temperature ¯ ( )T t (a). FFT magnitude of the OCV response at 80% SoC (b). In both Figs. the harmonics
indicate non-zero energy levels at the originally suppressed even harmonics (in relation to the reference signal) indicating side effects of the Peltier controller and
transient with possible non-linear effects in the OCV signal.
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choice. For the example provided in Fig. 7 at 80% SoC, a model
order of {1,4} was obtained, corresponding to numerator order of
nb = 1 and denominator order of na = 4. The corresponding transfer
function fitted to the magnitude and phase response of Ĝ is shown in
Fig. 8 (the transfer function fits for all other SoCs are provided in the
Supplementary material Figs. S1 to S4).

Two error metrics were computed to evaluate the fitting perfor-
mance. The corresponding fit had a Root-Mean-Square-Error (RMSE)
value of 2.72E-6V/K and a Goodness-of-Fit (GoF) of 99.6% that
indicated an agreeable transfer function fit. The entropy coefficient is
then obtained by reading the numerator coefficient value b0 (see the
Identification section). For this example, at 80% SoC, the value of b0,
and therefore the entropy coefficient, is 0.082 ± 0.002 mVK−1. The
standard deviation of the estimate is approximated via the Jacobian
matrix obtained at the termination point of the non-linear least squares
optimisation ( (( ) )ˆ J Jdiag T2 1 ).

Table II provides the complete set of fitting metrics for the
transfer functions and subsequent kernel-based entropy coefficient
estimates for the 21 SoC points. The last step of the system
identification procedure corresponds to the validation of the values
presented in Table II. For this we use the results of the potentiometic
based entropy coefficient estimation and compare the results against
the kernel-based approach.

Comparison and validation with the potentiometric method.—
The potentiometric method is also performed across the same 21
SoC points, with a starting temperature of 50 °C and going down to
10 °C in steps of 10 K. As mentioned in the Experimental setup
section the time duration for each temperature step change was not
fixed but was at least 1 hour or terminated when the rate of change of
voltage was less than 0.1 mV K−1 and the rate of change of cell
surface temperature was less than 20 mK h−1.

Figure 9a shows the temperature profile and corresponding OCV
response for the potentiometric method when the cell is at 80% SoC. The
analysis and derivation of the entropy coefficient term for the potentio-
metric method is a lot simpler compared to the kernel-based approach.
Once both the cell surface temperature and OCV equilibrate the steady-
state values are read off (these are marked with a × marker in Fig. 9a)
and plotted against each other (as shown in Fig. 9b). The gradient of the
straight line fit is then the entropy coefficient ∂U/∂T term. For the
example shown in Fig. 9 value of ∂U/∂T = 0.088 ± 0.001 mVK−1 is
obtained, which is comparable to the value of 0.082 ± 0.002 mVK−1

obtained from the kernel-based approach.
Table III provides the complete list of the entropy coefficient

values, and its standard deviation, for the potentiometric method at
all 21 SoC points. The RMSE and GoF values are also provided
together with the total testing time duration that was required per
SoC.

Figure 7. The estimated non-parameteric frequency response, ˆ ( )G k , at 80% SoC. The magnitude response (green) and the standard deviation (orange) (a). The
phase response (b).
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As validation of the kernel-based method, we can compare the
entropy coefficient values in Table II against Table III, which
indicates good agreement in the results. A plot of the values is
also provided in Fig. 10, that shows how the kernel-based method
gives equally comparable results as that obtained from the potentio-
metric method, demonstrating the validity of the method.

