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H∞-calculus for the Stokes operator with
Hodge, Navier, and Robin boundary
conditions on unbounded domains
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Abstract. We study the Stokes operator with Hodge, Navier, and Robin
boundary conditions on domains Ω ⊆ R

d that are uniformly C2,1. Star-
ting with the Hodge Laplacian we etablish a bounded Hörmander func-
tional calculus for the Stokes operator with Hodge boundary conditions.
This entails a Hörmander functional calculus and boundedness of the
H∞-calculus in spaces of soleniodal vector fields for the Stokes operator
with Hodge boundary conditions. We then establish boundedness of the
H∞-calculus for Stokes operators with Navier type conditions via Robin
type perturbations of Hodge boundary conditions. This implies maxi-
mal Lp-regularity for these operators and results on fractional domain
spaces. Our results cover certain non-Helmholtz domains.
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1. Introduction

Boundary condtions of Navier type play a vital role in the mathematical
investigation of problems in fluid mechanics. They are used to model various
slip type condtions on a fixed wall. In this paper we study Stokes operators
on unbounded uniform C2,1-domains under Hodge (also called perfect slip)
conditions and boundary conditions of Navier type.

It is well-known that, for general C2,1-domains Ω ⊆ R
d, the Helmholtz

decomposition of Lq(Ω)d into the solenoidal space Lq
σ(Ω) and the gradient

space Gq(Ω) may fail for certain q ∈ (1,∞), see [23]. As a way out, the
spaces ˜Lq

σ(Ω) have been introduced by Farwig, Kozono, and Sohr (see, e.g.,
[9]). On the other hand, there has been an interest in recent years in the
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study of Stokes and Navier-Stokes equations also in certain unbounded non-
Helmholtz domains. In particular, the results on Stokes operators with Navier
type boundary conditions by Hobus and Saal in [17] cover situations in which
the Helmholtz decomposition of Lq(Ω)d fails.

Following [17] we treat Navier type boundary conditions as a special
case of Robin type perturbations of Hodge boundary conditions. Under cer-
tain assumptions on the domain Ω and q ∈ (1,∞), it has been shown in
[17] that Stokes operators with Hodge and Navier type boundary conditions
generate analytic semigroups. For the spaces ˜Lq

σ(Ω), 1 < q < ∞, it has been
shown by Farwig and Rosteck in [10], [11], that Stokes operators with Navier
type boundary conditions generate analytic semigroups and have the pro-
perty of maximal Lp-regularity, 1 < p < ∞. In this paper we substantially
extend these results by establishing a bounded H∞-calculus and maximal Lp-
regularity for Stokes operators with Robin type and Navier type boundary
conditions in spaces Lq

σ(Ω) and ˜Lq
σ(Ω).

Invariance of Lq
σ(Ω) under the semigroup generated by the Hodge Lapla-

cian on certain Helmholtz domains is used in several papers, we mention [3],
[4], [17], [20], [24], [25]. In [17] this is even shown for some uniform C2,1-
domains without an Lq-Helmholtz decomposition, under the additional con-
dition [17, Assumption 2.4] that holds, e.g., for perturbed cones and (ε,∞)-
domains (see [17, Section 12]), but fails for aperture domains (we refer to
Remark 2.3 below). In this paper, we find Lq-spaces of solenoidal vector
fields that are invariant for q ∈ [1,∞] on any uniform C2,1-domain and show
invariance of the usual space Lq

σ(Ω) for all q ∈ (1,∞) if d = 2 and for
q ∈ (1, d

d−1 ∪ [2,∞) in general dimension d ≥ 3.

Boundedness of the H∞-calculus in Lq(Ω)d, q ∈ (1,∞), for the Hodge
Laplacian is shown in [13] in uniform C3-domains Ω ⊆ R

d. This result is
used in [3] on a cylindrical domain in R

3 to show inclusion into W 1,q of the
domain of the square root. Here we show that the Hodge Laplacian enjoys a
better Hörmander functional calculus on general uniform C2,1-domains and
determine fractional domain spaces exactly (see Corollary 3.15). Invariance
of solenoidal Lq-spaces then yields a Hörmander functional calculus and,
in particular, a bounded H∞-calculus for the correponding Hodge Stokes
operators (see Theorem 4.11). This in turn leads to precise descriptions of
the fractional domain spaces of these Hodge Stokes operators if Lq

σ(Ω) is
invariant under the Hodge Laplace semigroup (see Corollary 4.13).

We give an overview of the paper. In Section 2 we gathered prelimi-
nary material on boundary conditions, regularity of domains, function spaces,
Helmholtz decompositions, maximal Lp-regularity, and functional calculi.

In Section 3 we study the Hodge Laplacian on uniform C2,1-domains.
We define the operator in L2(Ω)d by a suitable symmetric sesquilinear form
and show that this coincides with the Laplacian with perfect slip boundary
conditions in [17], see Proposition 3.4. By Davies’ method we establish kernel
bounds of Gaussian type for the semigroup, see Theorem 3.7. The approach
is similar to what has been done in [25] and [20], but we can use the precise
domain descriptions from [17] to cover the full range of q up to ∞. Then the
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results from [7] or [19] apply and yield a Hörmander functional calculus and
boundedness of the H∞-calculus for the Hodge Laplacian, see Theorem 3.12.
We also identify fractional domain spaces, see Corollary 3.15.

In Section 4 we introduce several subspaces of solenoidal vector fields
and establish invariance properties under the semigroup generated by the
Hodge Laplacian, see Proposition 4.6. This allows to define Hodge Stokes
operators and we obtain precise domain descriptions in Proposition 4.9, func-
tional calculi in Theorem 4.11, and can identify fractional domain spaces in
Corollary 4.13.

In Section 5 we study Stokes operators with Robin type boundary con-
ditions as perturbations of Hodge Stokes operators. To this end we need
estimates on the solutions of the resolvent problem for the Hodge Stokes
operator with inhomogeneous boundary conditions. As we dispense with [17,
Assumption 2.4] and only work under the weaker assumption that Lq

σ(Ω) is
invariant under the semigroup generated by the Hodge Laplacian, we reprove
in Theorem 5.3 the resolvent estimates we need under the Assumption 5.2,
which is familiar from [17]. Since the perturbation is of lower order, we ob-
tain boundedness of the H∞-calculus and information on fractional domain
spaces, see Theorem 5.5 and Corollary 5.6. Similar results hold on the spaces
˜Lq

σ(Ω) for all q ∈ (1,∞) without further assumptions, see Theorem 5.9 and
Corollary 5.10, but we omit the similar proofs.

We have gathered several auxiliary results in an appendix.
Finally, we want to draw attention to the following aspect of our work.

The main result of [12] showed that, for a uniform C3-domain Ω ⊆ R
d, ex-

istence of the Helmholtz projection in Lq(Ω)d (“weak Neumann”) implied
maximal Lp-regularity, 1 < p < ∞, for the Stokes operator with Dirichlet
or “no slip” boundary conditions on Ω. This had been upgraded to boun-
dedness of the H∞-calculus in [14]. Our results in this paper demonstrate in
particular that “weak Neumann” also implies a bounded H∞-calculus for the
corresponding Stokes operators with Hodge, Navier type, and Robin bound-
ary conditions. But our results also cover certain non-Helmholtz domains.

We state our results explicitly for unbounded domains and draw atten-
tion to our definition of unbounded uniform Ck/Ck,1-domains (see Defini-
tion 2.1 below). For Lipschitz domains we take care to mention each time if
they are bounded or unbounded. The methods of proof for our results allow
without problems also for bounded domains, but then most results are not
new and some are not really meaningful.

Notation

As usual we understand partial derivatives ∂j = ∂
∂xj

, the gradient ∇, the
divergence operator div , or the Laplacian Δ acting on L1

loc(Ω)-functions in
the distributional sense. Without explicit mentioning, we understand func-
tions on the boundary ∂Ω in the sense of traces even when we write . . . |∂Ω

occasionally. We refer to the appendix for results on traces.
Sometimes, we write a � b if a ≤ Cb for some inessential constant C > 0.
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2. Preliminaries

2.1. Boundary conditions

We recall the deformation tensor

D(u) =
1
2
(∇u + ∇uT ) =

1
2
(∂juk + ∂kuj)d

j,k=1

for a vector field u on subsets of Rd, where we denote ∇u = (∂juk)d
j,k=1, i.e.

∇u has columns ∇uk. As in [17] we shall also use D±(u) := (∇u ± ∇uT ).
Observe that D+(u) = 2D(u), that the definition of D−(u) in [17] has the
other sign, and that

ν × rotu = D−(u)ν
in case d = 3. We also recall the Cauchy stress tensor T (u, p) = 2D(u) − pI,
where I ∈ C

d×d is the identity matrix and p denotes the pressure.
The boundary conditions studied in [10] for a domain Ω ⊆ R

d with
outer unit normal ν and a sufficiently smooth vector field u on Ω are of the
form

ν · u = 0, αu + β[T (u, p)ν]tan = 0 on ∂Ω, (2.1)

where [. . .]tan denotes the tangential part, and α ∈ [0, 1) and β ∈ (0, 1] satisfy
α+β = 1. The first condition means that the motion at the boundary is only
possible in tangential directions which is reasonable for a fixed domain. Since
the pressure is scalar-valued we thus have

[T (u, p)ν]tan = [D+(u)ν]tan,

and α = 0 corresponds to Navier’s slip condition where there is no tangential
stress on the fluid at the boundary. The case β = 0 would correspond to
no-slip or Dirichlet conditions but this is excluded here. For α, β ∈ (0, 1)
one has partial slip conditions where the tangential stress at the boundary is
proportional to the velocity [u]tan = u (recall ν · u = 0).

In addition to these conditions, [17] also covers the conditions

ν · u = 0, D−(u)ν = 0 on ∂Ω, (2.2)

termed “perfect slip” there and “perfect wall” in [4]. For d = 3 this reads

ν · u = 0, ν × rotu = 0 on ∂Ω,

meaning that vorticy has to be in normal direction at the boundary. This
condition is called “Hodge boundary condition” in, e.g., [24] since resolvents
of the corresponding Laplace operator respect the Hodge (or Helmholtz) de-
composition of Lq-vector fields on bounded Lipschitz domains, at least for an
interval around q = 2. As we shall see this partly persists also to unbounded
domains Ω without a Helmholtz decomposition in Lq(Ω)d.

We refer to [24, Section 2] for a proof of the following fact: If the boun-
dary of Ω is of class C2 and ν · u = 0 on ∂Ω then

[D+(u)ν]tan = −D−(u)ν + 2Wu on ∂Ω, (2.3)

where W denotes the Weingarten map on ∂Ω and we consider W as a d × d-
matrix-valued function on ∂Ω, which has values in the real symmetric ma-
trices. In [24] this is shown for a bounded C2-domain, but the property can
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clearly be localized. If ∂Ω is unbounded and uniformly C2 then W is con-
tinuous and bounded. If Ω is an unbounded uniform C2,1-domain then W
is Lipschitz continuous and bounded on ∂Ω. There is also a clear relation of
(2.3) to [17, Lemma 9.1]. In view of the boundary conditions studied in [17]
we remark that

[D−(u)ν]tan = D−(u)ν,

which via (2.3) also reflects that Wu is tangential to ∂Ω if ν · u = 0 on ∂Ω.
We thus see that it is sufficient to study the Stokes operator with Hodge

boundary conditions (2.2) and then consider zero order perturbations of the
form

ν · u = 0, D−(u)ν = [Bu]tan on ∂Ω, (2.4)

where B ∈ C0,1(∂Ω)d×d is real-valued and symmetric. For the boundary
conditions in (2.1) we may take

B = αI + 2βW, (2.5)

where I ∈ C
d×d denotes the identity. The conditions (2.4) are called Robin

boundary conditions in, e.g., [26]. For the Weingarten map we do not need
[. . .]tan here, but in the general case we have to put it since the left hand side
in the second condition in (2.4) is tangential.

2.2. Regularity of domains

We start by recalling the definition of uniform Ck,1-domains and uniform
Ck-domains for k ∈ N0 and k ∈ N, respectively.

