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H-calculus for the Stokes operator with
Hodge, Navier, and Robin boundary
conditions on unbounded domains

Peer Christian Kunstmann

Abstract. We study the Stokes operator with Hodge, Navier, and Robin
boundary conditions on domains  C R? that are uniformly C*'. Star-
ting with the Hodge Laplacian we etablish a bounded Hormander func-
tional calculus for the Stokes operator with Hodge boundary conditions.
This entails a Hérmander functional calculus and boundedness of the
H*°-calculus in spaces of soleniodal vector fields for the Stokes operator
with Hodge boundary conditions. We then establish boundedness of the
H*°-calculus for Stokes operators with Navier type conditions via Robin
type perturbations of Hodge boundary conditions. This implies maxi-
mal LP-regularity for these operators and results on fractional domain
spaces. Our results cover certain non-Helmholtz domains.
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1. Introduction

Boundary condtions of Navier type play a vital role in the mathematical
investigation of problems in fluid mechanics. They are used to model various
slip type condtions on a fixed wall. In this paper we study Stokes operators
on unbounded uniform C%!-domains under Hodge (also called perfect slip)
conditions and boundary conditions of Navier type.

It is well-known that, for general C*!-domains  C R?, the Helmholtz
decomposition of L4(2)? into the solenoidal space LZ(Q) and the gradient
space G1(€)) may fail for certain ¢ € (1,00), see [23]. As a way out, the
spaces Eg (©) have been introduced by Farwig, Kozono, and Sohr (see, e.g.,
[9]). On the other hand, there has been an interest in recent years in the
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study of Stokes and Navier-Stokes equations also in certain unbounded non-
Helmholtz domains. In particular, the results on Stokes operators with Navier
type boundary conditions by Hobus and Saal in [17] cover situations in which
the Helmholtz decomposition of L7(0)? fails.

Following [17] we treat Navier type boundary conditions as a special
case of Robin type perturbations of Hodge boundary conditions. Under cer-
tain assumptions on the domain ©Q and ¢ € (1,00), it has been shown in
[17] that Stokes operators with Hodge and Navier type boundary conditions
generate analytic semigroups. For the spaces Zg (©), 1 < g < o0, it has been
shown by Farwig and Rosteck in [10], [11], that Stokes operators with Navier
type boundary conditions generate analytic semigroups and have the pro-
perty of maximal LP-regularity, 1 < p < oo. In this paper we substantially
extend these results by establishing a bounded H°°-calculus and maximal LP-
regularity for Stokes operators with Robin type and Navier type boundary
conditions in spaces LZ(Q) and LZ(Q).

Invariance of LZ(2) under the semigroup generated by the Hodge Lapla-
cian on certain Helmholtz domains is used in several papers, we mention [3],
[4], [17], [20], [24], [25]. In [17] this is even shown for some uniform C?%!-
domains without an L%-Helmholtz decomposition, under the additional con-
dition [17, Assumption 2.4] that holds, e.g., for perturbed cones and (e, 00)-
domains (see [17, Section 12]), but fails for aperture domains (we refer to
Remark 2.3 below). In this paper, we find L?-spaces of solenoidal vector
fields that are invariant for ¢ € [1,00] on any uniform C*'-domain and show
invariance of the usual space L1(Q) for all ¢ € (1,00) if d = 2 and for
q € (1, ﬁ U [2,00) in general dimension d > 3.

Boundedness of the H>-calculus in L?(Q)?, ¢ € (1, 00), for the Hodge
Laplacian is shown in [13] in uniform C3-domains Q C R?. This result is
used in [3] on a cylindrical domain in R3 to show inclusion into W14 of the
domain of the square root. Here we show that the Hodge Laplacian enjoys a
better Hérmander functional calculus on general uniform C?!'-domains and
determine fractional domain spaces exactly (see Corollary 3.15). Invariance
of solenoidal L4%-spaces then yields a Hormander functional calculus and,
in particular, a bounded H°-calculus for the correponding Hodge Stokes
operators (see Theorem 4.11). This in turn leads to precise descriptions of
the fractional domain spaces of these Hodge Stokes operators if LZ(€) is
invariant under the Hodge Laplace semigroup (see Corollary 4.13).

We give an overview of the paper. In Section 2 we gathered prelimi-
nary material on boundary conditions, regularity of domains, function spaces,
Helmholtz decompositions, maximal LP-regularity, and functional calculi.

In Section 3 we study the Hodge Laplacian on uniform C?!'-domains.
We define the operator in L?(Q2)? by a suitable symmetric sesquilinear form
and show that this coincides with the Laplacian with perfect slip boundary
conditions in [17], see Proposition 3.4. By Davies’ method we establish kernel
bounds of Gaussian type for the semigroup, see Theorem 3.7. The approach
is similar to what has been done in [25] and [20], but we can use the precise
domain descriptions from [17] to cover the full range of ¢ up to oo. Then the

) Birkhauser



IEOT H*°-calculus for the Stokes operator. .. Page 3 of 34 26

results from [7] or [19] apply and yield a Hérmander functional calculus and
boundedness of the H*°-calculus for the Hodge Laplacian, see Theorem 3.12.
We also identify fractional domain spaces, see Corollary 3.15.

In Section 4 we introduce several subspaces of solenoidal vector fields
and establish invariance properties under the semigroup generated by the
Hodge Laplacian, see Proposition 4.6. This allows to define Hodge Stokes
operators and we obtain precise domain descriptions in Proposition 4.9, func-
tional calculi in Theorem 4.11, and can identify fractional domain spaces in
Corollary 4.13.

In Section 5 we study Stokes operators with Robin type boundary con-
ditions as perturbations of Hodge Stokes operators. To this end we need
estimates on the solutions of the resolvent problem for the Hodge Stokes
operator with inhomogeneous boundary conditions. As we dispense with [17,
Assumption 2.4] and only work under the weaker assumption that LZ(Q) is
invariant under the semigroup generated by the Hodge Laplacian, we reprove
in Theorem 5.3 the resolvent estimates we need under the Assumption 5.2,
which is familiar from [17]. Since the perturbation is of lower order, we ob-
tain boundedness of the H>-calculus and information on fractional domain
spaces, see Theorem 5.5 and Corollary 5.6. Similar results hold on the spaces
L2(Q) for all ¢ € (1,00) without further assumptions, see Theorem 5.9 and
Corollary 5.10, but we omit the similar proofs.

We have gathered several auxiliary results in an appendix.

Finally, we want to draw attention to the following aspect of our work.
The main result of [12] showed that, for a uniform C*-domain Q C RY, ex-
istence of the Helmholtz projection in L?(Q)? (“weak Neumann”) implied
maximal LP-regularity, 1 < p < oo, for the Stokes operator with Dirichlet
or “no slip” boundary conditions on 2. This had been upgraded to boun-
dedness of the H>-calculus in [14]. Our results in this paper demonstrate in
particular that “weak Neumann” also implies a bounded H°°-calculus for the
corresponding Stokes operators with Hodge, Navier type, and Robin bound-
ary conditions. But our results also cover certain non-Helmholtz domains.

We state our results explicitly for unbounded domains and draw atten-
tion to our definition of unbounded uniform C*/C*1-domains (see Defini-
tion 2.1 below). For Lipschitz domains we take care to mention each time if
they are bounded or unbounded. The methods of proof for our results allow
without problems also for bounded domains, but then most results are not
new and some are not really meaningful.

Notation

As usual we understand partial derivatives 0; = %, the gradient V, the
z;

divergence operator div, or the Laplacian A acting on L] (Q)-functions in

the distributional sense. Without explicit mentioning, we understand func-
tions on the boundary 9 in the sense of traces even when we write ... |sq
occasionally. We refer to the appendix for results on traces.

Sometimes, we write a < b if a < Cb for some inessential constant C' > 0.
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2. Preliminaries

2.1. Boundary conditions

We recall the deformation tensor
1 1
D(u) = (Vu+ Vu) = 2 (Bjur + Ou;)f s

for a vector field u on subsets of R?, where we denote Vu = (d;ug)} _,, i.e.
Vu has columns Vug. As in [17] we shall also use Dy (u) := (Vu £ Vul).
Observe that D, (u) = 2D(u), that the definition of D_(u) in [17] has the
other sign, and that
v xrotu=D_(u)v

in case d = 3. We also recall the Cauchy stress tensor T'(u,p) = 2D(u) — pl,
where I € C%*? is the identity matrix and p denotes the pressure.

The boundary conditions studied in [10] for a domain Q C RY with
outer unit normal v and a sufficiently smooth vector field u on € are of the
form

v-u=0, au~+ BT (u,p)V]tan =0 onof, (2.1)

where [.. .]tan denotes the tangential part, and « € [0,1) and § € (0, 1] satisfy
a+ 3 = 1. The first condition means that the motion at the boundary is only
possible in tangential directions which is reasonable for a fixed domain. Since
the pressure is scalar-valued we thus have

[T(u, p)v]tan = [D(w)v]tan,
and a = 0 corresponds to Navier’s slip condition where there is no tangential
stress on the fluid at the boundary. The case 8 = 0 would correspond to
no-slip or Dirichlet conditions but this is excluded here. For «, 8 € (0,1)
one has partial slip conditions where the tangential stress at the boundary is
proportional to the velocity [u]ian = v (recall v-u = 0).
In addition to these conditions, [17] also covers the conditions

v-u=0, D_(u)yr =0 onof, (2.2)
termed “perfect slip” there and “perfect wall” in [4]. For d = 3 this reads
v-u=0, vxrotu=0 on 0F,

meaning that vorticy has to be in normal direction at the boundary. This
condition is called “Hodge boundary condition” in, e.g., [24] since resolvents
of the corresponding Laplace operator respect the Hodge (or Helmholtz) de-
composition of Li-vector fields on bounded Lipschitz domains, at least for an
interval around g = 2. As we shall see this partly persists also to unbounded
domains Q without a Helmholtz decomposition in L7(£2)%.