Discussions

Comparison of the methods.—For both approaches the entropy
coefficient is negative except between, approximately, 65% to 95%
SoC where it becomes positive. Depending on the convention
adopted, the sign change indicates an interval of either an exothermic
or endothermic reversible heat generation. In this paper, positive
current is taken to be charging, resulting in exothermic heat
generation being positive and endothermic heat generation being
negative. As such, while charging from 0% SoC, the cell will
undergo endothermic reversible heat from 0% to around 65% SoC
and then exothermic reversible heat from around 65% to 95% SoC

before becoming endothermic again from 95% to 100% SoC. This
process changes for a discharge current (65% to 95% SoC is
endothermic while all other SoC intervals become exothermic).
The measured entropy coefficient is in line with the entropy
coefficient measured on a NCA-LCO graphite cell of the same cell
manufacturer.11 The cathode active material of this cell (as stated in
the Experimental setup section) is a blend of LCO and NCA and the
entropy coefficient of blended materials is influenced by both the
corresponding constituents. This has been studied using mixed
potential theory by Huang et al.,30 and the estimated entropy
coefficient can be attributed primarily to the NCA material.

The potentiometric responses for all the remaining SoC points are
provided in the Supplementary material (Figs. S5 to S9). The OCV
response demonstrates an interesting behavior around 65% and 95%
SoC where the entropy coefficient undergoes a sign change (Fig. S8
and S9). In these SoC intervals the OCV either overshoots before
reaching steady state, indicating a strong higher order (> 1)
dynamical behavior or undershoots in the opposite direction before
reaching steady state, indicating a non-minimum phase behavior

Figure 8. A fourth order transfer function fit of the estimated non-parameteric frequency response at 80% SoC. The estimated magnitude response (orange) and
transfer function fit (green) (a). The phase response (orange) and transfer function fit (green) (b). A total test time duration of 4 hours was required and resulted in
∂U/∂T = 0.082 ± 0.002 mV K−1.
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with regards to temperature. While we note these observations here,
it is necessary to separate the OCV-temperature dynamics to the
individual electrodes to identify the contributing factors to this
behavior.

In this work, the SoC direction for both potentiometric and
kernel-based methods was from high SoC (100%) to low SoC (0%).
To characterize any hysteresis effect of OCV on the entropy
coefficient estimates, the experiments would need to be repeated in
the increasing SoC direction as well (from 0% SoC to 100% SoC).
This, however, will at least double the experimental time and the
improvement in any subsequent thermal simulations (with a direc-
tion-dependent entropy coefficient curve) is unclear. If a direction-
dependent entropy coefficient curve is required, neither the potentio-
metric nor the kernel-based approach is recommended due to the
long experimental time and a calorimetry-based method should be
investigated (such as the one presented in Ref. 11)

Improved OCV models.—As discussed in the introduction,
determining the entropy coefficient is motivated in the context of
improving thermal simulations, since it quantifies the reversible heat
source term. However, entropy coefficients can also be used as a
diagnostic tool to identify electrode defects and provide degradation
markers 31,32 or to study voltage hysteresis 33,34. The kernel-based
method can similarly offer potential improvements to OCV model-
ling of a lithium-ion battery. Given that the measured terminal
voltage is dominated by the OCV (typically by around 95%),
developing more accurate SoC and temperature dependent OCV
models is highly beneficial.

A first approximation of an OCV model is to assume no dynamics
and model U(z, T) as a first order Taylor approximation, as shown in
Eq. 10.

( ) ¯ ( ) + [ ]U z T U z T
U

T
, 10

z

In Eq. 10, ¯ ( )U z is the OCV at a given SoC (assuming no hysteresis)

and U

T z is the entropy coefficient, at that SoC. The entropy

coefficient estimated via a potentiometric or kernel-based method
can be used in this OCV model. The ¯ ( )U z term can either be a linear
interpolation function or a parametric MSMR (multi-species multi-
reaction) model.35

In the kernel-based method, we however, also obtain the
dynamics of the temperature-to-OCV response (in the form of the
transfer function G(s)). By converting it to a time-domain state-space
representation, we can add dynamics to the OCV model as shown in
Eqs. 11 and 12.