Definition 2.1. An unbounded domain Ω ⊆ R
d is called an unbounded uni-

form Ck,1-domain with k ∈ N0 (or uniform Ck-domain with k ∈ N, respec-
tively) if there are constants α, β,K > 0 such that, for each x0 ∈ ∂Ω, there is
a Cartesian coordinate system with origin at x0 and coordinates y = (y′, yd),
y′ = (y1, . . . , yd−1) and a Ck,1-function (or Ck-function, respectively) h, de-
fined on {y′ : |y′| ≤ α} and with ‖h‖Ck,1 ≤ K (or ‖h‖Ck , respectively), such
that, for the neighborhood

Uα,β,h(x0) = {y = (y′, yd) ∈ R
d : |yd − h(y′)| < β, |y′| < α}

of x0, we have Uα,β,h(x0) ∩ ∂Ω = {(y′, h(y′)) : |y′| < α} and

Uα,β,h(x0) ∩ Ω = {(y′, yd) : h(y′) − β < yn < h(y′), |y′| < α}.

An unbounded domain Ω ⊆ R
d is called an unbounded Lipschitz domain if,

for every x0 ∈ ∂Ω, one can find α, β,K > 0 and a Lipschitz function h such
that one has a representation as above, and Ω is called an unbounded uniform
Lipschitz domain if Ω is an unbounded uniform C0,1-domain. Observe that
for an unbounded Lipschitz domain, the constants α, β,K > 0 in the local
representation may depend on x0 ∈ ∂Ω.
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2.3. Function spaces and Helmholtz decompositions

Let Ω ⊆ R
d be a domain. For q ∈ [1,∞] and k ∈ N, Lq(Ω) and W k,q(Ω)

denote the usual Lebesgue and Sobolev spaces on Ω:

W k,q(Ω) := {u ∈ Lq(Ω) : ∂αu ∈ Lq(Ω) for all α ∈ N
d
0 with |α| ≤ k }.

Without explicit further notice functions in these spaces are always complex-
valued.

We denote by Cc(Ω) the space of continuous functions on Ω that have
compact support in Ω and by C0(Ω) the closure of Cc(Ω) w.r.t. the sup-norm
‖ · ‖∞ in, e.g., the space Cb(Ω) of all bounded and continuous functions on Ω
or in L∞(Ω).

We denote by C∞
c (Ω) the set of all C∞-functions on Ω with compact

support in Ω. Then we denote C∞
c,σ(Ω) := {ϕ ∈ C∞

c (Ω)d : div ϕ = 0} and, for
q ∈ (1,∞), Lq

σ(Ω) denotes the closure of C∞
c,σ(Ω) in Lq(Ω)d.

We denote by Gq(Ω) the space of Lq-gradients, i.e., the space of all f ∈
Lq(Ω)d such there exists a distribution ψ on Ω with f = ∇ψ. It is well-known
that we then have ψ ∈ Lq

loc(Ω), i.e. ψ|K ∈ Lq(K) for any compact subset
K ⊆ Ω, and that, for a Lipschitz domain Ω ⊆ R

d (bounded or unbounded),
we even have ψ ∈ Lq

loc(Ω), i.e. ψ|K ∈ Lq(K) for any compact subset K ⊆ Ω.
We thus set, for a Lipschitz domain Ω ⊆ R

d,

̂W 1,q(Ω) := {ψ ∈ Lq
loc(Ω) : ∇ψ ∈ Lq(Ω)d}/C,

so that Gq(Ω) = ∇̂W 1,q(Ω).
For the usual duality between Lq(Ω)d and Lq′

(Ω)d, where q′ ∈ (1,∞)
denotes the dual exponent to q given by 1

q + 1
q′ = 1, we then have

Lq
σ(Ω)⊥ = Gq′

(Ω), Gq(Ω)⊥ = Lq′
σ (Ω). (2.6)

For q = 2 one has the orthogonal decomposition L2(Ω)d = L2
σ(Ω) ⊕ G2(Ω),

usually called Helmholtz or (a special case of) Hodge decomposition, with
corresponding orthogonal projection P2 in L2(Ω)d, the Helmholtz projection.

Remark 2.2. Let Ω ⊆ R
d be an unbounded uniform C1-domain. It is shown

in [14, Proposition 2.1] that there is an interval IP ⊆ (1,∞) with 2 ∈ IP
and symmetric in the sense that q ∈ IP if and only if q′ ∈ IP, such that, for
any q ∈ IP, P2 restricted to L2(Ω)d ∩ Lq(Ω)d extends to a bounded operator
Pq on Lq(Ω)d related to the Helmholtz decomposition Lq(Ω)d = Lq

σ(Ω) ⊕
Gq(Ω). For q ∈ IP, Pq is called Helmholtz projection in Lq(Ω)d. Moreover,
for q ∈ (1,∞) we have q ∈ IP if and only if the Helmholtz decomposition
Lq(Ω)d = Lq

σ(Ω) ⊕ Gq(Ω) holds.

It is well-known that, for a bounded Lipschitz domain Ω ⊆ R
d, one can give

a sense to the normal component ν · f on the boundary ∂Ω for vector-fields
f ∈ Lq(Ω)d with div f ∈ Lq(Ω) (we refer, e.g., to [31, II.1.2]). This is done
via an integration by parts formula and, since it can be localized, persists
to unbounded uniform Lipschitz domains (see also Proposition A.1 in the
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Appendix for details in unbounded uniform C2,1-domains). For a bounded
Lipschitz domain one has

Lq
σ(Ω) = {f ∈ Lq(Ω)d : div f = 0, ν · f |∂Ω = 0 }.

For an unbounded Lipschitz domain Ω ⊆ R
d we denote

Lq
σ(Ω) = {f ∈ Lq(Ω)d : div f = 0, ν·f |∂Ω = 0 }, Gq(Ω) = ∇C∞

c (Ω)
Lq(Ω)d

.

Clearly, Lq
σ(Ω) ⊆ Lq

σ(Ω) and Gq(Ω) ⊆ Gq(Ω) (since Gq(Ω) is closed by (2.6)),
and there are unbounded domains with several outlets to infinity where those
inclusions are strict with arbitrary finite or with infinite codimension, see [6],
[23]. We have the duality relations

Lq
σ(Ω)⊥ = Gq′

(Ω), Gq(Ω)⊥ = Lq′
σ (Ω), (2.7)

and for q = 2 the orthogonal decomposition L2(Ω)d = L2
σ(Ω) ⊕ G2(Ω) with

corresponding orthogonal projection P2 in L2(Ω)d. Indeed, the first equality
follows from the second, and for the second “⊇” is clear, but also “⊆” follows
from the integration by parts formulae in Proposition A.1. We also refer to
[22, formulae (24) and (25)], where Gq(Ω) is denoted by ̂Gq(Ω), Gq(Ω) is
denoted by Gq(Ω), Lq

σ(Ω) is denoted by J̊q(Ω), and Lq
σ(Ω) is denoted by

̂J̊ q(Ω).

Remark 2.3. We discuss [17, Assumption 2.4] on unbounded uniform C2,1-
domains Ω, essential for a number of results in [17], some of which we shall
extend. This assumption reads: ∇C∞

c (Ω) is dense in Gq′
(Ω). By (2.6) this is

equivalent to Lq
σ(Ω) =

(∇C∞
c (Ω)

)⊥ = Gq′
(Ω)⊥. By (2.7) it is finally equiva-

lent to Lq
σ(Ω) = Lq

σ(Ω).
This always holds for q ∈ (1, d

d−1 ], see Lemma 4.5 below, but for large
q it fails, e.g., for aperture domains or other domains with several outlets to
infinity, see [22].

As for the Helmholtz decomposition above, there is an interval IP 
 2, sym-
metric in the sense that q ∈ IP if and only if q′ ∈ IP , such that, for any
q ∈ IP , P2 restricted to L2(Ω)d ∩Lq(Ω)d extends to a bounded projection Pq

on Lq(Ω)d related to the decomposition Lq(Ω)d = Lq
σ(Ω) ⊕ Gq(Ω). The proof

is very similar to the prooof of [14, Proposition 2.1].
As we shall also use results from [9] on the Helmholtz condition on

unbounded uniform C1-domains we recall the spaces

˜Lq(Ω) :=
{

Lq(Ω) ∩ L2(Ω), 2 ≤ q < ∞,
Lq(Ω) + L2(Ω), 1 < q < 2,

and the corresponding spaces of solenoidal and gradient vector fields

˜Lq
σ(Ω) :=

{

Lq
σ(Ω) ∩ L2

σ(Ω), 2 ≤ q < ∞,
Lq

σ(Ω) + L2
σ(Ω), 1 < q < 2,

˜Gq(Ω) :=
{

Gq(Ω) ∩ G2(Ω), 2 ≤ q < ∞,
Gq(Ω) + G2(Ω), 1 < q < 2.
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For k ∈ N and q ∈ (1,∞), we shall later on also meet the spaces

˜W k,q(Ω) :=
{

W k,q(Ω) ∩ W k,2(Ω), 2 ≤ q < ∞,
W k,q(Ω) + W k,2(Ω), 1 < q < 2.

We state explicitly that, in the usual canonical way,
(

˜Lq(Ω)
)′ = ˜Lq′

(Ω), 1 < q < ∞. (2.8)

The following on the Helmholtz decomposition in ˜Lq(Ω)d has been shown in
[9, Theorem 1.2, Corollary 1.3]. We remark that this has been used in the
proof of the assertion of Remark 2.2 in [14, Proposition 2.1].

Theorem 2.4. Let Ω ⊆ R
d be an unbounded uniform C1-domain and 1 < q <

∞. Then
˜Lq(Ω)d = ˜Lσ(Ω) ⊕ ˜Gq(Ω)

and the correponding projection ˜Pq in ˜Lq(Ω)d satisfies ( ˜Pq)′ = ˜Pq′ .
Moreover, C∞

c,σ(Ω) is dense in ˜Lq
σ(Ω) for the norm of ˜Lq(Ω)d and one

has the annihilator relations

˜Lq
σ(Ω)⊥ = ˜Gq′

(Ω), ˜Gq(Ω)⊥ = ˜Lq′
σ (Ω),

and in a canonical way the isomorphisms
(

˜Lq
σ(Ω)

)′ � ˜Lq′
σ (Ω),

(

˜Gq(Ω)
)′ � ˜Gq′

(Ω).

2.4. Maximal Lp -regularity, H∞-functional calculus, and Hörmander func-
tional calculus

We only recall basic notions and refer to [21] for more details. Let −A be
the densely defined generator of a bounded analytic semigroup in a Banach
space X. For p ∈ (1,∞), A is said to have maximal Lp-regularity if, for any
f ∈ Lp(R+;X), there exists a unique mild solution of the Cauchy problem

u′(t) + Au(t) = f(t), t > 0, u(0) = 0,

which satisfies u′, Au ∈ Lp(R+;X). The densely defined negative generator
B of an analytic semigroup is said to have maximal Lp-regularity on finite
intervals if, for some (and then equivalently for all) T > 0 and any f ∈
Lp(0, T ;X), there exists a unique mild solution of the Cauchy problem

u′(t) + Bu(t) = f(t), t ∈ (0, T ), u(0) = 0,

which satisfies u′, Bu ∈ Lp(0, T ;X). If A has maximal Lp-regularity then any
translate B = μ + A, μ ∈ R, has maximal Lp-regularity on finite intervals.
Conversely, if B has maximal Lp-regularity on finite intervals then B +μ has
maximal Lp-regularity for some μ ≥ 0.

