KIT | KIT-Bibliothek | Impressum | Datenschutz

Hydrogen response to high‐density dislocations in bulk perovskite oxide SrTiO₃

Fang, Xufei ORCID iD icon 1; Dörrer, Lars; Korneychuk, Svetlana ORCID iD icon 1,2; Vrellou, Maria 1; Welle, Alexander ORCID iD icon 2,3; Wagner, Stefan 1; Pundt, Astrid 1; Schmidt, Harald ; Kirchlechner, Christoph 4
1 Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
3 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
4 Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI), Karlsruher Institut für Technologie (KIT)

Abstract:

Hydrogen plays an increasingly important role in green energy technologies. For instance, proton-conducting oxides with high performance for fuel cell components or electrolyzers need to be developed. However, this requires a fundamental understanding of hydrogen-defects interactions. Although point defects and grain boundaries in oxides have been extensively studied, the role of dislocations as line defects remains less understood, primarily due to the challenge for effective dislocation engineering in brittle oxides. In this work, we demonstrate the impact of dislocations in bulk single-crystal perovskite oxide SrTiO3 on hydrogen uptake and diffusion using deuterium as tracer. Dislocations with a high density up to ∼1014/m2 were mechanically introduced at room temperature. Exposing this dislocation-rich region and the reference regions (with a dislocation density of ∼1010/m2) to deuterium at 400°C for 1 h, followed by secondary ion mass spectrometry measurements, we observed a ∼100 times increase in deuterium incorporation in the dislocation-rich region. The result suggests that dislocations in oxides can act as an effective reservoir for deuterium. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000185497
Veröffentlicht am 09.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2026
Sprache Englisch
Identifikator ISSN: 0002-7820, 1551-2916
KITopen-ID: 1000185497
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Weitere HGF-Programme 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Journal of the American Ceramic Society
Verlag American Ceramic Society
Band 109
Heft 1
Seiten Art.-Nr. e70291
Vorab online veröffentlicht am 05.10.2025
Schlagwörter 2023-031-031848 TEM, 2023-031-031919 ToF-SIMS
Nachgewiesen in Web of Science
Dimensions
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page