KIT | KIT-Bibliothek | Impressum | Datenschutz

Adversarial Subspace Generation for Outlier Detection in High-Dimensional Data

Cribeiro-Ramallo, Jose 1; Matteucci, Federico 1; Enciu, Paul 1; Jenke, Alexander 1; Arzamasov, Vadim 2; Strufe, Thorsten ORCID iD icon 3; Böhm, Klemens 4
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
3 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)
4 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Outlier detection in high-dimensional tabular data is challenging since data is often distributed across multiple lower-dimensional subspaces—a phenomenon known as the Multiple Views effect (MV). This effect led to a large body of research focused on mining such subspaces, known as *subspace selection*. However, as the precise nature of the MV effect was not well understood, traditional methods had to rely on heuristic-driven search schemes that struggle to accurately capture the true structure of the data. Properly identifying these subspaces is critical for unsupervised tasks such as outlier detection or clustering, where misrepresenting the underlying data structure can hinder the performance. We introduce Myopic Subspace Theory (MST), a new theoretical framework that mathematically formulates the Multiple Views effect and writes subspace selection as a stochastic optimization problem. Based on MST, we introduce V-GAN, a generative method trained to solve such an optimization problem. This approach avoids any exhaustive search over the feature space while ensuring that the intrinsic data structure is preserved. Experiments on 42 real-world datasets show that using V-GAN subspaces to build ensemble methods leads to a significant increase in one-class classification performance—compared to existing subspace selection, feature selection, and embedding methods. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000185496
Veröffentlicht am 09.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Institut für Theoretische Informatik (ITI)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.07.2025
Sprache Englisch
Identifikator ISSN: 2835-8856
KITopen-ID: 1000185496
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in Transactions on Machine Learning Research
Verlag OpenReview.net
Band 7
Bemerkung zur Veröffentlichung 1
Externe Relationen Siehe auch
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page