KIT | KIT-Bibliothek | Impressum | Datenschutz

One-pot non-isocyanate urethane synthesis via visible light-activated Curtius rearrangement

Thuy, Vu Thi Tuyet 1,2; Jana, Saibal 3; Wenzel, Wolfgang 3; Theato, Patrick ORCID iD icon 1,2,4; Kocaarslan, Azra 3
1 Institut für Technische Chemie (ITC), Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
4 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)

Abstract:

Curtius rearrangement is a highly versatile and powerful synthetic strategy for converting acyl azides into isocyanates. Herein, we introduce a visible-light-induced non-isocyanate method as an innovative ligation approach for urethane linkage formation, enabling the photochemical in situ generation of isocyanates under mild conditions. We design conjugated acyl azide molecules and successfully integrate these into diverse ligation processes, showcasing their versatility in small molecule synthesis, polymer chain-end functionalization, and surface modification of both inorganic and organic substrates. The resulting small molecules and materials were comprehensively characterized using nuclear magnetic resonance (NMR), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet-visible (UV-Vis) and fluorescence spectroscopy, contact angle (CA) measurements, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Critically, density functional theory (DFT) calculations provided molecular-level insights into the reaction mechanism, revealing how electronic effects influence the initiation efficiency of acyl azides. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000185599
Veröffentlicht am 10.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Institut für Nanotechnologie (INT)
Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 0014-3057
KITopen-ID: 1000185599
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in European Polymer Journal
Verlag Elsevier
Band 239
Seiten 114255
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page