We refer to [24, Section 2] for a proof of the following fact: If the boun-
dary of  is of class C? and v -u = 0 on 99 then

[Dy (w)V]tan = —D_(u)v +2Wu  ondf, (2.3)

where WV denotes the Weingarten map on 92 and we consider W as a d X d-
matrix-valued function on 9f2, which has values in the real symmetric ma-
trices. In [24] this is shown for a bounded C?-domain, but the property can
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clearly be localized. If 99 is unbounded and uniformly C? then W is con-
tinuous and bounded. If Q is an unbounded uniform C?!-domain then W
is Lipschitz continuous and bounded on 0f). There is also a clear relation of
(2.3) to [17, Lemma 9.1]. In view of the boundary conditions studied in [17]
we remark that

[D, (U)V]tan =D_ (U)V7

which via (2.3) also reflects that Wu is tangential to 0 if v - u = 0 on 0€Q.

We thus see that it is sufficient to study the Stokes operator with Hodge
boundary conditions (2.2) and then consider zero order perturbations of the
form

v-u=0, D_(u)v = [Bultan o0noQ, (2.4)

where B € C%1(99)?*9 is real-valued and symmetric. For the boundary
conditions in (2.1) we may take

B =al +26W, (2.5)

where I € C?*¢ denotes the identity. The conditions (2.4) are called Robin
boundary conditions in, e.g., [26]. For the Weingarten map we do not need
[. . .Jtan here, but in the general case we have to put it since the left hand side
in the second condition in (2.4) is tangential.

2.2. Regularity of domains

We start by recalling the definition of uniform C*'-domains and uniform
C*-domains for k € Ny and k € N, respectively.

Definition 2.1. An unbounded domain ©Q C R¢ is called an unbounded uni-
form C*1-domain with k € Ny (or uniform C*-domain with k € N, respec-
tively) if there are constants «, 3, K > 0 such that, for each z¢ € 99, there is
a Cartesian coordinate system with origin at xo and coordinates y = (v, yq),
v = (y1,...,y4-1) and a C*'-function (or C*-function, respectively) h, de-
fined on {y’ : |¥'| < a} and with ||h]|cr.r < K (or ||h||ck, respectively), such
that, for the neighborhood

Ua,n(zo) = {y =, ya) €R: lya — h(y)| < B,y < o}

of zg, we have Uy g1 (20) NOQ = {(v',h(¥')) : || < a} and

Uapn(20) N Q= {1 ya) : My') = B <yn < h(y),|y| < a}.

An unbounded domain Q C R? is called an unbounded Lipschitz domain if,
for every xg € 02, one can find «, 3, K > 0 and a Lipschitz function h such
that one has a representation as above, and €2 is called an unbounded uniform
Lipschitz domain if € is an unbounded uniform C%!-domain. Observe that
for an unbounded Lipschitz domain, the constants «, 3, K > 0 in the local
representation may depend on xg € 9.
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2.3. Function spaces and Helmholtz decompositions

Let Q € R? be a domain. For ¢ € [1,00] and k € N, L4(Q2) and W*4(Q)
denote the usual Lebesgue and Sobolev spaces on 2:

Wh4(Q) := {u € LI(Q) : 0% € LI(Q) for alla € Nd with |a| < k }.

Without explicit further notice functions in these spaces are always complex-
valued.

We denote by C.(Q) the space of continuous functions on Q that have
compact support in Q and by Cy(Q) the closure of C,(Q2) w.r.t. the sup-norm
|- |loo in, e.g., the space C,(Q) of all bounded and continuous functions on Q
or in L>(Q).

We denote by C°(€) the set of all C*°-functions on Q with compact
support in €. Then we denote C2%, () := {p € C° ()¢ : divp = 0} and, for

€ (1,00), LZ(€) denotes the closure of CZ% () in L7(Q)".

We denote by G?(Q2) the space of Li-gradients, i.e., the space of all f €
L7(2)4 such there exists a distribution ¥ on Q with f = V4. It is well-known
that we then have ¢ € L (), i.e. 1| € LI(K) for any compact subset
K C Q, and that, for a Lipschitz domain Q C R? (bounded or unbounded),
we even have ¢ € L (Q), i.e. |k € LY(K) for any compact subset K C 0.

We thus set, for a Lipschitz domain Q C R¢,

Wh(@) = {¢ € Li, (@) : Vv € LUQ)Y/C,
so that G4(Q) = VIW1e(Q).

For the usual duality between L(Q)% and L7 (Q)9, where ¢’ € (1, 0)
denotes the dual exponent to ¢ given by % + % =1, we then have

LIt =G7(Q),  GUY)*' =LI(Q). (2.6)

For ¢ = 2 one has the orthogonal decomposition L2(Q)? = L2(Q) & G2(Q2),
usually called Helmholtz or (a special case of) Hodge decomposition, with
corresponding orthogonal projection Po in L2(Q)¢, the Helmholtz projection.

Remark 2.2. Let Q C R? be an unbounded uniform C'-domain. It is shown
in [14, Proposition 2.1] that there is an interval Ip C (1,00) with 2 € Ip
and symmetric in the sense that ¢ € Ip if and only if ¢’ € Ip, such that, for
any q € Ip, Py restricted to L2(Q)9 N L4(2)? extends to a bounded operator
P, on L(0)? related to the Helmholtz decomposition L?(Q)¢ = L(Q) &
G(Q). For q € Ip, P, is called Helmholtz projection in L(Q)%. Moreover,
for ¢ € (1,00) we have g € Ip if and only if the Helmholtz decomposition
LY(Q)4 = LL(Q) & GI(2) holds.

It is well-known that, for a bounded Lipschitz domain 2 C R?, one can give
a sense to the normal component v - f on the boundary 052 for vector-fields
f € L)% with div f € LI(Q2) (we refer, e.g., to [31, I1.1.2]). This is done
via an integration by parts formula and, since it can be localized, persists
to unbounded uniform Lipschitz domains (see also Proposition A.1 in the
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Appendix for details in unbounded uniform C?%!-domains). For a bounded
Lipschitz domain one has

LLQ) ={f e LY Q) :divf=0,v-flon =0}
For an unbounded Lipschitz domain €2 C R? we denote

==L
LUQ) ={fe LI :divf=0,v-floa =0},  GUQ) =VCx() :
Clearly, LL(92) C L£2(2) and G1(Q) C G9(Q) (since G9(Q) is closed by (2.6)),
and there are unbounded domains with several outlets to infinity where those
inclusions are strict with arbitrary finite or with infinite codimension, see [6],
[23]. We have the duality relations

LT =67(Q),  gUQ)t = L), (2.7)

and for ¢ = 2 the orthogonal decomposition L2(Q)? = £2(Q) @ G%(Q) with
corresponding orthogonal projection Py in L2(Q)%. Indeed, the first equality
follows from the second, and for the second “2” is clear, but also “C” follows
from the integration by parts formulae in Proposition A.1. We also refer to
[22, formulae (24) and (25)], where G9(Q2) is denoted by (/}';(Q), Gi(Q) is
denoted by G,(2), LL(€Q) is denoted by jq(Q), and £4(€) is denoted by

T4(Q).

Remark 2.3. We discuss [17, Assumption 2.4] on unbounded uniform C?1-
domains {2, essential for a number of results in [17], some of which we shall
extend. This assumption reads: VC°() is dense in G¢' (Q). By (2.6) this is
equivalent to LZ(§2) = (VCSO(Q))L =G4 (Q)F. By (2.7) it is finally equiva-
lent to LL(Q) = L1(Q).

This always holds for ¢ € (1, ﬁ], see Lemma 4.5 below, but for large
q it fails, e.g., for aperture domains or other domains with several outlets to
infinity, see [22].

As for the Helmholtz decomposition above, there is an interval Ip 3 2, sym-
metric in the sense that ¢ € Ip if and only if ¢’ € Ip, such that, for any
q € Ip, Py restricted to L?(2)?N LY(0)? extends to a bounded projection P,
on L7(Q)? related to the decomposition L?(Q)? = LZ(Q) ® G%(2). The proof
is very similar to the prooof of [14, Proposition 2.1].

As we shall also use results from [9] on the Helmholtz condition on
unbounded uniform C*-domains we recall the spaces

= LI NLAQ), 2 < g < o,
Li(Q) := {Lq(Q) + L2 (0), 1< Z <2,

and the corresponding spaces of solenoidal and gradient vector fields

Zg(Q) — {LZ(Q) n Lg(Q), 2<q < oo,

LY 4+ L2(N), 1< g < 2,
Gu(Q) = G NG*(Q), 2 < g < oo,
TGN +GAQ), 1< g< 2.
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For k € N and ¢ € (1,00), we shall later on also meet the spaces

Wha(Q)NWH2(Q), 2 < ¢ < oo,
Wka(Q) + Wk2(Q), 1 < ¢ < 2.

We state explicitly that, in the usual canonical way,

(L1(Q)) =L7(Q), 1<q<oc. (2.8)

Wha(Q) = {

The following on the Helmholtz decomposition in Eq(Q)d has been shown in
[9, Theorem 1.2, Corollary 1.3]. We remark that this has been used in the
proof of the assertion of Remark 2.2 in [14, Proposition 2.1].

Theorem 2.4. Let Q C R? be an unbounded uniform C'-domain and 1 < ¢ <
o0o. Then

LYQ)* = Lo () @ G(Q)
and the correponding projection ﬁq in LU0 satisfies (ﬁq)’ = ﬁq/.
Moreover, C2%,(Q) is dense in LL(Q) for the norm of LY(Q)* and one
has the annihilator relations

LI =G (),  GUQ)*T =L (Q),

o

and in a canonical way the isomorphisms
(Ly(@) =L@,  (GUQ) =G ().