In UMD spaces X, in particular in closed subspaces of Lq-spaces with
q ∈ (1,∞), maximal Lp-regularity for p ∈ (1,∞) is characterized by R-
sectoriality of A of some angle < π

2 (see, e.g., [21, 1.11]). Here, the operator
A is called R-sectorial of angle ω ∈ [0, π) if σ(A) ⊆ Σω := {λ ∈ C \ {0} :
|arg λ| ≤ ω} ∪ {0}, and for any θ ∈ (ω, π), the set {λR(λ,A) : λ ∈ C \ Σθ} ⊆
L(X) is R-bounded.
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For Banach spaces X, Y a subset τ ⊆ L(X,Y ) is called R-bounded with
R-bound C if, for all n ∈ N, x1, . . . , xn ∈ X and T1, . . . , Tn ∈ τ one has

E
∥

∥

n
∑

j=1

εjTjxj

∥

∥

Y
≤ CE

∥

∥

n
∑

j=1

εjxj

∥

∥

X
,

where the εj are independent and symmetric {−1, 1}-valued random vari-
ables, e.g., Rachemachers. By the Khintchine-Kahane inequalities, for X =
Lq with q ∈ (1,∞), expressions E‖∑

j εjfj‖ are equivalent to square function
expressions ‖(

∑

j |fj |2)1/2‖. This has been extensively used in, e.g., [5].
If we replace, in the above definition of R-sectoriality, R-boundedness

by boundedness, we obtain the definition of a sectorial operator of angle
ω ∈ [0, π). A sectorial operator A of angle ω ∈ [0, π) is said to have a bounded
H∞(Σθ)-calculus, where θ ∈ (ω, π), if for some C > 0 we have the bound

‖F (A)‖ ≤ C‖F‖∞,Σθ

for all F holomorphic on the interior of Σθ, for which

|F (z)| ≤ M min{|z|ε, |z|−ε}
holds for some M, ε > 0. Here, the operator F (A) ∈ L(X) is defined by the
Cauchy type integral

F (A) =
1

2πi

∫

∂Σσ

F (λ)R(λ,A) dλ, (2.9)

with σ ∈ (ω, θ). Observe that this is a Bochner integral by the assumptions
on F .

If A is densely defined with dense range and has a bounded H∞(Σθ)-
calculus then F (A) is a bounded operator for all F holomorphic and bounded
on the interior of Σθ. In particular, A has fractional powers Ait ∈ L(X) for
all t ∈ R, with an exponential bound in |t|, i.e. A has bounded imaginary
powers. It is well-known that, if A has bounded imaginary powers, then for
θ ∈ (0, 1) the domains fo the fractional powers Aθ are obtained by complex
interpolation

D(Aθ) = [X,D(A)]θ, θ ∈ (0, 1),

see, e.g., [33], [21], [16].
Under the same assumptions, the operator A is said to have a Hörmander

functional calculus if there exist C > 0 and s > 0 such that, for some
η ∈ C∞

c (0,∞) \ {0}, one has an estimate

‖F (A)‖ ≤ C sup
t>0

‖η(·)F (t·)‖W s,2 (2.10)

for F ∈ C∞
c (0,∞), say. For more on this type of functional calculus we

refer to [7], [19], [20]. In the typical situation X = Lq(Ω), A is self-adjoint
in L2(Ω) and, at least on Lq(Ω) ∩ L2(Ω), the operator F (A) is given by the
spectral theorem in L2(Ω). Let us already mention here that we do not aim for
optimality of the smoothness parameter s here and view this property more
as a qualitative strengthening of a bounded H∞-calculus: If F is bounded
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and holomorphic on the interior of Σθ then, for any t > 0 and k ∈ N, we have
by Cauchy’s integral formula

F (k)(t) =
k!
2πi

∫

|z−t|≤ct

F (z)
(z − t)k+1

dz,

for any c ∈ (0, arcsin θ), which leads to |tkF (k)(t)| ≤ k!
ck ‖F‖∞,Σθ

. This shows
that a Hörmander functional calculus for some s > 0 implies a bounded
H∞(Σθ)-calculus for any θ ∈ (0, π

2 ).

3. The Hodge Laplacian on unbounded uniform C2,1-domains

In this section we study the so-called Hodge Laplacian in unbounded uni-
form C2,1-domains. We establish pointwise Gaussian kernel bounds for the
semigroup operators. Similar to the approach in [20] this is done by Davies’
method. Compared to the situation in bounded Lipschitz domains in [20] we
can here make use of the Lq-theory of [17], in particular the precise descrip-
tion of the domain of the operator in Lq(Ω)d, and combine this with Sobolev
embeddings. An application of the main result of [7] then yields a bounded
Hörmander functional calculus on the Lq-scale. This calculus is much stronger
than a bounded H∞-calculus, for which an application of the main result in
[8] would have been sufficient. In any case this leads to bounded imaginary
powers and thus to a precise description of the domain of the square root of
the operator in Lq(Ω)d.

3.1. The operator

We define the Hodge Laplacian ΔH in L2(Ω)d for an unbounded Lipschitz
domain Ω ⊆ R

d by a suitable sesquilinear form. For d = 3 we recall the
following from [24], [20]. Let

a : V × V → C, a(u, v) :=
∫

Ω

rotu · rot v dx +
∫

Ω

div u div v dx, (3.1)

where

V := V (Ω) := {u ∈ L2(Ω)3 : rotu ∈ L2(Ω)3, div u ∈ L2(Ω), ν · u|∂Ω = 0}.

Notice that the boundary condition in the definition of V makes sense. Then
−ΔH is the operator in L2(Ω)3 associated with a in the usual sense: For
u, f ∈ L2(Ω)3 we have u ∈ D(ΔH) and −ΔHu = f if and only if

u ∈ V and ∀v ∈ V : a(u, v) = 〈f, v〉,
where 〈f, v〉 =

∫

Ω
f · v dx denotes the scalar product in L2(Ω)3. For d ≥ 3 we

take inspiration from [25] (see also the weak formulation in [4]) and let

a : V × V → C, a(u, v) :=
1
2

∫

Ω

D−(u) : D−(v) dx +
∫

Ω

div u div v dx,

(3.2)

where

V := V (Ω) := {u ∈ L2(Ω)d : D−(u) ∈ L2(Ω)d×d, div u ∈ L2(Ω), ν ·u|∂Ω = 0}
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and

B1 : B2 :=
d

∑

j,k=1

b1
jkb2

jk for matrices Bl = (bl
jk)jk ∈ C

d×d, l = 1, 2.

Proposition 3.1. Let Ω ⊆ R
d be an unbounded Lipschitz domain. Then the

operator −ΔH associated with a in L2(Ω)d is self-adjoint in L2(Ω)d and
−ΔH ≥ 0.

Proof. The sesquilinear form a is symmetric, i.e. a(u, v) = a(v, u) for all
u, v ∈ V (Ω). The space V (Ω) is dense in L2(Ω)d (since it contains H1

0 (Ω)d)
and V is a Hilbert space for the scalar product

〈u, v〉V := a(u, v) + 〈u, v〉L2(Ω)d .

Hence the operator −ΔH associated with a in L2(Ω)d is self-adjoint in L2(Ω)d.
By a(u, u) ≥ 0 for all u ∈ V (Ω), −ΔH is non-negative. �

Corollary 3.2. Let Ω ⊆ R
d be an unbounded Lipschitz domain. Then ΔH

generates a bounded analytic semigroup (T (t))t≥0 := (etΔH )t≥0 in L2(Ω)d

which is contractive on {z ∈ C : Rez > 0}.
We determine the operator −ΔH associated with a, assuming additional re-
gularity of the boundary. To this end we also need the following result which
is part of [17, Theorem 6.1].

Proposition 3.3. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and q ∈

(1,∞). The restriction ΔPS,q of the Laplacian Δ to the set

D(ΔPS,q) := {u ∈ W 2,q(Ω)d : ν · u = 0 and D−(u)ν = 0 on ∂Ω }
is the generator of an analytic semigroup in Lq(Ω)d.

Proposition 3.4. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. Then

−ΔH coincides with the operator −ΔPS,2, i.e.

D(−ΔH) = {u ∈ W 2,2(Ω)d : ν · u = 0 and D−(u)ν = 0 on ∂Ω }
and, for u ∈ D(−ΔH),

−ΔHu = −Δu.

Moreover we have

V (Ω) = {u ∈ W 1,2(Ω)d : ν · u = 0 on ∂Ω }.

Corollary 3.5. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. Then

ΔPS,2 is self-adjoint in L2(Ω)d and −ΔPS,2 ≥ 0.

Proof of Proposition 3.4. We start with the elementary formula (see also [17,
Lemma 5.3 (i)])

div (D−(u)v) = (Δu − ∇div u) · v + D−(u) : ∇v,

which holds for v ∈ W 1,q′
(Ω)d and u ∈ Lq(Ω)d with D−(u) ∈ W 1,q(Ω)d×d,

div u ∈ W 1,q(Ω), and Δu ∈ Lq(Ω)d, where q ∈ (1,∞). Here we have q = 2,



   26 Page 12 of 34 P. C. Kunstmann IEOT

but we shall need the following two formulae also for more general q. We
symmetrize the second term

D−(u) : ∇v = D−(u)T : ∇v
T

= −D−(u) : ∇v
T

=
1
2
D−(u) : D−(v)

(3.3)

to arrive at
1
2
D−(u) : D−(v) = div (D−(u)v) − (Δu − ∇div u) · v. (3.4)

Then we use Gauß’ theorem (see Proposition A.1) and obtain, for u ∈
W 2,2(Ω)d ∩ V (Ω) and v ∈ V (Ω),

a(u, v) =
∫

Ω

div (D−(u)v) dx −
∫

Ω

(Δu − ∇div u) · v dx

+
∫

Ω

div ((div u)v) − (∇div u) · v dx

=
∫

Ω

(−Δu) · v dx +
∫

Ω

div (D−(u)v) dx +
∫

Ω

div ((div u)v) dx

=
∫

Ω

(−Δu) · v dx +
∫

∂Ω

ν · D−(u)v dσ +
∫

∂Ω

(div u)(ν · v) dσ

=
∫

Ω

(−Δu) · v dx −
∫

∂Ω

v · D−(u)ν dσ.

In the last step we used ν · D−(u)v = −v · D−(u)ν (see also [17, Lemma
5.3 (iii)]) and ν · v = 0 on ∂Ω by v ∈ V (Ω). This shows −ΔHu = −Δu if
u ∈ W 2,2(Ω) ∩ V (Ω) satisfies in addition D−(u)ν = 0.

Observing W 2,2(Ω)d ∩ V (Ω) = {u ∈ W 2,2(Ω) : ν · u|∂Ω = 0} we thus
have shown

D(ΔPS,2) = {u ∈ W 2,2(Ω)d : ν · u = 0 and D−(u)ν = 0 on ∂Ω } ⊆ D(−ΔH)

and that ΔPS,2 is a restriction of ΔH . Since the resolvent sets of both oper-
ators ΔH and ΔPS,2 contain a right half plane (here we use Proposition 3.3)
we conclude ΔH = ΔPS,2 as claimed.

The last assertion is obtained by complex interpolation. It suffices to
show V (Ω) ⊆ W 1,2(Ω). Since −ΔH is self-adjoint we have

V (Ω) = [L2(Ω)d,D(−ΔH)]1/2 ⊆ [L2(Ω)d,W 2,2(Ω)d]1/2 = W 1,2(Ω)d,

where we refer to Proposition A.4 for the last equality. �

For later purposes we note the following variants of the integration by parts
argument in the previous proof under relaxed conditions.

Lemma 3.6. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and q ∈

(1,∞).

(i) If u ∈ W 2,q(Ω)d ∩ Lq
σ(Ω) with D−(u)ν = 0 on ∂Ω and v ∈ Gq′

(Ω) then
∫

Ω

(−Δu) · v dx = 0.
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(ii) If ∇ψ ∈ Gq(Ω), Δψ ∈ W 1,q(Ω) with ν ·∇ψ = 0 on ∂Ω and v ∈ D(ΔH,q′)
then Δ∇ψ ∈ Lq(Ω)d and

∫

Ω

∇ψ · (−Δv) dx =
∫

Ω

(−Δ∇ψ) · v dx.

Proof. (i) First observe that D−(v) = 0 since v is a gradient. If, in addition,
v ∈ W 1,q′

(Ω)d then the calculations in the proof of Proposition 3.4 show the
assertion. By [22, Theorem 3] we can approximate a given gradient v ∈ Gq′

(Ω)
in Lq′

(Ω)d-norm by gradients in W 1,q′
(Ω).

(ii) Again, we observe D−(∇ψ) = 0 in Ω. We also observe that Δ∇ψ =
∇Δψ ∈ Lq(Ω)d by Δψ ∈ W 1,q(Ω). The formula (3.4) still is true if just
u ∈ Lq(Ω)d with div u ∈ W 1,q(Ω), D−(u) ∈ W 1,q(Ω)d×d, Δu ∈ Lq(Ω)d

and v ∈ Lq′
(Ω)d with div v ∈ Lq′

(Ω), D−(v) ∈ Lq′
(Ω)d×d (instead of v ∈

W 1,q′
(Ω)d). Indeed, the argument in the proof of [1, Theorem 3.22] shows

that we can approximate such a given v by a sequence of smooth vn with
compact support such that vn → v, div vn → div v, and D−(vn) → D−(v) in
Lq′

-norm. Hence we can carry out the symmetrization (3.3) for vn and pass
to the limit.