( ) ¯ ( ) + ( ) [ ]U z T U z U T, 11

= + ( ) [ ]d U

dt
A U B T t 12z z

In Eq. 11, ΔU(T) is the deviation from the OCV at a given SoC and
is now a solution to a linear differential equation given in Eq. 12.
Here, Az and Bz are the state-space matrices of the transfer function
G(s) at a particular SoC. Hysteresis dynamics can be accounted by
adding a one-state hysteresis to ¯ ( )U z 8,36 or through formulations
based on phase change models, for example.37

Thorough experimental validation of these models is however
required, since both Eqs. 10 and 11 assume a linear combination of
the SoC and temperature OCV dependence. Much work is still
required in developing dynamic OCV models that account for both
SoC and the temperature of the cell.

Practical aspects of the kernel-based method.—It is worth
elaborating on the practicalities of the kernel-based method.
Compared to the potentiometric method, there is more signal
processing overhead with the kernel-based method, however, from
a user perspective once the temperature and OCV data are collected
the processing can be automated and done through robust software
code, making the analysis easier. A Matlab code base that generates
the temperature signals in the frequency domain and performs the
analysis discussed here is shared via a GitHub link at the end of the
paper (the code base also includes the experimental data set and a

Table II. The transfer function fitting metrics across all the SoCs and the corresponding kernel-based entropy coefficient and standard deviation.
The model order corresponds to the numerator and denominator orders. The SoCs denoted with an asterisk (*), indicate cases where the frequency
range was manually reduced to fit the first five harmonics and the model orders were manually set to improve the GoF.

Transfer function metrics Entropy coefficient

SoC GoF RMSE Model order Duration/SoC ∂U/∂T Std. ∂U/∂T
[%] [%] [V K−1] {nb,na} [-] [h] [mV K−1] [mV K−1]

0 99.6 2.44E-06 {3,1} 4.0 −0.387 0.0004
5 99.9 1.08E-06 {3,1} 4.0 −0.336 0.0002
10* 68.6 2.79E-06 {2,3} 4.0 −0.085 0.0014
15 76.2 1.51E-05 {1,2} 4.0 −0.178 0.0047
20* 98.0 6.32E-07 {2,3} 4.0 −0.087 0.0042
25* 98.7 1.23E-06 {2,3} 4.0 −0.105 0.0135
30* 60.1 1.50E-06 {2,3} 4.0 −0.338 0.0084
35 88.3 1.71E-05 {2,2} 4.0 −0.498 0.0061
40 99.3 8.18E-06 {2,2} 4.0 −0.555 0.0013
45 99.1 8.79E-06 {2,3} 4.0 −0.478 0.0023
50 70.7 2.15E-05 {1,2} 4.0 −0.218 0.0076
55 61.0 2.35E-05 {1,2} 4.0 −0.139 0.0057
60 81.7 1.65E-05 {1,2} 4.0 −0.065 0.0030
65 95.7 8.80E-06 {1,2} 4.0 −0.015 0.0011
70 98.3 5.72E-06 {3,1} 4.0 0.027 0.0009
75 99.0 4.38E-06 {3,1} 4.0 0.059 0.0008
80 99.6 2.72E-06 {1,4} 4.0 0.082 0.0017
85 98.4 5.61E-06 {1,2} 4.0 0.115 0.0010
90 77.5 1.76E-05 {1,2} 4.0 0.138 0.0026
95* 96.5 5.04E-06 {2,3} 4.0 −0.010 0.0160
100 83.5 1.17E-05 {1,2} 4.0 −0.054 0.0018
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script that an interested reader can use to reproduce all the results
presented in this paper).

The parameter settings for the reference temperature signal (as
given in Table I) also require some guidelines, in particular the
temperature range parameters Tmin and Tmax, the time based para-
meters Δtzoh and Tp, and the frequency range parameters fmin and
fmax (or Hexc).