2.4. Maximal LP-regularity, H °°-functional calculus, and Hérmander func-
tional calculus

We only recall basic notions and refer to [21] for more details. Let —A be
the densely defined generator of a bounded analytic semigroup in a Banach
space X. For p € (1,00), A is said to have mazimal LP-regularity if, for any
f € LP(Ry; X), there exists a unique mild solution of the Cauchy problem

u'(t) + Au(t) = f(t), t >0, u(0) =0,

which satisfies v/, Au € LP(Ry; X). The densely defined negative generator
B of an analytic semigroup is said to have mazimal LP-reqularity on finite
intervals if, for some (and then equivalently for all) 77 > 0 and any f €
L?P(0,T; X), there exists a unique mild solution of the Cauchy problem

U/(t) + Bu(t) = f(t)a le (OvT)7 U(O) =0,

which satisfies v', Bu € LP(0,T; X). If A has maximal LP-regularity then any
translate B = pu+ A, p € R, has maximal LP-regularity on finite intervals.
Conversely, if B has maximal LP-regularity on finite intervals then B + u has
maximal LP-regularity for some p > 0.

In UMD spaces X, in particular in closed subspaces of L9-spaces with
q € (1,00), maximal LP-regularity for p € (1,00) is characterized by R-
sectoriality of A of some angle < 7 (see, e.g., [21, 1.11]). Here, the operator
A is called R-sectorial of angle w € [0,7) if 0(A) C 3, := {X € C\ {0} :
larg A| < w} U {0}, and for any 6 € (w, ), the set {AR(\,A) : A € C\ Xy} C
L(X) is R-bounded.

) Birkhauser
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For Banach spaces X, Y a subset 7 C £(X,Y) is called R-bounded with
R-bound C if, for all n € N, x1,...,2, € X and T1,...,T,, € 7 one has

n n
E|| > eTizslly < CE| Y i«
Jj=1 j=1

where the ¢; are independent and symmetric {—1,1}-valued random vari-
ables, e.g., Rachemachers. By the Khintchine-Kahane inequalities, for X =
L9 with q € (1,00), expressions E|| >, ¢; f;|| are equivalent to square function
expressions [|(3 | £;|?)*/?||. This has been extensively used in, e.g., [5].

If we replace, in the above definition of R-sectoriality, R-boundedness
by boundedness, we obtain the definition of a sectorial operator of angle
w € [0, 7). A sectorial operator A of angle w € [0, 7) is said to have a bounded
H® (3p)-calculus, where 0 € (w, ), if for some C' > 0 we have the bound

[F(A)] < Cl[Flloo,z,
for all F' holomorphic on the interior of ¥y, for which
|F(2)] < Mmin{|z[%, [2] 7"}

holds for some M, e > 0. Here, the operator F(A) € £(X) is defined by the
Cauchy type integral

F(A) = L F(MN)R(XN A)dA, (2.9)
21 %,
with o € (w,0). Observe that this is a Bochner integral by the assumptions
on F.

If A is densely defined with dense range and has a bounded H*(%j)-
calculus then F(A) is a bounded operator for all F' holomorphic and bounded
on the interior of ¥y. In particular, A has fractional powers A" € £(X) for
all t € R, with an exponential bound in [t|, i.e. A has bounded imaginary
powers. It is well-known that, if A has bounded imaginary powers, then for
6 € (0,1) the domains fo the fractional powers A are obtained by complex
interpolation

D(A%) = [X,D(A)]p,  0€(0,1),

see, e.g., [33], [21], [16].

Under the same assumptions, the operator A is said to have a Hormander
functional calculus if there exist C' > 0 and s > 0 such that, for some
n € C(0,00) \ {0}, one has an estimate

1E(A) < Csup [nC)E @) w2 (2.10)

for F € C¢°(0,00), say. For more on this type of functional calculus we
refer to [7], [19], [20]. In the typical situation X = L%(), A is self-adjoint
in L2(2) and, at least on L4(2) N L?(Q), the operator F(A) is given by the
spectral theorem in L?(Q). Let us already mention here that we do not aim for
optimality of the smoothness parameter s here and view this property more
as a qualitative strengthening of a bounded H*°-calculus: If F' is bounded

) Birkhauser



26 Page 10 of 34 P. C. Kunstmann IEOT

and holomorphic on the interior of ¥y then, for any ¢ > 0 and k € N, we have
by Cauchy’s integral formula

, k! F(z)
)y — B / _Fl)
<t) 2mi |z—t|<ct (Z - t)kJrl 4,

for any ¢ € (0,arcsin ), which leads to |t* F(*)(¢)| < %HFHOOEG This shows
that a Hormander functional calculus for some s > 0 implies a bounded
H®>(Xg)-calculus for any 6 € (0, §).

3. The Hodge Laplacian on unbounded uniform C?'-domains

In this section we study the so-called Hodge Laplacian in unbounded uni-
form C%!-domains. We establish pointwise Gaussian kernel bounds for the
semigroup operators. Similar to the approach in [20] this is done by Davies’
method. Compared to the situation in bounded Lipschitz domains in [20] we
can here make use of the L?-theory of [17], in particular the precise descrip-
tion of the domain of the operator in L9(€)?, and combine this with Sobolev
embeddings. An application of the main result of [7] then yields a bounded
Hormander functional calculus on the L2-scale. This calculus is much stronger
than a bounded H°°-calculus, for which an application of the main result in
[8] would have been sufficient. In any case this leads to bounded imaginary
powers and thus to a precise description of the domain of the square root of
the operator in L9(Q)%.

3.1. The operator

We define the Hodge Laplacian Ag in L2(Q)¢ for an unbounded Lipschitz
domain © C R by a suitable sesquilinear form. For d = 3 we recall the
following from [24], [20]. Let

a:VxV—=C, a(u,v) ::/rotu-rotvdm+/divudivvdm, (3.1)
Q Q

where
Vi=V(Q) = {uc L*Q)? :rotu € L*(Q)*, divu € L*(Q), v-u|pq = 0}.

Notice that the boundary condition in the definition of V' makes sense. Then
—Ay is the operator in L?(Q2)? associated with a in the usual sense: For
u, f € L?(2)? we have u € D(Ay) and —Apu = f if and only if

uwevV and Yo eV :a(u,v) = (f,v),

where (f,v) = [, f-vda denotes the scalar product in L*(€2)%. For d > 3 we
take inspiration from [25] (see also the weak formulation in [4]) and let

a:VxV—C, a(u,v) /D )dx—i—/divudivvdx,
Q
(3.2)

where

V:=V(Q) :={ueL*(Q): D_(u) € L>(Q)¥9, divu € L*(Q), v-ulsgq = 0}

) Birkhauser
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and
d [E—
By : By = Z b}kb?k for matrices B; = (bé-k)jk e C™ 1 =1,2.
k=1

Proposition 3.1. Let Q C R be an unbounded Lipschitz domain. Then the
operator —Ap associated with a in L*(Q)? is self-adjoint in L*(Q)? and
—Ag > 0.

Proof. The sesquilinear form a is symmetric, i.e. a(u,v) = a(v,u) for all
u,v € V(Q). The space V() is dense in L?(Q)¢ (since it contains HJ(92)%)
and V is a Hilbert space for the scalar product

(u,v)v = a(u,v) + (u,v) 2(q)e-

Hence the operator —A g associated with a in L2(Q)? is self-adjoint in L2 ().
By a(u,u) > 0 for all u € V(Q), —Ap is non-negative. O

Corollary 3.2. Let Q C R? be an unbounded Lipschitz domain. Then Ay
generates a bounded analytic semigroup (T(t))i>0 := (e!2#);>0 in L?()?
which is contractive on {z € C : Rez > 0}.

We determine the operator —Ap associated with a, assuming additional re-
gularity of the boundary. To this end we also need the following result which
is part of [17, Theorem 6.1].

Proposition 3.3. Let Q C R? be an unbounded uniform C%*'-domain and q €
(1,00). The restriction Apg q of the Laplacian A to the set

D(Apsy) = {u e W24 :v-u=0 and D_(u)r =0 on 9}
is the generator of an analytic semigroup in L9(Q).

Proposition 3.4. Let Q C R? be an unbounded uniform C*'-domain. Then
—Ap coincides with the operator —Apg2, i.e.

D(—-Ay) ={uec W23 Q)% :v-u=0 and D_(u)v =0 ondN}

and, for uw € D(—Ap),
—Agu = —Au.

Moreover we have

V() ={ue W Q)?: v -u=0 0nd0N}.
Corollary 3.5. Let Q@ C R be an unbounded uniform C%*'-domain. Then
Aps. is self-adjoint in L*(Q)% and —Apgs > 0.

Proof of Proposition 3.4. We start with the elementary formula (see also [17,
Lemma 5.3 (i)])

div (D_(u)v) = (Au — Vdivu) - v+ D_(u) : Vo,
which holds for v € W4 (Q)¢ and u € LI(Q)? with D_(u) € Wha(Q)4xd,
divu € Wh4(Q), and Au € L(Q)?, where q € (1,00). Here we have ¢ = 2,
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but we shall need the following two formulae also for more general q. We
symmetrize the second term

D_(w):Vo=D_(w)' : Vv =-D_(u): Vo = %D,(u) . D_(v)
(3.3)

to arrive at

%D_(u) D (0) = div (D_(w)7) — (Au — Vdivu) - 7. (3.4)

Then we use GauBl’ theorem (see Proposition A.1) and obtain, for v €
W22(Q)INV(Q) and v € V(Q),

a(u,v) = [ div(D_(u)v) dx — / (Au — Vdivu) - vde
Q Q

+ [ div((divu)v) — (Vdivu) - vde
Q

_ /Q (—Aw) -vde + /Q div (D_(u)v) dz + /Q div ((divw)7) do
:/Q(—Au)-@der/mzwD_(u)@daJr/m(divu)(y-@)do

:/Q(fAu)Ed:rf/aQi'D_(u)udo.

In the last step we used v - D_(u)v = —0 - D_(u)v (see also [17, Lemma
5.3 (ili)]) and v - v = 0 on 9Q by v € V(). This shows —Agu = —Au if
u € W22(Q) N V(Q) satisfies in addition D_(u)v = 0.

Observing W22(Q)? NV (Q) = {u € W22(Q) : v - ulpq = 0} we thus
have shown
D(Apsa) ={ue W2 Q)% :v-u=0and D_(u)y =00ndN} C D(-Ap)

and that Apg o is a restriction of Ap. Since the resolvent sets of both oper-
ators Ay and Apg o contain a right half plane (here we use Proposition 3.3)
we conclude Ay = Apgo as claimed.