Consequently we have, for v ∈ D(ΔH,q′) and u ∈ Lq(Ω)d with div u ∈
Lq(Ω), D−(u) ∈ W 1,q(Ω)d×d, and Δu,∇div u ∈ Lq(Ω)d, that

∫

Ω

u · (−Δv) dx +
∫

∂Ω

div v (ν · u) − u · D−(v)ν dσ =
∫

Ω

(−Δu) · v dx.

Putting u = ∇ψ as in the assumption this proves the claim. �
3.2. Gaussian bounds

We employ the method from [20] to establish Gaussian type bounds for
(T (t))t≥0, but here we are in a more regular situation, and can fully ex-
ploit the information in Proposition 3.3 on the domain of the generator in
Lq(Ω)d for 2 ≤ q < ∞.

Theorem 3.7. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. Then the

semigroup (T (t))t≥0 generated by ΔH in L2(Ω)d consists for t > 0 of inte-
gral operator with R

d×d-valued integral kernels k(t, x, y) satisfying pointwise
Gaussian bounds, i.e., there exist constants C, δ, b > 0 such that, for all t > 0
and x, y ∈ Ω,

|k(t, x, y)| ≤ Ct−d/2 eδt e−b |x−y|2
t . (3.5)

Proof. First we show that each T (t) leaves L2(Ω;Rd) invariant. We use [27,
Theorem 2.1]. So let u ∈ V (Ω). We have to show Re u ∈ V (Ω) which is clear
and Re a(u, u − Re u) ≥ 0. But

Re a(u, u − Re u) = Re
(

−i

∫

Ω

D−(u) : D−(Im u) + div u div (Imu) dx

)

=
∫

Ω

D−(Im u) : D−(Im u) + |div (Imu)|2 dx ≥ 0.

We only sketch the part of the proof in L2(Ω)d (steps 1 and 2 below) where
calculations are just as in the proof of [20, Theorem 5.1] (there, Ω ⊆ R

3
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was a bounded Lipschitz domain and a given by (3.1)). We shall use Davies’
method and consider “twisted” forms

a�φ(u, v) := a(e�φu, e−�φv) (u, v ∈ V (Ω)),

where � ∈ R and φ ∈ E := {φ ∈ C∞
c (Ω,R) : ‖∂jφ‖∞ ≤ 1 for all j}. Observe

that e�φu ∈ V (Ω) for u ∈ V (Ω) so that a�φ is well-defined.
Step 1: For each γ ∈ (0, 1) there exists a constant ω0 ≥ 0 such that, for all
u ∈ V (Ω), � ∈ R, and φ ∈ E ,

∣

∣a�φ(u, u) − a(u, u)
∣

∣ ≤ γa(u, u) + ω0�
2‖u‖2

2 . (3.6)

Step 2: There are constants C,ω1 > 0 such that
∥

∥e−�φetΔH (e�φf)
∥

∥

L2(Ω)d ≤ Ceω1�2t‖f‖L2(Ω)d (3.7)
∥

∥D−(e−�φetΔH e�φf)
∥

∥

L2(Ω)d ≤ Ct−1/2eω1�2t‖f‖L2(Ω)d (3.8)
∥

∥div (e−�φetΔH e�φf)
∥

∥

L2(Ω)d ≤ Ct−1/2eω1�2t‖f‖L2(Ω)d (3.9)

for all � ∈ R, ϕ ∈ E , t > 0 and f ∈ L2(Ω)d. Here we remark that, for a scalar
function g and a vector field u, we have

D−(gu) = gD−(u) + (∇g)uT − u(∇g)T , (3.10)

and this formula replaces the formula rot (gu) = g rotu + ∇g × u, used in
[20].

Step 3: We make use of the Sobolev embedding V (Ω) ↪→ W 1,2(Ω)d ↪→
Lq0(Ω)d where, for d ≥ 3, q0 is given by 1

q0
= 1

2 − 1
d , i.e. q0 = 2d

d−2 (for
d = 2 see Remark 3.8 below). Using in addition (3.7), (3.8), (3.9), we then
have, for f ∈ L2(Ω)d, � ∈ R, ϕ ∈ E , and t > 0,

‖e−�φetΔH (e�φf)‖Lq0 (Ω)d

� ‖e−�φetΔH (e�φf)‖V (Ω)

� ‖D−(e−�φetΔH e�φf)‖L2(Ω)d×d + ‖div (e−�φetΔH e�φf)‖L2(Ω)

+‖e−�φetΔH (e�φf)‖L2(Ω)d

� (1 + t−1/2)eω1�2t‖f‖L2(Ω)d .

Hence we find for any δ > 0 a constant Cδ > 0 such that, for all � ∈ R, ϕ ∈ E ,
and t > 0, we have

‖e−�φetΔH e�φf‖L2(Ω)d→Lq0 (Ω)d ≤ Cδt
−1/2eδteω1�2t = Cδt

− d
2 ( 1

2− 1
q0

)eδteω1�2t.

(3.11)

Step 4: We use the arguments in [5] and obtain, for any δ > 0, constants
Cq0,δ, ωq0 > 0 such that, for all � ∈ R, ϕ ∈ E , and t > 0, we have

‖e−�φetΔH e�φf‖Lq0 (Ω)d→Lq0 (Ω)d ≤ Cq0,δe
δteωq0�2t. (3.12)

Step 5: We use Proposition 3.3 for q = q0 and obtain constants Cq0 , δq0 > 0
such that, for all t > 0,

‖etΔH ‖Lq0 (Ω)d→W 2,q0 (Ω)d ≤ Cq0t
−1eδq0 t. (3.13)
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Then we use Stein interpolation between (3.11) and (3.13) and obtain new
constants Cq0 , δq0 > 0 such that, for all � ∈ R, ϕ ∈ E , and t > 0,

‖e−�φetΔH e�φf‖Lq0 (Ω)d→W 1,q0 (Ω)d ≤ Cq0,δt
−1/2eδq0 teωq0�2t.

(3.14)

Step 6: If q0 < d we use the Sobolev embedding W 1,q0(Ω)d ↪→ Lq1(Ω)d as in
Step 3, where 1

q1
= 1

q0
− 1

d , and obtain constants Cq1 , δq1 , ωq1 > 0 such that,
for all � ∈ R, ϕ ∈ E , and t > 0, we have

‖e−�φetΔH e�φf‖Lq0 (Ω)d→Lq1 (Ω)d ≤ Cq1t
− d

2 ( 1
q0

− 1
q1

)eδq1 teωq1�2t. (3.15)

Combining (3.11) and (3.15) via the semigroup property we obtain constants
Cq0,q1 , δq0,q1 , ωq0,q1 > 0 such that, for all � ∈ R, ϕ ∈ E , and t > 0, we have

‖e−�φetΔH e�φf‖L2(Ω)d→Lq1 (Ω)d ≤ Cq0,q1t
− d

2 ( 1
2− 1

q1
)eδq0,q1 teωq0,q1�2t

(3.16)

and can repeat Steps 4–6 with q1 in place of q0.
If q0 = d then the Sobolev embedding into L∞(Ω)d is not available. We

interpolate between (3.7) and (3.12) to obtain (3.12) for some 2 < q̃0 < d
and can repeat Steps 5 and 6.

If q0 > d we use the Gagliardo-Nirenberg inequality

‖u‖L∞(Ω) ≤ CGN‖u‖d/q0
W 1,q0 (Ω)

‖u‖1−d/q0
Lq0 (Ω)

instead of the Sobolev inequality and use both (3.12) and (3.14). This yields
constants C∞, δ∞, ω∞ > 0 such that, for all � ∈ R, ϕ ∈ E , and t > 0, we
have (3.15) with q1 = ∞. Again, we can combine this with (3.11) and obtain
constants Cq0,∞, δq0,∞, ωq0,∞ > 0 such that, for all � ∈ R, ϕ ∈ E , and t > 0,
we have (3.16) for q1 = ∞, i.e.,

‖e−�φetΔH e�φf‖L2(Ω)d→L∞(Ω)d ≤ Cq0,∞t−
d
4 eδq0,∞teωq0,∞�2t. (3.17)

Since etΔH is self-adjoint, dualization of (3.17) yields

‖e−�φetΔH e�φf‖L1(Ω)d→L2(Ω)d ≤ Cq0,∞t−
d
4 eδq0,∞teωq0,∞�2t. (3.18)

Combining (3.17) and (3.18) finally yields constants C, δ, ω > 0 such that,
for all � ∈ R, ϕ ∈ E , and t > 0,

‖e−�φetΔH e�φf‖L1(Ω)d→L∞(Ω)d ≤ Ct−
d
2 eδteω�2t. (3.19)

This is well-known to imply that the operators etΔH have integral kernels
satisfying pointwise Gaussian bounds, see, e.g., the arguments on [28, pp.
170/171]. As the semigroup leaves L2(Ω;Rd) invariant, the kernels can be
chosen to be R

d×d-valued. �

Remark 3.8. In case d = 2 one has to use the Gagliardo-Nirenberg type
inequality

‖u‖Lq0 (Ω) ≤ CGN‖u‖1−2/q0
W 1,2(Ω)‖u‖2/q0

L2(Ω)

for some 2 < q0 < ∞ since the Sobolev embedding V (Ω) ⊆ W 1,2(Ω)d ↪→
Lq0(Ω)d does not give the right t-exponent in (3.11).
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We note some consequences of Theorem 3.7.

Corollary 3.9. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. Then the

semigroup (T (t))t≥0 generated by ΔH extends for q ∈ [1,∞] to consistent an-
alytic semigroups (Tq(t))t≥0 on Lq(Ω)d whose generators we denote by ΔH,q.
On Lq(Ω)d the corresponding semigroup is strongly continuous for q ∈ [1,∞),
on L∞(Ω)d the semigroup is w∗-continuous, and we have the duality relation
Tq(t)∗ = Tq′(t) for t ≥ 0, hence also (ΔH,q)∗ = ΔH,q′ . For q ∈ (1,∞) we
have ΔH,q = ΔPS,q and thus the domain description in Proposition 3.3.

The semigroup operators T∞(t), t > 0, leave C0(Ω)d invariant and thus
induce an analytic semigroup (T0(t))t≥0 in C0(Ω)d whose generator we denote
by ΔH,0.

Proof. The assertion on extension of (T (t))t≥0 to analytic semigroups on
Lq(Ω)d for q ∈ [1,∞] is a well-known consequence of pointwise Gaussian
bounds (see, e.g., [28]). Observe also that here T∞(t) = T1(t)′, t ≥ 0, due to
self-adjointness of ΔH . By consistency we have Tq(t) = etΔP S,q , t ≥ 0, for
q ∈ (1,∞) hence ΔH,q = ΔPS,q with domain given in Proposition 3.3 for
q ∈ (1,∞).

Let f ∈ Cc(Ω)d and t > 0. Choose q > d
2 . Then f ∈ L2(Ω)d ∩ Lq(Ω)d

and, by analyticity in Lq(Ω)d and Sobolev embedding,

Tq(t)f ∈ D(ΔPS,q) ⊆ W 2,q(Ω)d ↪→ C0(Ω)d.

Since Cc(Ω)d is dense in C0(Ω)d w.r.t. to ‖·‖∞ we conclude that the operators
T∞(t), t ≥ 0, leave C0(Ω)d invariant. �

Remark 3.10. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and q ∈

(1,∞). By consistency of the semigroups (T2(t))t≥0 on L2(Ω)d and (Tq(t))t≥0

on Lq(Ω)d we obtain a consistent analytic semigroup ( ˜Tq(t))t≥0 on ˜Lq(Ω)d,
whose generator we denote by ˜ΔH,q. Then

D(˜ΔH,q) = {u ∈ ˜W 2,q(Ω)d : ν · u = 0 and D−(u)ν = 0 on ∂Ω }.

With respect to the duality (2.8) we have ( ˜Tq(t))′ = ˜Tq′(t), t ≥ 0.