A large temperature range (⩾20 K) is desirable, given the sub mV
per Kelvin variation in OCV, to amplify the OCV response and
improve the signal-to-noise ratio. It is however recommended to
keep °T 50max C to avoid accelerated degradation and

°T 0min C for ease of the Peltier control.
The value of Δtzoh is guided by the cell thermal inertia and should

be set such that the temperature gradient induced within the cell
should be a minimum (at the end of the Δtzoh interval). By doing so
the average measured temperature ( ¯ ( )T tn ) will be a fair representa-
tion of the cell and be can be associated with the OCV response. If

the specific heat-capacity (Cp) and through plane thermal-conduc-
tivity (κ) of the cell are known, Δtzoh can be set to be larger than the
characteristic timescale of the cell thermal diffusivity as

> /
= /( ) [ ]

t L D

D C

with
. 13

c

p

zoh
2

In Eq. 13, Lc is the cell thickness and ρ is the cell density. For the cell
studied in this work, κ = 0.86 W/m/K, ρ = 2.89E3 kg m−3, Lc = 75
mm and Cp = 789.7 J/kg/K, giving a characteristic diffusion time-
scale of 149.5 seconds and the value of Δtzoh was set to 300 seconds
fulling the condition in Eq. 13. A simulation of the cell inner/mid-
point temperature (at Lc/2) is shown in Fig. S11 of the
Supplementary material. It demonstrates how the inner temperature
reaches the average temperature measured at the boundaries within
the Δtzoh = 300 s interval; indicating a minimum thermal distribu-
tion within the cell.

Figure 9. The cell temperature and OCV response for the potentiometric method at 80% SoC. Markers (×) denote the point considered as steady-state (a).
Potentiometric straight line fit for 80% SoC at steady-state conditions (b). A total time duration of 6.8 hours was required for the five temperature step changes
and resulted in ∂U/∂T = 0.088 ± 0.001 mV K−1.
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The value of the signal period, Tp, is guided by the OCV-to-
temperature dynamics. If Tp is set very low (e.g., in the order of
minutes) the variation of OCV will be in the sub millivolts and high
precision voltage sensors will be required to measure the response.
Increasing Tp is beneficial in that = /f T1 pmin will reduce, aiding the
steady-state response, but this is then at the expense of increasing the
experimental time. Since the OCV-to-temperature dynamics are
unknown, through an initial phase of trial-and-error we found 4
hours to excite low frequency dynamics well. Section S1.4 of the
Supplementary material provides early stage results and analysis of
using Tp = 2 h. The estimated frequency response, when at 50%
SoC, is shown in Fig. 2. The estimated entropy coefficient values are

similar with a higher standard deviation for Tp = 2 h (Table S2)
however the ZoH duration, sampling time and temperature limits
were not finalsed. Given the similarity of the results, a value of
Tp = 2 h may act as a good starting point for any subsequent new
chemistries together with the signal guidelines provided in this
section.

With the frequency bandwidth based parameters fmin is not a free
variable and is constrained by the guidance of Tp, = /f T1 pmin (as
described in the Experiments section). The maximum frequency is
however a free variable but is still bounded. On the lower end

=f K fmax min with K ∈ Hexc and ∣Hexc∣ ⩾ 6 (as described in the
Identification section) and on the upper endothermic

/( )f t1 2max zoh which is the Nyquist frequency to prevent any
aliasing. The GitHub code base includes a signal generation routine
that helps the user to generate a reference temperature signal
conforming to these requirements and informing of any constraint
violation and how to adjust the parameters to meet the constraints.

One major practical limitation of the kernel-based method is the
need for a specialist thermal rig. Convection based thermal cham-
bers, typically used during battery testing, cannot be used to emulate
the reference thermal profile required for the method (Fig. 4a).
Further work is therefore required to validate the kernel-based
method across different cell form factors with appropriate Peltier
rig designs to control the cell surface temperature.