The last assertion is obtained by complex interpolation. It suffices to
show V() C W12(Q). Since —Ay is self-adjoint we have

V(Q) = [L2(Q), D(=Am)y2 C L2, W)Yo = WH(Q)1,
where we refer to Proposition A.4 for the last equality. O

For later purposes we note the following variants of the integration by parts
argument in the previous proof under relaxed conditions.

Lemma 3.6. Let Q C RY be an unbounded uniform C%*'-domain and q €
(1,00).
(i) If u e W21(Q)4 N LL(Q) with D_(u)v = 0 on dQ and v € GY (Q) then

/Q(—Au) Bz =0,
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(ii) If Vi € GI(Y), Ay € WH(Q) withv-Vip =0 on 0Q andv € D(Ap )
then AV € L1(Q)¢ and

/va-mdx:/ﬂ(—Aw)-wx

Proof. (i) First observe that D_(v) = 0 since v is a gradient. If, in addition,
ve Whd (2)¢ then the calculations in the proof of Proposition 3.4 show the
assertion. By [22, Theorem 3] we can approximate a given gradient v € GY (Q)
in L7 (Q)%norm by gradients in W14 ().
(#4) Again, we observe D_(V) = 0 in . We also observe that AVy =
VAy € LY(Q)?* by Ay € WH4(Q). The formula (3.4) still is true if just
u € L9(Q)¢ with divae € WH4(Q), D_(u) € WhH9(Q)™4 Au € LI(Q)¢
and v € LY (Q)% with dive € L7 (Q), D_(v) € LY (Q)?*? (instead of v €
W' (Q)9). Indeed, the argument in the proof of [1, Theorem 3.22] shows
that we can approximate such a given v by a sequence of smooth v, with
compact support such that v,, — v, divw,, — dive, and D_(v,) — D_(v) in
L7 -norm. Hence we can carry out the symmetrization (3.3) for v,, and pass
to the limit.

Consequently we have, for v € D(Ay ) and u € L9(Q)? with divu €
L1(Q), D_(u) € Wh1(Q)?*4 and Au, Vdivu € L1()?, that

/Qu~mdx+/€mm0/~u)fu D_(v )Vdd*/g(fAu)‘ﬁdx.

Putting u = V4 as in the assumption this proves the claim. O
3.2. Gaussian bounds

We employ the method from [20] to establish Gaussian type bounds for
(T'(t))t>0, but here we are in a more regular situation, and can fully ex-
ploit the information in Proposition 3.3 on the domain of the generator in
Li(Q)? for 2 < ¢ < 0.

Theorem 3.7. Let Q C R be an unbounded uniform C*'-domain. Then the
semigroup (T(t))i>0 generated by Ag in L*(Q)¢ consists for t > 0 of inte-
gral operator with R4 ?-valued integral kernels k(t,x,y) satisfying pointwise
Gaussian bounds, i.e., there exist constants C,§,b > 0 such that, for allt > 0
and z,y € €,
2
k(t,z,y)| < Ct=/2 ot e b (3.5)

Proof. First we show that each T(t) leaves L?(Q2;R?) invariant. We use [27,
Theorem 2.1]. So let u € V(§2). We have to show Reu € V() which is clear
and Rea(u,u — Rew) > 0. But

Rea(u,u — Reu) = Re (—z/ D_(u) : D_(Imu) + divudiv (Im u) dx)

/ D_(Imu) : D_(Tmu) + |div (Tmu)|* dz > 0.

We only sketch the part of the proof in L?(Q)? (steps 1 and 2 below) where
calculations are just as in the proof of [20, Theorem 5.1] (there, Q C R3
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was a bounded Lipschitz domain and a given by (3.1)). We shall use Davies’
method and consider “twisted” forms

o (1,0) = (6%, e 0) (w0 € V(Q)),
where p € R and ¢ € € := {¢p € C(Q,R) : [|0j¢]|c <1 for all j}. Observe

that e2%u € V(Q) for u € V() so that a,y is well-defined.
Step 1: For each v € (0,1) there exists a constant wy > 0 such that, for all

ueV(Q),oeR and ¢ € &,

|0 (u,u) — a(u, u)| < ya(u, u) + woo?|[ull3- (3.6)

Step 2: There are constants C,w; > 0 such that
’|e_g¢etAH(eg¢f)HL2(Q)d < Cewlg2t||f||L2(sz)d (3.7)
|D_ (e et )| s < CE V2 fllaye (38)
HdiV(e_wemHewf)HLz(Q)d < Ct_1/2€w192t”f”L2(Q)d (3.9)

forall p € R, o € £, ¢t > 0and f € L?(Q)?. Here we remark that, for a scalar
function g and a vector field u, we have

D_(gu) = gD—(u) + (Vg)u” —u(Vg)T, (3.10)
and this formula replaces the formula rot (gu) = grotu + Vg X u, used in
[20].

Step 3: We make use of the Sobolev embedding V(Q) — WH2(Q)? —
2d

L% (Q)* where, for d > 3, qq is given by q%) = % — L ie q = 7% (for
d = 2 see Remark 3.8 below). Using in addition (3.7), (3.8), (3.9), we then
have, for f € L?(Q)4, 0 € R, p € £, and t > 0,
e e?eton (€2 )| Lao ()
< llem@et 2 (e f) v (o)
S |D-(e79%e™1 62 f)| 12(qyaxa + ||div (€7 2%e" 2 e2? £)| 120
+H679¢etAH(eg¢f)||L2(Q)d
S U+t £ 2.

Hence we find for any § > 0 a constant Cs > 0 such that, forall p € R, p € &,
and t > 0, we have

_ _ 2 _dcl__
le=22et 5 €2 f| Lo qa_pao (g < Cst ™/ 2e et = Cyt ™5 (2 w0 et ot

(3.11)

Step 4: We use the arguments in [5] and obtain, for any é > 0, constants
Cgo,6,Wqo > 0 such that, for all p € R, ¢ € £, and ¢t > 0, we have

le™2P et €22 £ 1ay (ya— oo ()1 < Cop 56 €0, (3.12)

Step 5: We use Proposition 3.3 for ¢ = go and obtain constants Cy,, dq, > 0
such that, for all ¢ > 0,

€24 1| Lao ()a w20 ()0 < Coot ™€’ (3.13)
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Then we use Stein interpolation between (3.11) and (3.13) and obtain new
constants Cy,, dq, > 0 such that, for all o € R, ¢ € £, and t > 0,

2
||€ 0o tAH 6t 1/2 6q0 eWao @ t.

69¢f||Lq0 (Q)d—W1lao(Q)d < Cq
(3.14)

Step 6: If qo < d we use the Sobolev embedding W% (Q)? < L% (Q)? as in

Step 3, where q% = qio — d, and obtain constants Cy,, d4,,wq, > 0 such that,

for all p € R, p € €, and t > 0, we have
e e fll ap s ar @y < Copt ™ * i webnteeme™, (3.15)

Combining (3.11) and (3.15) via the semigroup property we obtain constants
Cio.q11 990,01 > Wgo,q. > 0 such that, for all p € R, ¢ € £, and ¢t > 0, we have

0,91
—dl_
le=e?et2H e f|| @i—La (@)1 < Cgoaqit 23740 gdan an t a0, €%t
(3.16)

and can repeat Steps 4-6 with ¢; in place of ¢q.

If go = d then the Sobolev embedding into L>()? is not available. We
interpolate between (3.7) and (3.12) to obtain (3.12) for some 2 < ¢p < d
and can repeat Steps 5 and 6.

If g0 > d we use the Gagliardo-Nirenberg inequality

d/qo H ||1 d/qo
W0 (Q) Lo (Q)

instead of the Sobolev inequality and use both (3.12) and (3.14). This yields
constants Cuo, 000, Wso > 0 such that, for all p € R, ¢ € &£, and t > 0, we
have (3.15) with ¢; = oco. Again, we can combine this with (3.11) and obtain
constants Cy, oo dgy,00, Wge,00 > 0 such that, for all p € R, ¢ € £, and ¢t > 0,
we have (3.16) for ¢; = oo, i.e.,

le™% et 620 £l apa poe s < Cggoot ™ ePiotevio=e™  (3.17)

lul| Lo () < Can||ull

Since e*A# is self-adjoint, dualization of (3.17) yields
[ A e o e I GAL)

Combining (3.17) and (3.18) finally yields constants C,d,w > 0 such that,
forall peR, pe & and t > 0,

||€79¢etAHeg¢f||L1(Q)d_)L°°(Q)d < Ctiie& we t (3.19)

This is well-known to imply that the operators e!®# have integral kernels
satisfying pointwise Gaussian bounds, see, e.g., the arguments on [28, pp.
170/171]. As the semigroup leaves L?(2;R?) invariant, the kernels can be
chosen to be R4*%-valued. O

Remark 3.8. In case d = 2 one has to use the Gagliardo-Nirenberg type
inequality

1-2 2
lull oo ) < Conllully, 2{(IEZ)H ||L/2q(;z)

for some 2 < gy < oo since the Sobolev embedding V() € Wh2(Q)4 —
L% (Q)4 does not give the right ¢t-exponent in (3.11).
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We note some consequences of Theorem 3.7.

Corollary 3.9. Let Q C R? be an unbounded uniform C?'-domain. Then the
semigroup (T'(t))i>0 generated by Ay extends for g € [1,00] to consistent an-
alytic semigroups (T,(t))i>0 on L1(Q)% whose generators we denote by Ay .
On L1(Q)? the corresponding semigroup is strongly continuous for q € [1,00),
on L>(Q)? the semigroup is w*-continuous, and we have the duality relation
Ty(t)" = Ty (t) fort > 0, hence also (Apq)* = Apq. For g € (1,00) we
have Ay ¢ = Aps 4 and thus the domain description in Proposition 3.3.