Remark 3.11. The exponent δ > 0 in (3.5) depends on the exponents δq0 in
(3.13), i.e. on the exponential growth of the semigroups in Proposition 3.3,
which is not specified in [17, Theorem 6.1]. However, pointwise Gaussian
kernel bounds imply that the spectrum of −ΔH,q does not depend on q ∈
[1,∞] (see, e.g., [18]) hence equals σ(−ΔH,2) ⊆ [0,∞). As the growth of an
analytic semigroup is detemined by the spectral bound of its generator we
find, for any q ∈ [1,∞] and ε > 0, a constant Mε,q > 0 such that

‖Tq(t)‖Lq(Ω)d→Lq(Ω)d ≤ Mε,qe
εt for all t > 0.

The same holds for the growth of (˜Tq(t))t≥0 in ˜Lq(Ω)d for q ∈ (1,∞). These
improved bounds can then be used to obtain, by a repetition of the proof, an
arbitrarily small δ > 0 in (3.5).

Our main result on the Hodge Laplacian is as follows.
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Theorem 3.12. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain, q ∈

(1,∞), θ ∈ (0, π
2 ), and δ > 0. Then the operator δ − ΔH,q has a bounded

H∞(Σθ)-functional calculus in Lq(Ω)d and δ− ˜ΔH,q has a bounded H∞(Σθ)-
functional calculus in ˜Lq(Ω)d.

In fact, these operators even have a Hörmander functional calculus with
an estimate as in (2.10) for s > (d + 1)|12 − 1

q |.
Proof. Combining Theorem 3.7 and Remark 3.11 we obtain a bounded H∞-
calculus for δ − ΔH,q by the main result of [8]. The result on the angle of
the H∞-calculus is implied by the much stronger Hörmander type functional
calculus that δ − ΔH,q enjoys by the results of [7] or [19]. �

Remark 3.13. The arguments that led to Theorem 3.12 are very similar to
those in the applications of the results of [19] to the elliptic systems in [20].
The condition on s is obtained by interpolation.

As Lq(Ω)d and ˜Lq(Ω)d are UMD-spaces for q ∈ (1,∞), we obtain the usual
consequences of a bounded H∞-calculus.

Corollary 3.14. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain, q ∈

(1,∞), and δ > 0. The operators δ −ΔH,q in Lq(Ω)d and δ − ˜ΔH,q in ˜Lq(Ω)d

have bounded imaginary powers. In particular, for α ∈ (0, 1), we have

D((δ − ΔH,q)α) = [Lq(Ω)d,D(ΔH,q)]α,

D((δ − ˜ΔH,q)α) = [˜Lq(Ω)d,D(˜ΔH,q)]α.

Moreover, the operators ΔH,q and ˜ΔH,q have maximal Lp-regularity, p ∈
(1,∞), on finite intervals in Lq(Ω)d and ˜Lq(Ω)d, respectively.

Invoking Proposition A.5 we can now identify the fractional domain spaces.

Corollary 3.15. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and q ∈

(1,∞). Then we have

[Lq(Ω)d,D(ΔH,q)]α

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H2α,q(Ω)d, α ∈ (0, 1
2q ),

{u ∈ H2α,q(Ω)d : ν · u|∂Ω = 0}, α ∈ ( 1
2q , 1

2 + 1
2q ),

{u ∈ H2α,q(Ω)d : ν · u|∂Ω = 0,D−(u)ν|∂Ω = 0}, α ∈ ( 1
2 + 1

2q , 1).

For a description in case α ∈ { 1
2q , 1 + 1

2q } we refer to [30].

4. The Stokes operator with Hodge boundary conditions

4.1. Invariance for q = 2
We start with the case q = 2 and an unbounded Lipschitz domain Ω ⊆ R

d.
Recall that we have the Helmholtz projection P2 corresponding to the or-
thogonal decomposition L2

σ(Ω)⊕G2(Ω) and the projection P2 corresponding
to the orthogonal decomposition L2(Ω)d = L2

σ(Ω) ⊕ G2(Ω).
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Proposition 4.1. Let Ω ⊆ R
d be an unbounded Lipschitz domain. Then L2

σ(Ω)
and L2

σ(Ω) are invariant under the semigroup (T (t))t≥0 generated by ΔH in
L2(Ω)d.

Proof. We use [27, Theorem 2.1] and thus have to check that u ∈ V (Ω) implies
P2u,P2u ∈ V (Ω) and Re a(u, u − P2u) ≥ 0, Re a(u, u − P2u) ≥ 0. First we
show P2u ∈ V (Ω). We have P2u ∈ L2

σ(Ω) ⊆ {v ∈ L2(Ω)d : div v = 0, ν ·v|∂Ω =
0} = L2

σ(Ω) and P2u ∈ L2
σ(Ω), and it rests to prove D−(P2u),D−(P2u) ∈

L2(Ω)d×d. To this end write u = v + ∇ψ where v ∈ L2
σ(Ω) and ∇ψ ∈ G2(Ω).

Then we have, distributionally,

D−(P2u) = D−(v) = D−(u) − D−(∇ψ) = D−(u) ∈ L2(Ω)d×d.

Similarly, writing u = ṽ + ∇ ˜ψ where ṽ ∈ L2
σ(Ω) and ∇ ˜ψ ∈ G2(Ω), we have

D−(P2u) = D−(ṽ) = D−(u) − D−(∇ ˜ψ) = D−(u) ∈ L2(Ω)d×d.

We conclude P2u,P2u ∈ V (Ω) and, for w ∈ {P2u,P2u},

a(u, u − w) =
1
2

∫

Ω

D−(u) : D−(u − w) + div u div (u − w) dx

=
∫

Ω

|div u|2 dx ≥ 0,

which ends the proof. �
Remark 4.2. Once we have that V (Ω) is invariant under P2 and P2, we might
just as well have argued as in [20, Lemma 5.4] and check directly that P2 and
P2 commute with −ΔH , since for u ∈ D(−ΔH) and v ∈ V (Ω) we have

〈P2(−ΔH)u, v〉L2(Ω)d = 〈−ΔHu,P2v〉L2(Ω)d = a(u,P2v)

=
1
2

∫

Ω

D−(u) : D−(v) dx = a(P2u, v),

which means P2u ∈ D(−ΔH) and (−ΔH)P2u = P2(−ΔH)u. This implies
that P2 commutes with resolvents of ΔH and thus also with the semigroup
operators T (t), t ≥ 0. The argument for P2 is the same.

4.2. Invariance for q �= 2
We now consider q ∈ (1,∞) and an unbounded uniform C2,1-domain Ω ⊆
R

d. It is no surprise that the Lq-theory is more subtle. However, we have
invariance of certain Lq-spaces of solenoidal vector fields without additional
assumptions and obtain some information even for the limit cases q = 1 and
q = ∞. We first define these spaces on more general domains.

Definition 4.3. For an arbitrary domain Ω ⊆ R
d and q ∈ [1,∞) we set

L̆q
σ(Ω) := L2

σ(Ω) ∩ Lq(Ω)d
Lq(Ω)d

and define
C̆0,σ(Ω) := L2

σ(Ω) ∩ C0(Ω)d
‖·‖∞

.

For an unbounded Lipschitz domain Ω ⊆ R
d and q ∈ (1,∞) we set

L̆q
σ(Ω) = L2

σ(Ω) ∩ Lq(Ω)d
Lq(Ω)d

.
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Remark 4.4. Note that C0,σ(Ω) := C∞
c,σ(Ω)

‖·‖∞ , a space considered in the
context of Dirichlet (or “no-slip”) boundary conditions, is not suitable here,
as u = 0 on ∂Ω for any u ∈ C0,σ(Ω). Recall that, for u ∈ C0(Ω) we only have
that u(x) → 0 as |x| → ∞ with x ∈ Ω, see the beginning of Subsection 2.3.

Lemma 4.5. Let Ω ⊆ R
d be an unbounded Lipschitz domain and q ∈ (1,∞).

Then we have
Lq

σ(Ω) ⊆ L̆q
σ(Ω) ⊆ L̆q

σ(Ω) ⊆ Lq
σ(Ω)

If Lq
σ(Ω) = Lq

σ(Ω) then all these spaces coincide. If q ∈ IP then L̆q
σ(Ω) =

Lq
σ(Ω). If q ∈ [1, d

d−1 ] then Lq
σ(Ω) = Lq

σ(Ω).

Proof. For the first inclusion observe C∞
c,σ(Ω) ⊆ L2

σ(Ω) ∩ Lq(Ω)d and recall
the definition of Lq

σ(Ω). For the second inclusion recall L2
σ(Ω) ⊆ L2

σ(Ω). For
the third inclusion observe that, essentially by definition,

L2
σ(Ω) ∩ Lq(Ω)d = {f ∈ L2(Ω)d ∩ Lq(Ω)d : div f = 0, ν · f |∂Ω = 0 }

= L2(Ω)d ∩ Lq
σ(Ω).

Now let q ∈ IP and f ∈ L2
σ(Ω) ∩ Lq(Ω)d. Then f = P2f = Pqf ∈ Lq

σ(Ω),
hence L2

σ(Ω) ∩ Lq(Ω)d ⊆ Lq
σ(Ω) and the assertion follows.

The last assertion holds by [22, Theorem 5]. We refer to the paragraph
before Remark 2.3 for the notation in [22] in comparison to ours. �
Proposition 4.6. Let Ω ⊆ R

d be an unbounded uniform C2,1-domain and q ∈
(1,∞). Then we have:
(i) The spaces L̆q

σ(Ω) and L̆q
σ(Ω) are invariant under the semigroup opera-

tors (Tq(t))t≥0. Moreover, L1
σ(Ω) = L1

σ(Ω) is invariant under (T1(t))t≥0

and C̆0,σ(Ω) is invariant under (T0(t))t≥0.
(ii) The space ˜Lq

σ(Ω) is invariant under the semigroup ( ˜Tq(t))t≥0 and the
Helmholtz projection ˜Pq commutes with the semigroup operators.

(iii) If q ∈ (1, d
d−1 ]∪IP∪ [2,∞) then Lq

σ(Ω) is invariant under the semigroup
(Tq(t))t≥0.

Proof. (i) We start with L̆q
σ(Ω). Let t > 0. It suffices to show u := T (t)f ∈

L̆q
σ(Ω) for f ∈ L2

σ(Ω) ∩ Lq(Ω)d. This is clear by Proposition 4.1 and bound-
edness of the semigroup operator in Lq(Ω)d. The proof for L̆q

σ(Ω) is along
the same lines and uses invariance of L2

σ(Ω). Also the proofs for L1
σ(Ω) =

L1
σ(Ω) = L̆1

σ(Ω) and C̆0,σ(Ω) are similar.
(ii) Here we make use of the ˜Lq-theory in [9] (see Theorem 2.4). Let ϕ ∈
C∞

c,σ(Ω). By Proposition 4.1, for any t > 0, we have T (t)ϕ ∈ L2
σ(Ω). For

q ≤ 2 we immediately obtain T (t)ϕ ∈ ˜Lq
σ(Ω).

For q > 2 we obtain T (t)ϕ = P2T (t)ϕ = ˜PqT (t)ϕ ∈ ˜Lq
σ(Ω) via Theo-

rem 2.4. Since C∞
c,σ(Ω) is dense in ˜Lq

σ(Ω) by Theorem 2.4, we obtain invariance
of ˜Lq(Ω) under ( ˜Tq(t))t≥0 by Remark 3.10.

Now combine duality of semigroups in Remark 3.10 with the annihilator
relations in Theorem 2.4 to obtain invariance of ˜Gq(Ω) under ( ˜Tq(t))t≥0.
Hence ˜Pq commutes with the semigroup.
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(iii) For q ∈ IP the assertion follows from (i) and Lemma 4.5. So let q ∈ (2,∞)
and t > 0. Observe

Tq(t)
(

L2
σ(Ω

) ∩ Lq
σ(Ω)) = ˜Tq(t)

(

˜Lq
σ(Ω)

) ⊆ ˜Lq
σ(Ω) ⊆ Lq

σ(Ω).

and

Lq
σ(Ω) = C∞

c,σ(Ω)
Lq(Ω)d

⊆ L2
σ(Ω) ∩ Lq

σ(Ω)
Lq(Ω)d

⊆ Lq
σ(Ω).