From a time-per-SoC perspective, the kernel-based method has
an advantage since it is not necessary for the OCV to reach steady-
state, while for potentiometric methods steady-response is crucial.
Referring to Table II the kernel-based method required 84 hours
(4 hours/SoC × 21 SoC points), while from Table III the potentio-
metric method required 194.3 hours (the sum of the Duration/SoC
column), which is a 57% time reduction. The Supplementary
material S1.2 provides results of the potentiometric method if only
the first three temperature set-points per SoC are used, which is the
minimum number of temperature set-points required for a potentio-
metric method. Some deviation is observed for SoCs between 15% to
40% and 90 % SoC, with good agreement over the remaining SoC
points. Using only three temperature set-points reduced the total time
to 142.2 hours (from 194.3 hours), which still corresponds to a 69 %
higher time duration than the kernel-based method. Three tempera-
ture set-points per SoC is the minimum number required for the
potentiometric method however for robust estimates, as observed in
Fig. S10, four or five temperature set-points per SoC are recom-
mended.

Table III. The potentiometric fitting metrics across all the SoCs and
the corresponding entropy coefficient and standard deviation. The
100% GoF values are an outcome of rounding the values to the
nearest decimal.

SoC GoF RMSE Duration/SoC ∂U/∂T Std. ∂U/∂T
[%] [%] [V] [h] [mV K−1] [mV K−1]

0 100.0 1.20E-04 17.1 −0.385 0.002
5 100.0 8.93E-05 13.9 −0.337 0.002
10 99.2 1.90E-04 5.0 −0.066 0.003
15 99.3 4.74E-04 14.6 −0.172 0.009
20 99.3 2.59E-04 13.5 −0.098 0.005
25 99.2 4.06E-04 16.4 −0.142 0.007
30 99.6 6.78E-04 7.0 −0.341 0.012
35 99.9 5.47E-04 8.9 −0.497 0.010
40 100.0 1.47E-04 6.9 −0.568 0.003
45 100.0 1.01E-04 14.6 −0.507 0.002
50 100.0 1.19E-04 8.0 −0.227 0.002
55 99.9 1.44E-04 7.7 −0.138 0.003
60 99.2 1.60E-04 6.6 −0.057 0.003
65 39.3 8.72E-05 8.4 −0.002 0.002
70 99.0 1.24E-04 6.4 0.038 0.002
75 100.0 4.88E-05 6.9 0.069 0.001
80 99.9 6.50E-05 6.8 0.088 0.001
85 99.3 3.37E-04 5.9 0.123 0.006
90 97.6 7.54E-04 6.6 0.150 0.014
95 93.3 4.08E-04 6.5 −0.048 0.007
100 99.4 1.09E-04 6.3 −0.044 0.002

Figure 10. Comparison of the kernel-based (orange) and potentiometric (green) based entropy coefficient estimation together with the standard deviation
estimate and the error between the kernel-based and potentiometric method (yellow). The plot shows a good agreement between the two approaches and thereby
validating the kernel-based method for the NCA-LCO cathode and graphite anode 3 Ah battery. The dashed line indicates the zero line to denote positive and
negative entropy coefficients intervals.
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Conclusions

The paper demonstrated that the steady-state gain of the transfer
function (from temperature to OCV) corresponds to the entropy
coefficient. The relationship between the entropy coefficient and the
integral of the impulse response (termed here as the kernel function
between the OCV and cell temperature dynamics) was established.
This relationship was exploited and validated by following a system
identification procedure, namely in the frequency domain. By
thermally perturbing the battery at high frequencies, the time
required to infer the dynamics is reduced, while being able to infer
the steady-state gain (at f = 0) through an appropriate parametric
transfer function.

The approach has an advantage in that it can accommodate for
non steady-state OCV transient effects. This is achieved by
accounting for a transient term in the frequency domain when
relating the temperature-to-OCV dynamics. However, the approach
relies on a thermal rig that can apply a persistently exciting thermal
profile, which can act as a practical limitation for its implementation.

Theoretical concepts were experimentally validated by estimating
the entropy coefficient of a NCA-LCO cathode and graphite anode 3
Ah pouch cell. The entropy coefficient was estimated over 21 SoC
points and compared against a potentiometric approach and showed
very good agreement across the entire SoC interval with a 57%
reduction in time.
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