The semigroup operators Tno(t), t > 0, leave Co(Q)¢ invariant and thus
induce an analytic semigroup (To(t))i>o0 in Co(Q)? whose generator we denote
by AH,O~

Proof. The assertion on extension of (T'(t));>o to analytic semigroups on
L1(Q)¢ for q € [1,00] is a well-known consequence of pointwise Gaussian
bounds (see, e.g., [28]). Observe also that here Too(¢) = T1(t)’, t > 0, due to
self-adjointness of Ay. By consistency we have T,(t) = e!2#sa ¢t > 0, for
g € (1,00) hence Ay, = Apgy with domain given in Proposition 3.3 for
q € (1,00).

Let f € C.(Q)? and ¢ > 0. Choose ¢ > 4. Then f € L2(Q)¢ N LI(Q)¢
and, by analyticity in L(Q2)? and Sobolev embedding,

T,(1)f € D(Aps,) © W(Q)" — Co(@)".

Since C.(2)% is dense in Cy ()% w.r.t. to ||-||oo We conclude that the operators
Too(t), t > 0, leave Cy(Q)? invariant. O

Remark 8.10. Let Q C R? be an unbounded uniform C?!'-domain and ¢ €
(1,00). By consistency of the semigroups (75(t))¢>0 on L2(2)? and (T,(t))i>0
on L(0)? we obtain a consistent analytic semigroup (T,(t));>o on L(Q)<,

whose generator we denote by A i,q- Then

D(Apg) ={uce W24(Q)?:v-u=0and D_(u)r =0 ondQ}.

With respect to the duality (2.8) we have (7,(t)) = Tq/ (t),t>0.

Remark 8.11. The exponent 6 > 0 in (3.5) depends on the exponents d,, in
(3.13), i.e. on the exponential growth of the semigroups in Proposition 3.3,
which is not specified in [17, Theorem 6.1]. However, pointwise Gaussian
kernel bounds imply that the spectrum of —Apg , does not depend on ¢ €
[1,00] (see, e.g., [18]) hence equals o(—Ap2) C [0,00). As the growth of an
analytic semigroup is detemined by the spectral bound of its generator we
find, for any ¢ € [1,00] and ¢ > 0, a constant M, , > 0 such that

||Tq(t)HLq(Q)dHLq(Q)d < Mg7q€6t for allt > 0.

The same holds for the growth of (T, (t))¢> in LI(Q)% for g € (1,00). These
improved bounds can then be used to obtain, by a repetition of the proof, an
arbitrarily small § > 0 in (3.5).

Our main result on the Hodge Laplacian is as follows.
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Theorem 3.12. Let Q C RY be an unbounded uniform C*'-domain, q €

(1,00), 6 € (0,%), and 6 > 0. Then the operator 6 — Ap 4 has a bounded
H>(X)-functional calculus in LI(Q)? and § — ﬁqu has a bounded H*>(%y)-

Junctional calculus in L9(Q)%.
In fact, these operators even have a Hormander functional calculus with
an estimate as in (2.10) for s > (d+1)|5 — % .

Proof. Combining Theorem 3.7 and Remark 3.11 we obtain a bounded H®°-
calculus for 6 — Ap , by the main result of [8]. The result on the angle of
the H*°-calculus is implied by the much stronger Héormander type functional
calculus that 6 — Ay , enjoys by the results of [7] or [19]. O

Remark 3.13. The arguments that led to Theorem 3.12 are very similar to
those in the applications of the results of [19] to the elliptic systems in [20].
The condition on s is obtained by interpolation.

As L) and L(Q)? are UMD-spaces for ¢ € (1,00), we obtain the usual
consequences of a bounded H*°-calculus.

Corollary 3.14. Let Q C R? be an unbounded uniform C2’i-domaig, q €
(1,00), and § > 0. The operators 6 — Ay, in LY(Q)? and § — Ap, in LY(Q)4
have bounded imaginary powers. In particular, for « € (0,1), we have

D((6 = Apg)®) = [LYD)Y, D(Ag )],

D((8 = Apg)™) = [LYQ)*, D(Apg)la-
Moreover, the operators Ag 4 and 5H7q~have mazimal LP-regqularity, p €
(1,00), on finite intervals in LY(Q) and L9(Q)?, respectively.
Invoking Proposition A.5 we can now identify the fractional domain spaces.

Corollary 3.15. Let Q C R? be an unbounded uniform C?>'-domain and q €
(1,00). Then we have

LY, D(Amq)la
IR, ae0,4)
= {ue H**(Q): v - ulpq = 0}, ae (L. 1+4)
{u € H**(Q)": v-ulpg =0, D_(u)r]pa =0}, a € (3 + 2, 1).

For a description in case o € {2—1(1, 1+ i} we refer to [30].

4. The Stokes operator with Hodge boundary conditions

4.1. Invariance for ¢ = 2

We start with the case ¢ = 2 and an unbounded Lipschitz domain 2 C R,
Recall that we have the Helmholtz projection P, corresponding to the or-
thogonal decomposition L2(2) & G?(£2) and the projection Py corresponding
to the orthogonal decomposition L2(2)4 = £2(Q) & G2(1Q).
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Proposition 4.1. Let Q C R? be an unbounded Lipschitz domain. Then L2 ()
and L2(Q) are invariant under the semigroup (T(t));>0 generated by Ay in
L3(Q)4.
Proof. We use [27, Theorem 2.1] and thus have to check that u € V(§2) implies
Pyu, Pou € V() and Rea(u,u — Pou) > 0, Rea(u,u — Pou) > 0. First we
show Pou € V(). We have Pou € L2(Q) C {v € L?(Q)? : dive = 0,v-v|pq =
0} = £2(Q) and Pou € L2(9), and it rests to prove D_(Pyu), D_(Pau) €
L2(9)?*4. To this end write u = v + V1) where v € L2(Q2) and V¢ € G2(1).
Then we have, distributionally,
D_(Pyu) = D_(v) = D_(u) — D_(V%) = D_(u) € L*(Q)**".
Similarly, writing u = ¥ 4+ V) where ¥ € £2(9) and Vi € G2(9), we have
D_(Pyu) = D_(¥) = D—(u) — D_(V¢) = D_(u) € L*(Q)**.
We conclude Pyu, Pou € V(Q) and, for w € {Pau, Pou},

a(u, v —w /D D_(u—w) +divudiv (u — w) dz

:/ |div u|? dz > 0,
Q
which ends the proof. O

Remark 4.2. Once we have that V() is invariant under Py and Ps, we might
just as well have argued as in [20, Lemma 5.4] and check directly that Py and
Py commute with —Ap, since for v € D(—Ap) and v € V() we have

(Po(—=Am)u,v) 20y = (—Agu,Pav)2q)a = a(u, Pav)

1 [
- /Q D_(u) : D_(v) dx = a(Pau, v),

which means Pou € D(—Ap) and (—Ap)Pou = Po(—Ap)u. This implies
that Py commutes with resolvents of Ayg and thus also with the semigroup
operators T'(t), t > 0. The argument for P5 is the same.

4.2. Invariance for q # 2

We now consider ¢ € (1,00) and an unbounded uniform C?!-domain Q) C
R?. It is no surprise that the L9-theory is more subtle. However, we have
invariance of certain L?-spaces of solenoidal vector fields without additional
assumptions and obtain some information even for the limit cases ¢ = 1 and
q = 0o. We first define these spaces on more general domains.

Definition 4.3. For an arbitrary domain Q C R? and ¢ € [1, 00) we set

12(Q) = 12(Q) nLa@)d @

and define "
Co.0(Q) := L2(Q) N Co(Q)4
For an unbounded Lipschitz domain Q C R? and ¢ € (1, 00) we set

£o(9) = L2@) n ey
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Remark 4.4. Note that Co(Q) := C2%(9) , a space considered in the
context of Dirichlet (or “no-slip”) boundary conditions, is not suitable here,
as u = 0 on 9N for any u € Cp » (). Recall that, for u € Cy(Q) we only have
that u(z) — 0 as |z| — oo with € Q, see the beginning of Subsection 2.3.

Lemma 4.5. Let Q C R? be an unbounded Lipschitz domain and q € (1,00).
Then we have 5 5

L3(Q) € LE(Q) € L3(2) € L3()
If LL(Q) = LL(Q) then all these spaces coincide. If ¢ € Ip then LL(Q) =
Li(Q). If g € [1, 7% then LL(Q) = L1(N).
Proof. For the first inclusion observe C2%(Q) C L2(€2) N L9(2)* and recall
the definition of LZ(Q2). For the second inclusion recall L2(Q) C £2(€). For
the third inclusion observe that, essentially by definition,

LE2OQNLYQY = {fe L2QN LI :divf=0,v- flag =0}
= L2 ()N LLQ).
Now let ¢ € Ip and f € L2(Q) N LY(Q)%. Then f = Pof = P,f € L4(9),
hence L2(Q) N Lq(Q)d C L2(Q) and the assertion follows.

The last assertion holds by [22, Theorem 5]. We refer to the paragraph
before Remark 2.3 for the notation in [22] in comparison to ours. O

Proposition 4.6. Let Q C R? be an unbounded uniform C*'-domain and q €
(1,00). Then we have:

(i) The spaces LL(Y) and LL(Q) are invariant under the semigroup opera-
tors (Ty(t))e>0. Moreover, LL(Q) = LL() is invariant under (T1(t))i>o0
and Cy »(Q) is invariant under (To(t))r>o-

(ii) The space LL(Q) is invariant under the semigroup (T,(t))i=o and the
Helmbholtz projection ]3q commutes with the semigroup operators.

(iti) If g € (1, 7% ]UIpU[2, 00) then LL(Q) is invariant under the semigroup
(T4 ())e=o0-

Proof. (i) We start with LZ(Q). Let ¢ > 0. It suffices to show u := T'(t)f €
L1() for f e L2() N LY(Q)?. This is clear by Proposition 4.1 and bound-
edness of the semigroup operator in L4(Q)?. The proof for £4(€) is along
the same lines and uses invariance of £2(2). Also the proofs for LL(Q) =
LL(Q) = LL(Q) and Cj ,(Q) are similar.