Boundedness of Tq(t) on Lq(Ω)d yields Tq(t)(Lq
σ(Ω)) ⊆ Lq

σ(Ω) as claimed.
For q ∈ (1, d

d−1 ] we have Lq
σ(Ω) = Lq

σ(Ω) by Lemma 4.5 and invariance
follows from (i). �

Remark 4.7. (a) We compare Proposition 4.6 (i) to the corresponding result
in [17]. With respect to invariance for a fixed q it is essentially shown in
[17, Lemma 7.2] that Tq(t) maps Lq

σ(Ω) into Lq
σ(Ω). Hence invariance of

Lq
σ(Ω) is obtained assuming Lq

σ(Ω) = Lq
σ(Ω), see [17, Assumption 2.4] and

the discussion in [17, Remark 2.6 (c)]. We see here that it would be sufficient
to assume the weaker condition Lq

σ(Ω) = L̆q
σ(Ω), which by Lemma 4.5 is

implied by q ∈ IP. However, in (iii) we obtain invariance of Lq
σ(Ω) for 2 ≤

q < ∞ without additional assumptions. Notice that we needed (ii) as an
intermediate step.
(b) We consider it unlikely to have invariance of Lq

σ(Ω) for q ∈ (1, 2) in the
general case.
(c) In the following we concentrate on the spaces Lq

σ(Ω) and L̆q
σ(Ω) although

results similar to the L̆q
σ-case hold for the spaces L̆q

σ(Ω) as well, and by the
same methods.

Proposition 4.6 allows us to define the following Stokes operators in solenoidal
Lq-spaces.

Definition 4.8. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. For

q ∈ (1,∞) we denote by (S̆q(t))t≥0 := (Tq(t)|L̆q
σ(Ω))t≥0 the Hodge Stokes

semigroup in L̆q
σ(Ω) and by ĂH,q its negative generator, the Hodge Stokes

operator in L̆q
σ(Ω)

For q ∈ (1,∞) we denote by (˜Sq(t))t≥0 := (˜Tq(t)|˜Lq
σ(Ω))t≥0 the Hodge

Stokes semigroup in ˜Lq
σ(Ω) and by ˜AH,q its negative generator, the Hodge

Stokes operator in ˜Lq
σ(Ω).

Whenever Lq
σ(Ω) is invariant under (Tq(t))t≥0, so in particular for all

q ∈ [1, d
d−1 ] ∪ IP ∪ [2,∞), we denote by (Sq(t))t≥0 := (Tq(t)|Lq

σ(Ω))t≥0 the
Hodge Stokes semigroup in Lq

σ(Ω) and by AH,q its negative generator, the
Hodge Stokes operator in Lq

σ(Ω).
Finally, we denote by (S̆0(t))t≥0 := (T0(t)|C̆0,σ(Ω))t≥0 the Hodge Stokes

semigroup in C̆0,σ(Ω) and by ĂH,0 its negative generator, the Hodge Stokes
operator in C̆0,σ(Ω).

An application of Lemma A.6 yields the following description of the respective
domains.
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Proposition 4.9. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. We

have the following descriptions for the domains of the Hodge Stokes operators
introduced in Definition 4.8.

For q ∈ (1,∞) we have

D(ĂH,q) = {u ∈ W 2,q(Ω)d ∩ L̆q
σ(Ω) : D−(u)ν = 0 on ∂Ω }

and
D( ˜AH,q) = {u ∈ ˜W 2,q(Ω)d ∩ ˜Lq

σ(Ω) : D−(u)ν = 0 on ∂Ω }.

Whenever Lq
σ(Ω) is invariant under (Tq(t))t≥0, so in particular for all q ∈

(1, d
d−1 ] ∪ IP ∪ [2,∞), we have

D(AH,q) = {u ∈ W 2,q(Ω)d ∩ Lq
σ(Ω) : D−(u)ν = 0 on ∂Ω }

Any of these operators acts on its domain as the negative distributional Lapla-
cian −Δ.

Finally we have

D(AH,1) = {u ∈ D(ΔH,1) ∩ L1
σ(Ω) : ΔH,1u ∈ L1

σ(Ω)}
and AH,1 = ΔH,1|D(AH,1), and

D(ĂH,0) = {u ∈ D(ΔH,0) ∩ C̆0,σ(Ω) : ΔH,0u ∈ C̆0,σ(Ω)}
and ĂH,0 = ΔH,0|D(ĂH,0)

.

Proof. Combine Lemma A.6 with Proposition 4.6 and with Corollary 3.9.
Observe that, for q ∈ (1,∞), any u in Lq

σ(Ω), L̆q
σ(Ω), or ˜Lq

σ(Ω) satisfies
ν · u = 0 on ∂Ω. �

Concerning duality we have the following.

Proposition 4.10. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. The

operator AH,2 is self-adjoint in L2
σ(Ω) and AH,2 ≥ 0. For q ∈ IP we have

Sq(t)′ = Sq′(t), t ≥ 0, and for q ∈ (1,∞) we have ˜Sq(t)′ = ˜Sq′(t), t ≥ 0.

Proof. Use self-adjointness of (T (t))t≥0 in L2(Ω)d and the fact that respective
Helmholtz projections commute with the semigroup operators generated by
the Hodge Laplacians. �

By restricting the functional calculi in Theorem 3.12 to invariant subspaces
we obtain our main result on Hodge Stokes operators.

Theorem 4.11. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain, q ∈

(1,∞), δ > 0, and θ ∈ (0, π
2 ). Then δ + ĂH,q has a bounded H∞(Σθ)-calculus

in L̆q
σ(Ω) and δ + ˜AH,q has a bounded H∞(Σθ)-calculus in ˜Lq

σ(Ω).
If, in addition, Lq

σ(Ω) is invariant under (Tq(t))t≥0, so in particular if
q ∈ (1, d

d−1 ] ∪ IP ∪ [2,∞), then δ + AH,q has a bounded H∞(Σθ)-calculus in
Lq

σ(Ω).
In fact, these operators have a Hörmander functional calculus with an

estimate as in (2.10) for s > (d + 1)|12 − 1
q |.



   26 Page 22 of 34 P. C. Kunstmann IEOT

Proof. Invariance of a closed subspace under the semigroup implies invariance
under the resolvents of the generator, at least on the connected component
of the resolvent set that contains a right half plane. This in turn implies
invariance of the closed subspace under the operators of the H∞-calculus,
see the definition in Subsection 2.4.

Actually, also the operators in the Hörmander functional calculus leave
invariant a subspace that is left invariant under the semigroup. Hence the
operators in Theorem 4.11 even have a Hörmander functional calculus in the
respective spaces of solenoidal vector fields. �

Corollary 4.12. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain, q ∈

(1,∞), and δ > 0. The operators δ + ĂH,q in L̆q
σ(Ω) and δ + ˜AH,q in ˜Lq

σ(Ω)
have bounded imaginary powers. In particular, for α ∈ (0, 1), we have

D((δ+ĂH,q)α) = [L̆q
σ(Ω),D(ĂH,q)]α, D((δ+ ˜AH,q)α) = [˜Lq

σ(Ω),D( ˜AH,q)]α.

Moreover, the operators ĂH,q and ˜AH,q have maximal Lp-regularity, p ∈
(1,∞), on finite intervals in L̆q

σ(Ω) and ˜Lq
σ(Ω), respectively.

If, in addition, Lq
σ(Ω) is invariant under (Tq(t))t≥0, in particular if

q ∈ (1, d
d−1 ] ∪ IP ∪ [2,∞), then δ + AH,q has the respective properties in

Lq
σ(Ω).

Combining Corollary 3.15 with Corollary A.7 we obtain the following repre-
sentations for the fractional domain spaces of the Hodge Stokes operator in
Lq

σ(Ω).

Corollary 4.13. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and q ∈

(1, d
d−1 ] ∪ IP ∪ [2,∞) (or assume more generally that Lq

σ(Ω) invariant under
(Tq(t)). Then we have

[Lq
σ(Ω)d,D(AH,q)]α

=

⎧

⎨

⎩

H2α,q(Ω)d ∩ Lq
σ(Ω) , α ∈ (0, 1

2q ),
H2α,q(Ω)d ∩ Lq

σ(Ω) , α ∈ ( 1
2q , 1

2 + 1
2q ),

{u ∈ H2α,q(Ω)d ∩ Lq
σ(Ω) : D−(u)ν|∂Ω = 0} , α ∈ ( 1

2 + 1
2q , 1).

For information on the limit cases α ∈ { 1
2q , 1 + 1

2q } we refer again to [30].

5. Robin Stokes as perturbations of Hodge Stokes

In this section we shall perturb the Hodge boundary conditions on an un-
bounded uniform C2,1-domain Ω ⊆ R

d. This can be done in the spaces Lq(Ω)d

but even for q ∈ IP the perturbed semigroup will not leave Lq
σ(Ω) invariant.

Hence we shall perturb the Hodge Stokes operator in Lq
σ(Ω) directly. Pertur-

bation of boundary conditions is a subtle business. In order to have precise
domain descriptions we need information on the resolvent problem for the
Hodge Stokes operator with inhomogeneous boundary conditions. Similar to
what has been done in [17], we shall get them from the estimates on the
resolvent problem for the Hodge Laplacian with inhomogeneous boundary
conditions. However, we can dispense with [17, Assumption 2.4] which may
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be phrased as Lq
σ(Ω) = Lq(Ω) and which has been crucial for the results in

[17], see also Remark 4.7.

5.1. Estimates for resolvent problems

We start by recalling [17, Theorem 6.1]: Let Ω ⊆ R
d be an unbounded uniform

C2,1-domain, q ∈ (1,∞), θ ∈ (0, π) and δ > 0: For any f ∈ Lq(Ω)d, g ∈
W 1,q(Ω)d, and λ ∈ δ + Σθ the problem

⎧

⎪

⎨

⎪

⎩

λu − Δu = f in Ω,

D−(u)ν = gtan on ∂Ω,

ν · u = 0 on ∂Ω,

(5.1)

has a unique solution u ∈ W 2,q(Ω)d, and we have the estimate

‖λu, λ1/2∇u,∇2u‖Lq(Ω) � ‖f, λ1/2g,∇g‖Lq(Ω). (5.2)

In the following, we shall denote the unique solution of (5.1) by

u = Rλf + Sλg where Rλf = (λ − ΔH,q)−1f. (5.3)

Notice that, if f ∈ Lq
σ(Ω) and Lq

σ(Ω) is invariant under (Tq(t)), then Rλf =
(λ + AH,q)−1f .
We first state a lemma on invariance and regularity of decompositions.

Lemma 5.1. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and q ∈

(1,∞). Then we have the following.
(i) If u ∈ W 2,q(Ω)d ∩ Lq

σ(Ω) with D−(u)ν = 0 on ∂Ω then Δu ∈ Lq
σ(Ω).

(ii) If u ∈ W 2,q(Ω)d ∩ Gq(Ω) then Δu ∈ Gq(Ω).
(iii) Let θ ∈ (0, π), δ > 0, λ ∈ δ + Σθ, f ∈ Lq(Ω)d, g ∈ W 1,q(Ω)d, and

denote by u ∈ W 2,q(Ω)d the unique solution of (5.1). Suppose that u =
u0 + ∇ψ with u0 ∈ Lq

σ(Ω) and ∇ψ ∈ Gq(Ω). Then ∇ψ ∈ D(ΔH,q) and
u0 ∈ W 2,q(Ω)d ∩ Lq

σ(Ω) with D−(u0)ν = gtan on ∂Ω.

Proof. (i) For v ∈ Gq′
(Ω) we have D−(v) = 0 in Ω. Hence

∫

Ω

(−Δu) · v dx = 0

by Lemma 3.6 (i). We conclude that Δu ∈ Gq′
(Ω)⊥ = Lq

σ(Ω).
(ii) Let u = ∇ψ ∈ W 2,q(Ω)d. Then Δu = Δ∇ψ = ∇Δψ ∈ Gq(Ω).
(iii) We have D−(∇ψ) = 0 and D−(∇ψ)ν = 0 on ∂Ω. Hence

D−(u0) = D−(u) ∈ W 1,q(Ω)d×d and D−(u0)ν = gtan on ∂Ω.

Further we have

Δψ = div∇ψ = divu ∈ W 1,q(Ω)

and

Δ∇ψ = ∇Δψ = ∇div u ∈ Gq(Ω) ⊆ Lq(Ω)q,

which implies Δu0 = Δu − Δ∇ψ ∈ Lq(Ω)d. Finally, ν · u0 = 0 on ∂Ω implies
ν · ∇ψ = ν · (u − u0) = 0 on ∂Ω. It now suffices to show ∇ψ ∈ W 2,q(Ω)d. We
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have ΔH,q′ = (ΔH,q)∗ by Corollary 3.9, and for v ∈ D(ΔH,q′) we have, by
Lemma 3.6 (ii),

∫

Ω

∇ψ · (λ − Δ)v dx

= λ

∫

Ω

∇ψ · v dx +
1
2

∫

Ω

D−(∇ψ) : D−(v) dx +
∫

Ω

div∇ψ divv dx

=
∫

Ω

(λ∇ψ − Δ∇ψ) · v dx.

Hence, ∇ψ ∈ D((λ−ΔH,q′)∗) = D(λ−ΔH,q) ⊆ W 2,q(Ω)d, which then implies
also u0 = u − ∇ψ ∈ W 2,q(Ω)d. �
We now can formulate our result on the Stokes resolvent problem. Besides
invariance of Lq

σ(Ω) under (Tq(t)) we assume the following variant of the
Helmholtz decomposition.

Assumption 5.2. There exists a closed subspace ̂Gq(Ω) ⊆ Gq(Ω) such that

Lq(Ω)d = Lq
σ(Ω) ⊕ ̂Gq(Ω)

as a topological sum. We denote by ̂Pq the corresponding bounded projection
in Lq(Ω)d onto Lq

σ(Ω) with kernel ̂Gq(Ω) and let ̂Qq := I − ̂Pq.

The following is our result on the Hodge Stokes resolvent system.

Theorem 5.3. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. Let q ∈

(1,∞) be such that Lq
σ(Ω) is invariant under (Tq(t)) and such that Assump-

tion 5.2 holds. Let θ ∈ (0, π), δ > 0 and λ ∈ δ + Σθ. For any f ∈ Lq
σ(Ω) and

g ∈ W 1,q(Ω)d there exists a unique solution (u,∇p) ∈ (

W 2,q(Ω)d ∩ Lq
σ(Ω)

) ×
̂Gq(Ω) of the problem

⎧

⎪

⎨

⎪

⎩

λu − Δu + ∇p = f in Ω,

D−(u)ν = gtan on ∂Ω,

ν · u = 0 on ∂Ω,

(5.4)

and we have the estimate

‖λu, λ1/2∇u,∇2u,∇p‖Lq(Ω) � ‖f, λ1/2g,∇g‖Lq(Ω). (5.5)

Moreover, we can represent the solution (u,∇p) as

u = (λ + AH,q)−1f + ̂PqSλg − (λ + AH,q)−1
̂Pq∇div Sλg, (5.6)

∇p = ̂Qq(λSλg − ∇div Sλg). (5.7)

Proof. Step 1 : We show uniqueness. So let (u,∇p) ∈ (

(W 2,q(Ω)d ∩ Lq
σ(Ω)

) ×
̂Gq(Ω) solve (5.4) with f = 0 and g = 0. By Lemma 5.1 (i) we have λu −
Δu ∈ Lq

σ(Ω), hence ∇p ∈ Lq
σ(Ω) ∩ ̂Gq(Ω) = {0}. We conclude u = −(λ −

ΔH,q)−1∇p = 0.
Step 2 : The case g = 0. Since Lq

σ(Ω) is invariant under (Tq(t)) it is also
invariant under (λ − ΔH,q)−1 for λ ∈ δ + Σθ. Hence the case g = 0 is clear
with ∇p = 0 and u = (λ−ΔH,q)−1f = (λ+AH,q)−1f , and we get (5.5) from
(5.2).
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Step 3 : The case f = 0. Let g ∈ W 1,q(Ω)d. Denote by ũ = Sλg the solution
of (5.1) with f = 0 and put u0 := ̂Pqũ = ̂PqSλg and ∇ψ = ̂Qqũ = ̂QqSλg.
By Lemma 5.1 (iii) we have u0,∇ψ ∈ W 2,q(Ω)d, and u0 solves

⎧

⎪

⎨

⎪

⎩

λu0 − Δu0 = −λ∇ψ + Δ∇ψ in Ω,

D−(u0)ν = gtan on ∂Ω,

ν · u0 = 0 on ∂Ω,

(5.8)

where we recall

Δ∇ψ = ∇Δψ = ∇div (∇ψ) = ∇div ũ = ∇div Sλg.

This term on the right hand side of the first line of (5.8) might not yet be in
̂Gq(Ω). Hence we solve

⎧

⎪

⎨

⎪

⎩

λu1 − Δu1 = − ̂Pq∇div Sλg in Ω,

D−(u1)ν = 0 on ∂Ω,

ν · u1 = 0 on ∂Ω,

(5.9)

where

u1 = − (λ − ΔH,q)−1
̂Pq∇div Sλg

= − (λ + AH,q)−1
̂Pq∇div Sλg ∈ W 2,q(Ω)d ∩ Lq

σ(Ω)

by the invariance assumption.
For u := u0 + u1 ∈ W 2,q(Ω)d ∩ Lq

σ(Ω) we then have

λu − Δu = −λ∇ψ + ∇div ũ − ˜Pq∇div ũ = ˜Qq

( − λũ + ∇div ũ
)

and u satisfies the boundary conditions D−(u)ν = gtan and ν · u = 0 on ∂Ω.
Letting

∇p := ̂Qq

(

λũ − ∇div ũ
)

= ̂Qq

(

λSλg − ∇div Sλg
) ∈ ̂Gq(Ω) (5.10)

we hence have a solution (u,∇p) ∈ (

W 2,q(Ω)d ∩ Lq
σ(Ω)

) × ̂Gq(Ω) of (5.4) for
f = 0 with the representation (5.6) and (5.7).
It rests to show (5.5). Applying (5.1) to (5.8) we get

‖λu0, λ
1/2u0,∇2u0‖Lq(Ω) � ‖λ ̂QqSλg,∇div Sλg, λ1/2g,∇g‖Lq(Ω),

and, by (5.1) again,

‖λ ̂QqSλg,∇div Sλg‖Lq(Ω) � ‖λ1/2g,∇g‖Lq(Ω).

Applying (5.1) to (5.9) we get

‖λu1, λ
1/2u1,∇2u1‖Lq(Ω) � ‖ ̂Pq∇div Sλg‖Lq(Ω) � ‖λ1/2g,∇g‖Lq(Ω).

Finally, we apply (5.1) to (5.10) and get

‖∇p‖Lq(Ω) � ‖λSλg,∇div Sλg‖�‖λ1/2g,∇g‖Lq(Ω),

which finishes the proof of (5.5). �
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Remark 5.4. (a) Notice that Assumption 5.2 holds for q ∈ IP with ̂Gq(Ω) =
Gq(Ω) and ̂Pq = Pq and ̂Qq = I − Pq. By Proposition 4.6 (iii), q ∈ IP also
implies invariance Lq

σ(Ω) under (Tq(t)). For q ∈ IP we have

∇p = λSλg − ∇div Sλg

in (5.7) and the term ̂Pq∇div Sλg in (5.6) vanishes. In the proof we then
simply have u1 = 0.
(b) As mentioned above the estimates for the inhomogeneous resolvent sys-
tem in [17, Theorem 3.3] have been shown under [17, Assumption 2.4]. By
Remark 2.3 this assumption is equivalent to Lq

σ(Ω) = Lq(Ω), so it is clearly
stronger than invariance of Lq

σ(Ω) under (Tq(t)), see Subsection 4.2.
(c) The case f ∈ Lq

σ(Ω) is sufficient for our purposes. Under the same as-
sumptions one can obtain a version of Theorem 5.3 for general f ∈ Lq(Ω)d.
All one has to do is to replace f in (5.6) by ̂Pqf and add the term ̂Qqf to
the representation of ∇p in (5.7).

5.2. The Robin Stokes operator in Lq
σ (Ω)

For an unbounded uniform C2,1-domain Ω ⊆ R
d and q ∈ (1,∞) satisfying

the assumptions of Theorem 5.3 and B ∈ C0,1(∂Ω)d×d we can now define the
Robin Stokes operator AB,q by

AB,qu := − ̂PqΔu, u ∈ D(AB,q),

with

D(AB,q) := {u ∈ W 2,q(Ω)d ∩ Lq
σ(Ω) : D−(u)ν = [Bu]tan on ∂Ω}.

The following is our main result on Robin Stokes operators in Lq
σ(Ω)-spaces.

Theorem 5.5. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and let

B ∈ C0,1(∂Ω)d×d. Let q ∈ (1,∞) be such that Lq
σ(Ω) is invariant under

(Tq(t)) and such that Assumption 5.2 holds. For θ ∈ (0, π
2 ) there exists δ0 > 0

such that the operator δ + AB,q has a bounded H∞(Σθ)-calculus in Lq
σ(Ω).

Proof. We extend B to a Lipschitz function on Ω with ‖B,∇B‖L∞(Ω) �
‖B,∇B‖L∞(∂Ω). We fix δ > 0. For f ∈ Lq

σ(Ω) and λ ∈ δ + Σσ with θ + π
2 <

σ < π, we study the resolvent problem
⎧

⎪

⎨

⎪

⎩

λu − Δu + ∇p = f in Ω,

D−(u)ν = [Bu]tan on ∂Ω,

ν · u = 0 on ∂Ω.

(5.11)

via Theorem 5.3 and [21, Lemma 7.10]. For u ∈ W 2,q(Ω)d ∩ Lq
σ(Ω) we have

‖λ1/2Bu,∇Bu‖Lq � ‖B‖∞‖λ1/2u,∇u‖Lq + ‖∇B‖L∞‖u‖Lq

� λ−1/2‖λu, λ1/2∇u‖Lq .

By [21, Lemma 7.10] we infer that for λ ∈ δ + Σσ with |λ| sufficiently large,
the problem (5.11) has a unique solution with the estimate

‖λu, λ1/2∇u,∇2u,∇p‖Lq(Ω) � ‖f‖Lq(Ω).



IEOT H∞-calculus for the Stokes operator. . . Page 27 of 34    26 

We conclude that, for δ0 > δ sufficiently large, δ0 +AB,q is sectorial in Lq
σ(Ω)

and λ ∈ ρ(AB,q) for λ ∈ δ0 + Σσ with

(λ + AB,q)−1f = (λ + AH,q)−1f + ̂PqSλB(λ

+ AB,q)−1f − (λ + AH,q)−1
̂Pq∇div SλB(λ + AB,q)−1f

and the estimates

‖λ(λ + AB,q)−1f, λ1/2∇(λ + AB,q)−1f,∇2(λ + AB,q)−1f‖Lq(Ω) � ‖f‖Lq(Ω).

Since we then have

‖λ ̂PqSλB(λ + AB,q)−1f, λ(λ + AH,q)−1
̂Pq∇div SλB(λ + AB,q)−1f‖Lq(Ω)

� ‖λ1/2B(λ + AB,q)−1f,∇B(λ + AB,q)−1f‖Lq(Ω)

� λ−1/2‖λ(λ + AB,q)−1f, λ1/2∇(λ + AB,q)−1f‖Lq(Ω)

� λ−1/2‖f‖Lq(Ω),

we can see directly that the contour integral over the perturbative term yields
a bounded operator in Lq

σ(Ω), see (2.9). Since δ0 + AH,q has a bounded
H∞(Σθ)-calculus, we conclude that also δ0 + AB,q has a bounded H∞-
calculus. A similar argument has been used in [2]. �

Corollary 5.6. Under the assumptions of Theorem 5.5 and for δ0 > 0 large
enough, the operator δ0 + AB,q has bounded imaginary powers. In particular,
for α ∈ (0, 1), we have

D((δ0 + AB,q)α) = [Lq
σ(Ω),D(AB,q)]α

and

[Lq
σ(Ω)d,D(AB,q)]α

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H2α,q(Ω)d ∩ Lq
σ(Ω), α ∈ (0, 1

2q ),

H2α,q(Ω)d ∩ Lq
σ(Ω), α ∈ ( 1

2q , 1
2 + 1

2q ),

{u ∈ H2α,q(Ω)d ∩ Lq
σ(Ω) : D−(u)ν|∂Ω = Bu},α ∈ (1

2 + 1
2q , 1).