(ii) Here we make use of the Li-theory in [9] (see Theorem 2.4). Let ¢ €
C25,(Q). By Proposition 4.1, for any ¢ > 0, we have T'(t)¢ € L2(f2). For
¢ < 2 we immediately obtain T'(t)¢ € LI(1).

For ¢ > 2 we obtain T(t)p = PyT(t)p = P,T(t)¢ € LL(Q) via Theo-
rem 2.4. Since CZ% () is dense in L4(€2) by Theorem 2.4, we obtain invariance
of L(£2) under (Tq(t))tZO by Remark 3.10.

Now combine duality of semigroups in Remark 3.10 with the annihilator

relations in Theorem 2.4 to obtain invariance of GY(2) under (T4 (t))¢>0-
Hence P, commutes with the semigroup.
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(#1) For q € Ip the assertion follows from (i) and Lemma 4.5. So let g € (2, 00)
and ¢t > 0. Observe

Ty(8) (L2(Q) N LE(Q)) = Ty () (L

and

L) L)<

LL(Q) = Cx.(Q) C L2(Q) N LE(Q) C LL(Q).
Boundedness of T, ( ) on L(2)4 yields T 7(O(LL(2)) C LL(Q) as claimed.
For ¢ € (1, 7%] we have LZ(Q) = £4(2) by Lemma 4.5 and invariance
follows from (). O

Remark 4.7. (a) We compare Proposition 4.6 (i) to the corresponding result
n [17]. With respect to invariance for a fixed ¢ it is essentially shown in
[17, Lemma 7.2] that T,(¢) maps LZ(Q2) into £Z(£2). Hence invariance of
L1(Q) is obtained assuming L2(Q) = L£1(Q), see [17, Assumption 2.4] and
the discussion in [17, Remark 2.6 (c)]. We see here that it would be sufficient
to assume the weaker condition LZ(Q) = L2(Q), which by Lemma 4.5 is
implied by ¢ € Ip. However, in (4i7) we obtain invariance of LZ() for 2 <
q < oo without additional assumptions. Notice that we needed (i) as an
intermediate step.

(b) We consider it unlikely to have invariance of LZ(f2) for ¢ € (1,2) in the
general case.

(¢) In the following we concentrate on the spaces LZ(Q) and L2 (£2) although
results similar to the Eg—case hold for the spaces fg(Q) as well, and by the
same methods.

Proposition 4.6 allows us to define the following Stokes operators in solenoidal
Li-spaces.

Definition 4.8. Let  C Rdu be an unbounded uniform C?%!-domain. For
q € (1,00) we denote by (54(t))i=0 = (T4(t)|g(q))e=0 the Hodge Stokes
semigroup in Eg(Q) and by le,q its negative generator, the Hodge Stokes
operator in L2 (1)

For q € (1,00) we denote by (Sy(t))i>0 = (Ty(t)|fg(q))i=0 the Hodge
Stokes semigroup in EZ(Q) and by gH7q its negative generator, the Hodge
Stokes operator in LY (€2).

Whenever LZ(2) is invariant under (75(t))¢>0, so in particular for all
q e [l,4% 1} U Ip U [2,00), we denote by (S4(t))i>0 := (T4(t)|1a(q))t>0 the
Hodge Stokes semigroup in LZ(f2) and by Ap 4 its negative generator, the
Hodge Stokes operator in LZ(£2).

Finally, we denote by (So(t));>0 := (To(t )|Co (q))t>0 the Hodge Stokes

semigroup in C’o +(Q) and by AH o its negative generator, the Hodge Stokes
operator in Cp 5 (Q).

An application of Lemma A.6 yields the following description of the respective
domains.
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Proposition 4.9. Let Q@ C R? be an unbounded uniform C%'-domain. We
have the following descriptions for the domains of the Hodge Stokes operators
introduced in Definition 4.8.
For q € (1,00) we have

D(Apy) = {uec W (Q)NLLQ) : D_(u)y =0 on I}
and

D(Ag,) = {u e W2Y(Q)*NLLQ) : D_(u)r =0 ondQ }.
Whenever LL(Q) is invariant under (Ty(t))i>0, so in particular for all ¢ €
(1, 745] U Ip U [2,00), we have

D(Ap,) = {u e W»1(Q)* N LLQ) : D_(u)r =0 ondQ}

Any of these operators acts on its domain as the negative distributional Lapla-
cian —A.
Finally we have

D(AHJ) = {U S D(AHJ) n L;(Q) : AHJU € L}T(Q)}
and Aga = AH,l\D(AH)l), and

D(Apo) = {u € D(Apo) N Cou(Q): Agou € Co ()}

and AH,O =Amno D(Aw0)"

Proof. Combine Lemma A.6 with Proposition 4.6 and with Corollary 3.9.
Observe that, for ¢ € (1,00), any u in LZ(Q), LL(S2), or L1(Q) satisfies
v-u =0 on 0f. 0

Concerning duality we have the following.

Proposition 4.10. Let Q C RY be an unbounded uniform C?'-domain. The
operator A o is self-adjoint in L2(Q) and Agp > 0. For g € Ip we have
Sq(t) =Sy (t), t >0, and for g € (1,00) we have Sy(t) = Sy (t), t > 0.

Proof. Use self-adjointness of (T'(t));>o in L*(2)¢ and the fact that respective
Helmholtz projections commute with the semigroup operators generated by
the Hodge Laplacians. O

By restricting the functional calculi in Theorem 3.12 to invariant subspaces
we obtain our main result on Hodge Stokes operators.

Theorem 4.11. Let Q C R? be an unbounded uniform C*'-domain, q €
(1,00), 0 >0, and 6 € (0,5). Then 6+ Ap 4 has a bounded H™(Xy)-calculus
in LL(Q) and § + EH,Q has a bounded H*(Xg)-calculus in L2(9).

If, in addition, LL(QY) is invariant under (Ty(t))i>0, so in particular if
q € (1, d%'ll] UIpU|[2,00), then § + Ap 4 has a bounded H™(Xg)-calculus in
Li(Q).

In fact, these operators have a Hormander functional calculus with an

estimate as in (2.10) for s > (d+1)|3 — % .
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Proof. Invariance of a closed subspace under the semigroup implies invariance
under the resolvents of the generator, at least on the connected component
of the resolvent set that contains a right half plane. This in turn implies
invariance of the closed subspace under the operators of the H°-calculus,
see the definition in Subsection 2.4.

Actually, also the operators in the Hérmander functional calculus leave
invariant a subspace that is left invariant under the semigroup. Hence the
operators in Theorem 4.11 even have a Hérmander functional calculus in the
respective spaces of solenoidal vector fields. O

Corollary 4.12. Let Q C R? be an unbounded uniform Cz’l;domainL q €
(1,00), and 6 > 0. The operators 6 + A4 in LL() and 6 + Ap 4 in LL(S2)
have bounded imaginary powers. In particular, for a € (0,1), we have

D((6+A5)") = [LE(Q). D(Ang)las - D((6+Am,0)*) = [LL(R2), D(Am)]a-

Moreover, the operators /le,q and EH,q have maximal LP-regularity, p €
(1,00), on finite intervals in LL(Q)) and L1(S2), respectively.

If, in addition, LL(Q) is invariant under (Ty(t))i>0, in particular if
q € (1, d%‘ll] Ulp U [2,00), then § + Ap,q has the respective properties in
LL(9).
Combining Corollary 3.15 with Corollary A.7 we obtain the following repre-

sentations for the fractional domain spaces of the Hodge Stokes operator in
LL(Q).

Corollary 4.13. Let Q C R? be an unbounded uniform C*'-domain and q €
(1, 7% ] U Ip U [2,00) (or assume more generally that LL(Y) invariant under
(Ty(t)). Then we have

[Lg(Q)d7D(AH,q)]a
129()" 0 19(9) ae(h)
={ H?>*(Q)? N LL(Q) , @€ (55,5 + 3
{fue H?**1(0)INLLQ) : D_(u)v|og =0}, a € (3 2%1, ).

For information on the limit cases a € {2—1q, 1+ qu} we refer again to [30].

5. Robin Stokes as perturbations of Hodge Stokes

In this section we shall perturb the Hodge boundary conditions on an un-
bounded uniform C%!-domain 2 C R%. This can be done in the spaces L?()?
but even for ¢ € Ip the perturbed semigroup will not leave LZ(2) invariant.
Hence we shall perturb the Hodge Stokes operator in LZ(€) directly. Pertur-
bation of boundary conditions is a subtle business. In order to have precise
domain descriptions we need information on the resolvent problem for the
Hodge Stokes operator with inhomogeneous boundary conditions. Similar to
what has been done in [17], we shall get them from the estimates on the
resolvent problem for the Hodge Laplacian with inhomogeneous boundary
conditions. However, we can dispense with [17, Assumption 2.4] which may
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be phrased as LL(Q2) = L£9(£2) and which has been crucial for the results in
[17], see also Remark 4.7.

5.1. Estimates for resolvent problems

We start by recalling [17, Theorem 6.1]: Let 2 C R be an unbounded uniform
C*'-domain, ¢ € (1,), 6 € (0,7) and § > 0: For any f € LI(Q)?, g €
Wha(Q)? and X € § + Xy the problem

AM—Au = f inQ,

D_(u)y = gian on 05, (5.1)
V- = 0 onodf,
has a unique solution u € W24(Q2)4, and we have the estimate
H/\u’)\l/QVU,VQUHLq(Q) S ||fa)\1/297V9HL‘Z(Q)- (5.2)
In the following, we shall denote the unique solution of (5.1) by
u=Rxf+Sxg where Rxf=(A-Apg) 'f (5.3)
Notice that, if f € LZ(Q2) and LZ(Q) is invariant under (T;(¢)), then Ry f =
(A + AH,q)_lf-

We first state a lemma on invariance and regularity of decompositions.

Lemma 5.1. Let Q C R? be an unbounded uniform C?*'-domain and q €

(1,00). Then we have the following.

(i) If u € W24(Q)? N LL(Q) with D_(u)v = 0 on S then Au € Li(Q).

(ii) If u € W24(Q)4 N GI(Q) then Au € G1(R).

(i4i) Let 0 € (0,m), 6 > 0, A € 0 + g, f € LI, g € WH(Q)¢, and
denote by u € W24(Q)? the unique solution of (5.1). Suppose that u =
ug + Vi with ug € LL(N) and Vi € GI(Q). Then Vip € D(Ap4) and
ug € WH4(Q)4 N LL(Q) with D_(ug)v = Gan on K.

Proof. (i) For v € G () we have D_(v) = 0 in Q. Hence
/(—Au) -vdr =0
Q

by Lemma 3.6 (7). We conclude that Au € GY (Q)+ = L1(9).
(ii) Let u = V¢ € W29(Q)%. Then Au = AVy = VAP € GI(Q).
(791) We have D_ (V) =0 and D_(V)r = 0 on 9. Hence

D_(ug) = D_(u) € WHI(Q)™? and D_(ug)v = gan on 0.
Further we have
Aty = divVey = dive € WhH(Q)
and
AV = VAyY = Vdivu € G1(2) C L1(Q)4,

which implies Aug = Au — AV € L4(Q)%. Finally, v - ug = 0 on 99 implies
v-Vi =v-(u—ug)=0on d. It now suffices to show Vi) € W24(Q)4. We
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have Ap ¢ = (Ap,q)* by Corollary 3.9, and for v € D(Ap,4) we have, by
Lemma 3.6 (i),

/vimdm

1 _
=\[ V¢ -vde+ 3 ). D_(V4): D_(v)dx + | divVey divedz
Q Q

_ / (VY — AVY) - T da.
Q
Hence, Vi) € D((A=Apq)*) = D(A=Ap ) € W24(Q)?, which then implies
also ug = u — Vip € W29(Q)4. O

We now can formulate our result on the Stokes resolvent problem. Besides
invariance of LZ(£) under (T,(t)) we assume the following variant of the
Helmholtz decomposition.

Assumption 5.2. There exists a closed subspace G4(€2) C G9(€2) such that
LYQ)! = LL(Q) & GU(Q)

as a topological sum. We denote by P the correspondmg bounded projection

in L4(Q)? onto L4(£) with kernel Gq( ) and let Qq =1- P

The following is our result on the Hodge Stokes resolvent system.

Theorem 5.3. Let Q C R be an unbounded uniform C*'-domain. Let g €
(1,00) be such that LL(Q) is invariant under (T4(t)) and such that Assump-
tion 5.2 holds. Let 6 € (0,7), 6 >0 and A € 6 + X¢. For any f € LL(Q) and
g € WH(Q)? there exists a unique solution (u, Vp) € (W21(Q)4NLL(Q)) x
G(Q) of the problem

Au—Au+Vp = f in Q,

D_ (U)V = Gtan OnaQ, (54)
v-u =0 onod?,
and we have the estimate
[N, N2V 0, V2, Vpl| Loy S I1F-A29, YVl Lago)- (5.5)

Moreover, we can represent the solution (u, Vp) as
u=(A+Apg) " f+PuSag — A+ Apg) 'PVdivSyg,  (5.6)
Vp = @q(/\SAg — Vdiv Syg). (5.7)

Proof. Step 1: We show uniqueness. So let (u, Vp) € (W>9(Q)?NLL(Q)) x
G7(9) solve (5.4) with f = 0 and ¢ = 0. By Lemma 5.1 (i) we have Au —
Au € L2(Q), hence Vp € LL(Q) N G4(Q) = {0}. We conclude u = —(\ —
AH,q)*Vp =0.

Step 2: The case g = 0. Since LZ(Q) is invariant under (T,(¢)) it is also
invariant under (A — Ag,)~! for A € § + 3y. Hence the case g = 0 is clear
with Vp=0andu=A—Ap,) ' f = A+ Ay~ f, and we get (5.5) from
(5.2).
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Step 3: The case f = 0. Let g € W q(Q) Denote by & = Syg the solution
of (5.1) with f = 0 and put ug := P u=P wOng and Vi = Qqu = QqS)\g
By Lemma 5.1 (4ii) we have ug, Vi) € W2 q(Q) and ug solves

Aug — Aug = —AVY +AVy in ),
D_(uw)v = gtan 0nof, (5.8)
V- ug = 0 ondf,

where we recall
AVY = VAY = Vdiv (Vi) = Vdivu = Vdiv Syg.

This term on the right hand side of the first line of (5.8) might not yet be in
G1(2). Hence we solve

Aup — Auyp = —ﬁquiVS)\g in €,
D_(u)v =0 ondQ, (5.9)
VU = 0 onodf,
where
up = —(A— AH,q)_lﬁquivSAg

= — (A +Ap ) 'P,VdivSyg € WH4(Q)? N LL(Q)

by the invariance assumption.
For u := ug +u; € W29(Q)4 N LL(Q) we then have

M~ Au = AV + Vdiva — P,Vdiva = Qq( — M + Vdiv )

and u satisfies the boundary conditions D_ (u)v = gtan and v - u = 0 on 9f2.
Letting

Vp = Qu (NI — Vdiva) = ()\S,\g Vdiv Syg) € GU(Q)  (5.10)

we hence have a solution (u, Vp) € (W>4(Q)% N LL()) x G(Q) of (5.4) for
f = 0 with the representation (5.6) and (5. )
It rests to show (5.5). Applying (5.1) to (5.8) we get

[ Ao, X 2ug, Vg | Lagy < IANQgSrg, Vdiv Sag, AY2g, Vgl 1oy,
and, by (5.1) again,
IAQqSrg, Vdiv SxgllLacy S N2, Vol ooy

Applying (5.1) to (5.9) we get

[Ny, A2 ur, V2ur || Loy S 1P Vdiv Sagllnacoy S IIN2g, VallLao)
Finally, we apply (5.1) to (5.10) and get

IVpllLa(a) S IASxg, Vdiv Sagll<[IA2g, Vgl ey,

which finishes the proof of (5.5). O
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Remark 5.4. ( ) Notice that Assumption 5.2 holds for ¢ € Ip with G7(Q) =
G1(Q) and Pq = P, and Qq = I — P,. By Proposition 4.6 (iii), ¢ € Ip also
implies invariance Lq 2() under (T,(t )) For ¢ € Ip we have

Vp = AS\g — Vdiv Sig
n (5.7) and the term ﬁquiv Sxg in (5.6) vanishes. In the proof we then
simply have u; = 0.
(b) As mentioned above the estimates for the inhomogeneous resolvent sys-
tem in [17, Theorem 3.3] have been shown under [17, Assumption 2.4]. By
Remark 2.3 this assumption is equivalent to LL(2) = £2(Q), so it is clearly
stronger than invariance of LZ(2) under (7,(t)), see Subsection 4.2.
(c) The case f € L%() is sufficient for our purposes. Under the same as-
sumptions one can obtain a version of Theorem 5.3 for general f € L4(Q)%.
All one has to do is to replace f in (5.6) by ngf and add the term @qf to
the representation of Vp in (5.7).

5.2. The Robin Stokes operator in L (£2)

For an unbounded uniform C%'-domain Q C R¢ and ¢ € (1, 00) satisfying
the assumptions of Theorem 5.3 and B € C%1(9Q)?*¢ we can now define the
Robin Stokes operator Ag 4, by

Ap qu = 713un, u € D(Ap,q),
with
D(Ag ) = {u e WH1(Q)* N LL(Q) : D_(u)v = [Bu]san on 9N}.
The following is our main result on Robin Stokes operators in LZ(€2)-spaces.

Theorem 5.5. Let Q C R? be an unbounded uniform C*'-domain and let
B € C%L(00)*d. Let ¢ € (1,00) be such that LL(R) is invariant under
(T,(t)) and such that Assumption 5.2 holds. For 6 € (0, %) there exists o9 > 0
such that the operator 6 + Ap 4 has a bounded H™(Xg)-calculus in LL(L).

Proof. We extend B to a Lipschitz function on € with |B,VB| =) <

~

| B, VB| 1= a0). We fix § > 0. For f € LL(Q2) and A € § + X, with 6 + § <
o < m, we study the resolvent problem

Au—Au+Vp = f inQ,
D_(u)v = [Bujtan o0onof, (5.11)
v-u =0 ondQ.

via Theorem 5.3 and [21, Lemma 7.10]. For u € W24(Q)4 N L4(2) we have
INY2Bu, VBul|Ls S [|1Blloo |\ ?u, Vaull o + |V Bl| oo || s
< ATV2 |, M2V .

By [21, Lemma 7.10] we infer that for A € § + X, with || sufficiently large,
the problem (5.11) has a unique solution with the estimate

[\, N2V 0, V20, V|| Loy S I fllpaga)-
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We conclude that, for o > d sufficiently large, o + Ap 4 is sectorial in LI (2)
and X € p(Ap,q) for X € dp + 3, with

A+ Ap) ' f = A+ Auy) ' f + P,S\B(X
+Apy) ' f — (A + Ay ) ' P,Vdiv SxB(A+ Ap )L f

and the estimates
IMA+ Apg) T APV + Ap )T VPO + A o) o) S IFllza)-
Since we then have

AP, S\BOA+ Ap o) L f, A+ Aprg) " P, Vdiv S\B(A + Ap )~ Logoy
SINBA+ Apg) f,VBA+ Apg)  fllze()
SAT2IAA A+ Ap) APV A+ Ap )  llLao
S /\71/2||f||m(9),

we can see directly that the contour integral over the perturbative term yields
a bounded operator in LZ(2), see (2.9). Since dy + Am,q has a bounded
H>(Xg)-calculus, we conclude that also 6y + Ap,, has a bounded H*-
calculus. A similar argument has been used in [2]. O

Corollary 5.6. Under the assumptions of Theorem 5.5 and for §g > 0 large
enough, the operator dg + Ap 4 has bounded imaginary powers. In particular,
for a € (0,1), we have

D((60 + Ap,q)™) = [LE(R), D(Apq)la
and
[L2()%, D(AB 4)]a
H2*(Q)? N L (%), a€(0,5),
—{ H29(Q)4 N LL(Q), a € (g5,5+3);
{ue H*(Q)! N LL(Q) : D—_(u)v]pe = Buba € (5 + 57, 1).