Moreover, in Lq
σ(Ω) the operator AB,q has maximal Lp-regularity on finite

intervals, p ∈ (1,∞).

The assertions are immediate, except for the identificaton of the complex
interpolation spaces. For this we shall need a result for the corresponding
Robin Laplacian ΔB,q, given by

ΔB,qu := Δu, D(ΔB,q),

with

D(ΔB,q) := {u ∈ W 2,q(Ω)d : ν · u|∂Ω = 0,D−(u)ν|∂Ω = Bu},

which we present next.

Proposition 5.7. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain, B ∈

C0,1(∂Ω)d×d and q ∈ (1,∞). For θ ∈ (0, π
2 ) there exists δ > 0 such that the



   26 Page 28 of 34 P. C. Kunstmann IEOT

operator δ − ΔB,q has a bounded H∞(Σθ)-calculus in Lq
σ(Ω). Moreover, we

have

[Lq
σ(Ω)d,D(ΔB,q)]α

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H2α,q(Ω)d, α ∈ (0, 1
2q ),

{u ∈ H2α,q(Ω)d : ν · u|∂Ω = 0}, α ∈ ( 1
2q , 1

2 + 1
2q ),

{u ∈ H2α,q(Ω)d : ν · u|∂Ω = 0,D−(u)ν|∂Ω = Bu},α ∈ (1
2 + 1

2q , 1).

Proof of Proposition 5.7. The proof is similar to the proof of Theorem 5.5
but in fact simpler, as instead of using Theorem 5.3 we can directly rely
on the resolvent system (5.1) and the estimate (5.2). This yields a similar
resolvent estimate for the Robin Laplacian. By Seeley’s result ([30]) again,
we obtain the last assertion. �
Proof of Corollary 5.6. We identify the complex interpolation spaces. We can
get “⊆” by Lq

σ(Ω) ⊆ Lq(Ω)d and D(AB,q) ⊆ D(ΔB,q), D(AB,q) ⊆ Lq
σ(Ω).

Equality holds by an argument which we borrow from [15]. We fix μ > δ and
define PB := ιq(μ + AB,q)−1Pq(μ − ΔB,q) which is a projection in D(ΔB,q)
onto D(AB,q). Here ιq denotes the embedding Lq

σ(Ω) → Lq(Ω). The operator
PB has a bounded extension ˜PB to projection in Lq(Ω)d onto Lq

σ(Ω), since the
dual operator P ∗

B = (μ − ΔB∗,q′)ιq′(μ + AB∗,q′)−1Pq′ is bounded in Lq′
(Ω)d.

The latter holds by

‖P ∗
Bg‖Lq′ � ‖(μ + AB∗,q′)−1g‖W 2,q′ � ‖g‖Lq′ ,

where we used the estimate (5.2), but for the Robin Laplacian. �
Remark 5.8. Theorem 5.5 and Corollary 5.6 cover Stokes operators with
Navier boundary conditions as in (2.1) if we take B as specified in (2.5).

5.3. The Robin Stokes operator in ˜Lq
σ (Ω)

Let Ω ⊆ R
d be an unbounded uniform C2,1-domain. We have analogs of the

results in the previous subsection in ˜Lq
σ(Ω) for all q ∈ (1,∞). We only state

the results and omit the detailed arguments but the starting point is again
the system (5.1). From [17, Theorem 6.1] we infer estimates

‖λu, λ1/2∇u,∇2u‖
˜Lq(Ω) � ‖f, λ1/2g,∇g‖

˜Lq(Ω). (5.12)

We can then procede as before and obtain the following.

Theorem 5.9. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and let

B ∈ C0,1(∂Ω)d×d and q ∈ (1,∞). For θ ∈ (0, π
2 ) there exists δ0 > 0 such that

the operator δ + ˜AB,q has a bounded H∞(Σθ)-calculus.

Corollary 5.10. Under the assumptions of Theorem 5.9 and for δ0 > 0 large
enough, the operator δ0 + ˜AB,q has bounded imaginary powers. In particular,
for α ∈ (0, 1), we have

D((δ0 + ˜AB,q)α) = [˜Lq
σ(Ω),D( ˜AB,q)]α.

Moreover, the operator ˜AB,q has maximal Lp-regularity, p ∈ (1,∞), on finite
intervals in ˜Lq

σ(Ω).
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Remark 5.11. (a) Again, Theorem 5.9 and Corollary 5.10 cover Stokes oper-
ators with Navier boundary conditions as in (2.1) if we take B as specified
in (2.5).
(b) The result on Lp-maximal regularity in Corollary 5.10 has been shown for
Navier type boundary conditions in [11], but under an additional assumption
on the unbounded uniform C2,1-domain Ω.
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Appendix A. Auxiliary results

A.1. Traces and Gauss’s theorem on unbounded domains

We refer to [17, Appendix B] for proofs of the following extensions of facts
that are well-known for bounded domains. First we define, for any domain
Ω ⊆ R

d and q ∈ (1,∞),

Eq(Ω) := {f ∈ Lq(Ω)d : div f ∈ Lq(Ω) },

which is a Banach space for ‖f‖Eq(Ω) := ‖f‖Lq(Ω)d+‖div f‖Lq(Ω). If Ω satisfies
the segment property (so in particular if Ω is an unbounded Lipschitz domain)
then C∞

c (Ω)d is dense in Eq(Ω) (see [17, Lemma 13.1]). In the following
proposition we collect the statements that are relevant for us.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proposition A.1. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain.

(i) For q ∈ [1,∞) the map z �→ u|∂Ω, defined on C∞
c (Ω), has a continuous

extension
Tr : W 1,q(Ω) → W 1− 1

q ,q(∂Ω).
For q ∈ (1,∞), Tr is surjective with a continuous linear right inverse

RTr : W 1− 1
q ,q(∂Ω) → W 1,q(Ω).

(ii) For any u ∈ W 1,1(Ω)d one has
∫

Ω

div u dx =
∫

∂Ω

ν · u dσ.

(iii) For q ∈ (1,∞), u ∈ W 1,q(Ω), and v ∈ W 1,q′
(Ω)d one has

∫

Ω

u div v dx = −
∫

Ω

∇u · v dx +
∫

∂Ω

u(ν · v) dσ.

(iv) For q ∈ (1,∞) the map v �→ ν·v|∂Ω, defined on C∞
c (Ω), has a continuous

extension

Trν : Eq′(Ω) → W− 1
q′ ,q′

(∂Ω) :=
(

W
1
q′ ,q(∂Ω)

)′ =
(

W 1− 1
q ,q(∂Ω)

)′
,

given by

〈Tr u,Trνv〉∂Ω =
∫

Ω

u div v dx +
∫

Ω

∇u · v dx foru ∈ W 1,q(Ω).

Observe that 〈Tr u,Trνv〉∂Ω does not depend on the special choice of u
and we can take u = RTrTr u. For simplicity of notation we put

〈u, ν · v〉∂Ω := 〈Tr u,Trνv〉∂Ω foru ∈ W 1,q(Ω)and v ∈ Eq′(Ω).

For the proofs we refer to [17, Lemmas B.2–B.7]. They may be extended
to unbounded uniform Lipschitz domains.

A.2. Extension, Sobolev embedding, and interpolation

For the following extension operator we refer to [32, Thm. VI.3.1/5]. The
formulation is the one from [17, Lemma 12.2].

Proposition A.2. Let Ω ⊆ R
d be an unbounded uniform Lipschitz domain.

Then there exists a linear operator E mapping real-valued functions onto
real-valued functions on R

d such that Ef |Ω = f holds for any function f on
Ω and such that

E : W k,q(Ω) → W k,q(Rd)
is bounded for all 1 ≤ q < ∞ and k ∈ N0.

Using this extension operator E one can prove the following Sobolev
embeddings for Ω via those on R

d.

Proposition A.3. Let Ω ⊆ R
d be an unbounded uniform Lipschitz domain and

q ∈ (1,∞) and k ∈ N. If q < d
k then W k,q(Ω) ↪→ Lr(Ω) where 1

r = 1
q − k

d . If
q > d

k then W k,q(Ω) ↪→ C0(Ω).

Using the extension operator E, the restriction Rf = f |Ω, and [33, 1.2.4]
one can also prove the following on complex interpolation spaces.
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Proposition A.4. Let Ω ⊆ R
d be an unbounded uniform Lipschitz domain and

q ∈ (1,∞). Then, for k ∈ N and θ ∈ (0, 1),

[Lq(Ω),W k,q(Ω)]θ = Hθk,q(Ω),

where Hkθ,q(Ω) = R(Hkθ,q(Rd)), i.e. the restrictions of functions in the
Bessel potential space Hkθ,q(Rd). If kθ = l ∈ N then Hkθ,q(Ω) = W l,q(Ω).

As an application of Seeley’s results ([30]) we obtain the following.

Proposition A.5. Let Ω ⊆ R
d be an unbounded uniform C2,1-domain and

q ∈ (1,∞). Then we have for D(ΔH,q) = {u ∈ W 2,q(Ω)d : ν ·u = 0,D−(u)ν =
0 on ∂Ω} the following identities for complex interpolation spaces:

[Lq(Ω)d,D(ΔH,q)]θ

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H2θ,q(Ω)d , θ ∈ (0, 1
2q ),

{u ∈ H2θ,q(Ω)d : ν · u = 0 on ∂Ω} , θ ∈ ( 1
2q , 1

2 + 1
2q ),

{u ∈ H2θ,q(Ω)d : ν · u = 0,D−(u)ν = 0 on ∂Ω} , θ ∈ ( 1
2 + 1

2q , 1).

Proof. In order to apply the main result of [30] we rewrite the boundary
condition D−(u)ν = 0 in terms of normal derivatives of the components of u.
Using (2.3) we obtain under the condition ν · u = 0 on ∂Ω that D−(u)ν = 0
is equivalent to

(I − ννT )
[

(∇u)T ν
]

=
[

(∇u)T ν
]

tan
= Wu.

Hence we have exactly the form with the projection mentioned on p.54 before
(3.4) in [30]. We can localize Ω and apply then [30, Theorem 4.1] using
uniformity of Ω. �

A.3. Generators in invariant subspaces

The following lemma is easy. We include it with a proof for convenience of
the reader.

Lemma A.6. Let X be a Banach space and (T (t))t≥0 be a C0-semigroup in X
with negative generator A. Let Y be a closed subspace of X that is invariant
under each operator T (t), t ≥ 0. Then (S(t))t≥0 := (T (t)|Y )t≥0 is a C0-
semigroup in Y with negative generator B = A|D(B) where D(B) = D(A)∩Y .

Proof. Clearly, (S(t))t≥0 is a C0-semigroup in Y . If y ∈ Y and 1
t (y−S(t)y) →

z in Y then 1
t (y−T (t)y) → z in X, and we conclude that B is a restriction of

A and D(B) ⊆ D(A)∩Y . If, on the other hand, y ∈ Y and 1
t (y −T (t)y) → z

in X then z ∈ Y by closedness of Y , hence 1
t (y − S(t)y) → z in Y and

y ∈ D(B), By = z. �

We have the following corollary for fractional domain spaces.

Corollary A.7. In the situation of Lemma A.6 let δ ∈ R be such that the
semigroup (e−δtT (t))t≥0 is bounded. For α ∈ (0, 1) we then have

(δ + B)α = (δ + A)α|D((δ+B)α)

where D((δ + B)α) = D((δ + A)α) ∩ Y .
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Proof. Notice first that δ + A is sectorial of angle ≤ π
2 . Hence the fractional

powers (δ + A)α are well-defined and sectorial of angle ≤ απ
2 . In particular,

−(δ + A)α is the generator of a bounded analytic semigroup (Sα(t)) and
the semigroup operators may be represented by the holomorphic functional
calculus of A in terms of the resolvent operators of A. Since Y is invariant
under (T (t)), it is also invariant under the resolvents (λ + A)−1 for Reλ >
δ. We conclude that Y is invariant under the semigroup (Sα(t)). Then the
assertion follows via Lemma A.6. �
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