— N‘H
o= R

Moreover, in LL(S) the operator Ap, has mazimal LP-regqularity on finite
intervals, p € (1,00).

The assertions are immediate, except for the identificaton of the complex
interpolation spaces. For this we shall need a result for the corresponding
Robin Laplacian Apg g4, given by

Ap qu = Au, D(Ap,),
with
D(Ap,) = {u e W) : v-ulpqg = 0,D_(u)v|sq = Bu},
which we present next.

Proposition 5.7. Let Q@ C R?% be an unbounded uniform C*'-domain, B €
CO1(9Q)™4 and q € (1,00). For 6 € (0, %) there exists § > 0 such that the
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operator 6 — Ap 4 has a bounded H*>(Xg)-calculus in LL(Y). Moreover, we
have

[LZ(Q)daD(AB,q)]a

(@S, @€ (0,5),
e i) i~ 0) ce it )

{ue H**(Q): v -ulgg = 0,D_(u)v]oo = Bula € (5 + o, 1).

Proof of Proposition 5.7. The proof is similar to the proof of Theorem 5.5
but in fact simpler, as instead of using Theorem 5.3 we can directly rely
on the resolvent system (5.1) and the estimate (5.2). This yields a similar
resolvent estimate for the Robin Laplacian. By Seeley’s result ([30]) again,
we obtain the last assertion. 0
Proof of Corollary 5.6. We identify the complex interpolation spaces. We can
get “C7 by L1(Q) C L(Q)? and D(Ap,) C D(Ap,), D(Ag,) € LL(Q).
Equality holds by an argument which we borrow from [15]. We fix p > § and
define Pp = 14(pn+ Ap,q) "' Py(n — Ap 4) which is a projection in D(Ag )
onto D(Ap,q). Here ¢4 denotes the embedding L () — L7(92). The operator

Pp has a bounded extension Pp to projection in L?(Q2)? onto LZ(f2), since the
dual operator P}, = (it — A« g )ty (1t + Ap« /) "' Py is bounded in L9 (Q)7.
The latter holds by

1PEgl Lo S I+ Ap- o) gl S Mgl
where we used the estimate (5.2), but for the Robin Laplacian. O
Remark 5.8. Theorem 5.5 and Corollary 5.6 cover Stokes operators with
Navier boundary conditions as in (2.1) if we take B as specified in (2.5).
5.3. The Robin Stokes operator in ig ()

Let Q C R? be an unbounded uniform C?'-domain. We have analogs of the
results in the previous subsection in L4(Q) for all ¢ € (1, 00). We only state
the results and omit the detailed arguments but the starting point is again
the system (5.1). From [17, Theorem 6.1] we infer estimates

HAU,AI/QVU, V2U||Eq(g) S Al/QQaVQHEq(Q)‘ (5.12)
We can then procede as before and obtain the following.

Theorem 5.9. Let Q C R be an unbounded uniform C*'-domain and let
B e COH00)™? and q € (1,00). For 6 € (0,%) there exists 6 > 0 such that

the operator ¢ + /NlB,q has a bounded H*>(3g)-calculus.

Corollary 5.10. Under the assumptions of Theorem 5.9 and for oo > 0 large
enough, the operator 0o + Ap 4 has bounded imaginary powers. In particular,
for a € (0,1), we have

D((d0 + Apq)*) = [LL(Q), D(Ap q)]a-

Moreover, the operator AB,q has mazimal LP-regularity, p € (1,00), on finite
intervals in LL(Y).
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Remark 5.11. (a) Again, Theorem 5.9 and Corollary 5.10 cover Stokes oper-
ators with Navier boundary conditions as in (2.1) if we take B as specified
in (2.5).

(b) The result on LP-maximal regularity in Corollary 5.10 has been shown for
Navier type boundary conditions in [11], but under an additional assumption
on the unbounded uniform C%!-domain €.
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Appendix A. Auxiliary results

A.1. Traces and Gauss’s theorem on unbounded domains
We refer to [17, Appendix B] for proofs of the following extensions of facts
that are well-known for bounded domains. First we define, for any domain
QCR?and q € (1,00),

E,(Q):={f € LYQ)* : div f € LY Q) },

which is a Banach space for || f| g, () := | f||pa(@ye +div fl| o). If Q satisfies
the segment property (so in particular if 2 is an unbounded Lipschitz domain)
then C2°(Q)¢ is dense in E,(Q) (see [17, Lemma 13.1]). In the following
proposition we collect the statements that are relevant for us.
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Proposition A.1. Let Q C R? be an unbounded uniform C?'-domain.

(i) For g € [1,00) the map z — ulpq, defined on C°(2), has a continuous
extension )
Tr: WhH(Q) — W™ a9(9Q).
For q € (1,00), Tr is surjective with a continuous linear right inverse
Ry : W o9(00Q) — Whi(Q).
(ii) For any u € WH1(Q)? one has

/divudmz/ v-udo.
Q o0

iii) For q € (1,00), u € WH4(Q), and v € WL (Q)? one has
(iti) q € (1,00), ,

/udivvdmz—/Vuwdw—i—/ u(v - v)do.
Q Q o9

(iv) Forq € (1,00) the map v — v-v|aq, defined on C°(2), has a continuous

extension
Tr, : By (Q) — W77 (99) := (W (99))" = (W'~ +(09))’,
gien by
(Tru, Tryv)aq = / udivu dx +/ Vu-vdx foru € WhHI(Q).
Q Q

Observe that (Tru, Tr,v)sq does not depend on the special choice of u
and we can take uw = Ry Tru. For simplicity of notation we put

(u,v - v)aq = (Tru, Tr,v)sq foru € WH4(Q)andv € E (9).
For the proofs we refer to [17, Lemmas B.2-B.7]. They may be extended

to unbounded uniform Lipschitz domains.
A.2. Extension, Sobolev embedding, and interpolation

For the following extension operator we refer to [32, Thm. VI.3.1/5]. The
formulation is the one from [17, Lemma 12.2].

Proposition A.2. Let Q C R? be an unbounded uniform Lipschitz domain.
Then there exists a linear operator E mapping real-valued functions onto
real-valued functions on R% such that Ef|q = f holds for any function f on
Q and such that

E:Whka(Q) — wha(R?)
is bounded for all 1 < g < 0o and k € Ng.

Using this extension operator E one can prove the following Sobolev
embeddings for 2 via those on R?.

Proposition A.3. Let Q C R? be an unbounded uniform Lipschitz domain and
g€ (1,00) and k € N. If ¢ < & then W"1(Q) — L"(Q) where + = % — ko
q> 2 then Wh1(Q) — Co(Q).

Using the extension operator E, the restriction Rf = flq, and [33, 1.2.4]
one can also prove the following on complex interpolation spaces.
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Proposition A.4. Let Q C R? be an unbounded uniform Lipschitz domain and
q € (1,00). Then, for k € N and 6 € (0,1),

[L9(0), Wh(Q)]p = HM9(Q),
where H*4(Q) = R(H*%9(R)), i.e. the restrictions of functions in the
Bessel potential space H*4(R?). If k§ =1 € N then H*4(Q) = Whi(Q).
As an application of Seeley’s results ([30]) we obtain the following.

Proposition A.5. Let Q C R% be an unbounded uniform C>'-domain and
€ (1,00). Then we have for D(Ap) = {u € W24(Q)?: v-u=0,D_(u)v =
0 ondN} the following identities for complex interpolation spaces:

(L9, D(Amq)le

200 ()1 L0 (0,4),
—S {ue H®(Q)?: v u=0 on 90} L0e(E i+ )
{ue Q) :v-u=0,D_(u)y =0 009, € (5+,1)

Proof. In order to apply the main result of [30] we rewrite the boundary
condition D_(u)r = 0 in terms of normal derivatives of the components of w.
Using (2.3) we obtain under the condition v - u = 0 on 9 that D_(u)r =0
is equivalent to

(I —wvuT) [(Vu)Ty] = [(Vu)Tu]tan = Wu.

Hence we have exactly the form with the projection mentioned on p.54 before
(3.4) in [30]. We can localize 2 and apply then [30, Theorem 4.1] using
uniformity of 2. O

A.3. Generators in invariant subspaces

The following lemma is easy. We include it with a proof for convenience of
the reader.

Lemma A.6. Let X be a Banach space and (T'(t))i>0 be a Co-semigroup in X
with negative generator A. Let'Y be a closed subspace of X that is invariant
under each operator T(t), t > 0. Then (S(t))i>0 = (T(t)]y)it>0 is a Co-
semigroup in'Y with negative generator B = A|p(p) where D(B) = D(A)NY .

Proof. Clearly, (5(t)):>0 is a Co-semigroup in Y. If y € Y and }(y—S(t)y) —
zinY then (y—T(t)y) — z in X, and we conclude that B is a restriction of
A and D(B) C D(A)NY. If, on the other hand, y € Y and +(y—T(t)y) — z
in X then z € Y by closedness of Y, hence 1(y — S(t)y) — z in Y and
y € D(B), By = z. O

We have the following corollary for fractional domain spaces.

Corollary A.7. In the situation of Lemma A.6 let 6 € R be such that the
semigroup (e °'T(t))s>0 is bounded. For o € (0,1) we then have

(6+B)* = (6 + A)p(o+8))
where D((0 + B)*) =D((0 + A)*)NY.
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Proof. Notice first that § + A is sectorial of angle < 7. Hence the fractional
powers (§ + A)* are well-defined and sectorial of angle < 7. In particular,
—(0 + A)* is the generator of a bounded analytic semigroup (S,(t)) and
the semigroup operators may be represented by the holomorphic functional
calculus of A in terms of the resolvent operators of A. Since Y is invariant
under (T'(t)), it is also invariant under the resolvents (A + A)~! for Re\ >
J. We conclude that Y is invariant under the semigroup (S, (t)). Then the

assertion follows via Lemma A.6. O
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